
www.theoryofgroups.ir

International Journal of Group Theory

ISSN (print): 2251-7650, ISSN (on-line): 2251-7669

Vol. 6 No. 1 (2017), pp. 9-16.

c⃝ 2017 University of Isfahan

www.ui.ac.ir

LIPSCHITZ GROUPS AND LIPSCHITZ MAPS

LAURENT POINSOT

Communicated by Mahmut Kuzucuoğlu

Abstract. This contribution mainly focuses on some aspects of Lipschitz groups, i.e., metrizable

groups with Lipschitz multiplication and inversion map. In the main result it is proved that metric

groups, with a translation-invariant metric, may be characterized as particular group objects in the

category of metric spaces and Lipschitz maps. Moreover, up to an adjustment of the metric, any

metrizable abelian group also is shown to be a Lipschitz group. Finally we present a result similar to

the fact that any topological nilpotent element x in a Banach algebra gives rise to an invertible element

1− x, in the setting of complete Lipschitz groups.

1. Introduction

Historically lots of works have been done in two rather antipodal settings, namely about continuous

maps and about C∞ maps, in order to classify singularities or geometries up to homeomorphisms

or diffeomorphisms. With the seminal work of P. Assouad [3], M. Gromov [6], P. Pansu [10] on

geometric group theory, the interest into quasi-isometries and bilipschitz maps has grown up, since

they provide finer classifications. This contribution does not concern the classification of singularities

or geometries up to bilipschitz transformations nor the study of bilipschitz embedding from a metric

space to another, but rather the (bi-)Lipschitz maps themselves. More precisely, this contribution

concerns the metrizable groups with Lipschitz multiplication and Lipschitz inversion map that are

referred to as Lipschitz groups. These groups are exactly the group objects in the category of metric

spaces and Lipschitz maps, as e.g. topological groups are group objects in the category of topological

spaces and continuous maps. We are also interested in subcategories of such groups, namely Lipschitz

abelian groups, and Lipschitz groups with 1-Lipschitz multiplication, called 1-Lipschitz groups. We
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prove that 1-Lipschitz groups are exactly the groups with a two-sided translation-invariant metric

(Theorem 3.3), while any metrizable abelian group may be equipped with a topologically equivalent

metric that turns the group into a Lipschitz abelian group (Corollary 3.5). Therefore, metrizable

abelian groups and Lipschitz abelian groups are essentially the same objects. Finally we mention a

result, Theorem 3.6, that presents a relation between any complete 1-Lipschitz group and the group of

bilipschitz automorphisms of its underlying complete metric space. This relation is similar to a well-

known property of Banach operator algebras on Banach spaces which relates a Banach space and the

group of units of its algebra of bounded operators: for any bounded linear operator f of norm < 1 on a

Banach space, id−f is an invertible (bounded linear) operator. In the setting of Lipschitz groups, the

corresponding result Theorem 3.6 states that given a complete 1-Lipschitz group (say in multiplicative

notation), for any K-Lipschitz (endo)function on the group with K < 1, id ·f−1 : x 7→ xf(x)−1 belongs

to the group of bilipschitz (endo)functions of the underlying metric space of the group.

Except this introduction, the contribution is organized into two parts. In section 2 are recalled the

basic definitions about Lipschitz maps, and also some category-theoretic properties for metric spaces

and Lipschitz maps. Section 3 is devoted to Lipschitz-groups. In this section we characterize all

Lipschitz abelian groups (up to a choice of a topologically equivalent metric) and also all Lipschitz

groups with 1-Lipschitz multiplication as groups with a two-sided translation-invariant metric. In this

section we also describe the construction of a bilipschitz map from a K-Lipschitz map, with K < 1,

on a complete 1-Lipschitz group as described above.

2. Lipschitz maps: basic notions

2.1. A glance at Lipschitz maps. Basic notions of Lipschitz maps may be found for instance

in [1, 14]. Let (E, d), (E′, d′) be two metric spaces. Let K ∈ R+ = [0;+∞[. A set-theoretic map

f : E → E′ is said to be a K-Lipschitz map if for every x, y ∈ E, d′(f(x), f(y)) ≤ Kd(x, y). A

Lipschitz map is a K-Lipschitz map for some K. For any set-theoretic map f : E → F , let us define

Kf = sup
x ̸=y

d′(f(x), f(y))

d(x, y)

where the supremum is taken in R+ = [0;+∞], so that f is a Lipschitz map if, and only if, Kf < +∞.

