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Abstract 

A partial monoid P is a set with a partial multiplication ×  (and total identity  

P1 ), which satisfies some associativity axiom. The partial monoid P may be 

embedded in the free monoid ∗P  and the product ×  is simulated by a string 

rewriting system on ∗P  that consists in evaluating the concatenation of two 
letters as a product in P, when it is defined, and a letter P1  as the empty word .  
In this paper, we study the profound relations between confluence for such a 
system and associativity of the multiplication. Moreover, we develop a reduction 
strategy to ensure confluence, and which allows us to define a multiplication on 

normal forms associative up to a given congruence of .∗P  Finally, we show that 
this operation is associative, if and only if, the rewriting system under 
consideration is confluent. 
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1. Introduction 

A partial monoid is a set equipped with a partially-defined 
multiplication, say ,×  which is associative in the sense that ( ) =×× zyx  

( )zyx ××  means that the left-hand side is defined, if and only if the 

right-hand side is defined, and in this situation, they are equal. A partial 
monoid is also assumed to have an identity element. Our original interest 
on such structures is due to the fact that, they provide an algebraic 
framework for an abstract notion of connected components and the 
treatment of the exponential formula [13]. 

However, another interesting feature of partial monoids motivates 
our work, their interpretation as a model of computation with errors. 
Programs can be interpreted as partial functions and their composition, 
when defined, simulate a sequential process. Abstracting this situation by 
considering programs as elements of a partial monoid, the notion of error 
occurs naturally; an error is nothing but the evaluation of a not defined 
product. In order to locate the fault, we can set undefined products to be 
equal to some new symbol (an error flag), for instance 0, i.e., ,0=× yx  

when yx ×  is undefined. Now, if we interpret an n-fold product ×× 21 xx  

nx×"  as some sequential program, then if the evaluation of one of the 

factors is an error, the program itself is erroneous, in other terms, 
,000 ×==× xx  for every x. This situation is not fully satisfactory for 

the reason that, the factor whose evaluation causes the error is lost by 
this crunch to zero. To fix this weakness, let us consider that the 
machine, which performs the execution ,21 nxxx ××× "  evaluates a 

factor 1+× ii xx  only when it is defined. In other terms, the machine only 

deals with error-free factors. The result of such an execution is a “word” 
,1 kuu ××"  which may be seen as an exception handling; each factor iu  

marks faultless computations, while a product 1+× jj uu  labels an error. 

Obviously, a word reduced to a single element represents the result of a 
program with no error at all.  
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Mathematically speaking, the previous situation is perfectly described 

first by embedding the partial monoid P into the free monoid ∗P  of words 
over the alphabet P, and second, by mimicking the execution of a program 

∗∈ Pw  as applications of the rewriting rules; if uxyvw =  and yx ×  is 

defined in P, then ( ) ,vyxuw ×⇒  and if vuw P1=  ( P1  is the identity of 

P), then .uvw ⇒  Actually, an execution as described above is 
represented by reductions of the word as far as it is possible. In other 
words, an execution computes - when it exists - the normal form of the 
program w. This string rewriting system - called a semi-Thue system - is 
easily seen to be terminating, i.e., without infinite executions, property 
which guarantees existence, but not uniqueness of normal forms. Seen as 
the result of an execution, a normal form should be unique. This is 
possible, when the semi-Thue system is confluent.  

The main objective of this work is to highlight the profound links 
between associativity and confluence for such rewriting systems, that is, 
to give characterizations of confluence in terms of associativity, and vice 
versa. In this paper, we exhibit the exact property the partial monoids 
must satisfy to ensure confluence of the system. Since this particular 
property does not hold in every partial monoid, we develop a strategy of 
reduction, called the left standard reduction, which provides a unique 
normal form, which is also a normal form for the initial system. Finally, 
by using the left standard reduction, we equip the set of all normal forms 
with a total binary operation, which is shown to be associative up to some 
monoidal congruence. In order to prove this result, we use another 
rewriting system on nonassociative words - which allows us to move pairs 
of brackets to behave associatively - in a way similar to the treatment of 
the coherence theorem for monoidal category [26]. Finally, we show that 
the operation on normal forms is associative, if and only if, the semi-Thue 
system under consideration is confluent. 

