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Abstract. The set of natural integers is fundamental for at least two
reasons: it is the free induction algebra over the empty set (and at such
allows definitions of maps by primitive recursion) and it is the free
monoid over a one-element set, the latter structure being a consequence
of the former. In this contribution, we study the corresponding structure
in the linear setting, i.e. in the category of modules over a commuta-
tive ring rather than in the category of sets, namely the free module
generated by the integers. It also provides free structures of induction
algebra and of monoid (in the category of modules). Moreover we prove
that each of its linear endomorphisms admits a unique normal form,
explicitly constructed, as a non-commutative formal power series.
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1 Overview

The set of natural integers is fundamental for at least two reasons: it is the free
induction algebra over the empty set (and at such allows definitions of maps
by primitive recursion) and it is the free monoid over a one-element set, the
latter structure being a consequence of the former. It is possible to define a
similar object, with similar properties, in the category of modules over some
commutative ring R (with a unit), namely the free R-module V generated by
N. We prove that this module inherits from the integers a structure of initial
R-linear induction algebra, and also of free R-linear monoid (a usual R-algebra).
General definitions of varieties of algebraic structures (in the setting of universal
algebra) in the category of R-modules, rather than set-based, are given in sec-
tion 2 together with some results concerning the relations between a set-theoretic
algebra and its R-linear counterpart. These results are applied to V in section 3,
and allow us to outline a theory of R-linear recursive functions, and to pro-
vide relations between the (free) monoid structure of V and well-known usual
algebraic constructions (polynomials, tensor algebra and algebra of a monoid).
Finally in section 4 we prove that any R-linear endomorphism of V may be
written uniquely as an infinite sum, and so admits a unique normal form as a
non-commutative formal power series.
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2 Linear Universal Algebra

In this contribution are assumed known some basic notions about category
theory and universal algebra that may be found in any textbooks ([2,11] for
instance). We also refer to [5] for notions concerning modules and their tensor
product. However some of them are recalled hereafter. The basic categories used
are the category Set of sets (with set-theoretic maps) and the category R-Mod of
modules over some fixed commutative ring R with a unit (and R-linear maps).
If C denotes a category and a, b are two objects of this category, then the class
of all morphisms from a to b in C is denoted by C(a, b). For instance, if V,W
are two R-modules, then R-Mod (V,W ) denotes the set of all R-linear maps from
V to W . Let (Σ,α) be a (finitary and homogeneous) signature (also called an
algebra type or an operator domain), i.e., a set Σ (the elements of which are
referred to as symbols of functions) together with a map α : Σ → N called the
arity function. In what follows we simply denote by Σ a signature (Σ,α), and
α−1({n }) is denoted by Σ(n). The elements of Σ(0) ⊆ Σ with an arity of zero
are called symbols of constants. A Σ-algebra, or algebra of type Σ, is a pair (A,F )
where A is a set and F is a map that associates to each symbol of function f
of arity α(f) = n (for each n) an actual map F (f) : An → A (we sometimes
call F the Σ-algebra structure map of A). In particular if α(c) = 0, then F (c) is
identified to an element of A (which explains the term of symbol of constant).
An homomorphism between two algebras (A,F ), (B,G) over the same signature
Σ is a set-theoretic map φ : A → B such that for every f ∈ Σ(n), and every
a1, · · · , an ∈ A, φ(F (f)(a1, · · · , an)) = G(f)(φ(a1), · · · , φ(an)) (in particular for
each c ∈ Σ(0), φ(F (c)) = G(φ(c))). An isomorphism is a homomorphism which
is also a bijective map. A sub-algebra (B,G) of (A,F ) is a Σ-algebra such that the
natural inclusion B ⊆ A is a homomorphism of Σ-algebras. A congruence ∼= on
a Σ-algebra (A,F ) is an equivalence relation on A such that for every f ∈ Σ(n),
if ai ∼= bi, i = 1, · · · , n, then F (f)(a1, · · · , an) ∼= F (f)(b1, · · · , bn). This implies
that the quotient set A/∼= inherits a natural structure of Σ-algebra from that of
A. It is well-known (see [2]) that such congruences form a lattice, and then for
every R ⊆ A2, we may talk about the least congruence on A generated by R in
an evident way. For any set X there exists a free Σ-algebra Σ[X ] on X . It is
constructed by induction as follows (it is a subset of the free monoid (Σ %X)∗

over Σ %X , and the parentheses to form its elements are only used for readabil-
ity; see [2]). The base cases: Σ(0) ⊆ Σ[X ] and X ⊆ Σ[X ], the induction rule: for
every n, and every f ∈ Σ(n), if t1, · · · , tn ∈ Σ[X ], then f(t1, · · · , tn) ∈ Σ[X ],
and the closure property: it is the least subset of (Σ%X)∗ with these two proper-
ties. Its structure of Σ-algebra is the evident one. It is called free because for any
Σ-algebra (A,F ) and any set-theoretic map φ : X → A, there exists a unique

homomorphism φ̂ : Σ[X ] → (A,F ) such that φ̂(x) = φ(x) for every x ∈ X . In
category-theoretic terms, this means that the (obvious) forgetful functor from
the category of Σ-algebras to Set admits a left adjoint, and this implies that a
free algebra is unique up to a unique isomorphism (we can talk about the free
algebra).
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Example 1. The set N, together with the constant 0 and the usual successor
function, is the free induction algebra over the empty set (see for instance [2])
where we call induction algebra any algebra over the signature Ind = { 0, S }
where 0 ∈ Ind (0) and S ∈ Ind (1).

A variety of Σ-algebras is a class of algebras closed under homomorphic images,
sub-algebras, and direct products. A law or identity over Σ on the standard
alphabet X = { xi : i ≥ 0 } is a pair (u, v) ∈ Σ[X ]2 sometimes written as an
equation u = v. We say that a law (u, v) holds in a Σ-algebra (A,F ), or that
(A,F ) satisfies (u, v), if under every homomorphism Σ[X ] → (A,F ) the values
of u and v coincide. If E is any set of laws in Σ[X ], then VΣ,E or simply VE , is
the class of all algebras which satisfy all the laws in E. By the famous Garrett
Birkhoff’s theorem, VE is a variety and any variety arises in such a way.