Kf is called the Lipschitz constant of f , and it actually depends not only on f but also on the metrics

d, d′. In particular, any Lipschitz map f is a Kf -Lipschitz map, and it is also a K-Lipschitz map if,

and only if, Kf ≤ K. Alternatively (see for instance [15]), if f is Lipschitz, then Kf may be defined

as

Kf = min{K ∈ R+ : f is K-Lipschitz }.

Consequently, any constant map is a 0-Lipschitz map (and these are the only 0-Lipschitz maps). When

Kf < 1, the map f is said to be a contraction map, and when Kf ≤ 1, it may be called a distance-

non-expanding map (following the terminology of [11]). Of course, a Lipschitz map is also uniformly

continuous.
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Example 2.1. (1) Let V be a complex or real normed vector space, with norm ∥ · ∥. Then,

∥ · ∥ : V → R+ is 1-Lipschitz, when V is equipped with the metric associated to ∥ · ∥, and R+

has its usual metric induced by the absolute value.

(2) Let (E, d) be a metric space. Then, for every a ∈ E, d(a, ·) : x ∈ E 7→ R+ is 1-Lipschitz.

Let (E, d) and (E′, d′) be two metric spaces, and f : E → E′. We say that f is bilipschitz if f is an

invertible Lipschitz map, and if f−1 is also a Lipschitz map. E.g., an isometry is bilipschitz.

2.2. The category of metric spaces with Lipschitz maps. Composing Lipschitz maps yields a

Lipschitz map, and it is immediate that Kg◦f ≤ KgKf . In particular, if f and g both are 1-Lipschitz

maps, then so is g◦f . The identity function of any metric space being a 1-Lipschitz map, one thus gets

a category, denoted by Lip, with objects the metric spaces, and with Lipschitz maps as morphisms (we

observe that it is not the same category as in [12]). We denote by Lip((E, d), (E′, d′)) the set of all Lip-

schitz maps from (E, d) to (E′, d′). The endomorphism monoid (under composition) Lip((E, d), (E, d))

is denoted by EndLip(E, d). An isomorphism in the category Lip is exactly a bilipschitz map. The

group of automorphisms of (E, d) is denoted by AutLip(E, d). According to [8], AutLip(E, d) may

be equipped with a metric in such a way that AutLip(E, d) becomes a Hausdorff topological group.

Moreover, if (E, d) is complete, then also is AutLip(E, d).

Remark 2.2. One observes that any map f : E → F between sets becomes a 1-Lipschitz map when

E and F are both equipped with their own discrete metric. This defines a functor from the category

of sets to Lip, which, being full and injective on objects (see [9] for these notions), makes possible to

embed the category of sets within Lip as a full subcategory.

The category Lip admits a categorical product (see [9] for the notion of a product in a category).

Let (E, d) and (E′, d′) be two metric spaces. Let us define d + d′ to be a distance on E × E′ given

by (d + d′)((x, x′), (y, y′)) = d(x, y) + d′(x′, y′) for every x, y ∈ E and x′, y′ ∈ E′; call it the product

metric. In what follows we always assume that a product of metric spaces is equipped with the product

metric. Let πE : E × E′ → E and πE′ : E × E′ → E′ be the canonical projections. Both of them are

1-Lipschitz maps. Now, let f : (F, dF ) → (E, d) be a K-Lipschitz map and f ′ : (F, dF ) → (E′, d′) be a

K ′-Lipschitz map. Let us define (f, f ′) : F → E × E′ using the universal property of the product of

sets, i.e., (f, f ′)(a) = (f(a), f ′(a)) for a ∈ F . Then,

(2.1) d(f(a), f(b)) + d′(f ′(a), f ′(b)) ≤ KdF (a, b) +K ′dF (a, b) ≤ 2max{K,K ′ }dF (a, b)

for every a, b ∈ F . Therefore, (f, f ′) is also a Lipschitz map, and it is the only one with the properties

that πE ◦ (f, f ′) = f and πE′ ◦ (f, f ′) = f ′.

