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Topological rigidity as a monoidal equivalence

Laurent Poinsota,b
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ABSTRACT
A topological commutative ring is said to be rigid when for every set X,
the topological dual of the X-fold topological product of the ring is iso-
morphic to the free module over X. Examples are fields with a ring top-
ology, discrete rings, and normed algebras. Rigidity translates into a dual
equivalence between categories of free modules and of “topologically free”
modules and, with a suitable topological tensor product for the latter, one
proves that it lifts to an equivalence between monoids in this category
(some suitably generalized topological algebras) and some coalgebras. In
particular, we provide a description of its relationship with the standard
duality between algebras and coalgebras, namely finite duality.
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1. Introduction

The main result of [13] states that given a (Hausdorff) topological field ðk; sÞ, for every set X, the
topological dual ððk; sÞXÞ0 of the X-fold topological product ðk; sÞX is isomorphic to the vector
space k

ðXÞ of finitely supported k-valued maps defined on X (i.e., those maps X!f k such that for
all but finitely many members x of X, f(x) ¼ 0).

Actually this topological property of rigidity is shared by more general topological (commuta-
tive unital) rings than only topological fields (a fact not noticed in [13]). For instance any discrete
ring is rigid in the above sense (see Lemma 15). And even if not all topological rings are rigid
(see Section 4.3 for a counterexample), many of them still are (e.g., every real or complex normed
commutative algebra).

It is our intention to study in more details some consequences of the property of rigidity for
arbitrary commutative rings in particular at the level of some of their topological algebras.1 So
far, for a topological ring ðR; sÞ, rigidity reads as ððR; sÞXÞ0 ’ RðXÞ for each set X. Suitably topolo-
gized (see Section 3.1), the algebraic dual ðRðXÞÞ� turns out to be isomorphic to ðR; sÞX .

More appropriately the above correspondence may be upgraded into a dual equivalence of cat-
egories between free and topologically free modules, i.e., those topological modules isomorphic to
some ðR; sÞX (Theorem 45) under the algebraic and topological dual functors. (This extends a
similar interpretation from [13] to the realm of arbitrary commutative rigid rings.)

Under the rigidity assumption, the aforementioned dual equivalence enables to provide a topo-
logical tensor product ⊛ðR;sÞ for topologically free ðR; sÞ-modules by transporting the algebraic
tensor product �R along the dual equivalence. It turns out that ⊛ðR;sÞ is (coherently) associative,
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commutative, and unital, i.e., makes monoidal the category of topologically free modules
(Proposition 61). Not too surprisingly the above dual equivalence remains well-behaved, i.e.,
monoidal, with respect to the (algebraic and topological) tensor products (Theorem 64).
According to the theory of monoidal categories, this in turn provides a dual equivalence between
monoids in the tensor category of topologically free modules (some suitably generalized topo-
logical algebras) and coalgebras with a free underlying module (Corollary 66). So there are two
constructions: a topological dual coalgebra of a monoid (in the tensor category of topologically
free modules) and an algebraic dual monoid of a coalgebra, and these constructions are inverse
one from the other (up to isomorphism).

There already exists a standard duality theory between algebras and coalgebras, over a field,
known as finite duality but contrary to our “topological duality” it is merely an adjunction, not
an equivalence. One discusses how these dualities interact (see Section 7) and in particular one
proves that the algebraic dual monoid of a coalgebra essentially corresponds to its finite dual
(Section 7.2), that over a discrete field, the topological dual coalgebra of a monoid is a subcoalge-
bra of the finite dual coalgebra of its underlying algebra and furthermore that they are equal
exactly when finite duality provides an equivalence of categories (Theorem 77).

2. Conventions, notations, and basic definitions

2.1. Conventions and notations

One assumes that the reader is familiar with standard notions and notations from category theory
([12]), and some others will be introduced in the text.

Except as otherwise stipulated, all topologies are Hausdorff, and every ring is assumed unital
and commutative. Algebras are only assumed associative and commutative.

For a ring R, R denotes both its underlying set and the canonical left R-module structure on
its underlying additive group, and mR : R� R ! R is its bilinear multiplication. Likewise if A is
an R-algebra, then A is both its underlying set and its underlying R-module. The unit of a ring
R (resp., unital algebra A) is denoted by 1R (resp. 1A). A ring map (or morphism of rings) is
assumed to preserve the units.

A product of topological spaces always has the product topology unless otherwise stated.
When for each x 2 X, all ðEx; sxÞ’s are equal to the same topological space ðE; sÞ, then the X-fold
topological product

Q
x2XðEx; sxÞ is canonically identified with the set EX of all maps from X to E

equipped with the topology of simple convergence, and is denoted by ðE; sÞX . Under this identifi-
cation, the canonical projections ðE; sÞX!px ðE; sÞ are given by pxðf Þ ¼ f ðxÞ; x 2 X; f 2 EX . The
symbol d always represents the discrete topology.

2.2. Basic definitions

Definition 1. Let R be a ring. A (Hausdorff, following our conventions) topology s of (the carrier
set of) the ring is called a ring topology when addition, multiplication, and additive inversion of the
ring are continuous. By topological ring ðR; sÞ is meant a ring together with a ring topology s on it2.
By a field with a ring topology, denoted ðk; sÞ, is meant a topological ring ðk; sÞ with k a field.

Let ðR; sÞ be a topological ring. A pair ðM; rÞ consisting of a (left and unital3) R-module M
and a topology r on M which makes continuous the addition, additive inversion, and scalar
multiplication R�M ! M, is called a topological ðR; sÞ-module. Such a topology is referred to as
a ðR; sÞ-module topology. In particular, when R is a field k, then this provides topological

2In view of Section 2.1, the multiplication of a topological ring is jointly continuous.
3Unital means that the scalar action of the unit of R is the identity on the module.
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ðk; sÞ-vector spaces. Given topological ðR; sÞ-modules ðM; rÞ; ðN; cÞ, a (continuous) homomorph-
ism ðM; rÞ!f ðN; cÞ is a R-linear map M!f N which is continuous. Topological ðR; sÞ-modules
and these morphisms form a category TopModðR;sÞ, which is denoted TopVectðk;sÞ, when k is
a field.

A pair ðA; rÞ, with A a unital R-algebra, and r a topology on A, is a topological ðR; sÞ-algebra,
when r is a module topology for the underlying R-module A, and the multiplication of A is a
bilinear (jointly) continuous map. Given topological ðR; sÞ-algebras ðA; rÞ; ðB; cÞ, a continuous
ðR; sÞ-algebra map ðA; rÞ!f ðB; cÞ is a unit preserving R-algebra map A!f B which is also continu-
ous. Topological ðR; sÞ-algebras with these morphisms form a category 1TopAlgðR;sÞ. One also
has the full subcategory 1;cTopAlgðR;sÞ of unital and commutative topological algebras.

2.3. X-fold product and finitely supported maps

Let R be a ring. ModR is the category of unital left-R-modules with R-linear maps. When R is a
field k one uses Vectk instead.

