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Abstract
Commutative Hilbertian Frobenius algebras are those commutative semi-

group objects in the monoidal category of Hilbert spaces, for which the Hilbert
adjoint of the multiplication satisfies the Frobenius compatibility relation, that
is, this adjoint “comultiplication” is a bimodule map. In this note we show
that the Frobenius relation forces the multiplication operators to be normal.
We then prove that these algebras have a strong Wedderburn decomposition
where the (ortho)complement of the Jacobson radical or equivalently of the
annihilator, is the closure of the linear span of elements which essentially are
the non-trivial characters. As a consequence such an algebra is semisimple if,
and only if, its multiplication has a dense range. In particular every commu-
tative special Hilbertian Frobenius algebra, that is, with a coisometric multi-
plication, is semisimple. Moreover we characterize from a setting a priori free
of an involution, Ambrose’s commutative H∗-algebras as the underlying alge-
bras of Hilbertian Frobenius algebras. Extending a known result in the finite-
dimensional situation, we prove that the structures of such Frobenius algebras
on a given Hilbert space are in one-to-one correspondence with its bounded
above orthogonal sets. We show, moreover, that the category of commutative
Hilbertian Frobenius algebras is dually equivalent to a category of pointed sets.

MSC 2010: Primary 46J40, Secondary 16T15.
Keywords: Frobenius compatibility relation, Banach algebras, semisimplicity,
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Introduction

As is well-known the Hilbert space `2(X) of square-summable functions on X is by
no means free over X in any obvious ways. However in this note we prove that X –
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or more precisely X plus a new point adjoined – freely generates a (non-unital, when
X is not finite) commutative Frobenius algebra, whose underlying space is (unitarily
isomorphic to) `2(X). More generally we show that every commutative Frobenius
algebra (H,µ), where (H,µ) is a semigroup in the category of Hilbert spaces and
for which µ† satisfies the Frobenius compatibility relation, splits into an orthogonal
direct sum of two ideals `2(X)⊕2A(H,µ), where A(H,µ) is the annihilator of (H,µ)
and X is a set equipotent to that of minimal ideals of (H,µ). The free Frobenius
algebras, that is, those of the form `2(X), are precisely the semisimple ones. Before
describing in more detail the content of this note, let us put it into perspective.

A Frobenius algebra may be described in several equivalent ways ([7, Theo-
rem 61.3, p. 414]), for instance it is a unital algebra over some base field which
as a left module over itself is isomorphic to its algebraic (right) dual. This defini-
tion implies directly that the algebra must be finite-dimensional or at least finitely
generated projective if base rings are allowed [10].

Not all equivalent characterizations are equally suitable for the applications or
generalizations we have in mind, for instance if one expects to extend this notion to
not necessarily finite-dimensional algebras. Thus alternatively a Frobenius algebra is
a finite-dimensional unital algebra together with a non-degenerate and “associative”
bilinear form. Dropping the finiteness condition leads to infinite-dimensional Frobe-
nius algebras studied in [14]. At this point one may add that under this form the
Frobenius algebras are substantially similar to a class of (non unital) algebras com-
bining Banach algebras and Hilbert spaces, called H∗-algebras [3], where the Hilbert
adjoint of the operators of left multiplication still are operators of left multiplication.

Another way to characterize Frobenius algebras appears in [1, Theorem 1, p. 572]
in a commutative situation. A Frobenius algebra is a finite-dimensional unital alge-
bra which at the same time is a counital coalgebra such that both structures interact
nicely. More precisely the compatibility condition between the algebra and the coal-
gebra of a Frobenius algebra – the so-called Frobenius relation – asserts that the
comultiplication of the latter is a morphism of bimodules over the former.

Because the above compatibility relation is stated entirely using only tensor prod-
ucts and linear maps, the former description has the advantage over others to allow
for talking about Frobenius algebras in the realm of monoidal categories. This is
precisely the point of view adopted in [17] and in [13, Chap. V]. This approach is
used with success in [6, 2] where the authors take advantage of the presence of the
Hilbertian adjoint to define a comultiplication from a multiplication. More precisely
they consider commutative †-Frobenius monoids, that is, Frobenius algebras (H,µ, η)
over a finite-dimensional Hilbert space H, with corresponding coalgebra (H,µ†, η†).

In what follows “Hilbertian Frobenius” stands for “†-Frobenius”, to recall the fact
that the comultiplication is the Hilbert adjoint of the multiplication, because no
other kinds of Frobenius semigroups in the category of Hilbert spaces are considered
here. To summarize the coalgebra structure of a Hilbertian Frobenius algebra is the
Hilbert adjoint of its algebra structure. We stress here that Hilbertian algebras, that
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is, roughly speaking Banach algebras over a Hilbert spaces, shouldn’t be confused
with the well-known Hilbert algebras [8] since the former don’t have an involution a
priori.

Most notably the main result in [6] is the statement that orthogonal bases on a
given finite-dimensional Hilbert space and its structures of commutative (unital and
counital) Hilbertian Frobenius algebras are in a one-to-one correspondence.

In an effort to extend this result to arbitrary Hilbert spaces, a notion of non-
unital Frobenius algebra is proposed in [2], referred to as (commutative) Hilbertian
Frobenius algebras in what follows, obtained by dropping the unital (and thus also
counital) assumption. More precisely, these are Hilbertian Frobenius semigroups
(H,µ) (in the monoidal category (Hilb, ⊗̂2,C) of Hilbert spaces and bounded linear

maps), that is, H⊗̂2H
µÐ→ H is commutative and associative, and its adjoint H

µ†

Ð→
H⊗̂2H satisfies the Frobenius condition.

While the authors only partially achieve one of their goals, namely the character-
ization of arbitrary orthonormal bases by means of Frobenius structures, one of their
merit is a clarification of the relation between commutative special Hilbertian Frobe-
nius algebras, that is, those Hilbertian Frobenius algebras (H,µ) with an isometric
comultiplication (µ ○ µ† = id), and Ambrose’s H∗-algebras.

It is precisely the intention of this note to rigorously explain how orthogonal bases
or better orthogonal sets and structures of commutative Hilbertian Frobenius alge-
bras over not necessarily finite-dimensional Hilbert spaces are related. We, hence,
provide a structure theorem for commutative Hilbertian Frobenius algebras (Theo-
rem 2.14) which states that they have a strong Wedderburn decomposition [4]. Of
course the underlying Hilbert space of such algebras splits as an orthogononal direct
sum of the Jacobson radical and the topological closure of the linear span of the
group-like elements, that is, those non zero elements x sent to x⊗ x by the comulti-
plication µ†. But what is less immediate is that, in fact, the orthogonal complement
of the Jacobson radical is a subalgebra, a fact that may be reduced to the closure
of the set of group-like elements under multiplication. Actually it is not difficult
to notice that the product of two distinct group-like elements is equal to zero, but
what is not as immediate is that the square of a group-like element belongs to the
one-dimensional space spanned by this element (to be fair this observation is free
when the comultiplication is assumed isometric as in [2], which is not the case in
what follows), which by the way turns this space into a minimal ideal.

A similar result is discussed in [2] for the particular case of commutative Hilber-
tian Frobenius semigroups with an isometric comultiplication, but that preliminary
treatment was not completely accurate (see the introduction of [22] for more details).
Our structure theorem is completed by the observation that the radical is precisely
the annihilator of the algebra, which is a direct consequence of the Frobenius condi-
tion (see Proposition 2.13) which forces the multiplication operators to be normal,
that is, to commute with their own adjoint.

Thus, clearly, a commutative Hilbertian Frobenius algebra (H,µ) not only splits
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into an orthogonal direct sum of a subalgebra and an ideal, but actually of two
(closed) ideals, one being radical while the other is semisimple. As becomes clear,
the question of semisimplicity of such an algebra is completely governed by this
structure theorem: a necessary and sufficient condition for a commutative Hilbertian
Frobenius algebra to be semisimple is that its regular representation is faithful,
or equivalently that its multiplication H⊗̂2H

µÐ→ H has a dense range or that its
comultiplication is one-to-one (Theorem 2.17). (In particular every commutative
special Hilbertian Frobenius algebra is semisimple.) It is a remarkable fact that in
the finite-dimensional situation this may be interpreted as the existence of a unit
(Corollary 3.1). Consequently we recover (with a proof free of a C∗-argument)
the result of [6] stating that finite-dimensional commutative Hilbertian Frobenius
monoids are semisimple.

Because group-like elements of a commutative Hilbertian Frobenius algebra, are
non-zero and pairwise orthogonal (even orthonormal when furthermore the algebra
is special) several bijective correspondences (Theorem 3.2) between structures of
Frobenius algebras of certain kinds available on a given Hilbert space, and some
of its orthogonal (or orthonormal) sets are obtained, which extend the main result
of [6]. It is worth mentioning that contrary to the finite-dimensional situation, not
all orthogonal sets correspond to a structure of a commutative Hilbertian Frobenius
algebra but only those which are bounded above (or below by a strictly positive
constant), including the empty set; in fact one cannot expect unbounded (above or
below) orthogonal families to be in the range of the above bijections as bounded-
ness of the norm of the group-like elements is a direct consequence of the fact that
in a Banach algebra, the multiplication, as a bilinear map, is jointly continuous.
Moreover, the easy description of semisimple commutative Hilbertian Frobenius al-
gebras makes it possible to provide a characterization of Ambrose’s commutative
H∗-algebras, from a setting free of an involution (Proposition 3.4).

Besides the above structure theorem also has some important consequences at
the level of the category cFrobSem(Hilb) of commutative Hilbertian Frobenius
algebras and semigroup morphisms. Most notably it is shown that every semigroup
morphism between commutative Hilbertian Frobenius algebras arises from a unique
set-theoretic base-point preserving map (of some specific kind), from the set of mini-
mal ideals of its codomain to the set of minimal ideals of its domain, both with zero
added as base-point. We also prove the following results.

1. cFrobSem(Hilb) is equivalent to semisimple,cFrobSem(Hilb) ×Hilb (Propo-
sition 4.5) where the first factor is the full subcategory of cFrobSem(Hilb)
spanned by the semisimple algebras. The splitting into a semisimple Hilbertian
Frobenius algebra and the radical provides the equivalence.

2. semisimple,cFrobSem(Hilb) is dually equivalent to a category of pointed weighted
sets (Theorem 5.8). Other but related equivalences of categories are provided.
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1 Preliminaries

To begin, some terminology has to be set: vector spaces are over C and algebras are
implicitly assumed associative and commutative (unless stated explicitly), but not
necessarily unital. Algebra maps (also called morphisms of algebras or semigroup
maps or semigroup morphisms) are thus not required to preserve a unit. An orthog-
onal set (or family) of a Hilbert space is a subset of pairwise orthogonal non-zero
vectors, such as e.g. ∅ but not {0}. An orthonormal set (or family) is an orthogonal
set consisting of vectors of norm 1. An orthogonal basis is an orthogonal set X such
that X⊥ = 0.

In Table 1 below, are listed the categories of algebras or of (pointed) sets used
hereafter together with the page number of their introduction.

Categories of algebras
Name Objects Morphisms
cSem(Hilb) (p. 6) Hilbertian algebras (H.A.) Bounded algebra maps
cSem(FdHilb) Finite dimensional (F.D.) H.A. Algebra maps
†
cSem(Hilb) (p. 7) Special H.A. Bounded algebra maps
cocCosem(Hilb) (p. 6) Hilbertian coalgebras Bounded coalgebra maps
semisimpleC (p. 8) Semisimple algebras in C C-morphisms
cFrobSem(Hilb) (p. 9) Frobenius H.A. Bounded algebra maps
cFrobSem(FdHilb) (p. 9) F.D. Frobenius H.A. Algebra maps
†
cFrobSem(Hilb) (p. 9) Special Frobenius H.A. Bounded algebra maps
†
cFrobSem(FdHilb) (p. 9) F.D. special Frobenius H.A. Algebra maps
cMon(FdHilb) (p. 9) Monoids in FdHilb Unital algebra maps
cFrobMon(FdHilb) (p. 9) Frobenius monoids in FdHilb Unital algebra maps
cocComon(FdHilb) (p. 9) Comonoids in FdHilb Counital coalgebra maps
cocFrobComon(FdHilb) (p. 9) Frobenius comonoids in FdHilb Counital coalgebra maps
radical,cFrobSem(Hilb) (p. 23) Radical Frobenius H.A. Bounded algebra maps
partiso,cFrobSem(Hilb) (p. 25) Frobenius H.A. with a partial isometric

comultiplication
Bounded algebra maps

bnd,cFrobSem(Hilb) (p. 28) “Bounded” Frobenius H.A. Bounded algebra maps
unbnd,cFrobSem(Hilb) (p. 28) “Unbounded” Frobenius H.A. Bounded algebra maps
partiso,cFrobBisem(Hilb)
(p. 33)

Frobenius H.A. with a partial isometric
comultiplication

Bounded algebra and coalgebra
maps

†
cFrobBisem(Hilb) (p. 33) Special Frobenius H.A. Bounded algebra and coalgebra

maps
cFrob(Hilb)ambi (p. 34) Frobenius H.A. Bounded algebra and coalgebra

maps
cFrobSem(Hilb)proper (p. 35) Frobenius H.A. Proper algebra maps
1,cFrob(FdHilb)ambi (p. 37) Frobenius monoids in FdHilb Unital algebra and counital coalge-

bra maps

Set-like categories
Name Objects Morphisms
WSet● (p. 25) Weighted pointed sets WSet●-morphisms
Set●,<+∞ (p. 25) Pointed sets Base-point preserving maps with

bounded fibers
bndWSet● (p. 25) Bounded weighted pointed sets WSet●-morphisms
unbndWSet● (p. 25) Unbounded weighted pointed sets WSet●-morphisms
FinSet● (p. 30) Pointed finite sets Base-point preserving maps
WFinSet● (p. 31) Weighted pointed finite sets WSet●-morphisms
PInj

●
(p. 34) Pointed sets Partial injections

PInj
●,w (p. 34) Weighted pointed sets Weight-preserving partial injections

WSet (p. 35) Weighted sets WSet-morphisms
WFinSet (p. 36) Weighted finite sets WSet-morphisms
FinSet (p. 36) Finite sets Maps
FinSetbij,w (p. 37) Weighted finite sets Weight-preserving bijections

Table 1: Categories.

Let us now summarize some notation and results from [22] as far as they are
needed hereafter.
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1.1 Hilbert spaces

When E is a Banach space, B(E) stands for the Banach space of all bounded linear
endomorphisms of E with the operator norm ∥ − ∥op. The obvious forgetful functor
from Hilbert spaces to Banach spaces, with bounded linear maps as morphisms
for both categories, is denoted U but there is no risk to identify – as we shall do
hereafter – a Hilbert space H with its underlying Banach space as U is injective
on objects.1 The inner product (linear in its first variable) of a Hilbert space H is
denoted ⟨⋅, ⋅⟩H or simply ⟨⋅, ⋅⟩. Basic properties about the Hilbertian tensor product
(or tensor product of Hilbert spaces) ⊗̂2 are provided in [15]. Given a bounded linear
map µ∶H⊗̂2K → L, where H,K,L are Hilbert spaces, µbil∶H ×K → L denotes its
(unique) associated bounded bilinear map. For a bounded multilinear or linear map
f , ∥f∥op stands for its usual operator norm. The Hilbert direct sum (or orthogonal
direct sum) of Hilbert spacesH,K is denotedH⊕2K. Finally given a closed subspace
V of H, pV ∶H →H denotes the orthogonal projection onto V , that is, pV = iV ○ πV ,
where πV ∶H → V is the canonical projection H ≃ V × V ⊥ → V and iV ∶V ↪ H is the
canonical inclusion.