Note 1. Most of the proofs of lemmas will be omitted, since they are 
free of technical difficulties. 
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2. Partial Monoids 

A partial monoid (see [13, 28, 33]) - also sometimes called premonoid 
[5, 6] - is a nonvoid set P together with a partially-defined function 

,: PPP →××  with domain of definition ( ) ,dom PP ×⊆×  and a 

distinguished element, ,1 PP ∈  called the identity, such that 

(1) for every ( )PxPx 1,,∈  and ( )xP ,1  belong to ( ),dom ×  and 

;11 xxx PP ×==×  

(2) for every ( ) ( ) ( ) ( ),dom,,dom,,,, ×∈×××∈∈ zyxyxPzyx  if and 

only if, ( ) ( ) ( ) ( ),dom,,dom, ×∈××∈ zyxzy  and in both cases, ( ) zyx ××  

( ).zyx ××=  

Let us consider the set { }00 ∪PP =  obtained from P by the 

adjunction of a new element 0. The operation ×  is extended to the whole 

Cartesian product 00 PP ×  as an operation 0×  by setting ,0 yxyx ×=×  

for every ( ) ( )×∈ dom, yx  and 00 =× yx  for remaining pairs of elements 

of .0P  This new structure is a monoid (see [25]). From this, we deduce 

that given ( ) ,,,1
n

n Pxx ∈"  if the n-fold product is defined for a 

particular choice of brackets, then it is defined for all bracketings, and 
the values are equal. 

Example 1. (1) Let X be any set, and X2  be the set of its subsets. We 

endow X2  with the disjoint union defined only for non-intersecting 

subsets. Then, X2  is a partial monoid with 0/  as identity. Such monoids 
are useful to define a general setting for the exponential formula of 
combinatorics [13]. 

(2) Let us consider the set 

{ },,,,,,,,,,,,,,,, cbacabbcabacacbabccbcabcbaacabcbaP =   (1) 

with the product ×  being concatenation of two words without common 
letters. Then P is a partial monoid with the empty word   as its identity. 
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3. Let X be a non void set, and PFun(X) be the set of all non empty1 
partial functions from X to itself. With the usual composition, PFun(X) 
becomes a partial monoid (the identity map of X being the identity). 

3. Basics on Rewriting Rules and Normal Forms 

3.1. Abstract rewriting systems 

An abstract rewriting system (see [1, 32] for more details) is a pair 
( ),, ⇒S  where S is a set and ⇒  is a binary relation on S, called one-step 

rewriting or reduction relation. If ( ) ,, ⇒∈ba  then we write ba ⇒  (“a is 

reduced by ⇒  to b” and a is said to be reducible). The reflexive-transitive 

closure ∗⇒  of ⇒  is called the many-step rewriting relation generated by 

,⇒  while its symmetric-reflexive-transitive closure ,∗⇔  i.e., the 
equivalence relation generated by ,⇒  is called the convertibility relation 
(generated by ⇒ ). An abstract rewriting system is said to be 

(1) terminating, if and only if ⇒  is Noetherian; 

(2) confluent, if and only if for every Scba ∈,,  such that ba ∗⇒  

and ,ca ∗⇒  there is d such that db ∗⇒  and ;dc ∗⇒  

(3) locally confluent, if and only if for every Scba ∈,,  such that 

ba ⇒  and ,ca ⇒  there is d such that db ∗⇒  and .dc ∗⇒  

If Sa ∈  is minimal with respect to ,⇒  i.e., there is no b such that 
,ba ⇒  then a is called a -⇒ normal form or, simply, a normal form, or a 

is said irreducible (with respect to ⇒ ). The set of all irreducible elements 
of S is denoted ( )⇒,Irr S  or simply ( )SIrr  or ( ).Irr ⇒  If Sa ∈  and 

( )Sb Irr∈  are such that ,ba ∗⇒  then b is called a normal form of a. In a 

terminating abstract rewriting system, every element has at least one 

                                                      

1 A partial function is said empty, if and only if its domain of definition is the empty  
set.  
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normal form, and in a confluent abstract rewriting system, the normal 
form of any element, if it exists, is unique [18]. 

Lemma 1 (Newman's lemma [18, 27, 32]). A terminating abstract 
rewriting system is confluent, if and only if, it is locally confluent.  

Therefore, in a terminating and confluent abstract rewriting system, 
every element has a unique normal form. 

3.2. Semi-Thue system 

See [7, 20] for more details on string rewriting, and [3] for rewriting 
systems over algebraic structures. Let X be any set. A semi-Thue system 

R on X is a binary relation on .∗X  An element of R is called a(n) 

(elementary) rule. The (single-step) reduction relation on ∗X  induced by 

the rules of R is defined as follows: ,ubvuav R⇒  whenever ∗∈ Pvu,  

and ( ) ., Rba ∈  Thus ( )RX ⇒∗ ,  is an abstract rewriting system on .∗X  

We say that R is locally confluent (resp., confluent, terminating), if the 
corresponding property holds for the abstract rewriting system 