Let X be a set. The R-module RX of all maps from X to R, equivalently defined as the X-fold
power of R in the category ModR, is the object component of a functor P from the opposite

Setop of the category of sets to ModR, whose action on maps is as follows: given X!f Y and
g 2 RY ; PRðf ÞðgÞ ¼ g � f . RX is merely not just a R-module but, under point-wise multiplication

RX � RX!MXRX , a commutative R-algebra, the usual function algebra on X, denoted ARðXÞ, with
unit 1ARðXÞ :¼

P
x2X d

R
x , where dRx , or simply dx, is the member of RX with dRx ðxÞ ¼ 1R; x 2 R,

and for y 2 X; y 6¼ x; dRx ðyÞ ¼ 0. This actually provides a functor Setop!AR

1;cAlgR, where 1;cAlgR is
the full subcategory spanned by unital and commutative algebras of the category 1AlgR of (asso-
ciative) unital R-algebras with unit preserving algebra maps. (The multiplication mA of an algebra

A thus is a R-bilinear map A� A!mA
A.)

Let f 2 RX . The support of f is the set suppðf Þ :¼ f x 2 X : f ðxÞ 6¼ 0 g. Let RðXÞ be the sub-
R-module of RX consisting of all finitely supported maps (or maps with finite support), i.e., the
maps f such that supp(f) is finite.

RðXÞ is actually the free R-module over X, and a basis is given by f dRx : x 2 X g. Observe that

the map X!d
R
X RX; x 7!dx, is one-to-one if, and only if, R is nontrivial and jXj>1, or jXj � 1 and R

is arbitrary (even trivial).

Remark 2. There is the free module functor Set!FRModR which is a left adjoint of the usual for-

getful functor ModR!j�j Set; FRðXÞ :¼ RðXÞ, and for X!f Y; FRðf ÞðdRx Þ :¼ dRf ðxÞ; x 2 X. The map

X!d
R
X jRðXÞj is the component at X of the unit of the adjunction FR a j � j : Set ! ModR.
Let ðR; sÞ be a topological ring and let X be a set. Since for a map X!f Y; px � PðR;sÞðf Þ ¼

pf ðxÞ; x 2 X; ðR; sÞY !PRðf ÞðR; sÞX is continuous, and thus one has a topological power func-

tor Setop !PðR;sÞTopModðR;sÞ.

Lemma 3. ðR; sÞX � ðR; sÞX!MXðR; sÞX is continuous.

Proof. MX is of course separately continuous in both of its variables. Continuity at zero of mR

almost directly implies that of MX, and thus its continuity by [19, Theorem 2.14, p. 16]. w

AðR;sÞ : X 7!ððR; sÞX;MX; 1ARðXÞÞ is a functor too and the diagram below commutes, with the
forgetful functors unnamed.
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(1)

Notation 4. The underlying topological ring of AðR;sÞðXÞ is denoted ðR; sÞX (and is the X-fold
product of ðR; sÞ in the category of topological rings).

3. Recollection of results about algebraic and topological duals

3.1. Algebraic dual functor

Let R be a ring. Let M be a R-module. Let M� :¼ ModRðM;RÞ be the algebraic (or linear) dual
of M. This is readily a R-module on its own.

When ðR; sÞ is a topological ring, then M� may be topologized with the initial topology ([5, p.
30] or [19, Theorem 2.17, p. 17]) w�

ðR;sÞ, called the weak-� topology, induced by the family

ðM� !KMðvÞ
RÞv2M of evaluations at some points, where ðKMðvÞÞð‘Þ :¼ ‘ðvÞ. A basis of neighborhoods

of zero in this topology is given by the sets of the form
\v2F KMðvÞ�1ðf Uv gÞ ¼ f ‘ 2 M� : 8v 2 F; ‘ðvÞ 2 Uv g, where F 	 M is a finite set and for
each v 2 F; 0 2 Uv 2 s. This provides a structure of topological ðR; sÞ-module on M�, which is
even Hausdorff by [5, Corollary 1, p. 78]. As an initial topology it is characterized by the follow-

ing universal property: a linear map N!f M�, where ðN; rÞ is a topological ðR; sÞ-module, is con-
tinuous from ðM; rÞ to ðM�;w�

ðR;sÞÞ if, and only if, KMðvÞ � f : ðN; rÞ ! ðR; sÞ is continuous for

each v 2 M.
Moreover given a linear map M!f N;N�!f

�
M�; ‘ 7!f �ð‘Þ :¼ ‘ � f , is continuous for the above

topologies. Consequently, this provides a functor ModopR !AlgðR;sÞTopModðR;sÞ called the algebraic
dual functor.

Remark 5. M� and f � stand respectively for AlgðR;sÞðMÞ and AlgðR;sÞðf Þ.
Up to isomorphism, one recovers the module of all R-valued maps on a set X, with its product

topology, as the algebraic dual of the module of all finitely supported maps duly topologized
as above.

Lemma 6. For each set X, ðR; sÞX ’ AlgðR;sÞðRðXÞÞ (in TopModðR;sÞ) under the map

qX : R; sð ÞX ! R Xð Þð Þ�;w�
R;sð Þ

� �
given by

qX fð Þ pð Þ� �
:¼

X
x2X

p xð Þf xð Þ; f 2 RX; p 2 R Xð Þ:

Proof. Let ‘ 2 ðRðXÞÞ�. Let us define X!b‘ R by b‘ðxÞ :¼ ‘ðdxÞ; x 2 X. That the two constructions are
linear and inverse one from the other is clear.

It remains to make sure that there are also continuous. Let ‘ 2 ðRðXÞÞ�, and let x 2 X. Then,

pxðb‘Þ ¼ b‘ðxÞ ¼ ‘ðdxÞ ¼ ðKRðXÞ ðdxÞÞð‘Þ, which ensures continuity of ððRðXÞÞ�;w�
ðR;sÞÞ!

q�1
X ðR; sÞX . Let

f 2 RX , and p 2 RðXÞ. As ðKRðXÞ ðpÞÞðqXðf ÞÞ ¼ ðqXðf ÞÞðpÞ ¼
P

x2X pðxÞf ðxÞ ¼
P

x2X pxðpÞf ðxÞ ¼

3460 L. POINSOT



P
x2X pxðpÞpxðf Þ;KRðXÞ ðpÞ � qX is a finite linear combination of projections, whence is continuous

for the product topology, so is qX. w

Let M be a free R-module. Let B be a basis of M. This defines a family of R-linear maps, the

coefficient maps ðM!b
�
RÞb2B such that each v 2 M is uniquely represented as a finite linear com-

bination v ¼ P
b2B b

�ðvÞb. One denotes FreeModR the full subcategory of ModR spanned by the
free modules. When k is a field, FreeModk is just Vectk itself.

Example 7. For each set X, px ¼ d�x, where px :¼ RðXÞ,!RX!px R, x 2 X.