Example 2. The variety of all monoids is given by VM,E where M(0) = { 1 },
M(2) = {µ }, M(n) = ∅ for every n %= 0, 2, and E consists in the three equations
(µ(x1, 1), x1), (µ(1, x1), x1) and (µ(µ(x1, x2), x3), µ(x1, µ(x2, x3))). The variety
of all commutative monoids is obtained in an obvious way.

A free algebra over a set X in a variety VΣ,E is a Σ-algebra VX in the class VΣ,E ,
together with a set-theoretic map iX : X → VX , such that for every algebra
(A,F ) in VΣ,E and every map φ : X → A, there is a unique homomorphism

φ̂ : VX → (A,F ) with φ̂ ◦ iX = φ. Thus the free Σ-algebra Σ[X ] is easily seen as
a free algebra in the variety VΣ,∅. In category-theoretic terms, when a variety is
seen as a category (whose morphisms are the homomorphisms of algebras), this
means that the obvious forgetful functor from the variety to Set admits a left
adjoint. This implies that a free algebra is unique up to a unique isomorphism.
Let us see a way to construct it. Let ∼=E be the least congruence of Σ-algebra
on Σ[X ] generated by the relations { (σ̂(u), σ̂(v)) : (u, v) ∈ E, σ : X → Σ[X ] }
(recall that σ̂ : Σ[X ] → Σ[X ] is the unique homomorphism of Σ-algebras that
extends σ). Let VX = Σ[X ]/∼=E

together with its structure of quotient Σ-algebra
inherited from that of Σ[X ]. Let (B,G) be any Σ-algebra in the variety VΣ,E ,
and φ : X → B be a set-theoretic map. It admits a unique homomorphism
extension φ̂ : Σ[X ] → (B,G) since Σ[X ] is free. Because (B,G) belongs to VΣ,E

and φ̂ ◦ σ : Σ[X ] → (B,G) is a homomorphism whenever σ : Σ[X ] → Σ[X ] is so,

then for each (u, v) ∈ E, φ̂(σ(u)) = φ̂(σ(v)). Therefore φ̂ passes to the quotient
by ∼=E and defines a homomorphism from VX to (B,G) as expected.

Example 3. For instance N with its structure of (commutative) monoid is the
free algebra in VM,E over { 1 }, while N \ { 0 } with its multiplicative structure
of monoid in the free algebra in the variety of all commutative monoids over the
set of all prime numbers.

Up to now, we only describe set-based algebras. But it is possible to talk about
linear algebras. For this let us recall some basic facts about modules and their
tensor product (see [5]). Let X be any set. The free R-module generated by X is
the R-module RX of all formal sums

∑
x∈X αxx (αx ∈ R) where all but finitely

many coefficients αx ∈ R are zero (this is the free R-module with basis X),
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and for any x0 ∈ X , we refer to the element ex0 ∈ RX , obtained as the formal
sum

∑
x∈X αxx with αx = 0 for every x "= x0 and αx0 = 1 (the unit of R), as

the canonical image of x0 into RX , and therefore this defines a one-to-one map
e : X → RX by e(x) = ex. If W is any over R-module, then any R-linear map
φ : RX → W is entirely defined by its values on the basis X . Let V1, · · · , Vn,W
be R-modules. A map φ : V1×· · ·×Vn → W is said to be multilinear (or bilinear
when n = 2) if it is linear in each of its variables when the other ones are
fixed. Given a multilinear map φ : V1 × · · · × Vn → W , there is a unique linear
map ψ : V1 ⊗R · · · ⊗R Vn → V , where ⊗R denotes the tensor product over R
(see [5]), such that ψ ◦ q = φ (where q : V1 × · · · × Vn → V1 ⊗R · · · ⊗R Vn is
the canonical multilinear map; the image of (v1, · · · , vn) under q is denoted by
v1⊗· · ·⊗vn). In what follows, φ is referred to as themultilinear map associated to
ψ, and denoted by ψ0. If V1, · · · , Vn are free qua R-modules with basis (e(j))i∈Ij ,

j = 1, · · · , n, then V1 ⊗R · · · ⊗R Vn also is free with basis { e(1)i1
⊗ · · · ⊗ e(n)in

: ij ∈
Ij , j = 1, · · · , n }. Moreover given a linear map φ : V1 → R-Mod (V2, V3), then
it determines a unique linear map ψ : V1 ⊗R V2 → V3 (it is obtained from the
bilinear map φ′ : V1 × V2 → V3 given by φ′(v1, v2) = φ(v1)(v2)).

Lemma 1. For every sets X1, · · · , Xn, R(X1×· · ·×Xn) and RX1⊗R· · ·⊗RRXn

are isomorphic R-modules.

Proof. (Sketch) It is clear that R(X1×· · ·×Xn) is identified as a sub-module of
R(RX1×· · ·×RXn) by ι : (x1, · · · , xn) '→ e(e(x1), · · · , e(xn)). Let q ◦ ι : R(X1×
· · · ×Xn) → RX1 ⊗R · · · ⊗R RXn be the restriction of the canonical multilinear
map (it is clearly onto and is easily shown to be R-linear), and s : RX1 × · · · ×
RXn → R(X1×· · ·×Xn) be the multilinear map given by s(e(x1), · · · , e(xn)) =
e(x1, · · · , xn) for every xi ∈ Xi, i = 1, · · · , n. Therefore it gives rise to a unique
linear map s̃ : RX1 ⊗R · · · ⊗R RXn → R(X1 × · · · ×Xn). It is easy to see that
s̃ ◦ q = id, but q is onto so that it is an R-linear isomorphism (the details are
left to the reader). ()