1.2 Hilbertian algebras

Let Hilb ∶= (Hilb, ⊗̂2,C) be the symmetric monoidal category of complex Hilbert
spaces and bounded linear maps together with the tensor product of Hilbert spaces.
The associativity constraint αH,K,L∶ (H⊗̂2K)⊗̂2L ≃ H⊗̂2(K⊗̂2L) and the symme-
try constraint σH,K ∶H⊗̂2K ≃ K⊗̂2H are unitary transformations. Let FdHilb ∶=
(FdHilb,⊗2,C) be its monoidal subcategory of finite-dimensional Hilbert spaces
and (necessarily bounded) linear maps. H ⊗2K thus is the finite-dimensional vector
space H ⊗C K together with the inner product ⟨u ⊗ v, u′ ⊗ v′⟩ = ⟨u,u′⟩H⟨v, v′⟩K ,
u,u′ ∈H, v, v′ ∈K.

A semigroup object (H,µ) in Hilb has an underlying Banach algebra (H,µbil).
Note that ∥µbil(x, y)∥ ≤ M∥x∥∥y∥ for some constant M , where ∥ − ∥ is the norm
induced by the inner product on H. So it may happen that strictly speaking,
(H,µbil) is not a Banach algebra (i.e., ∥ − ∥ is not submultiplicative). However
∥x∥′ ∶= max{1, ∥µbil∥op }∥x∥ defines a submultiplicative norm, that is, ∥µbil(x, y)∥′ ≤
∥x∥′∥y∥′, equivalent to ∥ − ∥. In other words ((H, ∥ − ∥′), µbil) is a usual Banach
algebra, which is the underlying Banach algebra of (H,µ).

An ideal I of (H,µ) is defined as an ideal of the underlying Banach algebra
(H,µbil). When I is closed, this is equivalent to the requirement that µ((I⊥⊗̂2I

⊥)⊥) ⊆
I. Note that (I⊥⊗̂2I

⊥)⊥ = (I⊗̂2I
⊥)⊕2 (I⊗̂2I)⊕2 (I⊥⊗̂2I) (see [22, Lemma 12, p. 13]).

By Sem(C), cSem(C), and cocCosem(C) are meant respectively the categories
of semigroups, commutative semigroups, and cocommutative cosemigroups in a sym-

1Let H,K be Hilbert spaces such that U(H) = U(K), then as complex vector spaces H = K.
The parallelogram law implies that the norms of U(H) and U(K) comes from a common inner
product, and thus H =K as Hilbert spaces.
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metric monoidal category C. A Hilbertian (co)algebra (or (co)semigroup) is an object
of cSem(Hilb) (resp., cocCosem(Hilb)) while by special is meant a Hilbertian alge-
bra (H,µ) with a coisometric multiplication, that is, µ ○ µ† = id. †

cSem(Hilb) is the
full subcategory of cSem(Hilb) spanned by the special Hilbertian algebras.

The Hilbert adjoint (or dagger) functorHilbop (−)
†

ÐÐ→Hilb lifts to an isomorphism
from the category cocCosem(Hilb)op into cSem(Hilb). This is still true after the
substitution of Hilb by FdHilb.

By a subalgebra V of a Hilbertian algebra (H,µ) is meant a closed subspace
V of H such that µ(V ⊗̂2V ) ⊆ V , where V ⊗̂2V is identified with the range of

V ⊗̂2V
iV ⊗̂2iVÐÐÐÐ→ H⊗̂2H. (V,µ∣V ) is a Hilbertian algebra in its own right with multi-

plication V ⊗̂2V
µ
∣VÐÐ→ V the restriction and co-restriction of H⊗̂2H

µÐ→H.
By a subcoalgebra V of (H,µ) (or of (H,µ†)) is meant a closed subspace V of H

such that µ†(V ) ⊆ V ⊗̂2V . (V, (µ†)∣V ) is a Hilbertian coalgebra in its own right with

comultiplication V
(µ†
)
∣VÐÐÐ→ V ⊗̂2V the restriction and co-restriction of H⊗̂2H

µ†

Ð→H.
When (H,µ) is a Hilbertian algebra, xy stands for µ(x⊗ y) and x2 for µ(x⊗x),

x, y ∈H. In what follows (co)semigroup morphisms are also referred to as (co)algebra
maps.

1.1 Lemma Let (H,µ), (K,γ) be Hilbertian algebras. Let f ∶H →K be a bounded
linear map.

1. For all u, v ∈ H, f(uv) = f(u)f(v) if, and only if, f ∶ (H,µ) → (K,γ) is a
semigroup morphism if, and only if, f †∶ (K,γ†) → (H,µ†) is a cosemigroup
morphism.

2. f ∶ (H,µ) → (K,γ) (resp. f ∶ (H,µ†) → (K,γ†)) is a (co)semigroup isomorphism
if, and only if, f is both a (co)semigroup morphism and a bijection.

Proof: Only the converse implication of the second equivalence needs a proof: by
the Open Mapping Theorem, since f ∶H → K is bounded and bijective, f ∶H → K
has a bounded inverse f−1∶K →H. That f−1 is a semigroup morphism follows easily
from the first point above. ◻

1.3 Semisimplicity

The Jacobson radical or radical J(A), or J when there is no risk of confusion, of
a not necessarily commutative nor unital algebra A is the intersection of all its
maximal modular left (or right) ideals [20, Theorem 4.3.6, p. 476]. The Jacobson
radical J(H,µ) of a Hilbertian algebra (H,µ) is defined as the Jacobson radical
J(H,µbil) of its underlying Banach algebra ((H, ∥ − ∥′), µbil). (H,µ) is semisimple
(resp. radical) when so is the Banach algebra ((H, ∥ − ∥′), µbil).
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J(H,µ) also has an intrinsic description: Let G(H,µ) ∶= {x ∈ H ∖ {0}∶µ†(x) =
x ⊗ x) } be the set of all group-like elements of (H,µ). Then, J(H,µ) = G(H,µ)⊥
and ⟨G(H,µ)⟩ = J(H,µ)⊥, where here and elsewhere ⟨X⟩ denotes the linear span,
and X the closure, of a subset X of H. As a consequence of the Riesz representation
theorem, the map G(H,µ) RÐ→ char(H,µbil), x ↦ ⟨⋅, x⟩ is bijective ([22, Lemma 19,
p. 17]), where char(A) is the set of non-trivial characters of a Banach algebra A.

1.2 Lemma Let (H,µ) be a Hilbertian algebra and let V be a closed subspace
of H which is both a subalgebra and a subcoalgebra. Then, (µ∣V )† = (µ†)∣V and
G(V,µ∣V ) = G(H,µ) ∩ V .

1.3 Lemma Let (H,µ), (K,γ) be Hilbertian algebras. Let f ∶H →K be a bounded
linear map. If f ∶ (H,µ†) → (K,γ†) is a coalgebra map, then f(G(H,µ)) ⊆ G(K,γ)∪
{0}. When (H,µ) is semisimple, the converse also holds.

Proof: The first statement is [22, Lemma 25, p. 19]. Let us assume that (H,µ) is
semisimple. Then, by assumption and linearity, (f ⊗̂2f) ○ µ† = γ† ○ f on ⟨G(H,µ)⟩.
By continuity the maps are equal on ⟨G(H,µ)⟩ = J(H,µ)⊥ =H (H semisimple). ◻

1.1 Notation If C is a subcategory of cSem(Hilb) or of cSem(FdHilb), then
semisimpleC stands for the full subcategory of C spanned by the Hilbertian algebras
in C which are semisimple.

1.4 Hilbertian Frobenius algebras

Let H be a Hilbert space and let H⊗̂2H
µÐ→ H be a bounded linear map. Let us

consider the following diagram where αH,H,H is the component at (H,H,H) of the
coherence constraint of associativity of Hilb.

H⊗̂2H

µ
**

µ†⊗̂2 id ��

id ⊗̂2µ
†
// H⊗̂2(H⊗̂2H)

α−1H,H,H

(H⊗̂2H)⊗̂2H

αH,H,H

H
µ†

**

(H⊗̂2H)⊗̂2H

µ⊗̂2 id��

H⊗̂2(H⊗̂2H)
id ⊗̂2µ

// H⊗̂2H

(1)

One says that (H,µ) satisfies the Frobenius condition – or that (H,µ) is Frobenius –
when the top and the bottom cells of Diag.(1) commute. In this case, the surrounding
diagram commutes too.

By a Hilbertian Frobenius algebra (or semigroup) is meant a Hilbertian algebra
which satisfies the Frobenius condition. (Such objects are referred to as commutative
†-Frobenius semigroups in [6].) A Hilbertian Frobenius algebra (H,µ) is said to be
special when furthermore µ ○ µ† = id.
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Note that any Hilbert space with the zero multiplication is a Hilbertian Frobe-
nius algebra. Also any semisimple special Hilbertian algebra (H,µ) is a Hilber-
tian Frobenius algebra: indeed G(H,µ) is an orthonormal family [22, Lemma 27,
p. 21], and so an orthonormal basis of J(H,µ)⊥, thus of H by semisimplicity. For
each x, y ∈ G(H,µ), x2 = µ(x ⊗ x) = µ(µ†(x)) = x and xy = δx,yx (since by [22,
Corollary 28, p. 982], x /= y ⇒ xy ∈ J(H,µ)). So more generally for u, v ∈ H,
µ(u ⊗ v) = ∑x∈G(H,µ)⟨u,x⟩⟨v, x⟩x. Consequently µ†(u) = ∑x∈G(H,µ)⟨u,x⟩x ⊗ x and
then one sees by direct inspection that µ† satisfies the Frobenius compatibility rela-
tions.

1.1 Remark Since (H,µ) is assumed commutative, it is not difficult to check that
the Frobenius condition actually reduces to the commutativity of only one of the two
cells of Diag. (1). One thus recovers the definition of a Frobenius algebra in Hilb
from [2].

Let cFrobSem(Hilb) and †
cFrobSem(Hilb) be respectively the full subcate-

gories of cSem(Hilb) spanned by the Hilbertian Frobenius algebras and by the
special Hilbertian Frobenius algebras. One obtains corresponding categories after
the replacement of Hilb by FdHilb. Still in the finite-dimensional situation one
may as well consider Hilbertian Frobenius monoids, that is, commutative monoid
objects (H,µ, η) in FdHilb such that (H,µ) is a finite-dimensional Hilbertian Frobe-
nius semigroup. Let cFrobMon(FdHilb) be the full subcategory of the category
cMon(FdHilb) of monoid objects of FdHilb, they generate. Finally let us call a (co-
commutative) comonoid (H,δ, ε) in FdHilb a finite-dimensional Hilbertian Frobenius
comonoid when (H,δ†, ε†) is a Hilbertian Frobenius monoid. The full subcategory
cocFrobComon(FdHilb) of the category of comonoid objects cocComon(FdHilb)
in FdHilb, they generate is of course isomorphic to cFrobMon(FdHilb)op under the
dagger functor.

1.5 Example: Weighted Hilbert spaces

Let X be a non empty set, and let w∶X → [C,+∞[ be a map, where C > 0.
Let `2w(X) ∶= { f ∈ CX ∶∑x∈X w(x)∣f(x)∣2 < +∞}. With inner product ⟨f, g⟩w ∶=
∑x∈X w(x)f(x)g(x) this provides a Hilbert space. The corresponding norm is de-
noted ∥ − ∥w. For x ∈ X, let us identify δx∶X → C with x itself. Under this identifi-
cation, { x

w(x)
1
2
∶x ∈ X } forms a Hilbertian basis of `2w(X). Note that ⟨f, x

w(x)
1
2
⟩w =

w(x) 1
2 f(x), x ∈X. The next result is clear.

1.4 Lemma `2w(X) ⊆ `2(X), the inclusion is bounded and `2w(X) = `2(X). Fur-
thermore if w is also bounded above, then `2w(X) = `2(X) as vector spaces and the
norms ∥ − ∥w and ∥ − ∥ are equivalent.

Let mX ∶ `2w(X) × `2w(X) → `2w(X) be given by mX(f, g) ∶= fg where by juxta-
position is denoted the pointwise product of maps. mX is a weak Hilbert-Schmidt

9



mapping ([15]) as ∑x,y∈X ∣⟨mX( x

w(x)
1
2
, x

w(x)
1
2
), f⟩w∣2 ≤ 1

C ∥f∥2
w for each f ∈ `2w(X).

Let µX ∶ `2w(X)⊗̂2`
2
w(X) → `2w(X) be the corresponding bounded linear map, that

is, µX(f ⊗ g) = fg (see [15, Theorem 2.6.4, p. 132]). In details, µX(f ⊗ g) =
∑x∈X f(x)g(x)x.

It is clear by its very definition that µX is commutative and associative mak-
ing (`2w(X), µX) a Hilbertian algebra. Moreover ∥µX∥op ≤ 1

C
1
2
. Such an algebra

(`2w(X), µX) was already considered in [22, pp. 11-12] in the situation where C = 1.
By direct computations one obtains

1.5 Proposition G(`2w(X), µX) = { x
w(x) ∶x ∈ X } and (`2w(X), µX) is a semisimple

Hilbertian Frobenius algebra.

Letting w ≡ 1 one observes that (`2(X), µX) is also a (special) Hilbertian Frobe-
nius algebra, with G(`2(X), µX) =X.

The following lemma, the proof of which is not difficult, provides the relation
between `2w(X) and `2(X) as algebras.

1.6 Lemma (`2w(X),mX) is a not necessarily closed ideal of (`2(X),mX). In fact
`2w(X) = `2(X) if, and only if, `2w(X) is closed in `2(X) if, and only if, w is bounded
above.

Let us also provide a description of (`2w(X), µX) under another disguise. Under
the unitary transformation Φ∶ f ↦ f̂ from `2w(X) to `2(X), with f̂(x) ∶= ⟨f, x

w(x)
1
2
⟩w =

w(x) 1
2 f(x), x ∈ X, one may transport the multiplication µX on `2(X). In detail,

the inverse Φ† of Φ is given by Φ†(f) ∶= w−
1
2 f , that is, (Φ†(f))(x) = 1

w(x)
1
2
f(x),

x ∈X, and then one may define µw,X ∶ `2(X)⊗̂2`
2(X) → `2(X) by Φ○µX ○(Φ†⊗̂2Φ†),

so for each f, g ∈ `2(X), µw,X(f ⊗ g) = w−
1
2 fg, that is, for each x ∈ X, (µw,X(f ⊗

g))(x) = w(x)− 1
2 f(x)g(x). (Note that as C ≤ w(x), 1

w(x)
1
2
≤ 1

C
1
2
for each x ∈X, and

thus pointwise multiplication of functions by w−
1
2 is an operator on `2(X), and as

`2(X) is closed under pointwise products, given f, g ∈ `2(X), w−
1
2 fg ∈ `2(X).) It is

clear that (`2(X), µw,X) is a semisimple Frobenius algebra, unitarily isomorphic to
(`2w(X), µX). Note that G(`2(X), µw,X) = { x

w(x)
1
2
∶x ∈X }.

1.2 Remark Everything becomes trivial if X = ∅ (with w the empty map), that is,
`w(X) is the zero algebra, which is Frobenius, semisimple and radical.
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2 Semisimplicity of commutative Hilbertian Frobenius
algebras

The main results of this section are Theorem 2.14 and Theorem 2.17. The former
states that both the Jacobson radical of a Hilbertian Frobenius algebra, and its
orthogonal complement are subalgebras and subcoalgebras, and that the Jacobson
radical actually coincides with the annihilator of the algebra. The latter provides
the explicit conditions on the multiplication (or comultiplication) of a Hilbertian
Frobenius algebra to be semisimple.