Remark 8. b�ðdÞ ¼ dbðdÞ; b; d 2 B. So ð�Þ� : B ! B� :¼ f b� : b 2 B g is a bijection.

Given a free R-module, any choice of a basis B provides the initial topology Ps
B on M�

induced by ðKMðbÞÞb2B. (Of course, Ps
B 	 w�

ðR;sÞ.)

Lemma 9. Let M be a free R-module. For any basis B of M, Ps
B ¼ w�

ðR;sÞ and ðM�;w�
ðR;sÞÞ ’

ðR; sÞB (in TopModðR;sÞ).

Proof. For ‘ 2 M�; ðKMðvÞÞð‘Þ ¼
P

b2B b
�ðvÞ‘ðbÞ ¼ P

b2B b
�ðvÞðKMðbÞÞð‘Þ; v 2 M, thus KMðvÞ is a

finite linear combination of some KMðbÞ’s, whence is continuous for Ps
B, and so w�

ðR;sÞ 	 Ps
B.

The last assertion is clear. w

3.2. Topological dual functor

Let ðR; sÞ be a topological ring, and let ðM; rÞ be a topological ðR; sÞ-module. Let ðM; rÞ0 :¼
TopModðR;sÞððM; rÞ; ðR; sÞÞ be the topological dual of ðM; rÞ, which is a R-submodule of M�. Let

ðM; rÞ!f ðN; cÞ be a continuous homomorphism between topological modules. Let

ðN; cÞ0!f
0
ðM; rÞ0 be the R-linear map given by f 0ð‘Þ :¼ ‘ � f . All of this evidently forms a func-

tor TopModopðR;sÞ !TopðR;sÞ
ModR.

Let ðR; sÞ be a topological ring, and let X be a set. Let RðXÞ!kX ðRXÞ� be given
by ðkXðpÞÞðf Þ :¼

P
x2X pðxÞf ðxÞ; p 2 RðXÞ; f 2 RX .

Let qX be the map from Lemma 6. Then, for each p 2 RðXÞ; kXðpÞ ¼ KRðXÞ ðpÞ � qX , which

ensures continuity of kXðpÞ, i.e., kXðpÞ 2 ððR; sÞXÞ0. Next lemma follows from the equal-
ity pðxÞ ¼ ðkXðpÞÞðdxÞ; p 2 RðXÞ; x 2 X.

Lemma 10. kX : RðXÞ ! ððR; sÞXÞ0 is one-to-one.

4. Rigid rings: definitions and (counter-)examples

The notion of rigidity, recalled at the beginning of the Introduction, was originally but
only implicitly introduced in [13, Theorem 5, p. 156] as the main result therein and the
possibility that its conclusion could remain valid for more general topological rings than
topological division rings was not noticed. Since a large part of this presentation is given
for arbitrary rigid rings (Definition 12 below), one here provides a stock of
basic examples.

As [13, Lemma 13, p. 158], one has the following fundamental lemma.

Lemma 11. Let ðR; sÞ be a topological ring, and let X be a set. For each f 2 RX; ðf ðxÞdxÞx2X is
summable in ðR; sÞX with sum f.
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Definition 12. Let ðR; sÞ be a topological ring. It is said to be rigid when for each set X,

RðXÞ!kX ððR; sÞXÞ0 is an isomorphism in ModR, i.e., kX is onto. In this situation, one sometimes
also called rigid a ring topology s such that ðR; sÞ is rigid.

Lemma 13. Let ‘ 2 ððR; sÞXÞ0. ‘ 2 imðkXÞ if, and only if, b‘ : X ! R given by b‘ðxÞ :¼ ‘ðdxÞ, belongs
to RðXÞ. Moreover, ðb- Þ : imðkXÞ ! RðXÞ; ‘ 7!b‘ ¼ P

x2X ‘ðdxÞdx, is the inverse of kX.

4.1. Basic stock of examples

Of course, the trivial ring is rigid (under the (in)discrete topology!). The first result below is a
slight generalization of [13, Theorem 5, p. 156] since its proof does not use continuity of
the inversion.

Lemma 14. Let ðk; sÞ be a field with a ring topology. Then, ðk; sÞ is rigid.
Lemma 15. For each ring R, the discretely topologized ring ðR; dÞ is rigid.

Proof. Let ‘ 2 ððR; dÞXÞ0. As a consequence of Lemma 11, ð‘ðdxÞÞx is summable in ðR; dÞ, with
sum ‘ð1ARðXÞÞ. Since f 0 g is an open neighborhood of zero in ðR; dÞ; ‘ðdxÞ ¼ 0 for all but finitely
many x 2 X ([19, Theorem 10.5, p. 73]). The conclusion follows by Lemma 13. w

Every normed, complex or real, commutative, and unital algebra (e.g., Banach or C�-algebra)
is rigid.

Lemma 16. Let k ¼ R;C. Let ðA; jj � jjÞ be a commutative normed k-algebra4 with a unit. Then,
as a topological ring under the topology induced by the norm, it is rigid.

Proof. Let sjj�jj be the topology on A induced by the norm of A, where A is the underlying

k-vector space of A. Let X be a set. Let ‘ 2 ððA; sjj�jjÞXÞ0. Let f 2 AX be given by f ðxÞ ¼ 1
jj‘ðdxÞjj 1A

if x 2 suppðb‘Þ and f(x) ¼ 0 for x 62 suppðb‘Þ. Since by Lemma 11, ðf ðxÞdxÞx2X is summable with
sum f, ðf ðxÞ‘ðdxÞÞx2X is summable in ðA; sjj�jjÞ with sum ‘ðf Þ. So according to [19, Theorem
10.5, p. 73], for 1>�>0, there exists a finite set F� 	 X such that jjf ðxÞ‘ðdxÞjj<� for all x 2 X n F�.
But 1 ¼ jjf ðxÞ‘ðdxÞjj for all x 2 suppðb‘Þ so that suppðb‘Þ is finite, and kX is onto by Lemma 13. w

4.2. A supplementary example: von Neumann regular rings

A (commutative and unital) ring is said to be von Neumann regular if for each x 2 R, there exists
y 2 R such that x ¼ xyx [9, Theorem 4.23, p. 65].

Let us assume that R is a (commutative) von Neumann regular ring. For each x 2 R, there is
a unique x† 2 R, called the weak inverse of x, such that x ¼ xx†x and x† ¼ x†xx†.

Example 17. A field is von Neumann regular with x† :¼ x�1; x 6¼ 0, and 0† ¼ 0. More generally,
let ðkiÞi2I be a family of fields. Let R be a ring, and let :̊ R ! Q

i2I ki be a one-to-one ring map.
Assume that for each x 2 R; ˚ðxÞ† 2 imð˚Þ, where for ðxiÞi2I 2

Q
i2I ki; ðxiÞ†i2I :¼ ðx†i Þi2I . Then, R

is von Neumann regular.