( )., RX ⇒∗  We use ( )XIrr  or ( )RIrr  to denote ( ).,Irr RX ⇒∗  The 

reflexive-transitive closure ∗⇒R  of R⇒  is called the reduction rule 

generated by R. It can be seen as the smallest quasi-order relation 
containing R, which is compatible with concatenation [22]. The 

convertibility relation ∗⇔R  (generated by R⇒ ) is nothing else than the 

congruence generated by R, and called the Thue congruence induced (or 

generated) by R. A pair ( ) ∗∗ ×∈ XXvu,  is called a critical pair (of R), if 

and only if, vu,  have either the form 2211 , vrvruu ==  for some 

( ) ( ) ,,,,,,, 2211221111 vuRrrXvu AAAA =∈∈ ∗  and 21 A<u  ( w  is 

the length of a word w), or 2211, vrvvru ==  for some ( ,,, 121 A∗∈ Xvv  

) ( ),,, 221 rr A  and .2211 vv AA =  A critical pair of the first kind is called an 

overlap ambiguity, while a critical pair of the second kind is an inclusion 

ambiguity. A critical pair ( )vu,  is convergent, if there is ∗∈ Xw  such 
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that wu R
∗⇒  and .wv R

∗⇒  A critical pair ( )vu,  such that vu =  is 

called trivial. If a Thue system is known to be terminating, then local 
confluence - and hence confluence - holds, if and only if, each critical pair 
is convergent [18] (actually this is a more general result that holds for 
term rewriting systems). 

4. Semi-Thue System Associated with  
a Partial Monoid 

4.1. First definitions 

Given a partial monoid P, let ∗PPiP :  be the natural injection. 

Any element of ∗P  may be written in a unique way as a word 
( ) ( ),1 nPP xixi "  for some N∈n  and Pxi ∈  ( 0=n  leads to the empty 

word  ). Moreover, we sometimes use the notation nuuu "1=  with the 

meaning that ( ).iPi xiu =  We define the following semi-Thue system 

{( ( ) ( ) ( )) ( ) ( )} {( ( ) )},,1dom,:, PPPPPP iyxyxiyixiR ∪×∈×=  call it the 

semi-Thue system associated with P, which is easily seen to be 
terminating. A similar idea has been used in [2, 5, 6, 9, 10, 31] (see also 
[11, 12, 29]). In what follows, when it is possible PR  is denoted by R. The 

set of irreducible elements ( )PIrr  with respect to R⇒  is equal to 

{ ( ) ( ) { },1\,1,:1 PinPP Pxniixixi ∈≤≤∀"  

 ( ) ( )}.dom,,1, 1 ×∈/≤≤∀ +ii xxnii  (2) 

In particular, it contains the empty word   obtained for ,0=n  and every 

element of { }PP 1\  (under the form ( )xiP ). In case P is a (total) monoid, 

then ( ) ( { }) { }.1\Irr ∪PP PiP =  

Note 2. Since each ( ) { }\Irr Pu ∈  belongs to ,∗P  then u has a 

unique decomposition of the form ( ) ( ) { } iPxxixi PinPP ≤∈ 1,1\,1 "  

( ) ( ) .1,dom,, 1 nixxn ii ≤≤×∈/≤ +  
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Note that ( )PIrr  is prefix-closed2. Recall that u is a prefix of v, if and 

only if, there is ∗∈′ Pu  such that .uuv ′=  Let vu P≤  be the relation “u 

is a prefix of v”. This partial order relation on ∗P  satisfies: vu P≤  and 
vu P≤′  together imply that u and u′  are comparable, i.e., uu P ′≤  or 

uu P≤′  (see [4]). In what follows, Pref(w) denotes the set { :∗∈ Pu  
}wu P≤  of all prefixes of w, totally ordered by the restriction of P≤  

4.2. Discussion about the confluence 

Let P be a partial monoid and R be its associated semi-Thue system. 
In general, R is not confluent (since, it is not locally confluent). Indeed, 
the critical pair ( ( ) ( ) ( ) ( ))baiaiaiabi PPPP ,  obtained from Example 1.2 is 

not convergent. We call essential any critical pair of the form 
( ( ) ( ) ( ) ( ))bixiziai PPPP ,  such that there is some Py ∈  with 

( ) ( ) ( ) ∈×∈ zyyx ,,dom,  ( ) ,,dom ayx =××  and .bzy =×  

Lemma 2. The semi-Thue system R is confluent, if and only if, every 
essential critical pair converges3. 

An essential critical pair may be trivial (take Py 1= ) so, we try now 

to figure out those on which local confluence relies. The set of all essential 
critical pairs may be decomposed into several subsets. Let ( ) ( ( )aivu P=,  

( ) ( ) ( ))bixizi PPP ,  be an essential critical pair, which comes from an 

overlap ambiguity ( ) ( ) ( )ziyixi PPP  with ( ) ( ) ,,dom, ayxyx =××∈  and 

( ) ( ) .,dom, bzyzy =××∈  We say that ( )vu,  is of type (A), if ( ) ∈/za,  

( )×dom  (and therefore ( ) ( )).dom, ×∈/bx  The critical pair ( )vu,  is of type 

(B), if ( ) ( )×∈ dom, za  (and therefore ( ) ( )×∈ dom, bx ): such a critical pair 

is convergent. The two types are obviously disjoint and cover all the 

                                                      

2 It is also closed under factors [4]. 
3 The essence of the proof relies on the fact that no inclusion ambiguity can produce 

non convergent critical pairs. 