2.1 Commutative Hilbertian Frobenius algebras

Given a not necessarily commutative algebra A, E(A) denotes the set of all its
idempotent elements, that is, the members e of A such that e2 = e. It is well-known
that when A is a commutative Banach algebra, then E(A) ∩ J(A) = (0) (see for
instance [20, Proposition 4.3.12.(a), p. 479]). The set of idempotent elements of a
Hilbertian algebra (H,µ) is E(H,µ) ∶= E(H,µbil).

In this current section, (H,µ) stands for a commutative Hilbertian Frobenius
algebra and one denotes J ∶= J(H,µ).

Let us recall the following result from [6] (and recall also that for us an orthogonal
family does not contain 0).

2.1 Lemma G(H,µ) is an orthogonal family, that is, for each x, y ∈ G(H,µ), x /=
y⇒ ⟨x, y⟩ = 0. In particular G(H,µ) is an orthogonal basis of J⊥.

Lemma 2.1 has the important consequences listed below.

2.2 Corollary 1. Let x, y ∈ G(H,µ) such that x /= y. Then, xy ∈ J .

2. Let x ∈ G(H,µ). Then, pJ⊥(x2) = ∥x∥2x.

Proof:

1. Let x, y ∈ G(H,µ) such that x /= y. Let z ∈ G(H,µ). Then, ⟨xy, z⟩ =
⟨µ(x ⊗ y), z⟩ = ⟨x ⊗ y, µ†(z)⟩ = ⟨x ⊗ y, z ⊗ z⟩ = ⟨x, z⟩⟨y, z⟩ = ∥x∥2δx,z∥y∥2δy,z
(by Lemma 2.1) = 0 as by assumption x /= y. Whence pJ⊥(xy) = 0 and thus
xy ∈ J .

2. Let x ∈ G(H,µ). Let z ∈ G(H,µ). Then, ⟨x2, z⟩ = ⟨µ(x ⊗ x), z⟩ = ⟨x ⊗
x,µ†(z)⟩ = ⟨x ⊗ x, z ⊗ z⟩ = ⟨x, z⟩2 = ∥x∥4δx,z according to Lemma 2.1. As a
result, pJ⊥(x2) = ⟨x2, x

∥x∥⟩
x
∥x∥ = ∥x∥2x.

◻
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2.1 Remark According to Corollary 2.2 a semisimple Hilbertian Frobenius algebra
(H,µ) is easily described: as G(H,µ) is an orthogonal basis of H = J⊥, one has that
each u ∈ H is the sum of the summable family ∑x∈X⟨u, x

∥x∥⟩
x
∥x∥ and given u, v ∈ H,

uv = ∑x∈G(H,µ) 1
∥x∥⟨u,x⟩⟨v, x⟩

x
∥x∥ as ⟨uv, x⟩ = ⟨u⊗ v, x⊗x⟩ = ⟨u,x⟩⟨v, x⟩, x ∈ G(H,µ).

2.3 Lemma Let x ∈ G(H,µ). x2 ∈ J⊥ if, and only if, x2 = ∥x∥2x. In this case, 1
∥x∥2

x

is an idempotent element which belongs to J⊥ and ∥x∥ ≤ ∥µ∥op.

Proof: The first equivalence is due to Corollary 2.2. The second statement is
immediate. Let e be a non-zero idempotent element of (H,µ). Then, ∥e∥ = ∥e2∥ =
∥µ(e⊗e)∥ ≤ ∥µ∥op∥e∥2. If e /= 0, then 1

∥µ∥op
≤ ∥e∥. The last statement thus is obtained

by taking e = x
∥x∥2

. ◻

Let G′(H,µ) ∶= {x ∈ G(H,µ)∶x2 ∈ J⊥ } = {x ∈ G(H,µ)∶x2 = ∥x∥2x} (by
Lemma 2.3).

2.4 Lemma Let x, y ∈ G′(H,µ) such that x /= y. Then, xy = 0.

Proof: According to Corollary 2.2 xy ∈ J . As x, y ∈ G′(H,µ), x
∥x∥2

and y
∥y∥2

both
are idempotent elements which belong to J⊥ by Lemma 2.3. By commutativity of
µ, xy
∥x∥2∥y∥2

is also an idempotent element and it is a member of J by the above.
Therefore it reduces to zero (see the beginning of the current section), and thus
xy = 0 too. ◻

2.5 Lemma G′(H,µ) = G(H,µ). Consequently, J⊥ is a closed subalgebra of (H,µ)
and the map G(H,µ) →]0,+∞[, x↦ ∥x∥ is bounded above by ∥µ∥op.

Proof: Let x ∈ G(H,µ). Using one of the Frobenius conditions, one obtains
µ†(x2) = x2⊗x and with the other, µ†(x2) = x⊗x2. Let u, v ∈H. Then, ⟨µ†(x2), u⊗
v⟩ = ⟨x⊗x2, u⊗v⟩ = ⟨x,u⟩⟨x2, v⟩ and also ⟨µ†(x2), u⊗v⟩ = ⟨x2⊗x,u⊗v⟩ = ⟨x2, u⟩⟨x, v⟩.
In particular given u ∈ J , one has ⟨µ†(x2), u⊗ x⟩ = ⟨x2, x⟩⟨x,u⟩ = 0 and ⟨µ†(x2), u⊗
x⟩ = ⟨x,x⟩⟨x2, u⟩ = ∥x∥2⟨x2, u⟩. Therefore x2 ∈ J⊥, that is, x ∈ G′(H,µ).

According to Lemmas 2.3 and 2.4, the linear span of G′(H,µ) = G(H,µ) is closed
under µ. So is its closure, by continuity of µ, which is nothing but J⊥. The last
assertion is a consequence of the last assertion of Lemma 2.3. ◻

2.2 Remark It is clear from the definition of a group-like element, that µ = 0 ⇒
G(H,µ) = ∅ ⇒ (H,µ) is radical. Actually we will prove below that the converse
implications are also true (see Corollary 2.16).

2.3 Remark According to Lemma 2.5 the multiplication of J⊥ arising from the
restriction of µ is as easily described as in Remark 2.1. G(H,µ) is an orthogonal
basis of J⊥, and given u, v ∈ H, uv = ∑x∈G(H,µ) 1

∥x∥⟨u,x⟩⟨v, x⟩
x
∥x∥ + (pJ⊥(u)pJ(v) +

pJ(u)pJ⊥(v) + pJ(u)pJ(v)).
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Since J is an ideal, J⊥ is a subcoalgebra of (H,µ) by [22, Theorem 18, p. 975] and
so according to Lemma 2.5, J⊥ is both a subalgebra and a subcoalgebra of (H,µ).

2.6 Corollary Let (H,µ) be a Hilbertian Frobenius algebra. Under the restriction
of µ, J⊥ is a semisimple Hilbertian Frobenius algebra.

2.2 Multiplication operators

Let (E,∗) be a commutative Banach algebra. The annihilator A(E,∗) of (E,∗) is
{u ∈ E∶ ∀v ∈ E, u∗v = 0}. For a Hilbertian algebra (H,µ) let A(H,µ) ∶= A(H,µbil).
The following result is almost immediate.

2.7 Lemma A(H,µ) ⊆ J(H,µ).

Let (E,∗) be a complex commutative Banach algebra. Let M ∶E → B(E) be the
regular representation of (E,∗), that is, u↦Mu, where Mu(v) = u ∗ v. One notices
that A(E,∗) = kerM .

Let (B,∗) be a not necessarily commutative Banach algebra and let u ∈ B. u
is said to be a quasi-nilpotent element when its spectral radius is equal to zero,
that is, when ∥un∥ 1

n → 0 ([20, p. 213]). In general the Jacobson radical of (B,∗)
is only contained in the set of all quasi-nilpotent elements but as soon as (B,∗)
is commutative both sets are equal [16, Corollary 2.2.6, p. 55]. If H is a Hilbert

space, a linear map H
fÐ→ H is referred to as a quasi-nilpotent operator when it is a

quasi-nilpotent element of B(H).

2.8 Lemma Let u ∈ J(H,µ). Then, Mu is a quasi-nilpotent operator on H. In
other words,M maps the Jacobson radical of (H,µ) into the set of all quasi-nilpotent
operators on H.

Proof: Let v ∈ H. Then, ∥Mn
u (v)∥ = ∥unv∥ ≤ ∥µbil∥op∥un∥∥v∥ ≤ ∥un∥′∥v∥ so that

∥Mn
u ∥op ≤ ∥un∥′ for each n ∈ N∖{0}. Consequently, ∥Mn

u ∥
1
n
op ≤ (∥un∥′) 1

n → 0 as u is a
quasi-nilpotent element of the Banach algebra ((H, ∥−∥′), µbil) ([16, Corollary 2.2.6,
p. 55]). ◻

A bounded linear operator H
fÐ→ H over a Hilbert space H is said to be normal

when f ○ f † = f † ○ f .

2.9 Corollary Let (H,µ) be a Hilbertian algebra. Let u ∈ J(H). Mu is normal if,
and only if, u ∈ A(H,µ). So J(H,µ) ∩ {u ∈H ∶Mu is normal} = A(H,µ).

Proof: The converse implication is clear since the zero operator is normal. So
let us assume that Mu is normal. By Lemma 2.8, Mu is quasi-nilpotent, whence its
spectral radius is equal to zero ([20, p. 213]). But for normal operators the spectral
radius coincides with the operator norm ([5, II.1.6.3, p. 58]). Whence ∥Mu∥op = 0,
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that is, Mu = 0. The second statement follows from the first one and Lemma 2.7. ◻

2.3 Frobenius algebras revisited: Hilbertian modules

Let (H,µ) be an object of Sem(Hilb) and let K be a Hilbert space. Let g∶H⊗̂2K →
K be a bounded linear map such that the following diagram on the left commutes.
(The isomorphism arrow corresponds to the coherence constraint of associativity of
Hilb.)

H⊗̂2(H⊗̂2K)id ⊗̂2g// H⊗̂2K

g

��

(K⊗̂2H)⊗̂2H
r⊗̂2 id
// K⊗̂2H

r

��

(H⊗̂2H)⊗̂2K

µ⊗̂2 id
++

K⊗̂2(H⊗̂2H)
id ⊗̂2µ

++
H⊗̂2K g

// K K⊗̂2H r
// K

(2)
The pair (K,g) is referred to as a (Hilbertian) left (H,µ)-module and g is called the
left action of (H,µ). The notion of a (Hilbertian) right (H,µ)-module (K,r), with
r∶K⊗̂2H → K, is obtained by symmetry (cf. the above diagram on the right). r is
the right action of (H,µ).

Let a Hilbert space K be both a left and a right (H,µ)-module (K,g) and (K,r).
(H,g, r) is said to be a Hilbertian (H,µ)-bimodule when furthermore the following
diagram commutes.

(H⊗̂2K)⊗̂2H

αH,K,H

g⊗̂2 id
// K⊗̂2H

r��

K

H⊗̂2(K⊗̂2H)
id ⊗̂2r

// H⊗̂2K

g
OO

(3)

2.10 Lemma Let (H,µ) be an object of Sem(Hilb) and let K be a Hilbert space.
Let g∶H⊗̂2K → K (resp. r∶K⊗̂2H → K) be a bounded linear map. (K,g) (resp.
(K,r)) is a left (resp. right) (H,µ)-module if, and only if, for each x, y ∈ H, z ∈ K,
gbil(x, gbil(y, z)) = gbil(xy, z) (resp., for each x ∈ K, y, z ∈ H, rbil(rbil(x, y), z) =
rbil(x, yz)).

Given left (H,µ)-modules (Ki, gi), i = 1,2, a bounded linear map K1
fÐ→ K2 is a

left (H,µ)-module map or is said to be left (H,µ)-linear, or simply left linear, when
the following diagram commutes.

H⊗̂2K1
id ⊗̂2f

//

g1 ��

H⊗̂2K2
g2��

K1
f

// K2

(4)
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By symmetry right (H,µ)-module (or right (H,µ)-linear) maps are also obtained.

2.1 Example Let (H,µ) be an object of cSem(Hilb).

1. H is itself a left and right (H,µ)-module under g = µ = r, by associativity of
µ. Of course, (H,µ,µ) thus is a bimodule over itself by associativity of µ.

2. H⊗̂2H is a left (H,µ)-module with H⊗̂2(H⊗̂2H)
α−1H,H,HÐÐÐÐ→ (H⊗̂2H)⊗̂2H

µ⊗̂2 idÐÐÐ→
H⊗̂2H. It is also a right (H,µ)-module with right action (H⊗̂2H)⊗̂2H

αH,H,HÐÐÐÐ→
H⊗̂2(H⊗̂2H) id ⊗̂2µÐÐÐ→ H⊗̂2H. Actually H⊗̂2H with the left and the right ac-
tions of (H,µ) as above, is a Hilbertian bimodule.

In what follows, one tacitly assumes that H and H⊗̂2H both have the left or right
module structures from Example 2.1.

2.4 Remark It is clear that in view of Remark 1.1, a commutative Hilbertian al-
gebra (H,µ) is Frobenius if, and only if, µ†∶H → H⊗̂2H is either left or right
(H,µ)-linear.

Let us introduce the following notations. Let H,K,L be Hilbert spaces. Let
γ∶H × K → L be a bounded bilinear map. One may define H

γleftÐÐ→ B(K,L) and
K

γrightÐÐ→ B(H,L) by setting (γleft(x))(y) ∶= γ(x, y) =∶ (γright(y))(x), x ∈ H, y ∈ K.
When γ∶H⊗̂2K → L is a bounded linear map, or equivalently when γbil∶H ×K → L
is a weak Hilbert-Schmidt mapping, then one also defines γleft ∶= (γbil)left and γright ∶=
(γbil)right.

2.11 Lemma LetH,K,L be Hilbert spaces. Let γ∶H×K → L be a bounded bilinear
map. Then, γleft and γright are bounded linear maps.

2.2 Example Let (H,µ) be an object of cSem(Hilb).

1. For the structure of left or right module over (H,µ), under λ = µ = ρ, one has
µleft =M = µright (by commutativity).

2. For the structure g∶H⊗̂2(H⊗̂2H) → H⊗̂2H of left (H,µ)-module on H⊗̂2H
from Example 2.1.2, one has gleft(u)(v ⊗ w) = (µ⊗̂2 id)((u ⊗ v) ⊗ w) = µ(u ⊗
v) ⊗ w = Mu(v) ⊗ w, u, v,w ∈ H, so that gleft(u) = Mu⊗̂2 id on H ⊗C H. As
gleft(u) and Mu⊗̂2 id are both linear and continuous, and H ⊗C H is dense in
H⊗̂2H, these maps are equal on the whole H⊗̂2H.

For the structure r∶ (H⊗̂2H)⊗̂2H → H⊗̂2H of right (H,µ)-module on H⊗̂2H
also from Example 2.1.2, one has rright(u)(v⊗w) = w⊗Mu(v) by commutativity
of µ. Therefore, rright(u) = id ⊗̂2Mu.
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2.12 Lemma Let (K,g), (K,g′) (resp. (K,r), (K ′, r′)) be Hilbertian left (resp.

right) (H,µ)-modules, and let K
fÐ→ K ′ be a bounded linear map. It is left (resp.

right) (H,µ)-linear if, and only if, for each u ∈ H, g′left(u) ○ f = f ○ gleft(u) (resp.
r′right(u) ○ f = f ○ rright(u)).

2.13 Proposition Let (H,µ) be a Hilbertian Frobenius algebra. Then, for each
u ∈H, Mu is normal. In particular, J(H,µ) = A(H,µ).