4In a normed algebra ðA; jj � jjÞ, unital or not, commutative or not, the norm is assumed sub-multiplicative, i.e.,
jjxyjj � jjxjjjjyjj, which ensures that the multiplication of A is jointly continuous with respect to the topology induced by
the norm.
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Remark 18. Let R be a von Neumann regular ring. For each x 2 R; x 6¼ 0 if, and only if, xx† 6¼ 0.
Also xx† belongs to the set EðRÞ of all idempotents (e2 ¼ e) of R.

Proposition 19. Let ðR; sÞ be a topological ring with R von Neumann regular. If
0 62 EðRÞ n f 0 g, then ðR; sÞ is rigid. In particular, if EðRÞ is finite, then ðR; sÞ is rigid.

Proof. That the second assertion follows from the first is immediate. Let X be a set. Let us assume
that 0 62 EðRÞ n f 0 g. Let V 2 VðR;sÞð0Þ5 such that V \ ðEðRÞ n f 0 gÞ ¼ ;. Let ‘ 2 ððR; sÞXÞ0.
Let f 2 RX be given by f ðxÞ :¼ ‘ðdxÞ† for each x 2 X. Since ðf ðxÞ‘ðdxÞÞx2X is summable in ðR; sÞ
with sum ‘ðf Þ, by Cauchy’s condition [19, Definition 10.3, p. 72], there exists a finite set Af ;V 	
X such that for all x 62 Af ;V ; f ðxÞ‘ðdxÞ 2 V. But for x 2 X; f ðxÞ‘ðdxÞ ¼ ‘ðdxÞ†‘ðdxÞ 2 EðRÞ.
Whence, in view of Remark 18, for all but finitely many x’s, f ðxÞ‘ðdxÞ ¼ 0, i.e., ‘ðdxÞ ¼ 0. w

Remark 20.
1. Let us point out that a von Neumann regular ring with only finitely many idempotents is

classically semisimple so is (by commutativity) a finite product of fields.
2. Lemma 14 becomes a consequence of Proposition 19.

Now, let ðEi; siÞi2I be a family of topological spaces. On
Q

i2I Ei is defined the box topology [8,
p. 107] a basis of open sets of which is given by the “box”

Q
i2I Vi, where each Vi 2 si; i 2 I. The

product
Q

i2I Ei together with the box topology is denoted by ui2IðEi; siÞ. (This topology is
Hausdorff as soon as all the ðEi; siÞ’s are.)

It is not difficult to see that given a family ðRi; siÞi2I of topological rings, then ui2IðRi; siÞ still
is a topological ring (under component wise operations).

Proposition 21. Let ðkiÞi2I be a family of fields, and for each i 2 I, let si be a ring topology on ki.
Let R be a ring with a one-to-one ring map ˚ : R; ,!Q

i2I ki. Let us assume that for each x 2
R; ˚ðxÞ† 2 imð˚Þ (ðxiÞ†i as in Example 17). Let R be topologized with the subspace topology s˚ inher-
ited from ui2Iðki; siÞ. Then, ðR; s˚Þ is rigid.

Proof. Naturally ðxiÞi2I 2 EðQi2I kiÞ if, and only if, xi 2 f 0; 1ki
g for each i 2 I. Now, for each

i 2 I, let Ui be an open neighborhood of zero in ðki; siÞ such that 1ki
62 Ui. Then,

Q
i Ui is an

open neighborhood of zero in ui2Iðki; siÞ whose only idempotent member is 0.

Therefore, 0 62 EðQi2I kiÞ n f 0 g.
Under the assumptions of the statement, an application of Example 17 states that R is a (com-

mutative) von Neumann regular ring. It is also of course a topological ring under s˚ (since ˚ is a
one-to-one ring map). It is also clear that EðRÞ ’ Eð˚ðRÞÞ 	 EðQi kiÞ. Furthermore,

˚ðEðRÞ n f 0 gÞ ¼ Eð˚ðRÞÞ n f 0 g \ ˚ðRÞ 	 EðQi kiÞ n f 0 g, and thus 0 62 EðRÞ n f 0 g accord-
ing to the above discussion. Therefore, by Proposition 19, ðR; s˚Þ is rigid. w

4.3. A counterexample

Let ðR; sÞ be a topological ring, and let us consider the topological ðR; sÞX-module ððR; sÞXÞX for

a given set X. To avoid confusion one denotes by ðRXÞX!PxRX the canonical projection, x 2 X.
Let us define a linear map ðRXÞX!d ðR; sÞX by setting dðf Þ : x 7!ðf ðxÞÞðxÞ; f 2 ðRXÞX . d is con-

tinuous, and thus belongs to ðððR; sÞXÞXÞ0, since for each x 2 X; px � d ¼ px �Px. Now, for each

5Given a topological space ðE; sÞ and x 2 E; VðE;sÞðxÞ is the set of all neighborhoods of x.
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x 2 X; ðdðdRX

x ÞÞðxÞ ¼ ðdRX

x ðxÞÞðxÞ ¼ 1RX ðxÞ ¼ 1R, i.e., dðdRX

x Þ ¼ dRx , so that suppðbdÞ ¼ X,
when R 6¼ ð0Þ.
Proposition 22. Let ðR; sÞ be a nontrivial topological ring, and let X be a set. If X is infinite, then
ðR; sÞX is not rigid.

The above negative result may be balanced by the following.

Proposition 23. Let ðR; sÞ be a rigid ring. If I is finite, then ðR; sÞI is rigid too.

Proof. Let ðR; sÞ be a topological ring. For a set I, recall from Notation 4 that ðR; sÞI is the
underlying ring of AðR;sÞðIÞ. Any topological ðR; sÞI-module is also a topological ðR; sÞ-module

under restriction of scalars along the unit map ðR; sÞ!gI ðR; sÞI; gIð1RÞ ¼ 1RI , which of course is a
ring map, and is continuous (because gIðaÞ ¼ mRI ðgIðaÞ; 1RI Þ; a 2 R.)

Let X be a set, and let ‘ 2 ðððR; sÞIÞXÞ0, i.e., ððR; sÞIÞX!‘ ðR; sÞI is continuous and RI-linear,
and by restriction of scalar along gI it is also a continuous homomorphism of topological

ðR; sÞ-modules. Therefore for each i 2 I; ððR; sÞIÞX!‘ ðR; sÞI!pi ðR; sÞ belongs to the topological
dual space of ððR; sÞIÞX seen as a ðR; sÞ-module.

Let us assume that ðR; sÞ is rigid. Then, by Lemma 13, suppð dpi � ‘Þ is finite for each i 2 I.