PARTIAL MONOIDS: ASSOCIATIVITY … 273

essential critical pairs. We also say that a critical pair ( ) ( ( ) ( ),, ziaivu PP=  

( ) ( ))bixi PP  of type (A) (so ( ) ( ) ( ) ( )×∈/×∈/ dom,,dom, bxza ) is of type (A1), 

if zbxa == ,  (so in particular, ( ) ( )×∈/ dom, zx ); we immediately notice 

that a critical pair of type (A1) is trivial. A pair of type (A) is said to be of 
type (A0), if ( ) ( ) ( ) ( ),, bixivziaiu PPPP ==  and xa ≠  or .zb ≠  Types 

(A0) and (A1) are disjoint (in the second case ,vu =  while in the first one 
vu ≠ ). Each essential critical pair of type (A) is either of type (A0) or of 

type (A1). 

Lemma 3. The semi-Thue system R is confluent, if and only if there is 
no critical pair of type (A0), or equivalently, if and only if, each essential 
critical pair of type (A) is of type (A1). 

Proof. The above discussion shows that the only possible non 
convergent essential critical pairs are of type (A0). Suppose that ( ) =vu,  

( ( ) ( ) ( ) ( ))bixiziai PPPP ,  is an essential critical pair of type (A0), i.e., 

( )za,  ( ) ( ) ( ) axbx ≠×∈/×∈/ ,dom,,dom  or ,bz ≠  and there is Py ∈  

with ( ) ( ) ( ) ( ) ( ) ( ( ) ( ),,,,dom,,,dom, 11 ziyirbzyzyayxyx PP==××∈=××∈ A  

( )) ( ) ( ( ) ( ) ( )).,,, 22 yxiyixirzyi PPPP ×=× A  From the assumptions, we 

deduce that Px 1≠  (otherwise, ( ) ( )) Pzzy 1,dom, ≠×∈/  (otherwise, 

( )yx,  ( )×∈/ dom ), and Py 1≠  (otherwise, ax =  and bz = ). Moreover, 

yxa ×=  P1≠  (otherwise, ( ) ( ) ( )) PP zybzyxz 1,dom,,1 ≠×=×∈/×=  

(otherwise, ( ) ( ) ( )×∈/×= dom,1, zyxx P ). So, no rewriting rule can be 

applied on u or on v. Since vu ≠  (by assumption), ( )vu,  is not 

convergent. Suppose that R is confluent. So by Lemma 2, every essential 
critical pair is convergent. But, critical pairs of type (A0) cannot be 
convergent, so in this case, there is no such critical pair.   

Note 3. A similar result appeared in [10] as Theorem 1.4, and a study 
of essential critical pairs was made in the proof of Theorem 2 in [12]. 

Example 2. Let { }zyxP ,,,1=  be a set with four elements equipped 

with a product ×  for which the only non trivial pairs (i.e., pairs without 
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occurrences of the identity 1) in its domain are ( ) ( ),,,, yyyx  and ( )., zy  

We suppose that yyyxyx =×=× ,  and .zzy =×  Then R is confluent 

because, there is no critical pair of type (A0). 

Confluence is obtained for a rather important class of partial 
monoids. A partial monoid P is called catenary associative (see [25] for the 
definition of “catenary associativity” in a partial magma, which is adapted 
for our purpose; see also [17]), if and only if, for all ,,, Pzyx ∈  if 

( ) ( )×∈≠ dom,,1 yxy P  and ( ) ( ),dom, ×∈zy  then ( ) ( )×∈× dom, zyx  

(and also ( ) ( )×∈× dom, zyx  by associativity in any partial monoid). We 

need that ,1Py ≠  otherwise, the monoid would be total. None of the 

monoids of Example 1 is catenary associative. Every (total) monoid is 
catenary associative. The set of arrows of a small category (see [26]) 
together with an adjoined total identity (and the obvious extension of 
composition) is a catenary associative partial monoid. It is easy to prove 
that in the catenary case, there is no critical pair of type (A0). 

Lemma 4. Let P be a partial monoid. If P is catenary associative, then 
the semi-Thue system R is confluent. 

Partial monoids from Example 1 have non confluent associated semi-
Thue systems, while the monoid of Example 2 is not catenary, but R is 
confluent. 

4.3. Left standard reduction 

In order to get a unique normal form property, even for non confluent 
semi-Thue system R, we restrict R by allowing only rewriting steps from 
“left to right”, i.e., by decreeing that leftmost reductions have priority. 
This algorithm of reduction (informally described below) will ensure both 
termination and confluence, and therefore computes a unique normal 
form, which is also a normal form for R. 