Proof: Let u, v,w ∈ H. Then,

⟨M †
u(Mu(v)),w⟩ = ⟨Mu(v),Mu(w)⟩

= ⟨uv, uw⟩. (5)

Now let us assume that µ† is right linear. One has

⟨Mu(M †
u(v)),w⟩ = ⟨M †

u(v),M †
u(w)⟩

= ⟨v,Mu(M †
u(w))⟩

= ⟨v, uM †
u(w)⟩

= ⟨µ†(v), u⊗M †
u(w)⟩

= ⟨(id ⊗̂2Mu)(µ†(v)), u⊗w⟩
= ⟨µ†(uv), u⊗w⟩ (according to Lemma 2.12)
= ⟨uv, uw⟩.

(6)

The case of left linearity would be treated similarly using commutativity of µ.
The last statement is a direct consequence of Corollary 2.9. ◻

We are now in position to state the following structure theorem and a corollary
that extends Corollary 2.6. But before let us recall [4, p. 111] that a complex Banach
algebra A has a strong Wedderburn decomposition if there exists a closed subalgebra
B of A such that A = B ⊕ J(A), where ⊕ stands for the linear space direct sum.

2.14 Theorem (Structure Theorem for Hilbertian Frobenius Algebras) Let (H,µ)
be a commutative Hilbertian Frobenius algebra. Then it has a strong Wedderburn
decomposition. More precisely,H = J⊕2J

⊥ (orthogonal direct sum of Hilbert spaces),
J⊥ is both a closed subalgebra and subcoalgebra of (H,µ), and J = A(H,µ) is also
both a closed subalgebra and subcoalgebra. In particular, J and J⊥ are ideals.

Proof: So far it is already known that J⊥ is both a subalgebra and a subcoalgebra.
By Proposition 2.13, A(H,µ) = J and by [22, Theorem 18, p. 15], J is also a
subcoalgebra. ◻

2.15 Corollary Let (H,µ) be a commutative Hilbertian Frobenius algebra. Under
the corresponding restrictions of µ, J⊥ is a semisimple Hilbertian Frobenius algebra
and J is a radical Hilbertian Frobenius algebra.
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2.5 Remark Let (H,µ) be a Hilbertian Frobenius algebra. By Theorem 2.14,
uv = pJ⊥(u)pJ⊥(v) (since J = A(H,µ)) = ∑x∈G(H,µ)⟨u,x⟩⟨v, x⟩ x

∥x∥2
as follows from

Remark 2.3. In particular for each x ∈ G(H,µ) and u ∈ H, ux = pJ⊥(u)x = ⟨u,x⟩x
and thus Cx is an ideal. (In particular, xx = ⟨x,x⟩x = ∥x∥2x as already known.)

2.16 Corollary Let (H,µ) be a commutative Hilbertian Frobenius algebra. (H,µ)
is radical if, and only if, µ = 0.

2.17 Theorem Let (H,µ) be a commutative Hilbertian Frobenius algebra. The
following assertions are equivalent.

1. (H,µ) is semisimple.

2. (H,µ) is faithful, that is, kerM = (0).

3. µ has a dense range.

4. µ† is one-to-one.

5. µ ○ µ† is one-to-one.

In particular, any commutative special Hilbertian Frobenius semigroup is semisimple.

Proof: The last statement is a consequence of the presumed equivalences. That
the two first points are equivalent is clear as J(H,µ) = A(H,µ) (Proposition 2.13).
That the three other assertions are equivalent is due to the general fact that for a
bounded linear map K

fÐ→ L between Hilbert spaces, ker f † = ker(f ○ f †) = ran(f)⊥
(see e.g., [18, Proposition 5.76, p. 390]). It remains for instance to prove that
semisimplicity is equivalent to injectivity of µ†. So let us assume that µ† is one-
to-one. According to Theorem 2.14, J(H,µ) = A(H,µ) is a subcoalgebra, that is,
µ†(J(H,µ)) ⊆ J(H,µ)⊗̂2J(H,µ). Whence for each x ∈ J(H,µ), µ(µ†(x)) = 0. But
as µ ○ µ† is one-to-one, x = 0, that is, J(H,µ) = (0). Finally, let us assume that
(H,µ) is semisimple. Thus G(H,µ) is an orthogonal basis of (H,µ) according to
Lemma 2.1. Let u = ∑x∈G(H,µ) uxx be an arbitrary element of H with ux = 1

∥x∥2
⟨u,x⟩.

Then, µ†(u) = ∑x∈G(H,µ) uxx⊗ x, and thus µ†(u) = 0⇔ u = 0, that is, µ† is one-to-
one. ◻

2.6 Remark The last statement of Theorem 2.17 answers in the affirmative one
of the main questions left open by [2], that is, if all special Hilbertian Frobenius
algebras are semisimple. Moreover it implies that the set of group-like elements of
such an algebra is an orthonormal family (since by [22, Lemma 27, p. 21] it is an
orthonormal set).
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The result below uses the notation from Section 1.5 and states that the weighted
Hilbert spaces are the only semisimple Hilbertian Frobenius algebras, up to unitary
isomorphisms.

2.18 Proposition Let (H,µ) be a Hilbertian Frobenius algebra. Then, J(H,µ)⊥ ≃
(`2w

(H,µ)
(G(H,µ)), µG(H,µ)) (unitarily so), where w(H,µ)∶G(H,µ) → [ 1

∥µ∥2op
,+∞[, x↦

1
∥x∥2

. (If G(H,µ) = ∅, then w(H,µ) stands for the empty map, which vacuously, is
bounded below by any positive constant.)

Proof: It suffices to prove the result for (H,µ) semisimple. Let us consider the
unitary transformation Λ∶H → `2w

(H,µ)
(G(H,µ)) given by Λ( x

∥x∥) ∶=
1

w
(H,µ)(x)

1
2
δx =

∥x∥δx, x ∈ G(H,µ). By simple verification, Λ is an isomorphism of semigroups. ◻

3 Some direct consequences

3.1 The finite-dimensional case

The following result explains why every finite-dimensional commutative Hilbertian
Frobenius monoid is automatically semisimple ([2, 6]).

3.1 Corollary Let (H,µ) be a finite-dimensional commutative Hilbertian Frobenius
algebra. Then, (H,µ) has a unit ⇔ µ is onto ⇔ µ† is one-to-one ⇔ (H,µ) is
semisimple.

Proof: The last three equivalences are already given by Theorem 2.17 in view
of finite dimensionality. If (H,µ) has a unit, then of course µ is onto. Conversely,
assuming µ onto, by [9, Corollary 3.3, p. 47] (H,µ) is unital. ◻

3.2 A dictionary of bases

Let H
fÐ→K be a bounded linear map between Hilbert spaces. f is a partial isometry

if f ○ f † ○ f = f . Actually f is a partial isometry if, and only if, f † is so ([18,
pp. 401–402]).

By a structure of a Hilbertian algebra of some specific kind on a given Hilbert
space H is meant a bounded linear map µ∶H⊗̂2H →H which makes (H,µ) a Hilber-
tian algebra of the desired kind. The following result may be considered as an
extension of the summary [6, p. 565] to infinite-dimensional spaces.

It is usual to call bounded above (resp. bounded below) a set X of a Hilbert space
H such that there exists C > 0 with ∥x∥ ≤ C (resp. C ≤ ∥x∥) for each x ∈ X. C
is referred to as a bound of X. Observe that the empty set is bounded above and
below, with any bound C > 0. Recall also that following our terminology (Section 1),
an orthogonal set does not contain 0.
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3.2 Theorem Let H be a Hilbert space. There are one-to-one correspondences
between

1. Non void bounded above orthogonal sets of H and structures of commutative
Hilbertian Frobenius algebras on H with a non-zero multiplication.

2. Bounded above orthogonal bases of H and structures of semisimple commuta-
tive Hilbertian Frobenius algebras on H.

3. Non void orthonormal sets of H and structures of commutative Hilbertian
Frobenius algebras on H, whose comultiplication is a non-zero partial isometry.

4. Orthonormal bases of H and structures of commutative special Hilbertian
Frobenius algebras. The corresponding algebras are all unitarily isomorphic.

5. The empty orthogonal set corresponds to the unique structure of radical Frobe-
nius algebra on H.

Proof: Let X be a non void bounded above orthogonal family of H with bound
C > 0. Let u, v ∈ H. Then, ∑x∈X ∥x∥2∣⟨u, x

∥x∥⟩∣
2∣⟨v, x

∥x∥⟩∣
2 ≤ C2∥u∥2∥v∥2. One thus

defines mX ∶H ×H → H by mX(u, v) ∶= ∑x∈X⟨u,x⟩⟨v, x⟩ x
∥x∥2

. As mX(x,x) = ∥x∥2x,
x ∈ X, mX is non-zero. One notices that mX(u, v) = 0 whenever u ∈ X⊥ or
v ∈ X⊥. mX is a weak Hilbert-Schmidt mapping since ∑x,y∈X ∣⟨mX( x

∥x∥ ,
y
∥y∥), u⟩∣

2 ≤
C2∥u∥2, u ∈ H. Let µX ∶H⊗̂2H → H be the unique linear extension of mX , that
is, µX(u ⊗ v) = ∑x∈X⟨u,x⟩⟨v, x⟩ x

∥x∥2
. (H,µX) is of course a Hilbertian algebra,

with a non-zero multiplication. As for u ∈ H, µX( x
∥x∥ ⊗

y
∥y∥) = δx,yx, x, y ∈ X,

and ⟨µ†
X(u), v ⊗ w⟩ = ⟨u,µX(v ⊗ w)⟩ = 0 for v ∈ X⊥ or w ∈ X⊥, it follows that

µ†
X(u) = ∑x∈X⟨u,x⟩ x

∥x∥ ⊗
x
∥x∥ from which one sees that G(H,µX) = X. More-

over µ†
X(µX(u ⊗ v)) = µ†

X(∑x∈X⟨u,x⟩⟨v, x⟩ x
∥x∥2

) = ∑x∈X⟨u,x⟩⟨v, x⟩ x
∥x∥ ⊗

x
∥x∥ while

one has (id ⊗̂2µX)(αH,H,H(µ†
X(u) ⊗ v)) = (id⊗µX)(∑x∈X⟨u,x⟩ x

∥x∥ ⊗ ( x
∥x∥ ⊗ v)) =

∑x∈X⟨u,x⟩ x
∥x∥ ⊗ µX( x

∥x∥ ⊗ v) = ∑x∈X⟨u,x⟩⟨v, x⟩ x
∥x∥ ⊗

x
∥x∥ as µ( x

∥x∥ ⊗ v) = ⟨v, x⟩ x
∥x∥ .

This proves that (H,µX) is Frobenius. By the way, if X is an orthogonal basis, then
(H,µX) is a semisimple commutative Hilbertian Frobenius algebra.

Conversely, if (H,µ) is a (semisimple) commutative Hilbertian Frobenius algebra
with a non-zero multiplication, thus (H,µ) is not radical, then G(H,µ) is a non-void
bounded orthogonal family (basis), with bound ∥µ∥op > 0 by Lemmas 2.1 and 2.3. It
is easily checked that µG(H,µ) = µ. Therefore the first two statements of the theorem
are proved.

The third and fourth statements are proved similarly by considering orthonor-
mal families (bases) rather than orthogonal families (bases), and by the following
discussion. If X is an orthonormal family, then for x ∈ X, µ†

X(µX(µ†
X(x))) =

x ⊗ x = µ†
X(x) so that µ†

X is indeed a partial isometry since also for u ∈ X⊥,
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µ†
X(u) = 0 = µ†

X(µX(µ†
X(u))). Of course if X /= ∅, then µX /= 0 and thus so is

µ†
X .
Conversely assuming that (H,µ) is a commutative Hilbertian Frobenius algebra

with µ† (or µ) a non-zero partial isometry, then for each x ∈ G(H,µ), ∥x∥2x ⊗ x =
µ†(x2) = µ†(µ(µ†(x))) = µ†(x) = x ⊗ x, so that ∥x∥ = 1, and G(H,µ) is indeed an
orthonormal family.

Let X,Y be two orthonormal bases of H. Let X πÐ→ Y be a bijection. Then
it is easily checked that (H,µX) ΠÐ→ (H,µY ) is a semigroup isomorphism where
Π(x) ∶= π(x), x ∈X. The last statement is obvious. ◻

Due to the lemma below, one may substitute in Theorem 3.2, “bounded above”
by “bounded below” and the resulting statements are still valid.

3.3 Lemma Let H be a Hilbert space. There is an involution Θ on the set of all
orthogonal subsets of H such that for each orthogonal set X of H, X ≃ Θ(X) under
x↦ x

∥x∥2
. Under Θ bounded above orthogonal sets correspond one-to-one to bounded

below orthogonal sets. For an orthogonal set X, the corresponding orthonormal sets
{ x
∥x∥ ∶x ∈X } and { x

∥x∥ ∶x ∈ Θ(X) } are equal.

3.1 Remark Let H be a Hilbert space and X be a non-void orthogonal set of
H which is not bounded above. Define mX ∶ ⟨X⟩ × ⟨X⟩ → ⟨X⟩ by mX(u, v) ∶=
∑x∈X⟨u,x⟩⟨v, x⟩ x

∥x∥2
(sum with finitely many non zero terms) in a way similar to

the proof of Theorem 3.2. With ⟨X⟩ being a pre-Hilbert space and thus a normed
space under the induced inner product, mX is not jointly continuous. Assuming
the contrary, for each x ∈ X, mX(ex, ex) = ex where ex ∶= x

∥x∥2
∈ ⟨X⟩, and thus

∥ex∥ = ∥mX(ex, ex)∥ ≤ C∥ex∥2 ⇒ 1
C ≤ ∥ex∥ = 1

∥x∥ , that is, ∥x∥ ≤ C, a contradic-
tion. So one cannot extend mX to the whole H. Nevertheless with, for u ∈ ⟨X⟩,
u∗ ∶= ∑x∈X⟨ x

∥x∥ , u⟩
x
∥x∥ , (⟨X⟩,mX , (−)∗) is a Hilbert algebra [8] of a somewhat special

kind since ⟨X⟩ = {mX(u, v)∶u, v ∈ ⟨X⟩ }.

3.3 H∗-algebras

It is possible to characterize Hilbertian Frobenius algebras using Ambrose’s con-
cept of H∗-algebras [3] or conversely to characterize commutative H∗-algebras in an
involution-free way. Let (E,∗) be a commutative Banach algebra where E is the
underlying Banach space of a Hilbert space. By a H∗-adjoint of u is meant a member
v of E such that M †

u = Mv, that is, for every w,w′ ∈ E, ⟨u ∗ w,w′⟩ = ⟨w, v ∗ w′⟩.
(E,∗) is a H∗-algebra when every element of E has a H∗-adjoint [3].

3.4 Proposition Let (H,µ) be a Hilbertian algebra. The underlying Banach alge-
bra of (H,µ) is a H∗-algebra if, and only if, (H,µ) a Hilbertian Frobenius algebra.
Alternatively, let (E,m) be a commutative Banach algebra where E = U(H) for
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a Hilbert space H. (E,m) is a H∗-algebra if, and only if, (H,µ) is a Hilbertian
Frobenius algebra, where µ∶H⊗̂2H →H is the unique extension of m.