One also has suppðb‘Þ ¼ [i2I suppð dpi � ‘Þ, with X!b‘ RI ;b‘ðxÞ :¼ ‘ðdRI

x Þ; x 2 X. Whence if I is finite,

then suppðb‘Þ is finite too. w

5. Rigidity as an equivalence of categories

The main result of this section is Theorem 45 which provides a translation of the rigidity condi-
tion on a topological ring into a dual equivalence between the category of free modules and that
of topologically free modules (see below), provided by the topological dual functor with equiva-
lence inverse the (opposite of the) algebraic dual functor, with both functors conveniently co-
restricted. The purpose of this section thus is to prove this result.
Topologically free modules. Let ðR; sÞ be a topological ring. Let ðM; rÞ be a topological
ðR; sÞ-module. It is said to be a topologically free ðR; sÞ-module if ðM; rÞ ’ ðR; sÞX , in
TopModðR;sÞ, for some set X. Such topological modules span the full subcategory
TopFreeModðR;sÞ of TopModðR;sÞ. For a field ðk; sÞ with a ring topology, one defines correspond-
ingly the category TopFreeVectðk;sÞ of topologically free ðk; sÞ-vector spaces.
Remark 24. The topological power functor Setop !PðR;sÞTopModðR;sÞ factors as indicated below (the
co-restriction obtained is still called PðR;sÞ).

(2)

Topologically free modules are characterized by having “topological bases” (see Corollary
28 below) which makes easier a number of calculations and proofs, once such a basis
is chosen.

Definition 25. Let ðM; rÞ be a topological ðR; sÞ-module. Let B 	 M. It is said to be a topological
basis of ðM; rÞ if the following hold.
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1. For each v 2 M, there exists a unique family ðb0ðvÞÞb2B, with b0ðvÞ 2 R for each b 2 B, such that
ðb0ðvÞbÞb2B is summable in ðM; rÞ with sum v. b0ðvÞ is referred to as the coefficient of v at b 2 B.

2. For each family ðabÞb2B of elements of R, there is a member v of M such that
b0ðvÞ ¼ ab; b 2 B. (By the above point such v is unique.)

3. r is equal to the initial topology induced by the (topological) coefficient maps
ðM!b

0
ðR; sÞÞb2B. (According to the two above points, each b0 is R-linear.)

Remark 26. It is an immediate consequence of the definition that for a topological basis B of
some topological module, 0 62 B and b0ðdÞ ¼ dbðdÞ; b; d 2 B (sinceP

b2B dbðdÞb ¼ d ¼ P
b2B b

0ðdÞb). In particular, ð�Þ0 : B ! B0 :¼ f b0 : b 2 B g is a bijection.

Lemma 27. Let ðM; rÞ and ðN; cÞ be isomorphic topological ðR; sÞ-modules. Let H : ðM; rÞ ’
ðN; cÞ be an isomorphism (in TopModðR;sÞ). Let B be a topological basis of ðM; rÞ. Then, HðBÞ ¼
f HðbÞ : b 2 B g is a topological basis of ðN; cÞ.

Corollary 28. Let ðM; rÞ be a (Hausdorff) topological ðR; sÞ-module. It admits a topological basis
if, and only if, it is topologically free.

Example 29. Let ðR; sÞ be a topological ring. For each set X, f dx : x 2 X g is a topological basis
of ðR; sÞX . Moreover px ¼ d0x; x 2 X.

Let us now take the time to establish a certain number of quite useful properties of topo-
logical bases.

Lemma 30. Let ðM; rÞ be a topologically free ðR; sÞ-module with topological basis B. Then, B is
R-linearly independent and the linear span hBi of B is dense in ðM; rÞ.

Proof. Concerning the assertion of independence, it suffices to note that 0 may be written asP
b2B 0b, and conclude by the uniqueness of the decomposition in a topological basis. Let u 2 M

and let V :¼ f v 2 M : b0ðvÞ 2 Ub; b 2 A g 2 VðM;rÞð0Þ, where A is a finite subset of B and
Ub 2 VðR;sÞð0Þ; b 2 A. Let ab 2 Ub; b 2 A, and v :¼ P

b2A abb�
P

b2BnA b
0ðuÞb 2 V. So

uþ v 2 hBi. Thus, uþV meets hBi and hBi is dense in ðM; rÞ. w

Corollary 31. Let ðM; rÞ be a topologically free ðR; sÞ-module, and let ðN; cÞ be a topological
ðR; sÞ-module. Let ðM; rÞ!f ;g ðN; cÞ be two continuous homomorphisms of topological ðR; sÞ-mod-
ules. f¼ g if, and only if, for any topological basis B of ðM; rÞ; f ðbÞ ¼ gðbÞ for each b 2 B.

Topologically free modules allow for the definition of changes of topological bases (see
Proposition 48 for a related construction).

Lemma 32. Let ðM; rÞ and ðN; cÞ be topologically free ðR; sÞ-modules, with respective topological
bases B, D. Let f : B ! D be a bijection. Then, there is a unique isomorphism g in TopModðR;sÞ
such that gðbÞ ¼ f ðbÞ; b 2 B.

Proof. The question of uniqueness is settled by Corollary 31, and an isomorphism is given
by gðvÞ ¼ P

d2Dðf�1ðdÞÞ0ðvÞd; v 2 M. w

Lemma 33. Let M be a free module with basis B. Then, ðM�;w�
ðR;sÞÞ is a topologically free module

with topological basis B� :¼ f b� : b 2 B g.

Proof. According to Lemma 9, ðM�;w�
ðR;sÞÞ is a topologically free module. Let hB : M ! RðBÞ be

the isomorphism given by hBðbÞ ¼ db; b 2 B. Thus, h�B : ðRðBÞÞ� ’ M�, and h�B � qB : RB ’
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ðRðBÞÞ� ’ M� is given by h�BðqBðdRb ÞÞ ¼ qBðdRb Þ � hB ¼ pb � hB ¼ b� for b 2 B (see Example 7 for
the definition of qB). Now, f db : b 2 B g being a topological basis of RB, by Lemma 27 this
shows that B� is a topological basis of ðM�;w�

ðR;sÞÞ. w

Example 34. f px : x 2 X g is a topological basis of ðRðXÞÞ� (Example 7).

Remark 35. If B is a basis of a free module M, then B ’ B� under b7!b�, because for
each b; d 2 B; b�ðdÞ ¼ dbðdÞ.

Corollary 36. Let ðR; sÞ be a topological ring. The functor AlgðR;sÞ : ModopR ! TopModðR;sÞ factors
as illustrated in the diagram below.6 Moreover the resulting co-restriction of AlgðR;sÞ (the bottom
arrow of the diagram) is essentially surjective on objects.

(4)

Proof. The first assertion is merely Lemma 33. Regarding the second assertion, let ðM; rÞ be a
topologically free module. So, for some set X, ðM; rÞ ’ ðR; sÞX . By Lemma
6, ðR; sÞX ’ AlgðR;sÞðRðXÞÞ. w

Lemma 37. Let ðR; sÞ be a rigid ring. Let ðM; rÞ be a topologically free ðR; sÞ-module with topo-
logical basis B. Then, ðM; rÞ0 is free with basis B0 :¼ f b0 : b 2 B g.