3. Lipschitz groups

3.1. Category-theoretic preliminaries. In any cartesian monoidal category C, i.e., a category with

binary categorical products × and a terminal object 1 (i.e., an object of C with a unique morphism

tc : c → 1 for each object c of C), we may define group objects in C (see [9]). First of all, let us recall
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that in such a category, for any two morphisms f : a → b, and g : c → d, there is a unique morphism

f × g : a × c → b × d such that (f × g) ◦ πa = πb ◦ f , and (f × g) ◦ πc = πd ◦ g (where πa, πb, πc, πd

are the canonical projections associated to the products). A group object is an object G in C with

three morphisms (in C), m : G × G → G, i : G → G and e : 1 → G that satisfy group axioms, which

are illustrated by the following commutative diagrams.

(1) The associativity law (where G× (G×G) and (G×G)×G are canonically identified):

(3.1) (G×G)×G

≃

��

m×idG // G×G

m

""E
EE

EE
EE

EE

G

G× (G×G)
idG×m

// G×G

m

<<yyyyyyyyy

(2) e is a two-sided unit of m:

(3.2) 1×G
e×idG//

π2
$$J

JJ
JJ

JJ
JJ

J G×G

m
��

G× 1
idG×e
oo

π1
zzttt

tt
tt
tt
t

G

(3) i is a two-sided inverse (where ∆G : G → G × G is the diagonal map defined by π1 ◦ ∆G =

idG = π2 ◦∆G, with π1, π2 : G×G → G the canonical projections):

(3.3) G
∆G //

tG
��

G×G
i×idG // G×G

m
��

G×G
idG×i
oo G

∆Goo

tG
��

1
e

// G 1
e

oo

An abelian group object in C is a group object (G,m, i, e) in C such that furthermore m = σ ◦m,

where σ : G × G → G × G is the twist isomorphism given by π1 ◦ σ = π2 and π2 ◦ σ = π1 (where

π1, π2 : G × G → G are the canonical projections). A morphism f : (G1,m1, i1, e1) → (G2,m2, i2, e2)

between group objects is a morphism f : G1 → G2 in C such that f ◦m1 = m2 ◦ (f ×f), f ◦ i1 = i2 ◦f ,
and f ◦ e1 = e2. Whence one may form a category of group objects in C and it appears that it is

itself a cartesian category with the same categorical product and terminal object as that of C. For

instance, a usual group (respectively, topological group, Lie group) is a group object in the category

of sets (respectively, topological spaces, smooth manifolds). Moreover, any abelian group object in C

is a group object in the category of group objects in C (by the well-known Eckmann-Hilton argument,

see [5]).

3.2. Lipschitz groups and Lipschitz-equivalence of metrics. A Lipschitz group thus is a group

object in the category of Lipschitz spaces (we observe that a terminal object in Lip is given by any

one-point set ∗ with its discrete metric). Hence, it is a usual group G together with a metric d such
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that the multiplication m and the inversion operation i in the group G are Lipschitz maps. (Note

that the identity element 1G of the group G, seen as a constant map from ∗ to G, automatically is a

0-Lipschitz map for any group G.) This means that there are two constants K1,K2 ≥ 0 such that for

every x, y, g, h ∈ G, d(xy, gh) ≤ K1(d(x, g) + d(y, h)), and d(x−1, y−1) ≤ K2d(x, y).

Example 3.1. (1) Let G be a group. A metric on G is said to be a (a two-sided) translation-

invariant metric whenever for every x, y, g ∈ G, d(gx, gy) = d(x, y) = d(xg, yg) (see [7]).

Then, a group equipped with such a metric is easily seen to be a Lipschitz group. The group

law of G and the inversion map are even 1-Lipschitz maps (the latter is actually an isometry).

(2) For any group G, (G, d) is a Lipschitz group with d the discrete metric.

Let E be a set, and let d, d1 be two metrics on E. One defines the relation d ⪯ d1 if, and only if,

idE : (E, d) → (E, d1) is a Lipschitz map. This turns to be a pre-order relation on the set of metrics

of E. Therefore it provides an equivalence relation: d ∼L d1 if, and only if, d ⪯ d1 and d1 ⪯ d, and

the set of equivalence classes inherits an order relation given by [d] ≤ [d′] if, and only if, d ⪯ d′, where

by [d] is denoted the equivalent class of d mod ∼L. It is rather clear that ∼L is nothing but Lipschitz-

equivalence of metrics on E, since d ∼L d1 if, and only if, idE : (E, d) → (E, d1) is a bilipschitz map.