Proof: The direct assertion of the first statement is [2, Lemma 6, p. 9].
Let us assume that (H,µ) is a Hilbertian Frobenius algebra. Let u ∈ H. Let us

define u∗ ∶= ∑x∈G(H,µ) 1
∥x∥2

⟨x,u⟩x. Of course pJ(u∗) = 0. Now, let u, v,w ∈H. Then,

⟨uv,w⟩ = ⟨pJ⊥(u)pJ⊥(v),w⟩ (according to Remark 2.5)
= ⟨pJ⊥(u)pJ⊥(v), pJ⊥(w)⟩ (as J⊥ is a subalgebra by Theorem 2.14)
= ∑x∈G(H,µ) 1

∥x∥2
⟨u,x⟩⟨v, x⟩⟨w,x⟩

= ∑x∈G(H,µ) 1
∥x∥2

⟨v, x⟩⟨x,u⟩⟨w,x⟩
= ⟨pJ⊥(v), u∗pJ⊥(w)⟩
= ⟨pJ⊥(v), u∗w⟩
= ⟨v, u∗w⟩ (as u∗w ∈ J⊥).

(7)
Therefore (H,µbil) is a H∗-algebra.

Now let (E,m) be a commutative H∗-algebra with E = U(H) for a Hilbert space
H and E has a norm equivalent to the norm ∥−∥ induced by the inner product of H.
For each minimal ideal I of (E,m), let e(I) be the idempotent generator of I. By
the work of [3], ( e(I)

∥e(I)∥)I , where I runs over the set of all minimal ideals of (E,m),
forms an orthonormal basis of the orthocomplement of the annihilator of (E,m) or
equivalently its Jacobson radical. Since 1

∥m∥op
≤ ∥e(I)∥ for each I, it follows that

m∶H ×H → H is a weak Hilbert-Schmidt mapping, and thus extends uniquely to
a bounded linear map µ∶H⊗̂2H → H with µbil = m. The second statement of the
proposition now follows as (E,m) is the underlying Banach algebra of (H,µ). ◻

3.5 Corollary Let (H,µ) be a Hilbertian Frobenius algebra. (−)⊥ provides an
order-reversing involution on the set of closed ideals of (H,µ). In particular a closed
subspace of H is an ideal if, and only if, it is a subcoalgebra.

Proof: The first statement follows from the existence of H∗-adjoints (by Propo-
sition 3.4). The second statement is due to [22, Lemmas 14 and 15, p. 14] which
jointly assert that I is a closed ideal if, and only if, I⊥ is a closed subcoalgebra. ◻

3.4 Approximate (co)units

Let (H,µ) be a Hilbertian algebra and let (eλ)λ∈Λ be a directed net on H, that is,
Λ is a directed set and eλ ∈ H, λ ∈ Λ. (eλ)λ is an approximate unit if ueλ → u
in the norm topology, for each u ∈ H. By its very definition the existence of an
approximate unit forces the multiplication µ to have a dense range. Any semisimple
commutative Hilbertian Frobenius algebra (H,µ) has an approximate unit (this
was already noticed in [2] for H separable and µ isometric, under the assumption,
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redundant by Theorem 2.17, of semisimplicity of (H,µ)), namely (eF )F ∈Pfin(G(H,µ))

where eF ∶= ∑x∈F x
∥x∥2

and Pfin(G(H,µ)) is the set of all finite subsets of group-
like elements, directed under inclusion (because pJ⊥(u) is precisely the sum of the
summable family (⟨u, x

∥x∥⟩
x
∥x∥)x∈G(H,µ) for each u ∈H.)

Let (H,µ) be a Hilbertian algebra and let (H ελÐ→ C)λ∈Λ where Λ is a directed
set. Call (ελ)λ an approximate counit when for each u ∈ H, ∥(id⊗ελ)(µ†(u)) − u ⊗
1∥H⊗̂2H → 0. The existence of such an approximate counit forces µ† to be one-
to-one. Given a Hilbertian Frobenius algebra (H,µ), let εF (u) ∶= ∑x∈F ⟨u, x

∥x∥⟩ for

F ∈ Pfin(G(H,µ)) and u ∈ H, that is, εF = e†F , when eF is identified with a map
C

eFÐ→ H. Then, (id ⊗̂2εF )(µ†(u)) = ∑x∈F x
∥x∥ ⊗ ⟨u, x

∥x∥⟩ → pJ⊥(u) ⊗ 1. Whence if
(H,µ) is semisimple, then εF is an approximate counit.

All of this may be combined as a corollary of Theorem 2.17.

3.6 Corollary A Hilbertian Frobenius semigroup is semisimple if, and only if, it has
an approximate unit if, and only if, it has an approximate counit. In particular each
special Hilbertian Frobenius semigroup has an approximate unit and an approximate
counit.

4 Reformulation of the Structure Theorem as an equiv-
alence of categories

In this section it is shown that the splitting of an Hilbertian Frobenius algebra
into the orthogonal direct sum of a semisimple and a radical Hilbertian Frobenius
semigroups may in fact be recasted into an equivalence between cFrobSem(Hilb)
and the product category semisimple,cFrobSem(Hilb) ×Hilb.

Let (H,µ) be a commutative Hilbertian Frobenius algebra. The closure ran(µ) of
the range of µ is also equal to H2, with H2 ∶= ⟨xy∶x, y ∈H⟩. Now (H2)⊥ = A(H,µ) as
it follows easily from the existence of H∗-adjoints (Proposition 3.4). Consequently,
ran(µ) = J⊥ by Proposition 2.13. One now defines P (H,µ) ∶= (J⊥, µ∣J⊥ ) (see Corol-
lary 2.15).

4.1 Proposition (H,µ) ↦ P (H,µ) extends to a functor P from cFrobSem(Hilb)
to semisimple,cFrobSem(Hilb) which is a right adjoint left inverse of the full embedding
functor E∶ semisimple,cFrobSem(Hilb) ↪ cFromSem(Hilb).

Proof: Let (H,µ) fÐ→ (K,γ) be an algebra map between Hilbertian Frobenius

algebras. As f(H2) ⊆K2, it follows that f(H2) ⊆ f(H2) ⊆K2. Whence P (H,µ) fÐ→
P (K,γ) is defined as the co-restriction of f . In particular, P (f) = πP (K,γ)○f ○iP (H,µ)
and thus P (f) is bounded. By Corollary 2.15, P (H,µ) = J⊥ is a semisimple Hilber-
tian Frobenius algebra, under the co-restriction of µ. iP (H,µ) is an algebra morphism
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since J(H,µ)⊥ is a subalgebra, and πP (K,γ) = i†P (K,γ) is an algebra morphism too as
J(K,γ)⊥ is a subcoalgebra, so that P (f) is indeed a morphism of algebras, and thus
one obtains the desired functor. P is of course a left inverse of E.

Now let (H,µ) be a semisimple Hilbertian Frobenius algebra and let (K,γ) be a

Hilbertian Frobenius algebra. Let (H,µ) fÐ→ P (K,γ) be a morphism of semigroups.

Define f ♯ ∶= (H,µ) fÐ→ P (K,γ)
iP (K,γ)ÐÐÐÐ→ (K,γ). Then P (f ♯) = f as iP (K,γ) ○ P (f ♯) =

f ♯ ○ iP (H,µ) = f ♯ = iP (K,γ) ○ f (as P (H,µ) = (H,µ)) and iP (K,γ) is a monomorphism.

Now let (H,µ) = P (H,µ) gÐ→ (K,γ) such that P (g) = f . Then f ♯ = iP (K,γ) ○ f =
iP (K,γ) ○ P (g) = g ○ iP (H,µ) = g. ◻

One may also define a functor J ∶ cFrobSem(Hilb) → Hilb as follows. Let
f ∶ (H,µ) → (K,γ) be a semigroup map. Then, f †∶ (K,γ†) → (H,µ†) is a cosemi-
group map, and thus f †(G(K,γ)) ⊆ G(H,µ) ∪ {0}. By linearity and continuity,
f †(J(K,γ)⊥) ⊆ J(H,µ)⊥ and thus f(J(H,µ)) ⊆ J(K,γ) by [22, Lemma 1, p. 964].
Then let J(f) be the co-restriction of f thus obtained. Clearly this provides a
functor J ∶ cFrobSem(Hilb) →Hilb.

In the opposite direction let T ∶Hilb → cFrobSem(Hilb) be the full embedding

functor, T (H fÐ→K) ∶= (H,0) fÐ→ (K,0).

4.2 Lemma The full subcategory radical,cFrobSem(Hilb) of cFrobSem(Hilb) span-
ned by the radical commutative Hilbertian Frobenius algebras, is isomorphic toHilb.

Proof: The co-restriction Hilb
TÐ→ radical,cFrobSem(Hilb) of T is the inverse of

the obvious forgetful functor radical,cFrobSem(Hilb) ∣−∣Ð→Hilb. ◻
In the two results below are identified external and internal orthogonal direct

sums.
Let (H,µ) and (K,γ) be commutative Hilbertian algebras. By additivity of ⊗̂2,

(H ⊕2 K)⊗̂2(H ⊕2 K) has the following coproduct presentation.

H⊗̂2H iH ⊗̂2iH
++

H⊗̂2KiH ⊗̂2iK
ss

(H ⊕2 K)⊗̂2(H ⊕2 K)

K⊗̂2H
iJ ⊗̂2iH

33

K⊗̂2K
iK ⊗̂2iK

kk

(8)

4.3 Proposition Let (H,µ) and (K,γ) be Hilbertian algebras. Let us define
ρ∶ (H⊕2K)⊗̂2(H⊕2K) →H⊕2K by ρ○(iH⊗̂2iH) ∶= iH ○µ, ρ○(iK⊗̂2iK) = iK ○γ and

ρ○((iH⊗̂2iK)⊕2(iK⊗̂2iH)) = 0. Then, (H⊕2K,ρ) is a Hilbertian algebra, (H,µ) iHÐ→
(H ⊕2 K,ρ)

iK←Ð (K,γ) are morphisms of algebras, and ρ† ○ iH = (iH⊗̂2iH) ○ µ†,

ρ† ○ iK = (iK⊗̂2iK) ○ γ†, that is, (H,µ†) iHÐ→ (H ⊕2 K,ρ
†) iK←Ð (K,γ†) are morphisms

of coalgebras as well.
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Moreover if both (H,µ) and (K,γ) are Frobenius, then so is (H ⊕2 K,ρ), and
in this case, J(H ⊕2 K,ρ) = J(H,µ) ⊕2 J(K,γ) and J(H ⊕2 H,ρ)⊥ = J(H,µ)⊥ ⊕2

J(K,γ)⊥. In particular, if (H,µ) is semisimple and (K,γ) is radical, then J(H ⊕2

K,ρ) =K and J(H ⊕2 K,ρ)† =H.

Proof: That (H ⊕2 K,ρ) is indeed a Hilbertian algebra is easily checked. It is

then clear, from the very definition of ρ, that (H,µ) iHÐ→ (H ⊕2 K,ρ)
iK←Ð (K,γ) are

morphisms of algebras.
Let x ∈H, u,u′ ∈H, v, v′ ∈K. Then,

⟨ρ†(x), (u + v) ⊗ (u′ + v′)⟩ = ⟨ρ†(x), u⊗ u′ + u⊗ v′ + v ⊗ u′ + v ⊗ v′⟩
= ⟨x,µ(u⊗ u′) + γ(v ⊗ v′)⟩
= ⟨x,µ(u⊗ u′)⟩ (since γ(v, v′) ∈K)
= ⟨µ†(x), u⊗ u′⟩
= ⟨iH⊗̂2H(µ†(x)), u⊗ u′ + u⊗ v′ + v ⊗ u′ + v ⊗ v′⟩
= ⟨iH⊗̂2H(µ†(x)), (u + v) ⊗ (u′ + v′)⟩.

(9)
As a matter of fact, ρ†(x) ∈ ((H⊗̂2K)⊕2 (K⊗̂2H)⊕2 (K⊗̂2K))⊥ =H⊗̂2H. Likewise
ρ†(x) ∈ K⊗̂2K for each x ∈ K. Consequently, ρ† ○ iH = (iH⊗̂2iH) ○ µ†, ρ† ○ iK =
(iK⊗̂2iK) ○ γ†, and thus (H,µ†) iHÐ→ (H ⊕2 K,ρ

†) iK←Ð (K,γ†) are morphisms of
coalgebras.

Let us now assume that both (H,µ) and (K,γ) are Frobenius. It follows easily,
by a direct computation, that (H ⊕2 K,ρ) is Frobenius as well.

Let u + v ∈ A(H ⊕2 K,ρ), u ∈H, v ∈K. Then 0 = ρbil(u + v, u′ + v′) = µbil(u,u′) +
γbil(v, v′). In particular, u ∈ A(H,µ) = J(H,µ) and v ∈ A(K,γ) = J(K,γ), and
u + v ∈ J(H,µ) ⊕2 J(Kγ). Conversely, let u ∈ J(H,µ), v ∈ J(K,γ). Then, u + v ∈
A(H ⊕2 K,ρ) since ρbil(u + v, u′ + v′) = µbil(u,u′) + γbil(v, v′) = 0 for all u′ ∈ H,
v′ ∈ K. Thus, J(H ⊕2 K,ρ) = A(H ⊕2 K,ρ) = J(H,µ) ⊕2 J(K,γ). As a result,
J(H ⊕2K,ρ)⊥ = (J(H,µ)⊕2 J(K,γ))⊥ = J(H,µ)⊥⊕2J(K,γ)⊥. The last assertion is
immediate. ◻

4.4 Lemma Let f ∶ (H,µ) → (K,γ) be a cFrobSem(Hilb)-morphism, then f =
P (f)⊕2J(f).

4.5 Proposition cFrobSem(Hilb) is equivalent to semisimple,cFrobSem(Hilb)×Hilb.

Proof: The functor ⟨P,J⟩ from cFrobSem(Hilb) to semisimple,cFrobSem(Hilb) ×
Hilb, (H,µ) ↦ (P (H,µ), J(H,µ)), is the required equivalence of categories. Indeed
that ⟨P,J⟩ is full is easily observed. Proposition 4.3 implies essential surjectivity.
By Lemma 4.4, ⟨P,V ⟩ is faithful. ◻

4.6 Corollary The categories cFrobSem(FdHilb) and semisimple,cFrobSem(FdHilb)×
FdHilb are equivalent.
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Let partiso,cFrobSem(Hilb) be the full subcategory of cFrobSem(Hilb) spanned
by those Hilbertian Frobenius algebras (H,µ) where µ† is a partial isometry. Recall
also that †

cFrobSem(Hilb) is the category of special commutative Hilbertian Frobe-
nius algebras. Let (H,µ) be an object of partiso,cFrobSem(Hilb). As µ† restricts to
an isometry from (kerµ†)⊥ = (ranµ)⊥⊥ = J⊥ to H⊗̂2H ([18, p. 404]), it is clear that
P (H,µ) is an object of †

cFrobSem(Hilb). The following result then follows easily.

4.7 Corollary The equivalence from Proposition 4.5 restricts to an equivalence be-
tween partiso,cFrobSem(Hilb) and †

cFrobSem(Hilb) ×Hilb.

5 Equivalences between semisimple Frobenius algebras
and weighted pointed sets

The one-to-one correspondence between structures of semisimple Hilbertian Frobe-
nius algebras on a given Hilbert space and its bounded below (or above) orthogonal
bases (Theorem 3.2) may be upgraded into an equivalence of categories.

5.1 Categories of pointed sets with a weight function

Let WSet● be the following category of weighted pointed sets. Its objects are pointed
sets (X,x0, α) together with a weight function, i.e., a map α∶X ∖ {x0 } → [Cα,+∞[
for some given Cα > 0. A morphism (X,x0, α)

fÐ→ (Y, y0, β) is a base-point preserving

map (X,x0)
fÐ→ (Y, y0) such that

• for each y /= y0, ∣f−1({ y })∣ < +∞,

• there exists a real number Mf ≥ 0 such that for all y /= y0, ∑x∈f−1({y }) α(x) ≤
Mfβ(y).