Proof. Let HB : ðM; rÞ ’ ðR; sÞB be given by HBðbÞ ¼ db. Thus H
0
B : ððR; sÞBÞ0 ’ ðM; rÞ0, and thus

one has an isomorphism H0
B � kB : RðBÞ ’ ðM; rÞ0. Since a module isomorphic to a free module is

free, ðM; rÞ0 is free. The previous isomorphism acts as: H0
BðkBðdbÞÞ ¼ pb �HB ¼ b0 for b 2 B. It

follows from Lemma 27 that B0 is a basis of ðM; rÞ0. w

Example 38. Let ðR; sÞ be a rigid ring. Let ðM; rÞ ¼ ðR; sÞX . By Example 29, f d0x : x 2 X g ¼
f px : x 2 X g is a linear basis of ððR; sÞXÞ0.

Corollary 39. Let ðR; sÞ be a rigid ring. The functor TopModopðR;sÞ
TopðR;sÞ! ModR factors7 as indicated

by the diagram below.

6When k is a field with a ring topology s, then one has the corresponding factorization of Algðk;sÞ : Vect
op
k

! TopVectðk;sÞ.

(3)

7Correspondingly for a field ðk; sÞ with a ring topology,

(6)
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(6)

The topological dual of the algebraic dual of a free module. Let ðR; sÞ be a topological ring.
Let M be a R-module, and let us consider as in Section 3.1, the R-linear map
M!KMðM�;w�

ðR;sÞÞ0 ðKMðvÞÞð‘Þ ¼ ‘ðvÞ; v 2 M; ‘ 2 M�.

Lemma 40. Let M be a projective R-module. Then, KM is one-to-one. This holds in particular
when M is a free R-module.

Proof. Let us consider a dual basis for M, i.e., sets B 	 M and f ‘e : e 2 B g 	 M�, such that for
all v 2 M; ‘eðvÞ ¼ 0 for all but finitely many ‘e 2 B� and v ¼ P

e2B ‘eðvÞe ([9, p. 23]). Let
v 2 kerKM , i.e., ðKMðvÞÞð‘Þ ¼ ‘ðvÞ ¼ 0 for each ‘ 2 M�. Then, in particular, KMðvÞð‘eÞ ¼ ‘eðvÞ ¼
0 for all e 2 B, and thus v¼ 0. w

Let ðR; sÞ (resp. ðk; sÞ) be a rigid ring (resp. field). The functors provided by Corollaries 36
and 39 are still denoted by AlgðR;sÞ : FreeModopR ! TopFreeModðR;sÞ (resp.
Algðk;sÞ : Vect

op
k

! TopFreeVectðk;sÞ) and by TopðR;sÞ : TopFreeModopðR;sÞ ! FreeModR
(resp. Topðk;sÞ : TopFreeVect

op
ðk;sÞ ! Vectk).

Proposition 41. Let us assume that ðR; sÞ is rigid. K :¼ ðKMÞM : id ) TopðR;sÞ � AlgopðR;sÞ :
FreeModR ! FreeModR is a natural isomorphism.

Proof. Naturality is clear. Let ðR; sÞ be a topological ring. Let M be a free R-module. For each
free basis X of M, the following diagram commutes in ModR, where M!hX RðXÞ is the canonical
isomorphism given by hXðxÞ ¼ dRx ; x 2 X. Consequently, when ðR; sÞ is rigid KM is an
isomorphism.

(7)

w

Corollary 42. Let us assume that ðk; sÞ is a field with a ring topology. Then, K ¼ ðKMÞM : id )
Topðk;sÞ � Algopðk;sÞ : Vectk ! Vectk is a natural isomorphism.

The algebraic dual of the topological dual of a topologically-free module. Let ðM; rÞ be a topo-
logical ðR; sÞ-module. Let us consider the R-linear map CðM;rÞ : M ! ððM; rÞ0Þ� by set-
ting ðCðM;rÞðvÞÞð‘Þ :¼ ‘ðvÞ.
Proposition 43. Let us assume that ðR; sÞ is a rigid ring. Then, C : id ) AlgðR;sÞ � TopopðR;sÞ :
TopFreeModðR;sÞ ! TopFreeModðR;sÞ is a natural isomorphism, with C :¼ ðCðM;rÞÞðM;rÞ.

Proof. Naturality is clear. Let H : ðM; rÞ ’ ðR; sÞX be an isomorphism (in TopModðR;sÞ). Since

ðR; sÞ is rigid, kX : RðXÞ ’ ððR; sÞXÞ0 is an isomorphism. Therefore RðXÞ!kX ððR; sÞXÞ0!H
0
ðM; rÞ0 is an

isomorphism too in ModR. In particular, ðM; rÞ0 is free with basis f H0ðkXðdRx ÞÞ : x 2 X g. By
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Lemma 9, the weak-� topology on ððM; rÞ0Þ� is the same as the initial topology given by the

maps ððM; rÞ0Þ� !
KðM;rÞ0 ðpx�HÞ

ðR; sÞ; x 2 X, because H0ðkXðdRx ÞÞ ¼ H0ðpxÞ ¼ px �H. Therefore, CðM;rÞ
is continuous if, and only if, for each x 2 X;KðM;rÞ0 ðpx �HÞ � CðM;rÞ ¼ px �H is continuous.
Continuity of CðM;rÞ thus is proved.

That CðM;rÞ is an isomorphism in TopModðR;sÞ follows from the commutativity of the diagram
(in TopModðR;sÞ) below.

(8)

w

Corollary 44. Let us assume that ðk; sÞ is a field with a ring topology. C : id ) Algðk;sÞ � Topopðk;sÞ :
TopFreeVectðk;sÞ ! TopFreeVectðk;sÞ with C :¼ ðCðM;rÞÞðM;rÞ, is a natural isomorphism.

The equivalence and some of its immediate consequences. Collecting Propositions 41 and 43,
one immediately gets the following.

Theorem 45. Let us assume that ðR; sÞ is rigid. TopðR;sÞ : TopFreeModopðR;sÞ ! FreeModR is an equiva-
lence of categories, with equivalence inverse the functor AlgopðR;sÞ : FreeModR ! TopFreeModopðR;sÞ.

Corollary 46. Topðk;sÞ : TopFreeVect
op
ðk;sÞ ! Vectk is an equivalence of categories, and Algopðk;sÞ :

Vectk ! TopFreeVectopðk;sÞ is its equivalence inverse, whenever ðk; sÞ is a field with a
ring topology.

Finite-dimensional vector spaces. Let k be a field. Let ðM; rÞ be a topologically free ðk; dÞ-vec-
tor space with M finite dimensional. Then, r is the discrete topology d on M. It follows that
ðM; rÞ0 ¼ M�, and the equivalence established in Corollary 46 coincides with the classical dual
equivalence FinDimVectk ’ FinDimVectop

k
under the algebraic dual functor, where

FinDimVectk is the category of finite dimensional k-vector spaces.
Linearly compact vector spaces. Let k be a field. A topological ðk; dÞ-vector space ðM; rÞ is said
to be a linearly compact k-vector space when ðM; rÞ ’ ðk; dÞX for some set X (see [4,
Proposition 24.4, p. 105]). The full subcategory LCpVectk of TopVectðk;dÞ spanned by these
spaces is equal to TopFreeVectðk;dÞ.