From lemma 1, it follows that any set-theoretic map φ : X1 × · · · × Xn → W
may be extended in a unique way to a linear map φ̃ : RX1⊗R · · ·⊗RRXn → W .
Following the notations from the proof of lemma 1, φ : X1 × · · · ×Xn → W is
first freely extended to a R-linear map φ : R(X1 × · · · × Xn) → W , and then

φ ◦ ŝ : RX1 ⊗R · · · ⊗R RXn → W is the expected linear map φ̃. Moreover its
associated multilinear map φ̃0 : RX1 × · · · × RXn → W is sometimes referred
to as the extension of φ by multilinearity. We are now in position to introduce
R-linear Σ-algebras and varieties. Let Σ be an operator domain, and R be a
commutative ring with a unit. A R-linear Σ-algebra is a R-module with a struc-
ture of Σ-algebra such that all operations are R-multilinear. More precisely it is
a R-module V with a Σ-algebra structure map F such that for each f ∈ Σ(n)
(n ≥ 0), F (f) : V ⊗R · · · ⊗R V︸ ︷︷ ︸

n factors

→ V is R-linear. Following [3], if V is a R-linear

Σ-algebra, let U(V ) denote its underlying (set-theoretic) Σ-algebra (its structure
of Σ-algebra is given by the multilinear map F0(f) : V ×· · ·×V → V associated
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to F (f)), and if (A,F ) is a usual Σ-algebra, let (RA, F̃ ) denote the R-linear
Σ-algebra made from the free R-module RA on A by extending the Σ-operation
F (f), f ∈ Σ(n), ofA by multilinearity. More precisely, F̃ (f) : RA⊗R· · ·⊗RRA →
RA is the unique linear map obtained from lemma 1. It is given by F̃ (f)(e(a1)⊗
· · · ⊗ e(an)) = e(F (f)(a1, · · · , an)) for each a1, · · · , an ∈ A (this map is well de-
fined since { e(a1)⊗ · · · ⊗ e(an) : a1, · · · , an ∈ A } forms a basis). (According to
the above discussion, this is equivalent to a multilinear map F̃0(f) : RAn → RA
with F̃0(f)(e(a1, · · · , an)) = e(F (f)(a1, · · · , an)).) Actually we obtain a functo-
rial correspondence between Σ-algebras and R-linear Σ-algebras: the forgetful
functor U admits a left adjoint given by the construction RA. More precisely,
given a R-linear Σ-algebra (W,G), and a homomorphism φ : (A,F ) → U(W,G),

φ̃ : (RA, F̃ ) → (W,G), given by φ̃(e(a)) = φ(a) for each a ∈ A, is the unique
extension of φ which is a homomorphism of R-linear Σ-algebras (this means that

φ̃ is R-linear, and φ̃(F̃ (f)(x1 ⊗ · · · ⊗ xn)) = G(f)(φ̃(x1)⊗ · · · ⊗ φ̃(xn)) for every
x1, · · · , xn ∈ RA). To determine such a correspondence between varieties and
linear varieties we must be more careful due to multilinearity. A law u = v on X is
said to be regular when the same elements of X occur in u and v, and exactly once
in both of them. For instance, µ(x1, 1) = x1, µ(µ(x1, x2), x3) = µ(x1, µ(x2, x3))
are regular laws. If E is any set of regular equations on Σ[X ], and (V, F ) is a
R-linear Σ-algebra, then we say that (V, F ) satisfies E when under all homomor-
phisms Σ[X ] → U(V ), the images of u and of v are equal for each (u, v) ∈ E. If
E is any set of regular equations on Σ[X ], then there is a very close connection
between the variety VΣ,E of Σ-algebras satisfying E, and the variety VΣ,R,E

of R-linear Σ-algebras satisfying E: it is easy to see that a R-linear Σ-algebra
V will lie in VΣ,R,E if, and only if, U(V ) lies in VΣ,R,E . Conversely, according
to [3], a Σ-algebra (A,F ) will lie in VΣ,E if, and only if, RA lies in VΣ,R,E . A
free R-linear algebra in VΣ,R,E over a set (resp. a R-module, resp. a Σ-algebra
in the variety VΣ,E) X is a R-linear Σ-algebra VX in the variety VΣ,R,E with a
set-theoretic map (resp. a R-linear map, resp. a homomorphism) jX : X → VX

(called the canonical map) such that for all R-linear algebra W in VΣ,R,E and
all set-theoretic map (resp. R-linear map, resp. homomorphism) φ : X → W

there is a unique homomorphism φ̂ : VX → W of R-linear algebras such that
φ̂ ◦ jX = φ. Such a free algebra is unique up to a unique isomorphism. As an
example, the free R-linear algebra in VΣ,R,E over a R-module W is made as
follows. Let us assume that the free R-linear algebra VW on the underlying set
W is constructed with the set-theoretic map jW : W → VW (we see in lemma 2
that it always exists). Let F be the Σ-algebra structure map of VW (this means
that F (f) is a linear map from VW ⊗R · · · ⊗R VW → VW for each f ∈ Σ). Let
W be the least sub-module of VW stable under all F (f)’s (this means that the
image of W ⊗R · · · ⊗R W by all F (f)’s lies into W ) and that contains the sub-
module generated by jW (w1 + w2) − jW (w1) − jW (w2), jW (αw) − αjW (w) for
every α ∈ R, w1, w2, w ∈ W . Then it is easily seen that the quotient module
VW /W inherits a structure of R-linear Σ-algebra from that of VW , and is the
expected free algebra (where the canonical map is the composition of the natural
epimorphism VW → VW /W with the set-theoretic canonical map W → VW ).
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Remark 1. These three notions of free algebras (over a set, a module or a
Σ-algebra in the variety VΣ,E) come from the fact that there are three forgetful
functors, and each of them admits a left adjoint.