If d ∼L d1, then d and d1 are also topologically equivalent.

What is important with this notion of Lipschitz-equivalence is the fact that being Lipschitz for a

map does not depend on the metrics on its domain and codomain but on their equivalence classes

under Lipschitz-equivalence, i.e., if f : (E, d) → (E′, d′) is a Lipschitz map, then f : (E, d1) → (E′, d′1)

remains a Lipschitz map for every d1 ∼L d and every d′1 ∼L d′.

Remark 3.2. It is always possible to turn a Lipschitz map into a 1-Lipschitz map, up to a change

of a Lipschitz-equivalent metric: if f : (E, d) → (E′, d′) is a K-Lipschitz map, then with d1 =

max{ 1,K }d ∼L d, f : (E, d1) → (E′, d′) is a 1-Lipschitz map. Note however that the new Lipschitz-

equivalent metric depends on the Lipschitz constant of f .

Whence one may define a category LIP with objects the sets (E,Q) where Q is a Lipschitz-equivalent

class of metrics of E, and for morphisms from (E,Q) to (E′, Q′) those maps f : E → E′ such that

f : (E, d) → (E′, d′) is a Lipschitz map for some, and thus for all, d ∈ Q and d′ ∈ Q′.

The category LIP also is a monoidal cartesian category with product given by (E,Q)× (E′, Q′) =

(E × E′, Q + Q′), where Q + Q′ = [d + d′] for d ∈ Q and d′ ∈ Q′ (this is well-defined), and with

the usual projections πE , πE′ (it is easy to see that for every d ∈ Q, d′ ∈ Q′, if d0 ∼L d + d′, then

πE : (E × E′, d0) → (E, d) and πE′ : (E × E′, d0) → (E′, d′) are Lipschitz maps), and terminal object

given by (∗, [d]) where ∗ is any one-point set, and d is the discrete metric on ∗.
There is an obvious “projection” functor Π: Lip → LIP given by Π(E, d) = (E, [d]), and Π(f) = f for

each Lipschitz map f . It is surjective on objects, full and faithful, so that it provides an equivalence

of categories between Lip and LIP . Therefore, there exists a left-adjoint-right-inverse for Π, i.e., a

“section” functor s : LIP → Lip such that Π ◦ s = idLIP and s ◦Π ≃ idLip (natural isomorphism), where

idC : C → C denotes the identity functor of a category C. The reader should refer to [9, pp. 92–95]
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for more details on equivalence of categories. In particular, Π is a right adjoint to s, and right adjoint

functors preserve all limits that exist in their domain category (see again [9, Theorem 1, p. 118]). In

our case, this implies that Π preserves binary products, and terminal objects.

It then follows easily that Π lifts to a functor between the category LipGrp of group objects in Lip

and the category LIPGrp of group objects in LIP . By this is meant that there is a functor Π̃ : LipGrp →
LIPGrp such that the following diagram commutes, where both vertical arrows are the obvious forgetful

functors (forgetting the group structure).

(3.4) LipGrp
Π̃ //

��

LIPGrp

��
Lip

Π
// LIP

Therefore, if (G, d) is a group object in Lip, then Π̃(G, d) = (G, [d]) is a group object in LIP , and if

f : (G, d) → (G′, d′) is morphism of groups, then Π̃(f) = f : (G, [d]) → (G′, [d′]) also is a morphism of

groups. Moreover Π̃ is readily surjective on objects, full and faithful, so the equivalence between Lip

and LIP also lifts to an equivalence of categories between LipGrp and LIPGrp. In conclusion there is no

much advantage to choose one or the other category as that of Lipschitz maps, and for a matter of

taste one chooses the former.

3.3. Lipschitz groups and translation-invariant metrics. We may consider a (non-full) subcat-

egory of Lip given as the category of all metric spaces and 1-Lipschitz maps (that is, Lipschitz maps

f with Kf ≤ 1). Whilst the canonical projections of a categorical product are 1-Lipschitz and any

terminal object in Lip also is terminal in this subcategory, due to Equation (2.1), one cannot consider

the latter as a cartesian monoidal category of its own right, and cannot formally talk about group

objects within it. However, one may introduce the notion of a 1-Lipschitz group. It is defined as

a group equipped with a metric such that its multiplication is a 1-Lipschitz map (with the product

metric on its domain). 1-Lipschitz groups completely characterize groups with a translation-invariant

metric, and they appear to be particular group objects in Lip.