Under the usual composition this indeed forms a category.
In [22] is introduced the category Set●,<+∞ the objects of which are pointed sets

(X,x0) and morphisms (X,x0)
fÐ→ (Y, y0) are those base-point preserving maps such

that (1) ∣f−1({ y })∣ is finite for each y /= y0 and (2) Bf ∶= supy/=y0 ∣f
−1({ y })∣ < +∞.

5.1 Lemma Set●,<+∞ fully embeds into WSet● under the identity-on-arrows func-
tor E such that E(X,x0) ∶= (X,x0,1), with 1(x) = 1, x /= x0.

5.2 Lemma Let f ∈ WSet●((X,x0, α), (Y, y0, β)) with β bounded above. Then,
f ∈ Set●,<+∞((X,x0), (Y, y0)).

Let us define bndWSet● (resp. unbndWSet●) be the full subcategory of WSet●
spanned by those objects (X,x0, α) with α bounded above (resp. unbounded).
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5.3 Lemma bndWSet● is equivalent to Set●,<+∞. Moreover no object of bndWSet●
is isomorphic to an object of unbndWSet●.

Proof: By Lemma 5.2, for (X,x0, α)
fÐ→ (Y, y0, β) with α,β bounded above,

(X,x0)
fÐ→ (Y, y0) is a morphism in Set●,<+∞. This defines in an obvious way a

functor U ∶ bndWSet● → Set●,<+∞. This functor is readily faithful.

Let (X,x0, α), (Y, y0, β) with bounded α,β and let (X,x0)
fÐ→ (Y, y0) in Set●,<+∞.

Then, for y /= y0, ∑x∈f−1({y }) α(x) ≤ supx/=x0 α(x)Bf ≤ supx/=x0 α(x)Bf
1
Cβ
β(y). So U

is full. Of course, U is surjective on objects because U(X,x0,1) = (X,x0).
Now, let (X,x0, α) and (Y, y0, β) with α bounded, and β unbounded. Let

(X,x0, α)
φÐ→ (Y, y0, β) be an isomorphism in WSet●. In particular, X

φÐ→ Y
is a bijection with φ(x0) = y0. Let θ ∶= φ−1 which is a morphism in WSet●
too. Then, for all x /= x0, β(φ(x)) = ∑y∈θ−1({x}) β(y) ≤ Mfα(x). In particular,
supy/=y0 β(y) = supx/=x0 β(φ(x)) ≤Mf supx/=x0 α(x) < +∞ which is a contradiction. ◻

5.2 The set of minimal ideals functor

Let (H,µ) be a Hilbertian Frobenius algebra.

5.4 Lemma E(H,µ) ⊆ ⟨G(H,µ)⟩ ⊆ J(H,µ)⊥. More precisely, if e is an idempotent
element, then the support of e, Se ∶= { g ∈ G(H,µ)∶ ⟨e, g⟩ /= 0}, is the (unique) finite
subset of G(H,µ) such that e = ∑g∈Se

g
∥g∥2

.

Proof: That E(H,µ) ⊆ J(H,µ)⊥ follows from [4, Lemma 3.3, p. 112] since
H = J(H,µ)⊥ ⊕2 J(H,µ) and J(H,µ)⊥ is a subalgebra by the Structure Theorem
(Theorem 2.14).

Let e = ∑g∈G(H,µ)⟨e, g
∥g∥⟩

g
∥g∥ be an idempotent element. e2 = ∑g∈G(H,µ) 1

∥g∥2
⟨e, g⟩2g.

But e2 = e so that for each g ∈ G(H,µ), ⟨e, g⟩ ∈ {0,1}. Let Se ∶= { g ∈ G(H,µ)∶ ⟨e, g⟩ /=
0}. Then, e = ∑g∈Se 1

∥g∥
g
∥g∥ and thus ( 1

∥g∥2
)g∈Se is summable and ∥e∥2 = ∑g∈Se 1

∥g∥2

(since G(H,µ) is an orthogonal family). But for each group-like element g, 1
∥µ∥2op

≤
1
∥g∥2

(by Lemma 2.5) and ∑g∈Se 1
∥µ∥2op

= ∣Se∣
∥µ∥2op

≤ ∥e∥2, so that ∣Se∣ < +∞. Uniqueness of
Se is clear since ( g

∥g∥)g is an orthonormal basis. ◻
As usually let e ≤ f be defined by ef = e, for e, f ∈ E(H,µ), and call minimal an

idempotent which is minimal in (E(H,µ) ∖ {0},≤). Let Min(E(H,µ)) be the set
of all these minimal (non-zero) idempotent elements.

As Lemma 5.4 actually establishes a one-one correspondence e ↦ Se, between
E(H,µ) and the set Pfin(G(H,µ)) of finite subsets of group-like elements, and
as under this bijection the product of idempotents corresponds to the intersec-
tion of their supports, ≤ corresponds to the usual inclusion of sets. Consequently
Min(E(H,µ)) = { g

∥g∥2
∶ g ∈ G(H,µ) }.
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5.1 Remark Let (H,µ) be a Hilbertian Frobenius algebra. Lemma 3.3 tells us that
(1) G(H,µ) ≃ Min(E(H,µ)) under g ↦ g

∥g∥2
with inverse e↦ e

∥e∥2
, (2) Min(E(H,µ))

is a bounded below orthogonal family. More precisely if G(H,µ) is non void, that
is, µ /= 0 (by Corollary 2.16), Min(E(H,µ)) is a non void orthogonal family. (3)
{ e
∥e∥ ∶ e ∈ Min(E(H,µ)) } = { g

∥g∥ ∶ g ∈ G(H,µ) }.

5.5 Lemma Let I = He for some idempotent e of (H,µ). Then, I ⊆ J(H,µ)⊥ and
I⊥ is a modular ideal with modular unit e.

Proof: That I ⊆ J(H,µ)⊥ is clear by Lemma 5.4 since J(H,µ)⊥ is a subalgebra
(Lemma 2.5) and J(H,µ)J(H,µ)⊥ = 0 (Proposition 2.13). I⊥ is indeed an ideal
(Corollary 3.5). To prove that e is a modular unit of I⊥ it suffices to check that
⟨u − ue, ve⟩ = 0 for each u, v ∈H, which is left to the readers. ◻

Let I be an ideal of (H,µ) contained in J(H,µ)⊥ and such that I /= (0). Then,
I2 /= (0). (Indeed if I2 = (0), then for each x ∈ I, x2 = 0. But then x ∈ J(H,µ) ∩ I ⊆
J(H,µ) ∩ J(H,µ)⊥ = (0), that is, x = 0.)

5.6 Lemma Let I be a minimal ideal. Then, I = Cg = C g
∥g∥2

for a unique group-like
element g, in particular I ⊆ J(H,µ)⊥. Equivalently, I = Ce = C e

∥e∥2
for a unique

minimal idempotent element e. e may be characterized as the unit of I. Finally,
(−)⊥ establishes a one-one correspondence between the set of all maximal regular
ideals of (H,µ) and the set Min(H,µ) of all its minimal ideals.

Proof: By the above observation and by Brauer’s lemma ([19, p. 162]), I =He for
a non-zero idempotent e of (H,µ).

Since I is minimal, I⊥ is maximal (Corollary 3.5). It is modular by Lemma 5.5.
Therefore I⊥ = (Cg)⊥ for a unique group-like element g of (H,µ). Since Cg is finite
dimensional, it is closed and thus I = I⊥⊥ = (Cg)⊥⊥ = Cg. Since I ⊆ Cg, I also is finite
dimensional so I = Cg. (This in particular shows that I ↦ I⊥ is a bijection from the
set of all minimal ideals of (H,µ) to the set of all its maximal regular ideals since Cg
certainly is a minimal ideal for each group-like element g by Remark 2.5.) Uniqueness
of the group-like generator is clear since G(H,µ) is a linearly independent set. What
remains of the proof is easy. ◻

Let I be a minimal ideal of (H,µ). Let g (I) and e (I) be respectively its group-
like and its idempotent generators, provided by Lemma 5.6 and which are related

by the equalities e (I) =
g (I)

∥ g (I)∥2 and thus also g (I) = e (I)
∥ e (I)∥2 . This defines maps

Min(H,µ)
g
ÐÐ→ G(H,µ) and Min(H,µ)

e
Ð→ Min(E(H,µ)). The proof of the next

result is essentially provided by the proof of Lemma 5.6.
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5.7 Lemma g is a bijection with inverse G(H,µ) C(−)ÐÐ→ Min(H,µ), g ↦ Cg, and

e is a bijection from Min(H,µ) to MinE(H,µ) with inverse Min(E(H,µ)) C(−)ÐÐ→
Min(H,µ), e↦ Ce.

5.1 Notation For convenience one still denotes by g (resp. e ) the bijection from
Min(H,µ)∪{0} (resp. Min(H,µ)∪{0}) onto G(H,µ)∪{0} (resp. Min(E(H,µ))∪
{0}) obtained from the original g (resp. e ) by setting g (0) ∶= 0 (resp. e (0) ∶= 0).

Let (H,µ) be a Hilbertian Frobenius algebra. One recalls from Lemma 2.3, that
for each g ∈ G(H,µ), ∥g∥ ≤ ∥µ∥op. (This is true even for G(H,µ) = ∅, or equivalently
for µ = 0.) So in particular for each e ∈ Min(E(H,µ)), 1

∥e∥ = ∥ e
∥e∥2

∥ ≤ ∥µ∥op. This is
equivalent to 1

∥µ∥op
≤ ∥e∥, e ∈ Min(E(H,µ)) but only for a non void Min(E(H,µ))

or equivalently for µ /= 0. Nevertheless even when µ = 0, Min(E(H,µ)) is bounded
below since it is void. To avoid statements by cases where µ /= 0 or µ = 0, one
introduces the bound of (H,µ).

5.1 Definition Let (H,µ) be a Hilbertian Frobenius algebra. Define the bound

b(H,µ) > 0 of (H,µ) by b(H,µ) ∶= { 1 if µ = 0
∥µ∥op if µ /= 0

. For each g ∈ G(H,µ),

∥g∥ ≤ b(H,µ). So in particular for each e ∈ Min(E(H,µ)), 1
∥e∥ = ∥ e

∥e∥2
∥ ≤ b(H,µ).

This is equivalent, even for µ = 0, to 1
b(H,µ) ≤ ∥e∥, e ∈ Min(E(H,µ)). One de-

fines w(H,µ)∶Min(H,µ) → [ 1
b(H,µ)2

,+∞[ by w(H,µ)(I) ∶= 1
∥ g (I)∥2 = ∥ e (I)∥2. Let

Min●(H,µ) ∶= (Min(H,µ) ∪ {0},0,w(H,µ)). One defines bnd,cFrobSem(Hilb) and
unbnd,cFrobSem(Hilb) as the full subcategories of cFrobSem(Hilb) spanned by the
algebras (H,µ) with w(H,µ) bounded above, and respectively unbounded above.

Let (H,µ) fÐ→ (K,γ) be a semigroup map between Hilbertian Frobenius alegbras.

Therefore (K,γ†) f†

Ð→ (H,µ†) is a coalgebra map and thus f †(G(K,γ)) ⊆ G(H,µ) ∪
{0}.

Let `∶Min(K,γ) → Min(H,µ) ∪ {0} be given by `(J) = 0 if, and only if,
f †( g (J)) = 0, and `(J) = I if, and only if, f †( g (J)) = g (I). Therefore, for
each J ∈ Min(K,γ) ∪ {0}, `(J) = Cf †( g (J)). (Observe that for J = 0 or for
f †( g (J)) = 0, `(J) = C0 = 0.)

Let I ∈ Min(H,µ). Then,

⟨f( e (I)), e (J)
∥ e (J)∥⟩ = ⟨ e (I), ∥ e (J)∥f †( e (J)

∥ e (J)∥2 )⟩. (10)

Consequently, for J ∈ Min(K,γ), ⟨f( e (I)), e (J)
∥ e (J)∥⟩ = 0 if, and only if, f †(g(J)) = 0

or f †(g(J)) = g(I ′) with I ′ /= I, and ⟨f( e (I)), e (J)
∥ e (J)∥⟩ = ⟨ e (I), ∥ e (J)∥g(I)⟩ =
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∥ e (J)∥
∥ e (I)∥2 ⟨ e (I), e (I)⟩ = ∥ e (J)∥ if, and only if, f †( g (J)) = g (I) if, and only if,
`(J) = I.

Since f is a semigroup map, it sends an idempotent element of (H,µ) to one of
(K,γ). Whence the image by f of an idempotent belongs to J(K,γ)⊥. There-
fore, for each I ∈ Min(H,µ), f( e (I)) = ∑J∈Min(K,γ)⟨f( e (I)), e (J)

∥ e (J)∥⟩
e (J)
∥ e (J)∥ =

∑J∈`−1({ I }) ∥ e (J)∥ e (J)
∥ e (J)∥ .

Now for I ∈ Min(H,µ), ∑J∈`−1({ I }) b(K,γ)2∥ e (J)∥2 = b(K,γ)2∥f( e (I))∥2 ≤
b(K,γ)2∥f∥2

op∥ e (I)∥2 < +∞. But 1 ≤ b(K,γ)2∥ e (J)∥2 for each J ∈ Min(K,γ), so
necessarily ∣`−1({ I })∣ is finite.

From the equality f( e (I)) = ∑J∈`−1({ I }) ∥ e (J)∥ e (J)
∥ e (J)∥ = ∑J∈`−1({ I }) e (J) it

follows that∑J∈`−1({ I }) ∥ e (J)∥2 = ∥f( e (I))∥2 ≤ ∥f∥2∥ e (I)∥2 for each I ∈ Min(H,µ).
Consequently, ` ∈ WSet●(Min●(K,γ),Min●(H,µ)), where ` is extended to the

whole of Min(K,γ) ∪ {0} by setting `(0) ∶= 0.
Contravariance of f ↦ ` is clear. So are obtained the set of minimal ideals functor

Min●∶ cFrobSem(Hilb) →WSetop
●

and Min●∶ semisimple,cFrobSem(Hilb) →WSetop
●

by restriction.

5.3 The `2
●
functor

Let (X,x0, α) be an object of WSet●. Define α+∶X → [Cα,+∞[, 0 < Cα, by α+(x) =
α(x), x /= x0, α+(x0) ∶= Cα. One may consider the semisimple Hilbertian Frobenius
algebra ((`2α+(X), ⟨⋅, ⋅⟩α+), µX) (Proposition 1.5).

Let `2
●
(X,x0, α) ∶= {u ∈ `2α+(X)∶u(x0) = 0} = δ⊥x0 . It is a closed subalgebra, since

it is even a closed (maximal) ideal as the kernel of ⟨⋅, δx0⟩, and δx0 ∈ G(`2α+(X), µX).
The Hilbertian algebra ((`2

●
(X,x0, α), ⟨⋅, ⋅⟩α+), (µX)∣δ⊥x0

) is clearly unitarily iso-

morphic to ((`2α(X ∖{x0 }), ⟨⋅, ⋅⟩α), µX∖{x0 }). As a matter of fact, `2
●
(X,x0, α) is an

object of semisimple,cFrobSem(Hilb), with G(`2
●
(X,x0, α)) = { δx

α(x) ∶x ∈X ∖{x0 }} by
Proposition 1.5.