Lemma 2. Let E be a set of regular equations. Let X be a set and VX be the
free Σ-algebra over X in the variety VΣ,E with iX : X → VX . Then, RVX with
jX : X → RVX given by jX(x) = e(iX(x)) is the free R-linear Σ-algebra over X
in VΣ,R,E. Moreover, RVX , with the R-linear map kRX : RX → RVX defined by
hRX(ex) = e(iX(x)) for every x ∈ X, is the free R-linear Σ-algebra (in VΣ,R,E)
over RX. Finally, let kVX : VX → RVX be the unique homomorphism such that
kVX ◦ iX = jX = e ◦ iX . Then, RVX with hVX is free over VX .

Proof. (The proof of this lemma is easy for a category theorist or universal
algebraist but is given for the sake of completeness.) Let (W,G) be a R-linear
Σ-algebra, and φ : X → W be a set-theoretic map. Then, there exists a unique
homomorphism of Σ-algebras φ̂ : VX → U(W ) such that φ̂◦iX = φ. Since RVX is
free with basis VX overR, there is a unique R-linear map ψ : RVX → W such that
ψ◦e = φ̂ (so ψ◦jX = ψ◦e◦jX = φ̂◦jX = φ). Moreover from the above discussion
we know that RVX is a R-linear Σ-algebra of the variety VΣ,R,E . It remains to
prove that ψ is a homomorphism of Σ-algebra from VX to W . Let f ∈ Σ(n),
and a1, · · · , an ∈ VX . Let F be the Σ-algebra structure map of VX . We have
ψ(F̃ (f)(e(a1)⊗· · ·⊗e(an))) = ψ(e(F (f)(a1, · · · , an))) = φ̂(F (f)(a1, · · · , an)) =
G(f)(φ̂(a1), · · · , φ̂(an)) = G(f)(ψ(e(a1))⊗· · ·⊗ψ(e(an))), for each a1, · · · , an ∈
VX . Now, let φ : RX → W be any R-linear map (whereW is a R-linearΣ-algebra
in the variety VΣ,R,E). Then, there exists a unique set-theoretic map φ0 : X → W
such that φ0(x) = φ(e(x)) for every x ∈ X . Therefore there exists a unique

homomorphism of Σ-algebras φ̂0 : VX → W such that φ̂0 ◦ iX = φ0. Finally,
there exists a unique R-linear map, wich is also a homomorphism of Σ-algebras
ψ : RVX → W such that ψ ◦e = φ̂0. Then, φ0 = ψ ◦ jX = ψ ◦e◦ iX = ψ ◦hRX ◦e.
But φ ◦ e = φ0, and both maps φ and ψ ◦ hRX are R-linear and equal on
basis elements of RX , so that they are equal on RX as expected. Finally, let
φ : VX → U(W ) be a homomorphism of Σ-algebras. Then, there exists a unique
set-theoretic map φ0 : X → W such that φ0 = φ ◦ iX . Then, there exists a
unique homomorphism of Σ-algebras which is a R-linear map φ̂0 : RVX → W
with φ̂0 ◦ jX = φ0. Then, φ̂0 ◦ kVX ◦ iX = φ̂0 ◦ jX = φ0 = φ ◦ iX , and since

φ̂0 ◦ kVX and φ are both homomorphisms from VX to W it follows that their are
equal (since VX is free). %&

3 R-linear Induction Algebra

3.1 The Initial R-linear Induction Algebra

The free R-module RN over N is denoted by V . The canonical image of an
integer n into V is denoted by en so ei '= ej for every i '= j and { en : n ∈
N } happens to be a basis of V over R. The constant 0 of the signature Ind



266 L. Poinsot

corresponds to e0, and the successor map s : N → N is uniquely extended by
R-linearity (no need here of multilinearity) to U ∈ R-Mod (V, V ) defined on
the basis elements by Uen = en+1, n ∈ N. It is clear that (V, e0, U) is a
R-linear induction algebra, and according to lemma 2, (V, e0, U) is even the free
R-linear induction algebra over the empty set, the free R-linear induction over
the zero vector space, and the free R-linear induction over the induction algebra
N. We call (V, U, e0) the initial R-linear induction algebra because given another
R-linear induction algebra (W,w, S) (w ∈ W , S ∈ R-Mod (W,W )), there is a
unique R-linear map φ : V → W such that φ(e0) = w, and φ ◦ U = S ◦ φ.
This may be proved directly from the fact that V is free over (en)n∈N, and
en = Un(e0) for each n ∈ N. (Indeed, there is a unique linear map φ : V → W
such that φ(en) = Sn(w).)

Remark 2. It is obvious that N is the initial induction algebra (since it is freely
generated by the empty set). This means that for each induction algebra A, we
have a natural isomorphism (see [11] for a precise definition of this notion) of sets
VInd ,∅(N, A) ∼= Set(∅, A) = { ∅ } (where the variety VInd ,∅ of all induction algebras
is considered as a category). Now, since V is the free R-linear induction algebra
on N, for every R-linear induction algebra W , one also has natural isomorphisms
(of sets) VInd ,R,∅(V,W ) ∼= VInd ,∅(N,U(W )) ∼= { ∅ }.

For every n ∈ N, let Vn be the sub-module of V generated by (ek)k≥n (which
is obviously free over (ek)k≥n). It is a R-linear induction algebra on its own
(Vn, en, U) (since U : Vn → Vn+1 ⊆ Vn). Therefore, for every n ∈ N, there exists a
unique R-linear map, which is a homomorphism of induction algebras, µn : V →
Vn such that µn(e0) = en and µn(ek+1) = µn(Uek) = U(µn(ek)). It is easy to
prove by induction that µn(ek) = ek+n. Now, we define µ : V → R-Mod (V, V ) by
µ(en) = µn for each n ≥ 0. Therefore we obtain a bilinear map V ×V → V given
by φ(em, en) = µ(em)(en) = µm(en) = em+n. Finally this leads to the existence
of a linear map µ : V ⊗R V → V defined by µ(em ⊗ en) = em+n. A simple
calculation shows that µ is associative (in the sense that µ(µ(u ⊗ v) ⊗ w) =
µ(u ⊗ µ(v ⊗ w)) for every u, v, w ∈ V and not only for basis elements) and
µ(v ⊗ e0) = v = µ(e0 ⊗ v) for every v ∈ V . This means that V becomes a
monoid, and more precisely an R-algebra (an internal monoid in the category of
R-modules, see [11]). We see below another way to build this R-algebra structure
on V .