Corollary 47. (of Theorem 45) Let R be a ring. For each rigid topologies s; r on R, the categories
TopFreeModðR;sÞ and TopFreeModðR;rÞ are equivalent. Moreover, for each field ðk; sÞ with a ring
topology, TopFreeVectðk;sÞ is equivalent to LCpVectk.

In particular, one recovers the result from [7] that Vectop
k

’ LCpVectk.
The universal property of ðR; sÞX . For a ring R, the functor j � j : ModR ! Set (see Remark 2)
may be restricted as indicated in the following commutative diagram, and the restriction still is
denoted j � j : FreeModR ! Set.

(9)
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Likewise FR : Set ! ModR (see again Remark 2) may be co-restricted as indicated by the com-
mutative diagram below, and the co-restriction is given the same name FR : Set ! FreeModR.

(10)

(When R is a field k, there is no need to consider the corresponding co-restrictions.)
The adjunction FR a j � j : Set ! ModR gives rise to a new one FR a j � j : Set ! FreeModR

[12, p. 147], and by composition, for each rigid ring ðR; sÞ, there is also the adjunction

AlgopðR;sÞ � FR a j � j � TopðR;sÞ : Set ! TopFreeModopðR;sÞ. Since ðR; sÞX ’ ððRðXÞÞ�;w�
ðR;sÞÞ (Lemma

6), this may be translated into a universal property of ðR; sÞX , as explained below, which somehow
legitimates the terminology topologically free.

Proposition 48. Let us assume that ðR; sÞ is rigid. Let X be a set. For each topologically free mod-

ule ðM; rÞ and any map f : X ! jðM; rÞ0j, there is a unique continuous homomorphism f ] :

ðM; rÞ ! ðR; sÞX such that jðf ]Þ0j � jkXj � dRX ¼ f (recall that dRXðxÞ ¼ dRx ; x 2 X).

Proof. There is a unique R-linear map ef : RðXÞ ! ðM; rÞ0 such that jef j � dRX ¼ f . Let us define the

continuous linear map ðM; rÞ!f
]

ðR; sÞX :¼ ðM; rÞ !CðM;rÞðððM; rÞ0Þ�; w�
ðR;sÞÞ!

ðef Þ�
ððRðXÞÞ�;w�

ðR;sÞÞ!
q�1
X ðR; sÞX . One has

j f ]� �0j � jkXj � dRX ¼ jC0
M;rð Þj � j ef� ��� �0

j � j q�1
X

� �0j � jkXj � dRX
¼ jC0

M;rð Þj � j ef� ��� �0
j � jKR Xð Þ j � dRX

because q�1
X

� �0 � kX ¼ KR Xð Þ

� �
¼ jC0

M;rð Þj � jK M;rð Þ0 j � jef j � dRX
by naturality of Kð Þ

¼ jef j � dRX
triangular identities for an adjunction 12; p: 85½ 
� �

¼ f :

(11)

It remains to check uniqueness of f ]. Let ðM; rÞ!g ðR; sÞX be a continuous linear map such

that jg0j � jkXj � dRX ¼ f . Then, g0 � kX ¼ ef . Thus, k�X � ðg0Þ� ¼ ef � ¼ qX � f ] � C�1
ðM;rÞ. So qX �

C�1
ðR;sÞX � ðg0Þ

� ¼ qX � f ] � C�1
ðM;rÞ because CðR;sÞX ¼ ðk�1

X Þ� � qX (by direct inspection), and thus

C�1
ðR;sÞX � ðg0Þ

� ¼ f ] � C�1
ðM;rÞ. Then, by naturality of C�1; g � C�1

ðM;rÞ ¼ f ] � C�1
ðM;rÞ. w

Corollary 49. Let ðR; sÞ be a rigid ring. Pop
ðR;sÞ : Set ! TopFreeModopðR;sÞ is a left adjoint of

TopFreeModopðR;sÞ !TopðR;sÞ
FreeModR!j�j

Set, and thus is naturally equivalent

to Set !
AlgopðR;sÞ�FR

TopFreeModopðR;sÞ.

Proof. A quick calculation shows that PðR;sÞðf Þ ¼ ðjkY j � dRY � f Þ] for a set theoretic map
f : X ! Y . The relation f 7!ðkY � dRY � f Þ] provides a functor from Setop to TopFreeModðR;sÞ
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whose opposite is, by construction, a left adjoint of j�j � TopðR;sÞ (this is basically the content of
Proposition 48). w

6. Tensor product of topologically free modules

In this section most of the ingredients so far introduced and developed fit together to lift the
equivalence FreeMod ’ TopFreeModopðR;sÞ to a duality between some (suitably generalized) topo-
logical algebras and some coalgebras.

6.1. Monoidal categories, monoidal functors, and (co-)monoids

Most of the notations and notions from the theory of monoidal categories needed hereafter are
taken from [14, Section 2, pp. 4874–4876] and only a few more are introduced below, since they
are indispensable.
Monoidal categories. Recall that each natural transformation a : F ) G : C ! D has an opposite
natural transformation aop : Gop ) Fop : Cop ! Dop with ðaopÞC ¼ ðaCÞop for each C-object C,
where for f 2 CðC;DÞ; f op 2 CopðD;CÞ ¼ CðC;DÞ is the corresponding Cop-morphism. Recall
also that for every categories C;D; ðC�DÞop ¼ Cop �Dop.

If C ¼ ðC;���; I; a; k; qÞ ¼ ðC;���; IÞ is a (symmetric) monoidal category, then so is its
dual C

op :¼ ðCop;��op�; I; ða�1Þop; ð.�1Þop; ðk�1ÞopÞ. (In [14] it is denoted by C
op instead

of Cop.)

Example 50. Let R be a ring. For each R-modules M, N, M�RN stands for their (algebraic) ten-
sor product, and � : M � N ! M�RN is the universal R-bilinear map.
ModR :¼ ðModR;�R;RÞ, with the ordinary coherence constraints of associativity, of left and
right units and of symmetry, is a symmetric monoidal category ([18, Example 11.2, p. 70]).

1. MonðModRÞ is isomorphic to the category 1AlgR of “ordinary” unital R-algebras under the
functor O, concrete over ModR, such that OðAÞ :¼ ðA;mA; 1AÞ, with
mAðx; yÞ :¼ lðx� yÞ; x; y 2 A, and 1A :¼ gð1RÞ, where A ¼ ðA; lA; gAÞ is a monoid
in ModR.