In particular, when α is bounded above (resp. unbounded), then `2
●
(X,x0, α) is

an object of semisimple,bnd,cFrobSem(Hilb) (resp. semisimple,unbnd,cFrobSem(Hilb)).
Let f ∈ WSet●((X,x0, α), (Y, y0, β)). Let u ∈ `2

●
(Y, y0, β). Then, u ○ f ∈

`2
●
(X,x0, α). Indeed, u(f(x0)) = u(y0) = 0. Let A ⊆X be a finite set. Then,

∑x∈A∖{x0 } α(x)∣u(f(x))∣2 = ∑y∈f(A)∖{y0 } (∑x∈f−1({y }) α(x)) ∣u(y)∣2
≤ ∑y/=y0 Mfβ(y)∣u(y)∣2
= Mf∥u∥2

β.
(11)

In particular ∥u ○ f∥α ≤M
1
2

f ∥u∥β .
Since `2

●
(f)∶ `2

●
(Y, y0, β) → `2

●
(X,x0, α), u ↦ u ○ f , is clearly a semigroup mor-

phism, it follows easily that one has a functor `2
●
∶WSetop

●
→ cFrobSem(Hilb) and

29



thus also the following co-restriction `2
●
∶WSetop

●
→ semisimple,cFrobSem(Hilb).

5.4 The main equivalences

5.8 Theorem One has an adjunction Min● ⊣ `2●∶WSetop
●
→ cFrobSem(Hilb) that

restricts to an adjoint equivalence Min● ⊣ `2●∶WSetop
●

≃ semisimple,cFrobSem(Hilb).
In particular, semisimple,cFrobSem(FdHilb) ≃ FinSetop

●
, where FinSet● is the cate-

gory of finite pointed sets and base-point preserving maps.

Proof: Let (X,x0, α) be a weighted pointed set, with X∖{x0 }
αÐ→ [Cα,+∞[, where

Cα > 0. Then, Min(`2
●
(X,x0, α)) ≃ Min(`2α(X ∖ {x0 }, µX∖{x0 })) = {Cδx∶x /= x0 }.

Moreover w`2●(X,x0,α) = w(`2α(X∖{x0 }),µX∖{x0 }
)
so w`2●(X,x0,α)(Cδx) = ∥ e (Cδx)∥2

α =
∥δx∥2

α = α(x).
Let ε(X,x0,α)∶ (X,x0) → (Min(`2

●
(X,x0, α)) ∪ {0},0) be given by ε(X,x0,α)(x) ∶=

Cδx, x /= x0, and ε(X,x0,α)(x0) ∶= 0. ε(X,x0,α) is clearly a pointed bijection. By the
above, ε(X,x0,α) is clearly a WSet●-isomorphism.

Let (H,µ) be a Hilbertian Frobenius algebra. An orthonormal basis for the
semigroup `2

●
(Min●(H,µ)) is given by ( δI

√

w
(H,µ)(I)

)I∈Min(H,µ) = ( δI
∥ e (I)∥)I∈Min(H,µ).

Whence as a Hilbert space, `2
●
(Min●(H,µ)) is unitary isomorphic to J(H,µ)⊥ be-

cause an orthonormal basis of the latter is given by { e
∥e∥ ∶ e ∈ Min(E(H,µ)) } (Re-

mark 5.1). Let Φ(H,µ)∶ `2●(Min●(H,µ)) ≃ J(H,µ)⊥ be the corresponding unitary
transformation. For each minimal ideal I of (H,µ), Φ(H,µ)(δI) = e (I), and one
has Φ(H,µ)(IJ) = Φ(H,µ)(δI,JI) = δI,J e (I) = e (I) e (J) = Φ(H,µ)(δI)Φ(H,µ)(δJ) for
a minimal ideal J , from which it follows that Φ(H,µ) is actually an isomorphism of
semigroups.

Now let (X,x0, α)
fÐ→ Min●(H,µ) be a WSet●-morphism, where (H,µ) is an

Hilbertian Frobenius semigroup. Let (H,µ) f ♯Ð→ `2
●
(X,x0, α) ∶= (H,µ)

πJ(H,µ)⊥ÐÐÐÐÐ→

J(H,µ)⊥
Φ−1
(H,µ)ÐÐÐÐ→ `2

●
(Min●(H,µ))

`2
●
(f)ÐÐÐ→ `2

●
(X,x0, α). By construction f ♯ is a mor-

phism of semigroups.
For g ∈ G(H,µ), f ♯( g

∥g∥) = `
2
●
(f)(Φ−1

(H,µ)(
g
∥g∥)) = `

2
●
(f)( δCg

∥e(Cg)∥) = `
2
●
(f)(∥g∥δCg) =

∥g∥δCg ○ f . Let u ∈ `2●(X,x0, α) and g ∈ G(H,µ). Then, ⟨(f ♯)†(u), g
∥g∥⟩ = ⟨u, ∥g∥δCg ○

f⟩α = ∑x/=x0 α(x)u(x)∥g∥δCg(f(x)). Consequently,

(f ♯)†(u) = ∑
g∈G(H,µ)

∥g∥
⎛
⎝ ∑
x∈f−1({Cg })

α(x)u(x)
⎞
⎠

g

∥g∥ = ∑
g∈G(H,µ)

⎛
⎝ ∑
x∈f−1({Cg })

α(x)u(x)
⎞
⎠
g.

(12)
In particular, for x ∈ X ∖ {x0 }, (f ♯)†( δx

α(x)) = α(x)
α(x) g (f(x)) = g (f(x)). (Recall

that g (0) = 0 by Notation 5.1.) This is equivalent to Min●(f ♯)(Cδx) = f(x),
x ∈X ∖ {x0 }. In other words, Min●(f ♯) ○ ε(X,x0,α) = f .
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Now let h∶ (H,µ) → `2
●
(X,x0, α) be a semigroup map such that Min●(h†) ○

ε(X,x0,α) = f . Then, for each x /= x0, x ∈ X, h†( δx
α(x)) = g (f(x)) = (f ♯)†( δx

α(x)).
Since { δx

α(x) ∶x ∈X ∖{x0 }} is dense into `2
●
(X,x0, αx) it follows that h† = (f ♯)†, that

is, h = f ♯.
The proof for the adjunction will be concluded as soon as naturality of the family

(ε(X,x0,α))(X,x0,α) will be proved. This is equivalent to the requirement that for each

(X,x0, α)
fÐ→ (Y, y0, β), Min●(`2●(f))(Cδx) = Cδf(x), x ∈ X ∖ {x0 } with f(x) /= y0,

and also that Min●(`2●(f))(Cδx) = 0, x ∈X ∖ {x0 } with f(x) = y0.
But Min●(`2●(f))(Cδx) = C((`2

●
(f))†( g (Cδx))). Naturality thus is equivalent to

(`2
●
(f))†( δx

α(x)) =
δf(x)
β(f(x)) , x ∈ X ∖ {x0 }, f(x) /= y0, since δx

α(x) = g (Cδx) and in this

case g (Cδf(x)) =
δf(x)
β(f(x) , and (`2

●
(f))†( δx

α(x)) = 0, x ∈ X ∖ {x0 }, f(x) = y0. So one
has to compute (`2

●
(f))†( δx

α(x)). Let u ∈ `
2
●
(X,x0, α) and let y ∈ Y ∖ { y0 }. Then,

⟨(`2
●
(f))†(u), δy

β(y)
1
2
⟩β = ⟨u, `2

●
(f)( δy

β(y)
1
2
)⟩α

= ∑x∈X∖{x0 } α(x)u(x)
δy(f(x))

β(y)
1
2
.

(13)

Therefore

(`2
●
(f))†(u) = ∑y∈Y ∖{y0 }

1

β(y)
1
2
(∑x∈f−1({y }) α(x)u(x))

δy

β(y)
1
2

= ∑y∈Y ∖{y0 } (∑x∈f−1({y }) α(x)u(x))
δy
β(y) .

(14)

In particular, for each x ∈X ∖ {x0 } with f(x) /= y0

(`2
●
(f))†( δx

α(x)) = ∑y/=y0
δy
β(y) (∑x′∈f−1({y }) α(x

′) δx(x
′
)

α(x) )
= δf(x)

β(f(x)) .
(15)

For each x ∈ X ∖ {x0 } with f(x) = y0, the same computation as above leads as
expected to (`2

●
(f))†( δx

α(x)) = 0.
It remains to prove the statement about the equivalence of categories. The

component at (H,µ) of the unit of the above adjunction is by definition, id♯
Min●(H,µ)

=
Φ−1
(H,µ)○πJ(H,µ)⊥ . Since the counit ε is an isomorphism, the above equivalence restricts

to an equivalence between WSetop
●

and the full subcategory of cFrobSem(Hilb)
spanned by those algebras (H,µ) such that πJ(H,µ)⊥ is an isomorphism, that is, the
semisimple Hilbertian Frobenius algebras.

Concerning the last statement one first notices that the adjunction Min● ⊣ `2●
co-resricts to the adjunction Min● ⊣ `2●∶ cFrobSem(FdHilb) → WFinSet●, where
WFinSet● stands for the full subcategory ofWSet● spanned by the pointed weighted
sets (X,x0, α) where X is finite. By finiteness the embedding functor E∶Set●,<+∞ →
WSet● from Lemma 5.1, provides an equivalence FinSet● ≃ WFinSet●. By re-
striction again one obtains the expected equivalence. ◻

31



It is a consequence of Theorem 5.8 and of Lemma 5.3 that not all the semisimple
Hilbertian Frobenius algebras (H,µ), (H,γ) on the same Hilbert space H are iso-
morphic. (In view of Theorem 3.2 it suffices to consider bounded above orthogonal
bases of H, one of which also bounded below and the other not.)

Using some previous results (in particular Proposition 4.5) one obtains the fol-
lowing easily, by obvious restrictions of the equivalences from Theorem 5.8. (The
proof of Item 2 requires the use of [22, Theorem 41, p. 28].)

5.9 Corollary One has the following equivalences of categories.

1. unbndWSetop
● ≃ semisimple,unbnd,cFrobSem(Hilb).

2. †
cFrobSem(Hilb) ≃ Setop

●,<+∞ ≃ bndWSetop
● ≃ semisimple,bnd,cFrobSem(Hilb).

3. WSetop
● ×Hilb ≃ cFrobSem(Hilb).

4. unbndWSetop
● ×Hilb ≃ semisimple,unbnd,cFrobSem(Hilb)×Hilb ≃ unbnd,cFrobSem(Hilb).

5. partiso,cFrobSem(Hilb) ≃ †
cFrobSem(Hilb) ×Hilb ≃ Setop

●,<+∞ ×Hilb ≃ bndWSetop
● ×

Hilb ≃ semisimple,bnd,cFrobSem(Hilb) ×Hilb ≃ bnd,cFrobSem(Hilb).
6. FinSetop

● ≃ †
cFrobSem(FdHilb) and FinSetop

● × FdHilb ≃ cFrobSem(FdHilb) ≃
partiso,cFrobSem(FdHilb).

6 Some other (but related) equivalences

In this section are established several equivalences as consequences of Theorem 5.8
by considering different kind of morphisms.

6.1 More on Frobenius algebras with a partial isometric comulti-
plication

6.1 Proposition Let (H,µ) be a Hilbertian Frobenius algebra. Let us consider the
following (in general non commutative) diagram, with σ2,3∶ (H⊗̂2H)⊗̂2(H⊗̂2H) →
(H⊗̂2H)⊗̂2(H⊗̂2H) the unitary isomorphism given by (u1⊗u2)⊗(u3⊗u4) ↦ (u1⊗
u3) ⊗ (u2 ⊗ u4).

H
µ†

// H⊗̂2H

(H⊗̂2H)⊗̂2(H⊗̂2H)
µ⊗̂2µ
OO

σ2,3

H⊗̂2H

µ

OO

µ†
⊗̂2µ

†
// (H⊗̂2H)⊗̂2(H⊗̂2H)

(16)

((H,µ), µ†) is a bisemigroup in Hilb, that is, Diag. (16) above commutes, if, and
only if, for each g ∈ G(H,µ), ∥g∥ = 1 if, and only if, µ† is a partial isometry.
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Proof: It is easily checked by a direct computation that ((H,µ), µ†) is a bisemi-
group in Hilb if, and only if, for each g ∈ G(H,µ), ∥g∥ = 1. Now let u ∈H, then

µ†(µ(µ†(u))) = µ†(µ(∑g∈G(H,µ)⟨u, g
∥g∥⟩g ⊗ g))

= µ†(∑g∈G(H,µ)⟨u, g
∥g∥⟩∥g∥

2g)
= ∑g∈G(H,µ)⟨u, g⟩∥g∥g ⊗ g.

(17)

Therefore µ† is a partial isometry if, and only if, ∥g∥ = 1 for each g ∈ G(H,µ).
(The converse implication is due to the fact that for each g ∈ G(H,µ), ∥g∥2g ⊗ g =
µ†(µ(µ†(g))) = µ†(g) = g ⊗ g.) ◻

6.1 Remark For any Hilbertian Frobenius algebra (H,µ), ((H,µ),0) is a trivial
bisemigroup in Hilb, that is, the diagram, obtained from Diag. (16) by replacing µ†

by 0, commutes. This does not contradict Proposition 6.1 since the conjunction of
(H,µ) Frobenius and µ† = 0 implies H = (0).

Let partiso,cFrobBisem(Hilb) be the subcategory of partiso,cFrobSem(Hilb) with
the same objects but with morphisms preserving both the algebra and the coalgebra
structures, that is, with morphism of bisemigroups. Let †

cFrobBisem(Hilb) be its
full subcategory spanned by the Frobenius algebras with an isometric comultiplica-
tion.

Being a morphism of bisemigroups is rather restrictive as show the following
result and remark below.

6.2 Proposition Let f ∈ partiso,cFrobBisem(Hilb)((H,µ), (K,γ)) where µ† is an
isometry (that is, (H,µ) is semisimple). Then, f is a partial isometry.

Proof: Since both f and f † are coalgebra maps, f(G(H,µ)) ⊆ G(K,γ) ∪ {0}
and f †(G(K,γ)) ⊆ G(H,µ) ∪ {0}. Therefore for each g ∈ G(H,µ) and h ∈ G(K,γ),
f(g) = h ⇔ ⟨f(g), h⟩ = 1 ⇔ ⟨g, f †(h)⟩ = 1 ⇔ g = f †(h). Consequently, for each
h ∈ G(K,γ), f(f †(h)) = h when f †(h) /= 0 and f(f †(h)) = 0 when f †(h) = 0 and in
any case f †(f(f †(h))) = f †(h). Let u ∈ H. Then, f †(u) = ∑h∈G(K,γ)⟨u,h⟩f †(h) =
∑h∈G(K,γ)⟨u,h⟩f †(f(f †(h))) = f †(f(f †(u))). Then, f † is a partial isometry and so
is also f . ◻

6.2 Remark In general for f ∶ (Y, y0, β) → (X,x0, α), `2●(f) is not a coalgebra mor-
phism. Indeed if it was the case, then for each x ∈X ∖ {x0 }, δx○fα(x) = `

2(f)( δx
α(x)) = 0

or `2(f)( δx
α(x)) ∈ G(`2

●
(Y, y0, β)), that is, δx○fα(x) =

δy
β(y) for some y ∈ Y ∖ { y0 }. Equiva-

lently, for each x ∈ X ∖ {x0 }, f−1({x}) = ∅ or there exists y ∈ Y ∖ { y0 } such that
f(y) = x and α(f(y)) = β(y), and for each y′ /= y, y′ ∈ Y ∖ { y0 }, f(y′) /= x. In
particular, ∣f−1({x})∣ ≤ 1 for each x ∈X ∖ {x0 }.
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Let PInj
●
be the category of partial injections, that is, the objects are pointed

sets and morphism (X,x0)
fÐ→ (Y, y0) are base-point preserving maps such that for all

y ∈ Y ∖ { y0 }, ∣f−1({ y })∣ ≤ 1. (PInj
●
is isomorphic to the category PInj from [12].)