Remark 3. Similarly it is also possible to define the free linear extension of the
usual multiplication on N to a linear map µ′ : V ⊗ V → by µ′(em ⊗ en) = emn,
which happens to be associative and has a unit e1. But e0 is not an absorbing
element: for instance µ′((αem + βen) ⊗ e0) = αµ′(em ⊗ e0) + βµ′(en ⊗ e0) =
(α + β)e0 *= e0 whenever α + β *= 0 (in R). It is due to the fact that the
equation x1 × 0 = 0 or 0× x1 = 0 is not a regular law. Similarly, even if we have
µ′(em ⊗ µ(en ⊗ ep)) = µ(µ′(em ⊗ en)⊗ µ′(em ⊗ ep)), the distributivity law does
not hold for any u, v, w ∈ V (again essentially because it is not a regular law).
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3.2 A Free Monoid Structure and Its Links with Classical Algebra

We also know that (N,+, 0) is the free monoid { 1 }∗ over { 1 }. Therefore, again
by lemma 2, (V, µ, e0) is the free monoid over { 1 }, or over the module R, or
over the monoid (N,+, 0), where µ : V ⊗R V → V is the R-linear map given by
µ(em ⊗ en) = em+n (it satisfies µ(µ(u ⊗ v) ⊗ w) = µ(u ⊗ µ(v ⊗ w)) for every
u, v, w ∈ V , and µ(v⊗ e0) = v = µ(e0 ⊗ v) for every v ∈ V ). Therefore (V, µ, e0)
has a structure of commutative R-algebra which is actually the same as that
defined in subsection 3.1. Moreover it is nothing else than the usual algebra of
polynomials R[x] in one indeterminate (an isomorphism is given by en $→ xn).
The fact that (V, µ, e0) is the free monoid over R is also re-captured by the fact
that R[x] may be seen as the tensor R-algebra generated by Rx ∼= R (see [5]).
Finally the fact that (V, µ, e0) is free over the monoid (N,+, 0) is recovered in
the usual algebraic setting by the fact that qua a R-algebra V (and therefore
R[x]) is isomorphic to the R-algebra of the monoid N.

Remark 4. According to the remark 3, there is no hope to use the multiplication
from N in order to define a structure of ring on V internal to the category of
modules.

3.3 Linear Primitive Recursion Operator

Back to the fact that V is the initial R-linear induction algebra, we show here how
to define linear maps by primitive recursion in a way similar to the usual clone of
primitive recursive functions (see for instance [16]). Recall that given two maps
g : Nk → N and h : Nk+2 → N it is possible to define a unique map R(g, h) =
f : Nk+1 → N by primitive recursion as f(0, n1, · · · , nk) = g(n1, · · · , nk) and
f(n + 1, n1, · · · , nk) = h(n1, · · · , nk, n, f(n1, · · · , nk)) for every n1, · · · , nk, n ∈
N. If W is a R-module, then W⊗n is the tensor product W ⊗R · · · ⊗R W︸ ︷︷ ︸

n times

(so

that W⊗0 ∼= R). Now, any set-theoretic map f : N! → U(V ) gives rise to a

unique R-linear map f̂ : V ⊗! → V by f̂(en1 ⊗ · · · ⊗ en!) = f(n1, · · · , n!). There-
fore given g : Nk → V and h : Nk+2 → V , there exists a unique R-linear map
R̂(g, h) : V ⊗k+1 → V by R̂(g, h)(en1 ⊗ · · · ⊗ enk+1) = R(g, h)(n1, · · · , nk+1) and

thus by R̂(g, h)(e0 ⊗ en1 ⊗ · · · ⊗ enk) = g(n1, · · · , nk) = ĝ(en1 ⊗ · · · ⊗ enk)

and R̂(g, h)(en+1 ⊗ en1 ⊗ · · · ⊗ enk) = h(n1, · · · , nk, n, R(g, h)(n, n1, · · · , nk)) =

ĥ(en1⊗· · ·⊗enk⊗en⊗R̂(g, h)(en⊗en1⊗· · ·⊗enk)) for each n, n1, · · · , nk, nk+1 ∈
N. The following result is then proved.

Theorem 1 (Linear primitive recursion). Let g ∈ Set(Nk, V ) and h ∈
Set(Nk+2, V ). Then there exists a unique linear map φ : V ⊗k+1 → V such that
φ(e0 ⊗ en1 ⊗ · · · ⊗ enk) = ĝ(en1 ⊗ · · · ⊗ enk) and φ(en+1 ⊗ en1 ⊗ · · · ⊗ ek) =

ĥ(en1 ⊗ · · · ⊗ enk ⊗ en ⊗ φ(en ⊗ en1 ⊗ · · · ⊗ enk)) for every n, n1, · · · , nk ∈ N.