Theorem 3.3. A group G with a metric d is a 1-Lipschitz group if, and only if, d is a two-sided

translation-invariant metric.

Proof. We have d(gx, gy) ≤ d(g, g) + d(x, y) = d(x, y). Moreover, d(x, y) = d(g−1gx, g−1gy) ≤
d(g−1, g−1) + d(gx, gy) = d(gx, gy), so that d(gx, gy) = d(x, y) for every x, y, g ∈ G. One gets

the similar result for the right multiplication. Therefore, d is a two-sided invariant metric on d. The

converse follows from the first point of Example 3.1. □

Remark 3.4. Theorem 3.3 also shows, together with Example 3.1, that in a 1-Lipschitz group the

inversion map is forced to be an isometry. Hence 1-Lipschitz groups are particular group objects in

Lip.

One has the following immediate consequence.
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Corollary 3.5. Up to a choice of a topologically equivalent metric, any metrizable topological abelian

group is a Lipschitz abelian group.

Proof. By the theorem of Birkhoff-Kakutani [2], a metrizable topological abelian group G may be

equipped with a translation-invariant metric d that defines the same topology as that of G. Then, by

Theorem 3.3, (G, d) is a Lipschitz group. □

3.4. On an analogy with topological nilpotence in a Banach algebra. Given a Lipschitz

group (G, d), it is a commonplace fact from category theory that for each metric space (E, e), the set

Lip((E, e), (G, d)) acquires a group structure with point-wise operations. This is indeed a consequence

of [9, Proposition 1, p. 75] which states that the covariant hom-functor C(−, G) is a group object in

the category of presheaves over C, once G is a group object in the category C, and thus for each object

c of C, the set C(c,G), of morphisms with domain c and codomain G, is a (usual) group. Whence

in particular both sets EndLip(G, d) and AutLip(G, d) turn to be groups under point-wise operations

(hereafter the product is denoted by a point “·”).
For any topologically nilpotent element x in a Banach algebra (this means that ∥x∥ < 1), the

element 1 − x is invertible (see [13]). For complete 1-Lipschitz groups a similar result holds (which

generalizes [1, Theorem 5.1, p. 109]).

Theorem 3.6. Let (G, d) be a complete 1-Lipschitz group. Let f ∈ EndLip(G, d) such that Kf < 1.

Then, idG · f−1 ∈ AutLip(G, d).

Proof. If Kf = 0, then the result is rather immediate. So, let us assume that 0 < Kf < 1. For

each g ∈ G, the map fg : G → G defined by fg(x) = gf(x) is Kf -Lipschitz (because d(fg(x), fg(y)) =

d(gf(x), gf(y)) = d(f(x), f(y)) ≤ Kfd(x, y) since d is translation-invariant by Theorem 3.3). Since

0 < Kf < 1 and G is a complete space, by Banach fixed-point theorem (see [4, Theorem 6]) there

exists a unique fixed-point denoted by xg. Then, fg(xg) = xg is equivalent to gf(xg) = xg ⇔
g = xgf(xg)

−1. By uniqueness of xg, this means that idG · f−1 : x ∈ G 7→ xf(x)−1 ∈ G is a

bijection. Because EndLip(G, d) is a group under point-wise operations, idG · f−1 is a Lipschitz map.

It remains to prove that h = (idG · f−1)−1 is also a Lipschitz map. Since gf(xg) = xg, we have

gf(h(g)) = h(g). Then we have d(h(g), h(k)) = d(gf(h(g)), kf(h(k))) = d(k−1g, f(h(k))f(h(g))−1) ≤
d(k−1g, 1G) + d(1G, f(h(k))f(h(g))

−1) = d(g, k) + d(f(h(g)), f(h(k))) ≤ d(g, k) +Kfd(h(g), h(k)) so

that (1−Kf )d(h(g), h(k)) ≤ d(g, k) and then d(h(g), h(k)) ≤ 1
1−Kf

d(g, k) (recall that Kf < 1). □
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