PInj
●
embeds into WSet● under E(X,x0) ∶= (X,x0,1) (where 1(x) = 1, x /= x0) and

E(f) ∶= f as for each y /= y0, (1) ∣f−1({ y })∣ ≤ 1, and (2) ∑x∈f−1({y }) 1(x) ≤ 1 = 1(y).

So one may consider the functor PInjop
●

`2
●
○EÐÐ→ cFrobSem(Hilb). Of course it

factors through †
cFrobSem(Hilb) ↪ partiso,cFrobSem(Hilb) ↪ cFrobSem(Hilb).

But actually, for each partial injection (X,x0)
fÐ→ (Y, y0), `2● is even a coalge-

bra map as µ†
X(`2

●
(f)(u)) = ∑x/=x0 u(f(x))δx ⊗ δx and (`2(f)⊗̂2`

2(f))(δ†Y (u)) =
(`2(f)⊗̂2`

2(f))(∑y/=y0 u(y)δy⊗δy) = ∑y/=y0 u(y)(δy ○f)⊗(δy ○f) = ∑x/=x0 u(f(x))δx⊗
δx for each u ∈ `2●(Y, y0,1). So one has a functor `2●∶PInjop

●
→ partiso,cFrobBisem(Hilb)

together with its co-restriction `2
●
∶PInjop

●
→ †

cFrobBisem(Hilb).
In the opposite direction one has a functorG●∶ partiso,cFrobBisem(Hilb) → PInjop

●

given as follows: G●(H,µ) ∶= (G(H,µ) ∪ {0},0) and given a morphism of bisemi-
groups f ∶ ((H,µ), µ†) → ((K,γ), γ†), G●(f)∶G●(K,γ) → G●(H,µ) is the restriction
of f †. G●(f)∶G●(K,γ) → G●(H,µ) is indeed a partial injection because for each
g, h ∈ (f †)−1(G(H,µ)) ∩G(K,γ), g /= h, 0 = f †(gh) = f †(g)f †(h) (since f † is also a
semigroup map), so that f †(g) /= f †(h) as f †(g), f †(h) ∈ G(H,µ).

The proof of the following result is left to the readers.

6.3 Proposition One has an adjunctionG● ⊣ `2●∶ partiso,cFrobBisem(Hilb) → PInjop
●

which restricts to an equivalence of categories †
cFrobBisem(Hilb) ≃ PInjop

●
.

6.2 Ambidextrous morphisms: Algebra-and-coalgebra maps

Even in the non partial isometric case, that is, even if ((H,µ), µ†) is not a bisemi-
group, it is tempting to see what happens when morphisms of Frobenius alegbras
are chosen as those bounded linear maps which are both algebra and coalgebra
morphisms. Let cFrob(Hilb)ambi be the corresponding non full subcategory of
cFrobSem(Hilb). (One drops the suffix “Sem” to emphasize the fact that both
the semigroup and the cosemigroup structures are of equal importance.) In view of
Remark 6.2 one introduces the category Pinj

●,w with

1. objects the weighted pointed sets as in WSet●,

2. arrows (X,x0, α)
fÐ→ (Y, y0, β) the partial injections (X,x0)

fÐ→ (Y, y0) such
that for each x ∈ f−1(Y ∖ { y0 }), α(x) = β(f(x)).

It is clear that PInj
●,w embeds (while not fully) into WSet●.

6.4 Proposition One has an adjunction Min● ⊣ `2
●
∶ cFrob(Hilb)ambi → PInjop

●,w

which restricts to an equivalence semisimple,cFrob(Hilb)ambi ≃ PInjop
●,w.
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Proof: The functor `2
●
(resp. Min●) occurring in the statement of the proposition

is the only one which makes commute the following diagram on the left (resp. right).

WSetop
●

`2
●//
cFrobSem(Hilb) cFrobSem(Hilb) Min● //WSetop

●

PInjop
●,w

?�

OO

`2
●

//
cFrob(Hilb)ambi

?�

OO

cFrob(Hilb)ambi

?�

OO

Min●
// PInjop

●,w

?�

OO

(18)
The proof follows from that of Theorem 5.8 (details are left to the readers). ◻

6.3 Proper morphisms

Call a WSet●-morphism (X,x0, α)
fÐ→ (Y, y0, β) proper when f−1({ y0 }) = {x0 } or

equivalently f(X ∖ {x0 }) ⊆ Y ∖ { y0 }. It is clear that every WSet●-isomorphism is
proper.

Let WSet be the category of weighted sets with

1. objects the pairs (X,α∶X → [C,+∞[), C > 0.

2. Arrows (X,α) fÐ→ (Y,β) the maps X
fÐ→ Y such that

(a) ∣f−1({ y })∣ < +∞ for each y ∈ Y ,

(b) there exists Mf ≥ 0 such that for each y ∈ Y , ∑x∈f−1({y }) α(x) ≤Mfβ(y).

For a set X, let X+ ∶= X + 1, where 1 ∶= {0} and + denotes the disjoint union.

Let X
fÐ→ Y be a map. Define X+

f+Ð→ Y + by f+ ∶= f + id1, that is, roughly speaking,

f+(x) = f(x), x ∈ X, f+(0) ∶= 0. This provides a functor WSet
(−)

+

ÐÐ→ WSet●
which acts on objects as (X,α)+ ∶= (X+,0, α), and which is injective on objects and
faithful. Under this functor WSet is clearly equivalent to the (non full) subcategory
of WSet● whose objects are those of WSet● but with proper morphisms between
them.

Let (H,µ) fÐ→ (K,γ) be a semigroup morphism between Hilbertian Frobenius
algebras. It is said to be proper when ran(f) is not included in any maximal modular
ideals of (K,γ) or alternatively for each y ∈ G(K,γ), there exists u ∈ H such that
⟨f(u), y⟩ /= 0. Properness for f implies that f †(y) /= 0 for each y ∈ G(K,γ), and
since f †(G(K,γ)) ⊆ G(H,µ) ∪ {0}, it follows that actually f †(G(K,γ)) ⊆ G(H,µ).
Conversely if f †(G(K,γ)) ⊆ G(H,µ), then for each y ∈ G(K,γ), ⟨f(f †(y)), y⟩ /= 0
and thus f is proper. One observes that every semigroup isomorphism is proper.

Let cFrobSem(Hilb)proper be the category whose objects are Hilbertian Frobe-
nius algebras and morphisms are the proper semigroup morphisms. As usually let
semisimple,cFrobSem(Hilb)proper be its full subcategory spanned by the semisimple
objects.
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Let (X,α) be a WSet-object. Define `2(X,α) ∶= (`2α(X), µX) as given in Sec-

tion 1.5. Let (X,α) fÐ→ (Y,β) be a WSet-morphism. Define `2(f)∶ (`2β(Y ), µY ) →
(`2α(X), µX) by `2(f)(u) ∶= u ○ f .

6.5 Lemma `2(f) is a proper morphism.

One obtains a functor `2∶WSetop → cFrobSem(Hilb)proper and a co-restriction
still denoted `2 from WSetop to semisimple,cFrobSem(Hilb)proper.

Now let f ∶ (H,µ) → (K,γ) be a proper morphism between Hilbertian Frobe-
nius semigroups. As f †(G(K,γ)) ⊆ G(H,µ), one defines a map `∶Min(K,γ) →
Min(H,µ) by the relation `(J) ∶= Cf †( g (J)), J ∈ Min(K,γ) as in Section 5.2.
Consequently, `0 ∈ WSet●(Min●(K,γ),Min●(H,µ)), where `0 is the extension of
` obtained by setting `0(0) ∶= 0. As `0(J) = `(J) /= 0, J ∈ Min(K,γ), it fol-
lows that actually ` ∈ WSet((Min(K,γ),w(K,γ)), (Min(H,µ),w(H,µ))), and from
that one has a functor Min∶ cFrobSem(Hilb)proper → WSetop. The adjunction
Min● ⊣ `2●∶ cFrobSem(Hilb) → WSetop

●
from Theorem 5.8, clearly restricts to an

adjunction Min ⊣ `2∶ cFrobSem(Hilb)proper →WSetop.

6.6 Proposition One has an adjunction Min ⊣ `2∶ cFrobSem(Hilb)proper →WSetop

that restricts to an equivalence semisimple,cFrobSem(Hilb)proper ≃ WSetop. In par-
ticular, semisimple,cFrobSem(FdHilb)proper ≃WFinSetop ≃ FinSetop, where FinSet
is the category of finite sets with all maps between them and WFinSet is the full
subcategory of WSet spanned by the weighted finite sets.

The second statement of the following corollary corresponds to [6, Corollary 7.2,
p. 566] as the categories cFrobComon(FdHilb) and cFrobMon(FdHilb)op are iso-
morphic under the dagger functor (cf. Section 1.4).

6.7 Corollary There are equivalences cFrobSem(Hilb)proper ≃WSetop×Hilb and
semisimple,cFrobSem(FdHilb)proper ≃ cFrobMon(FdHilb) ≃ FinSetop.

Proof: As the first statement is clear, one only needs to prove the second, and it
is clear that one only needs to prove that the categories cFrobMon(FdHilb) and
semisimple,cFrobSem(FdHilb)proper are equivalent. According to Corollary 3.1, the ob-

vious forgetful functor cFrobMon(FdHilb) ∣−∣Ð→ cFrobSem(FdHilb) factors through
the embedding semisimple,cFrobSem(FdHilb) ↪ cFrobSem(FdHilb). One thus only
needs to check that ∣f ∣ is actually proper for each monoid morphism f and that

the co-restricted functor cFrobMon(FdHilb) ∣−∣Ð→ semisimple,cFrobSem(FdHilb)proper

is full.
Given a finite-dimensional Hilbertian Frobenius monoid (H,µ, η), by a direct

inspection η(1) = ∑g∈G(H,µ) g
∥g∥2

. The corresponding counit η†∶H → C thus is given
by η†(u) = ∑g∈G(H,µ)⟨u, g

∥g∥2
⟩. In particular for each g ∈ G(H,µ), η†(g) = 1.
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Let (H,µ, η) fÐ→ (H ′, µ′, η′) be a monoid morphism between finite-dimensional
Frobenius monoids. Then, f †(G(H ′, µ′)) ⊆ G(H,µ)∪{0} and since f † is compatible
with the counits, for each h ∈ G(H ′, µ′), η†(f †(h)) = (η′)†(h) = 1. As a consequence
f is proper.

Let (H,µ, η), (H ′, µ′, η′) be finite-dimensional Frobenius monoids and let (H,µ) fÐ→
(H ′, µ′) be a proper semigroup morphism. Then for each h ∈ G(H ′, µ′), there
is one gh ∈ G(H,µ) such that f †(h) = gh as f †(G(H ′, µ′)) ⊆ G(H,µ). There-
fore, for each h ∈ G(H ′, µ′), η†(f †(h)) = η†(gh) = 1 = (η′)†(h). Whence (η′)†

and η† ○ f † are equal on G(H ′, µ′) which spans H ′, so they are equal on the
whole H ′, and as a consequence f †∶ (H ′, µ′, η′) → (H,µ, η) is a comonoid mor-

phism, so that (H,µ, η) fÐ→ (H ′, µ′, η′) is a morphism of monoids. This proves that

cFrobMon(FdHilb) ∣−∣Ð→ semisimple,cFrobSem(FdHilb)proper is full. ◻
Let us define 1,cFrob(FdHilb)ambi to be the category of finite-dimensional Frobe-

nius monoids whose morphisms preserve both the monoid and the comonoid struc-
tures. Let FinSetbij,w be the category of finite weighted sets and bijections between

them preserving the weight functions, that is, (X,α) fÐ→ (Y,β) is given as a bijec-

tion X
fÐ→ Y such that α(x) = β(f(x)) for each x ∈ X. FinSetbij,w clearly embeds

into WSet. The following result essentially is [6, Corollary 7.1, p. 365] but can be
deduced as well from Corollary 6.7.

6.8 Corollary 1,cFrob(FdHilb)ambi ≃ FinSetbij,w so 1,cFrob(FdHilb)ambi is equiva-
lent to the category of finite-dimensional semisimple Frobenius algebras with unitary
isomorphisms of semigroups. Moreover every isomorphism of semigroups between
finite-dimensional semisimple Frobenius algebras is a unitary transformation.

7 Epilogue: And non-commutativity in all that?

Let X be a non-void set and let x0 ∈ X. Let mx0 ∶ `2(X) × `2(X) → `2(X) be given
by mx0(u, v) ∶= v(x0)u. It is of course bounded since ∥mx0(u)∥2 = ∣v(x0)∣2∥u∥2 ≤
∥v∥2∥u∥2. Then mx0 is a weak Hilbert-Schmidt mapping as ∑x,y ∣⟨mx0(δx, δy), u⟩∣2 =
∑x∈X ∣⟨δx, u⟩∣2 = ∥u∥2. Let µx0 ∶ `2(X)⊗̂2`

2(X) → `2(X) be its unique bounded linear
extension. (`2(X), µx0) is a Hilbertian semigroup, non-commutative as soon as
X ∖ {x0 } /= ∅. Since ⟨µ†

x0(u), δx ⊗ δy⟩ = δy,x0u(x) for each x, y ∈ X it follows
that µ†

x0(u) = u ⊗ δx0 . Consequently µx0(µ
†
x0(u)) = u, u ∈ `2(X), that is, µ†

x0 is an
isometry.

Moreover for each u, v ∈ `2(X), µ†
x0(µx0(u ⊗ v)) = v(x0)µ†

x0(u) = v(x0)u ⊗ δx0 ,
(id ⊗̂2µx0)(α((µ

†
x0⊗̂2 id)(u ⊗ v))) = (id ⊗̂2µx0)(u ⊗ (δx0 ⊗ v)) = v(x0)u ⊗ δx0 and

(µx0⊗̂2 id)(α−1((id ⊗̂2µ
†
x0)(u⊗v))) = (µx0⊗̂2 id)((u⊗v)⊗δx0) = v(x0)u⊗δx0 . There-

fore (`2(X), µx0) is Frobenius. To summarize, (`2(X), µx0) is a not necessarily com-
mutative special Frobenius Hilbertian semigroup.
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It is easily seen that G(`2(X), µx0) = { δx0 }. It is also clear that A(`2(X), µx0) =
{0} as δx0 is a right unit, and that { δx0 }⊥ consists entirely of nilpotent elements.
Also E(`2(X), µx0) = {u ∈ `2(X)∶u(x0) = 1} ∪ {0}.

As `2(X) → C, u ↦ u(x0), is a morphism of algebras it follows that its kernel,
namely { δx0 }⊥ = {u∶u(x0) = 0} is a two-sided maximal modular ideal, with modular
unit δx0 . Let I be a modular right ideal of (`2(X),mx0), that is, I is right ideal
with a left-unit e, that is, u − eu ∈ I for each u ∈ `2(X). As for each u ∈ { δx0 }⊥,
u = u−u(x0)e = u−eu ∈ I, it follows that { δx0 }⊥ ⊆ I. By a codimensionality argument
it follows that either I = { δx0 }⊥ or I = `2(X). Consequently J(`2(X), µx0) = { δx0 }⊥
and (`2(X), µx0) is not semisimple as soon as X ∖ {x0 } /= ∅. It is not a H∗-
algebra either for if the annihilator would be equal to the Jacobson radical [21,
Theorem 11.6.12, p. 1210].
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