Remark 5. The two R-linear maps µ and µ′ from subsection 3.1 may be obtained
by linear primitive recursion.
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In order to close this subsection, let us briefly see the corresponding notion of
clone of primitive recursive functions in the linear case. Let f : R-Mod (V ⊗m, V ),
and g1 · · · , gm ∈ R-Mod (V ⊗n, V ), then the superposition µ(f, g1, · · · , gm) in
R-Mod (V ⊗n, V ) is defined by µ(f, g1, · · · , gm)(ei1 ⊗ · · · ⊗ ein) = f(g1(ei1 ⊗ · · · ⊗
ein)⊗· · ·⊗gn(ei1⊗· · ·⊗ein)) for every ei1 , · · · , ein ∈ V . For every n, i = 1, · · · , n,
we define the projections π(n)

i ∈ R-Mod (V ⊗n, V ) by π(n)
i (ej1 ⊗· · ·⊗ejn) = eji for

every j1, · · · , jn ∈ N. Then the clone of all linear primitive recursive functions is
the set of all R-linear maps from V ⊗k, for varying k, to V which is closed under
superposition, and linear primitive recursion (in the sense that if g : V ⊗k → V
and h : V ⊗k+2 → V are primitive recursion linear maps, then R̂(g0, h0) is linear
primitive recursive, where g0 : Nk → V and h0 : Nk+2 → V are the unique maps
such that g = ĝ0 and h = ĥ0), that contains, for every set-theoretic primitive

recursive function f ∈ Nk → N, the map f̃ : V ⊗k → V where f̃(ei1 ⊗· · ·⊗ eik) =
ef(i1,··· ,ik) for all (i1, · · · , ik) ∈ Nk, and that contains the projections.

4 A Normal Form for R-linear Endomorphisms of V

In [6] the authors generalize a result from [9] that concerns the decomposition of
linear endomorphisms of V (in [6] only the case where R is a field is considered)
with respect to a pair of raising and lowering ladder operators. In the present
paper, after recalling this result in a more general setting, we show that it may
be seen as a strong version of Jacobson’s density theorem and that it gives rise
to a unique normal form for the endomorphisms of V in a way made precise
hereafter.

4.1 Jacobson’s Density Theorem

Jacobson’s density theorem is a result made of two parts: an algebraic and a
topological one. Let us begin with definitions needed for the algebraic part. Let
R be a unitary ring (commutative or not). If M is a left R-module, then we
denote by ν : R → Ab(M) the associated (module) structure map (where Ab
denotes the category of all Abelian groups). This is a ring map since it is a
linear representation of R. A left R-module M is said to be a faithful module if
the structure map is one-to-one, i.e., ker ν = (0). A left R-module M is said to be
a simple module if it is non-zero and it has no non-trivial sub-modules (modules
different from (0) and M itself). Finally, a ring R is said to be (left-)primitive if
it admits a faithful simple left-module. Now, let us turn to the topological part.
Given two topological spaces X,Y , we let Top(X,Y ) be the set of all continuous
maps from X to Y (here Top denotes the category of all topological spaces).
Let K be a compact subset of X and U be an open set in Y , then we define
V (K,U) = { f ∈ Top(X,Y ) : f(K) ⊆ U }. The collection of all such sets V (K,U)
(with varying K and U) forms a subbasis for the compact-open topology on
Top(X,Y ). This means that for every non-void open set V in the compact-open
topology, and every f ∈ V , there exist compact sets K1, · · · ,Kn of X and open
sets U1, · · · , Un in Y such that f ∈

⋂n
i=1 V (Ki, Ui) ⊆ V , see [1,7].
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Remark 6. Let R be a ring (commutative or not), and let M be a left module
over R. Let us assume that M has the discrete topology. Therefore its com-
pact subsets are exactly its finite subsets. Then, the compact-open topology
induced by Top(M,M) = MM on the sub-space of all R-linear endomorphisms
R-Mod (M,M) of M is the same as the topology of simple convergence (here
R-Mod is the category of all left R-modules), i.e. for every topological space X ,
a map φ : X → R-Mod (M,M) is continuous if, and only if, for every v ∈ M , the
map φv : x ∈ X #→ φ(x)(v) ∈ M is continuous. Moreover with this topology, and
R discrete, R-Mod (M,M) is a Hausdorff complete topological R-algebra ([17]).

We are now in position to state Jacobson’s density theorem (see [8] for a proof).

Theorem 2 (Jacobson’s density theorem). Let R be a unitary ring (com-
mutative or not). The ring R is primitive if, and only if, it is a dense subring (in
the compact-open topology) of a ring D-Mod (M,M) of linear endomorphisms of
some (left) vector space M over a division ring D (where M is discrete).

4.2 Decomposition of Endomorphisms

A direct consequence of Jacobson’s density theorem is the following. Let K
be a field of characteristic zero, and A(K) be the Weyl algebra which is the
quotient algebra of the free algebra K〈x, y〉 in two non-commutative variables by
the two-sided ideal generated by xy−yx−1 (this means that although the gener-
ators of A(K) do not commute their commutator is equal to 1). (See [10] for more
details.) Now, A(K) is a primitive ring by Jacobson’s density theorem.
Indeed, A(K) admits a faithful representation into K-Mod (K[z],K[z]) by [x] #→
(P (z) #→ zP (z)) and [y] #→ (P (z) #→ d

dzP (z)) (where P (z) denotes an ele-
ment of K[z], [x], [y] are the canonical images of x, y onto A(K), and it is clear
that the commutation relation is preserved by this representation), and it is
an easy exercise to check that through this representation A(K) is a dense
subring of K-Mod (K[z],K[z]) (under the topology of simple convergence with
K[z] discrete). Nevertheless given φ ∈ K-Mod (K[z],K[z]) and an open neigh-
borhood V of φ, Jacobson’s density theorem does not provide any effective nor
even constructive way to build some φ0 ∈ A(K) such that φ0 ∈ V . In [9] the
authors show how to build in a recursive way a sequence of operators (Ωn)n∈N,
Ωn ∈ A(K) for each n, such that limn→∞ Ωn = φ. In [6] the authors gener-
alize this result to the case of K-linear endomorphisms of V , with K any field
(of any characteristic), proving that the multiplicative structure of the alge-
bra K[z] is unnecessary (recall that as K-vector spaces, V ∼= K[z]). We now
recall this result in a more general setting where a commutative ring R with
unit replaces the field K. Let (en)n∈N be a basis of V = RN. We define a
R-linear map D : V → V by D(e0) = 0 and D(en+1) = en for every n ∈ N.
(This linear map D may be given a definition by linear primitive recursion as