(1) Input: a word .∗∈ Pw  

(2) Erase all occurrences of ( )PPi 1  in w. Result ( { }) .1\ ∗∈′ PPw  
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(3) While ( )Pw Irr∈/′  do let ( ) ( )yixir PP=:  be the first factor of w′  

(from left to right) such that ( ) ( ).dom, ×∈yx  If ,1Pyx =×  then erase r 

from w′  else substitute r by ( )yxiP ×  in .w′  

(4) Output: ( ).Irr Pw ∈′  

First of all, let {( ( ) )}.,11 PPiR =  This semi-Thue system 1R  is 

terminating and confluent (since it has no critical pair). Thus, every 

element of ∗P  has a unique normal form in ( ) ( { }) .1\Irr 1
∗= PPR  

Lemma 5. Let ( { }) .1\ ∗∈ PPw  Then 

1. ( ) ( ) ( )wPw PrefIrrPrefIrr ∩=  admits a maximum mw  (for the 

total order P≤  restricted to ( )wPrefIrr ). 

2. ,wwm =  if and only if ( ).Irr Pw ∈  

3. If ( ),Irr Pw ∈/  then there is a unique 4-tuple ( ) ∈vyxu ,,,  

( { }) ( { }) ( { }) ( { })∗∗ ××× PPPP PPPP 1\1\1\1\  such that 

(a) ( );xuiw Pm =  

(b) ( ) ( ) ;vyixuiw PP=  

(c) ( ) ( ).dom, ×∈yx  

Proof. First of all, ( )wPrefIrr  is nonvoid because ( ).PrefIrr w∈  

Since ( )wPrefIrr  is a subset of ( )wefPr  and as such is totally ordered by 

the restriction of ,P≤  it is sufficient to show that ( )wPrefIrr  admits a 

maximal element, that is, an element ( )wwm PrefIrr∈  such that there 

is no ( )ww PrefIrr∈′  with ww Pm ′≤  and .mww ≠′  

− Suppose that ( ).Irr Pw ∈/  Since ( ),Irr 1Rw ∈  that means that 

1>w  and there is at least one integer wii <≤1,  such that 

( ) ( ) ( ) ( )×∈== + dom,,, 1 yxyiwxiw PiPi  and .1,1 PP yx ≠≠  Let 0i  be 
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the least such integer. Let .01 im www "=  Then, by definition of mwi ,0  

( ).PrefIrr w∈  Let ( )ww PrefIrr∈′  such that .ww Pm ′≤  Then either 

wwm ′=  or 100 +
′′ ii ww  may be rewritten, but in the latter case, Irr∉′w  

( ).P  

− Suppose that ( ).Irr Pw ∈  In this case, .wwm =  So, we are done 

with (1). Note that the converse is obvious, and (2) holds. 

− Concerning (3), let ( ) ( )yiwxiw PiPi == +100 ,  (with ,1,1 PP yx ≠≠  

and ( ) ( )×∈ dom, yx ). Let 11 0 −= iwwu "  (thus ,=u  if and only if, 

10 =i ). Then ( ).xuiw Pm =  Moreover, ( ) ( ) ,10 vyixuiwwww PPwim == + "  

where wi wwv "20 +=  (thus ,=v  if and only if, wi =+ 10 ).   

For ( { }) ( ),Irr\1\ PPw P
∗∈  the 4-tuple ( )vyxu ,,,  of Lemma 5 is 

called the left-standard decomposition of w, and denoted by lstdecomp 
(w). 

Lemma 6. Let Px ∈  be a right (resp., left) invertible element. Then 
for every ( ) ( )×∈∈ dom,, xyPy  (resp., ( ) ( )×∈ dom, yx ). In particular, if 

x is invertible, then every pair ( )yx,  and ( )xy,  belong to ( ).dom ×  

Proof. Suppose that Px ∈  is right (resp., left) invertible. Let Px ∈′  
be such that ( ) ( )×∈′ dom, xx  and Pxx 1=′×  (resp., ( ) ( )×∈′ dom, xx  and 

Pxx 1=×′ ). Let Py ∈  such that ( ) ( )×∈/ dom, xy  (resp., ( ) ( )×∈/ dom, yx ). 

But ( ) ( ) ( )×∈=′× dom1,, Pyxxy  (resp., ( ) ( ) ( )×∈=×′ dom,1, yyxx P ) and 

therefore, by associativity in ( ) ( )×∈ dom,, xyP  (resp., ( ) dom, ∈yx  ( )× ), 

that is, a contradiction. The last assertion of the lemma is 
straightforward.   
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Lemma 7. Let ( ) { }\Irr Pu ∈  such that there is some uii ≤≤∈ 1,N  

with4 ( )xiu Pi =  and x is right-invertible (resp., left-invertible). Then, 

1=i  (resp., ui = ). In particular, if x is invertible, then ( ).xiu P=  

Proof. Suppose that ( )xiu Pi =  such that x is right (resp. left) 

invertible. According to Lemma 6, for every ( ) ( )×∈∈ dom,, xyPy  (resp., 

( ) ( )×∈ dom, yx ). Now, suppose that 1≠i  (resp., ui ≠ ). Let ( )yiu Pi =−1  

(resp., ( )yiu Pi =+1 ). Because u is irreducible, we have the contradiction 

( ) ( )×∈/ dom, xy  (resp., ( ) ( )×∈/ dom, yx ). The last assertion is trivial.   