D = R̂(0, π(1)
2 ).) According to [12] (see page 109), for any sequence (φn)n∈N

with φn ∈ R-Mod (V, V ), the family (φn ◦ Dn)n∈N is summable in the topol-
ogy of simple convergence of R-Mod (V, V ) (where, for every endomorphism φ
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of V , φ0 = idV and φn+1 = φ ◦ φn). This means that there is an element of
R-Mod (V, V ) denoted by

∑
n∈N φn ◦ Dn, and called the sum of (φn ◦ Dn)n≥0,

such that for every v ∈ V , v #= 0,
(∑

n∈N φn ◦Dn
)
(v) =

∑d(v)
n=0 φ(D

n(v)), where
d(v) is the maximum of all k’s such that the coefficient of ek in the decomposition
of v in the basis (en)n≥0 is non-zero.

Remark 7. The above summability of (φn ◦Dn)n∈N essentially comes from topo-
logical nilpotence of D in the topology of simple convergence which means that
for every v ∈ V , there exists nv ∈ N (for instance d(v) when v #= 0) such that
for every n ≥ nv, Dn(v) = 0 (Dn → 0 in the topology of simple convergence).

For every polynomial P (x) =
∑m

n=0 pnx
n ∈ R[x], every sequence v = (vn)n∈N of

elements of V , and every R-linear endomorphism φ of V , we define P (v) =∑m
n=0 pnvn ∈ V , and P (φ) =

∑m
n=0 pnφ

n ∈ R-Mod (V, V ). It is clear that
P (x) ∈ R[x] &→ P (e) ∈ V for e = (en)n∈N defines a linear isomorphism be-
tween R[x] and V . Moreover we have P (e) = P (U)(e0). Now, let φ be given.
There exists a sequence of polynomials (Pn(x))n such that φ =

∑
n∈N Pn(U)◦Dn

(this means that φ is the sum of the summable family (Pn(U)◦Dn)n≥0 and it is
equivalent to φ(en) =

∑n
k=0 Pk(U)(Dk(en)) for each n ∈ N, because Dk(en) = 0

for every k > n). This can be proved by induction on n as follows. We have
φ(e0) = P0(e) = P0(U)(e0) for a unique P0(x) ∈ R[x]. Let us assume that
there are P1(x), · · · , Pn(x) ∈ R[x] such that φ(en) =

∑n
k=0 Pk(U)Dk(en) =∑n

k=0 Pk(U)en−k. Let Pn+1(U)(e0) = Pn+1(e) = φ(en+1)−
∑n

k=0 Pk(U)en+1−k

(Pn+1 is uniquely determined). Then, φ(en+1) =
∑n+1

k=0 Pk(U) ◦Dk(en+1).

Remark 8. This result is outside the scope of Jacobson’s density theorem since R
is not a division ring, and also more precise since it provides a recursive algorithm
to construct explicitly a sequence that converges to any given endomorphism.

Every sequence (Pn)n defines an endomorphism φ given by the sum of (Pn(U) ◦
Dn)n, and the above construction applied to φ recovers the sequence (Pn)n. The
correspondence between φ and (Pn)n as constructed above is functional, and it is
actually a R-linear map (R[x]N is the product R-module), onto and one-to-one.

4.3 A Normal Form for R-linear Endomorphisms of V

Let us consider the following subset of the R-algebra of non-commutative series
R〈〈x, y〉〉 in two variables (see [5]): R〈x, y〉〉 = {

∑
n≥0 Pn(x)yn : ∀n, Pn(x) ∈

R[x] }. This is a R-sub-module of R〈〈x, y〉〉, and a R[x]-module with action given
by Q(x) · (

∑
n≥0 Pn(x)yn) =

∑
n≥0(Q(x)Pn(x))yn = (

∑
n≥0 Pn(x)yn) · Q(x).

(We observe that xy = y · x but yx does not belong to R〈x, y〉〉. ) According to
the result of subsection 4.2, there exists a R-linear isomorphism π : R〈x, y〉〉 →
R-Mod (V, V ) which maps

∑
n≥0 Pn(x)yn to

∑
n∈N Pn(U) ◦Dn.

Remark 9. It is essential that xy #= yx, otherwise π(xy) = U ◦ D #= idV =
D ◦ U = π(yx), and π would be ill-defined.
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For any φ ∈ R-Mod (V, V ), the unique S =
∑

n≥0 Pn(x)yn ∈ R〈x, y〉〉 such that
π(S) = φ should be called the normal form s(φ) of φ for a reason made clear
hereafter. We observe that any set-theoretic map φ : N → N also has such a
normal form through the natural isomorphism Set(N,N) ∼= R-Mod (V, V ).

Example 4. 1. Let us assume that R contains Q as a sub-ring. Let us consider
the formal integration operator

∫
on V defined by

∫
en = en+1

n+1 for every

integer n. Then, s(
∫
) =

∑
n≥0(−1)n xn+1

(n+1)!y
n (by recurrence).

2. Since the commutator [D,U ] = D ◦ U − U ◦ D = idV − U ◦ D, we obtain
s([D,U ]) = 1− xy.

Let π0(x) = U , π0(y) = D, and π̂ : { x, y }∗ → R-Mod (V, V ) be the unique
monoid homomorphism extension of π0 (where R-Mod (V, V ) is seen as a monoid
under composition). Let R{{x, y}} be the set of all series S =

∑
w∈{x,y }∗ αww

in R〈〈x, y〉〉 such that the family (αwπ̂(w))w∈{ x,y }∗ of endomorphisms of V is
summable.