Lemma 8. Let ( { }) ( ).Irr\1\ PPw P
∗∈  Let lstdecomp ( ) =w  

( ).,,, vyxu  If ,1Pyx =×  then ,=u  and in particular, ( )xiw Pm =  

(and therefore ( ) { ( )}xiw P,PrefIrr = ) and lstdecomp(w) has the form 

( ).,,, vyx  

Proof. Suppose that .1Pyx =×  Then, according to Lemma 6, for 

every ( ) ( ),dom,, ×∈∈ xzPz  and ( ) ( ).dom, ×∈zy  Now, we can deduce 

that, since ( ) ( ),Irr Pwxui mP ∈=  then =u  according to Lemma 7.   

Lemma 9. Let { ( { }) ( ) :Irr\1\ PPwA P
∗∈=  lstdecomp =)(w    

( ) }Pyxvyx 1,,,, =×  and { ( { }) ( ) :Irr\1\ PPwB P
∗∈=  lstdecomp 

( ) ( ) }Pyxvyxuw 1,,,, ≠×=  Then 0/=BA ∩  and ( { })∗= PPBA 1\∪  

( ).\ PIrr  

Now, let us define {( ) ( { }) :1\, ∗×∈=ρ PA PAvw  lstdecomp ( ) =w  

( )}vyx ,,,  and {( ) ( { }) :1\, ∗×∈′=ρ PB PBww  lstdecomp ( ) =w  

( ) ( ) }.,,,, vyxuiwvyxu P ×=′  Both binary relations are functional (that is, 

                                                      

4 Let us recall, from the beginning of Subsection 4.1, that we use the notation 
∗∈= Puuu n"1  with the meaning that for every ( ) ,, iPi xiui =  for some .Pxi ∈  



LAURENT POINSOT et al. 278

( ) ( ) Cyxyx ρ∈′,,,  implies that ,yy ′=  for BAC ,= ). We write 

( ) vwC =ρ  for ( ) { }( ),,, BACvw C ∈ρ∈  in such a way that →ρ AA :  

( { })∗PP 1\  and ( { }) .1\: ∗→ρ PB PB  It is not difficult to see that 

BA ρρ ∪  is a functional relation and a locally confluent abstract rewriting 

system on ( { }) ,1\ ∗
PP  which is also terminating, and thus confluent. 

Moreover, its set of normal forms is exactly ( ).Irr P  

Let us consider the abstract rewriting system on ,∗P  called left 

standard reduction, 

( ) .lstd 1 BARR ρρ⇒= ∪∪   (3) 

The abstract rewriting system ( )Rlstd  is terminating since the length of 

a word is reduced by any one-step reduction. We can also easily check 
that it is locally confluent, and therefore confluent. The set of irreducible 
elements with respect to ( )Rlstd  is ( ).Irr P  

Note 4. The many-step rewriting rule ( )
∗⇒ Rlstd  generated by lstd(R) 

and the equivalence relation ( )
∗⇔ Rlstd  generated by lstd(R) are, 

respectively, included in ∗⇒R  and ∗⇔R  (to prove this, it is sufficient to see 

that ( ) ∗⇒⊆ RRlstd ). 

Since lstd(R) is terminating and confluent, for every ,∗∈ Pw  there is 

one and only one ( )Rw Irr∈′  such that ( ) ( ) .lstd, ∗∈′ Rww  Let ∗P:lstd  

( )PIrr→  be the mapping that maps a word to its normal form by lstd(R)-

reductions only. 

Lemma 10. Let ∗∈ Pwvu ,,  such that ( ) ( ).lstd, Rvu ∈  Then 

( ) ( ).lstd, Rvwuw ∈  



PARTIAL MONOIDS: ASSOCIATIVITY … 279

Proof. Suppose that there is at least one i such that ( ),1PPi iu =  

then only the reduction relation 1R⇒  may be applied. In particular, v is 

obtained by erasing (exactly) one occurrence of ( )PPi 1  from u, saying .iu  

Therefore, vw is obtained by erasing the same occurrence iu  in the prefix 

u of uw. Suppose that .BAw ∪∈  If ,Aw ∈  then lstdecomp 

( ) ( )vyxu ,,,=  and ( ).uv Aρ=  Now, Auw ∈  and lstdecomp ( ) =uw  

( )vwyx ,,,  in such a way that ( ) vwuwA =ρ  as expected. Let us suppose 

that .Bu ∈  Let lstdecomp ( ) ( )vyxuw ′′= ,,,  (with Pyx 1≠× ) in such a 

way that ( ) .vyxiuv P ′×′=  Then Buw ∈  and lstdecomp ( ) =uw  

( ),,,, wvyxu ′′  so ( ) ( ) .vwwvyxiuuw PB =′×′=ρ    

Lemma 11. Let ∗∈ Pwvu ,,  such that ( )
∗⇒ Ru lstd  v, i.e., ( )vu,  

belongs to the reflexive-transitive closure of lstd(R). Then ( ) .vwuw Rlstd
∗⇒  

Proof. Use the previous lemma several times.   

Lemma 12. For every ( )( ) ( ).lstdlstdlstd,, uvvuPvu =∈ ∗  

Proof. By definition ( ) ( ).lstdlstd uu R
∗⇒  Therefore, ( ) lstdlstd

∗⇒ Ruv  

( )vu  for any ∗∈ Pv  according to the previous lemma. By uniqueness of 

the normal form, ( ) ( )( ).lstdlstdlstd vuuv =    

Note 5. (1). According to Lemma 12, ( )PIrr  is a right P-module (see 

[14]). 

(2). In general, the symmetric-reflexive-transitive closure ( )
∗⇔ Rlstd  of 

the left standard strategy ( )Rlstd  is only a right congruence of .∗P  

(3). Let R, S be two binary relations on some set X. We say that R and 

S are equivalent, in symbol ,SR ≡  if and only if, ∗∗ =⇔⇔ SR  (where ∗⇔B  

is the equivalence relation generated by a binary relation B). Now, 
suppose that R is itself confluent, then ( ) .lstd RR ⇒≡  
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5. Monoid-Like Structure on Irr(P) 

No matter R be confluent or not, we can always equip ( )PIrr  with a 
monoid-like structure. However, in general, this operation is only 

associative up to the congruence .∗⇔R  For every ( ) ( ) ,Irr, 2Pvu ∈  let us 
define ( ).lstd uvvu =  

In general,   is not associative. For instance, let Pzyx ∈,,  such 
that ( ) ( ) ( ) ( ) ,,dom,,,dom, bzyzyayxyx =××∈=××∈  and ( ( ) PP iai  
( ) ( ) ( ))bixiz PP,  is a critical pair of type (A0). Then ( ( ) ( )) ( )ziyixi PPP   

( ) ( ),ziai PP=  and ( ) ( ( ) ( )) ( ) ( ).bixiziyixi PPPPP =  Thus, ( ( ) ( ))yixi PP   
( ) ( ) ( ( ) ( )).ziyixizi PPPP  ≠  

Lemma 13. The operation   is “associative modulo ∗⇔R ”, i.e., for all 

( ) ( ) ( ).,Irr,, wvuwvuPwvu R  ∗⇔∈  

Proof. On one side, 

( ) ( )( )wuvwvu lstdlstd=  

( )( )wuvlstd=  (according to Lemma 12) 

( )( ),lstd vwu=  (4) 

on the other side, ( ) ( ( )).lstdlstd vwuwvu =  According to Note 4, 

( )vwvw R lstd∗⇔  (since for any ( ) ( ),lstd, lstd xxPx R
∗∗ ⇒∈  which implies 

that ( ),lstd xx R
∗⇒  and therefore ( )xx R lstd∗⇔ ). Because, ∗⇔R  is a 

congruence of ( ) ( ).lstd, vwuvwuP R
∗∗ ⇔  We conclude with the following 

sequence of equivalences. 

( ) ( )( )vwuwvu lstd=  

( )vwuR
∗⇔  

( )vwuR lstd∗⇔  
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( )( )vwuR lstdlstd∗⇔  

( ).wvu =  (5) 

  

Actually, it is possible to prove that bracketings are irrelevant for   in 
the sense that any other choice of bracketings for the product 
( (( )21 xx "  ) ) nxx  "3  will evaluate to a normal form, which is 

equivalent modulo the Thue congruence .∗⇔R  Let X be a set and Mag(X) 

be the free magma generated by X [8]. This set is equipotent to the free 

-∑ algebra generated by X with a unique symbol of function of arity 2 

[16]: The set of all binary trees with leaves in X. Every element of 
( ) X\XMag  may be written in a unique way as ( ( )).Mag, 2121 Xtttt ∈  

Let {(( ) ( )) ( )}.Mag,,:,Ass 321321321 Xttttttttt ∈=  We extend this 

binary relation to a term rewriting system Ass⇒  on ( )XMag  in the usual 

way (see [1]), which allows us to rewrite a subtree of the form ( ) 321 ttt  in 

a given tree. This term rewriting system is terminating. To see that, it is 
sufficient to check that the rank5 ( ) N→XMag:rk  of a tree, defined by 