Example 5. Let us consider the series S =
∑

n≥0 y
nxn ∈ R〈〈x, y〉〉. Then, S (∈

R{{x, y}} since π̂(ynxn) = π0(y)n◦π0(x)n = Dn◦Un = idV for each n. Whereas
S′ =

∑
n≥0 x

nyn ∈ R{{x, y}} since
∑

n≥0 U
nDn is equal to the operator en )→

(n+ 1)en.

From general properties of summability [17], R{{x, y}} is a sub R-algebra of
R〈〈x, y〉〉, and the homomorphism of monoids π̂ may be extended to an alge-
bra map π̃ : R{{x, y}} → R-Mod (V, V ) by π̃(

∑
w αww) =

∑
w αwπ̂(w) which is

obviously onto, so that R-Mod (V, V ) ∼= R{{x, y}}/ker π̃ (as R-algebras). We have
π̃(s(φ)) = φ, so that s defines a linear section of π̃. Let N : R{{x, y}} → R〈x, y〉〉
be the R-linear map defined by N (S) = s(π̃(S)). Then, for every S, S′ ∈
R{{x, y}}, S ∼= S′ mod ker π̃ (i.e., π̃(S) = π̃(S′)) if, and only if, N (S) = N (S′).
Also it holds that N (N (S)) = S. The module of all normal forms R〈x, y〉〉 inher-
its a structure of R-algebra by S ∗ S′ = N (SS′) = s(π̃(SS′)) = s(π̃(S) ◦ π̃(S′))
isomorphic to R-Mod (V, V ) ∼= R{{x, y}}/ker π̃.

Example 6. We have y ∗ x = 1 while x ∗ y = xy, so that [y, x] = y ∗ x − x ∗
y = 1 − xy. Let us define the operator ∂ on V by ∂en+1 = (n + 1)en for
each integer n and ∂e0 = 0. Then, we have s(∂) =

∑
n≥1 x

nyn−1. Moreover,
[∂, U ] = ∂ ◦ U − U ◦ ∂ = idV . It follows that [s(∂), x] = 1. Let A(R) be the
quotient algebra R〈x, y〉 by the two-sided ideal generated by xy−yx−1, namely
the Weyl algebra over R. Therefore there exists a unique morphism of algebras
φ : A(R) → R〈x, y〉〉 such that φ(x) = x and φ(y) = s(∂). Composing with
the isomorphism π : R〈x, y〉〉 → R-Mod (V, V ), we obtain a representation of the
algebra A(R) on the module V (x acts on V as U while y acts on V as ∂). When
R is a field K of characteristic zero, then this representation is faithful (see [4]),
hence in this case K〈x, y〉〉 contains a copy of the Weyl algebra A(K), namely
the sub-algebra generated by x and s(∂).
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5 Concluding Remarks and Perspectives

5.1 Free Linear Induction Algebras

Let X be any set. According to section 2, we may define the free R-linear induc-
tion algebra VX on X . It is isomorphic to the direct product of |X | + 1 copies
of V , namely the R-module V ⊕

⊕
x∈X V , this is so because the free induction

algebra on X is {Sn(0) : n ≥ 0} #
⊔

x∈X{Sn(x) : n ≥ 0} (where
⊔

is the set-
theoretic disjoint sum). As an example, take X finite of cardinal say n, then
VX is isomorphic to V n+1. In this finite case, we have R-Mod (V n+1, V n+1) ∼=
R-Mod (V, V )(n+1)2 ∼= R〈x, y〉〉(n+1)2 . From subsection 4.3 it follows that any
endomorphism of V n+1 may be written as a vector of length (n+1)2 or better a
(n+1)× (n+1) matrix with entries some members of R〈x, y〉〉. More generally,
for each integers m,n, we have R-Mod (V m, V n) ∼= R-Mod (V, V )mn so that we
have obtained a complete description of all linear maps between spaces of the
form V n in terms of the basic operators U and D.

5.2 Links with Sheffer Sequences

It is not difficult to check that we may define a new associative multiplication
on R〈x, y〉〉, and therefore also on R-Mod (V, V ), by




∑

n≥0

Pn(x)y
n



#




∑

n≥0

Qn(x)y
n



 =
∑

n≥0




∑

k≥0

〈Pn(x) | xk〉Qk(x)



 yn

where 〈P (x) | xk〉 denotes the coefficient of xk in the polynomial P (x) (so that
in the above formula the sum indexed by k is actually a sum with a finite number
of non-zero terms for each n), with a two-sided identity

∑
n≥0 x

nyn (that corre-
sponds to the operator en (→ (n+1)en of V ). This product is a generalization of
the so-called umbral composition [14]. Let us assume that K is a field of charac-
teristic zero. Following [15] (see also [13]) a sequence (pn(x))n≥0 of polynomials
in K[x] such that the degree of pn(x) is n for each integer n is called a Sheffer
sequence if there are two series µ(y), σ(y) ∈ K[[y]], where x and y are assumed
to be commuting variables, with µ(0) += 0, σ(0) = 0, and σ′(0) += 0 (where σ′

denotes the usual derivation of series) such that
∑

n≥0 pn(x)
yn

n! = µ(y)exσ(y) ∈
K[[x, y]]. A series S =

∑
n≥0

1
n!pn(x)y

n ∈ K〈x, y〉〉 is said to be a Sheffer
series whenever (pn(x))n is a Sheffer sequence. Such series correspond to Sheffer
operators on V given by

∑
n≥0

1
n!pn(U) ◦ Dn. For instance Laguerre’s polyno-

mials given by Ln(x) =
∑n

k=0

(
n
k

) (−1)k

k! xk form a Sheffer sequence, and thus∑
n≥0

1
n!Ln(U) ◦ Dn is a Sheffer operator. We observe that the above multi-

plication # corresponds to the umbral composition of (Pn(x))n and (Qn(x))n.
Because Sheffer sequences form a group under umbral composition (see [14]), it
follows that Sheffer operators and Sheffer series form an isomorphic group under
the corresponding umbral composition. The perspectives of our present contri-
bution concern the study of such operators and their combinatorial properties.
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