( ) 0rk =x  for every Xx ∈  and ( ) ( ) ( ) ( ) ,1rkrkrk 12121 −++= ttttt A  

where ( )tA  is the number of leafs of t ( ( ) 1=xA  for every Xx ∈ ), strictly 

decreases at each application of a rewriting rule. Note that ( ) ,0rk =t  if 

all closing brackets are in backside position. Moreover, Ass is locally 
confluent: The only critical pairs (see [1] for a general notion of critical 
pairs for term rewriting systems, see also [15]) comes from an overlap of 
( )( )wzxy  (this is basically due to the consideration of the most general 

unifier between the subterm xy  of the term ( )zxy  and ( )zxy  itself). So, 

the critical pair is ( )( ) ( )( )( )zwxywyzx ,  given by two different applications 

of Ass⇒  on the tree ( )( ) .wzxy  This critical pair converges (it satisfies 

                                                      

5 Inspired from the rank of [26] used for the coherence theorem of monoidal categories. 
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Stasheff’s pentagon [30], made famous in [26]). Since Ass⇒  is 

terminating, it is confluent, which is not amazing at all since the rule 
( ) ( )yzxzxy →  provides a “canonical system” for the variety of semigroups 

[24]. As usually, ∗⇒Ass  denotes the reflexive-transitive closure of .Ass⇒  

Now, ( )( ),Irr P  is also a magma. Let ( )( ) ( )PP IrrIrrMag:ev →  be the 

unique homomorphic extension of the identity, called the morphism of 
evaluation (see [23], for the definition of such a morphism in any 

-∑ algebra). For every ( ) ( ) ,ev,Irr xxPx =∈  and ( ) ( ) ( ).evevev 2121 tttt =  

Proposition 1. Let ( )( ).IrrMag, 21 Ptt ∈  If ,2Ass1 tt ∗⇒  then ( )1ev t  

( ).ev 2tR
∗⇔  

Proof. According to Lemma 13, if ( ) ,Ass, 21 ∈tt  then 

( ) ( ).evev 21 tt R
∗⇔  By structural induction on ( )( ),IrrMag P  we easily 

prove that, if ,2Ass1 tt ⇒  then ( ) ( ).evev 21 tt R
∗⇔  Finally, by transitivity 

of ,∗⇔R  from ,2Ass1 tt ∗⇒  we deduce that ( ) ( )21 evev tt R
∗⇔  as expected. 

    

Roughly speaking this result means that, the order of the evaluation 
of   products is irrelevant with respect to the Thue congruence. We 
cannot expect more from a non confluent semi-Thue system R (see 
Proposition 2). 

Note 6. A similar result may be obtained in a more general context: 
Let ( )∗,M  be a magma and ≅  a congruence [8] on M. Suppose that for 

every ( ) ( ).,,, zyxzyxMzyx ∗∗≅∗∗∈  The following statement 

holds: for every ( ),Mag, Mtt ∈′  if ,Ass tt ′⇒∗  then ( ) ( )tt ′≅ evev  (where 

( ) MM →Mag:ev  is the corresponding evaluation morphism). 

Proposition 2. The operation   is associative if and only if, R is 
confluent. 
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Proof. Suppose that R is confluent. According to Remark 5, ( )Rlstd  

,R⇒≡  i.e., ( ) .lstd
∗∗ =⇔⇔ RR  Therefore, we can replace each occurrence of 

∗⇔R  by an occurrence of ( )
∗⇔ Rlstd  in the sequence of equivalences (5) of 

the proof of Lemma 13. We obtain ( ) ( ) ( ) lstdlstd lstd
∗⇔= Ruvwwvu   

( )( ) ( ).lstd wvuvwu =  Since there is one and only normal form in each 

equivalence class modulo ,∗⇔R  we have ( ) ( )( ),lstdlstdlstd vwuuvw =  and 

thus, ( ) ( ).wvuwvu  =  Conversely, suppose that   is associative. 

Let ( ( ) ( ) ( ) ( ))bixiziai PPPP ,  be a critical pair of type (A0), that is, there is 

some Py ∈  such that ( ) ( ) ,,dom, ayxyx =××∈  ( ) ( ) zyzy ××∈ ,dom,  

( ) ( ),dom,, ×∈/= zab  and ax ≠  or .bz ≠  Then, ( ( ) ( )) ( ) =ziyixi PPP   

( ) ( ) ( ) ( ) ( ) ( ( ) ( )),ziyixibixiziai PPPPPPP =≠  which contradicts the 

assumption. Therefore, there is no critical pair of type (A0), and by 
Lemma 3, R is confluent.   

Note 7. Clearly, if R is confluent, then ( )PIrr  is isomorphic to 

.∗∗ ⇔RP  Moreover, if P is a usual monoid, then ( ) =φ PIrr:  

( { }) PPi PP →1\  defined by ( ) ,1P=φ  and ( ( )) xxiP =φ  is an 

isomorphism of monoids. 
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