2. Likewise cMonðModRÞ’1;cAlgR under the (co-)restriction of the above functor O.
3. ComonðModRÞ is the category �CoalgR of counital R-coalgebras ([1,6]), and the category of

cocommutative coalgebras �;cocCoalgR is cocComonðModRÞ.
By a (symmetric) monoidal subcategory of a (symmetric) monoidal category C ¼ ðC;���; IÞ

we mean a subcategory C0 of C, closed under tensor products, containing I, and the coherence
constraints of C between C0-objects. (The last condition is automatically fulfilled when C0 is a
full subcategory.) The embedding EC0 of C0 into C then is a strict monoidal functor EC

0 (see e.g.,
[14, Definition 2, p. 4876]).

For instance, since given free modules M, N over a ring R;M�RN is free too, FreeModR ¼
ðFreeModR;�R;RÞ is a symmetric monoidal subcategory of ModR. ComonðFreeModRÞ
(resp., cocComonðFreeModRÞ) thus corresponds to the full subcategory of �CoalgR (resp.,
�;cocCoalgR) spanned by the (resp. cocommutative) coalgebras whose underlying module is free.

Monoidal functors and their induced functors. For a (symmetric) monoidal category
C; idC :¼ ðidC; id���; idIÞ, or simply id, is a strict (symmetric, [18, p. 86]) monoidal functor
from C to itself, which acts as a unit for the usual composition of monoidal functors (see [3,
Chapter 3, p. 72]). By direct inspection one observes that the composite of strong (resp. symmet-
ric) monoidal functors is strong (resp. symmetric) too.
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Remark 51. Recall that for a monoidal functor F : C ! C
0, one let eF : MonC ! MonC0 be the

induced functor as described in [14, Proposition 3, p. 4876].

1. gidC ¼ idMonðCÞ and gG � F ¼ eG � eF.
2. When F is symmetric (and C;C0 also are symmetric), then eF also provides an induced func-

tor cMonC to cMonC0 with similar properties as above.

A strong monoidal functor F ¼ ðF;U;/Þ : C ! C
0 may be considered as a strong monoidal

functor Fd :¼ ðFop; ðU�1Þop; ð/�1ÞopÞ : Cop ! ðC0Þop, the dual of F ([16, Proposition 17,
p. 639]).

Monoidal transformations and equivalences.

Remark 52.
1. Let a : F ) G : C ! C

0 be a monoidal transformation (see [3, pp. 64–65]). It induces a nat-
ural transformation ea : eF ) eG : MonC ! MonC0 with eaðC;m;eÞ :¼ aC ([3, Proposition 3.30,
p. 78]).

2. When the monoidal functors and categories are symmetric, then a also induces ea : eF )eG:cMonC!cMonC0 ([3, Proposition 3.38]).
A monoidal equivalence of monoidal categories is given by a monoidal functor F : C ! C

0

such that there are a monoidal functor G : C0 ! C and monoidal isomorphisms ([15, p. 948])
g : id ) G � F and � : F �G ) id. In this situation C;C0 are said monoidally equivalent.

Remark 53. If F is a monoidal equivalence, then eF is an equivalence between the corresponding
categories of monoids.

6.2. Topological tensor product of topologically free modules

We now wish to take advantage of the equivalence of categories FreeModR ’ TopFreeModopðR;sÞ
(Theorem 45) for a rigid ring ðR; sÞ, to introduce a topological tensor product of topologically
free modules.

From here to the end of Section 6.2, ðR; sÞ denotes a rigid ring.

The bifunctor ⊛ðR;sÞ. Let ðM; rÞ; ðN; cÞ be two topologically free ðR; sÞ-modules. One defines
their topological tensor product over ðR; sÞ as

M; rð Þ⊛ R;sð Þ N; cð Þ :¼ Alg R;sð Þ M; rð Þ0�R N; cð Þ0
� �

: (12)

One immediately observes that ðM; rÞ⊛ðR;sÞðN; cÞ still is a topologically free ðR; sÞ-module as
ðM; rÞ0 and ðN; cÞ0 are free R-modules (Lemma 37), so is ðM; rÞ0�RðN; cÞ0, and the algebraic
dual of a free module is topologically free (Lemma 33).

Actually, this definition is just the object component of a bifunctor

TopFreeMod R;sð Þ � TopFreeMod R;sð Þ�����!�⊛ R;sð Þ�
TopFreeMod R;sð Þ

that is TopFreeModðR;sÞ � TopFreeModðR;sÞ �������!TopopðR;sÞ�TopopðR;sÞ
ModopR �ModopR !�

op
R ModopR !AlgðR;sÞ

TopModðR;sÞ.
Given fi 2 TopFreeModðR;sÞððMi; riÞ; ðNi; ciÞÞ, i¼ 1, 2, then

f1⊛ðR;sÞf2 :¼ ðM1; r1Þ⊛ðR;sÞðM2; r2Þ !ðf 01�Rf 02Þ�ðN1; c1Þ⊛ðR;sÞðN2; c2Þ. Let L 2
ððM1; r1Þ0�RðM2; r2Þ0Þ�; ‘1 2 ðN1; c1Þ0 and ‘2 2 ðN2; c2Þ0. Then,
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f1⊛ R;sð Þf2
� �

Lð Þ
� �

‘1 � ‘2ð Þ ¼ L ‘1 � f1ð Þ � ‘2 � f2ð Þð Þ: (13)

Remark 54. For every sets X, Y, ðR; sÞX⊛ðR;sÞðR; sÞY ’ ðR; sÞX�Y under q�1
X�Y � !�

X;Y � ðkX�RkYÞ�,
where !X;Y : RðX�YÞ ’ RðXÞ�RRðYÞ is the unique isomorphism such

that !X;YðdRðx;yÞÞ ¼ dRx � dRy ; x 2 X; y 2 Y .

A topological basis of ðM; rÞ⊛ðR;sÞðN; cÞ. Our next goal will be to explicitly describe a topo-
logical basis (Definition 25) of ðM; rÞ⊛ðR;sÞðN; cÞ in terms of topological bases of ðM; rÞ
and ðN; cÞ.
Definition 55. Given a ring S, for every S-modules M, N, one has a natural S-linear map

M��SN� !HM;NðM�SMÞ� given by ðHM;Nð‘1 � ‘2ÞÞðu� vÞ ¼ ‘1ðuÞ‘2ðvÞ; ‘1 2 M�; ‘2 2 N�; u 2 M
and v 2 N.

Let ðM; rÞ; ðN; cÞ be topologically free ðR; sÞ-modules. Let u 2 M and v 2 N. Let us define

u⊛v :¼ H M;rð Þ0; N;cð Þ0 C M;rð Þ uð Þ�RC N;cð Þ vð Þ� � 2 M; rð Þ� R;sð Þ N; cð Þ: (14)

In details, given ‘1 2 ðM; rÞ0 and ‘2 2 ðN; cÞ0; ðu⊛vÞð‘1 � ‘2Þ ¼ ‘1ðuÞ‘2ðvÞ.
Lemma 56. Let ðM; rÞ and ðN; cÞ be both topologically free ðR; sÞ-modules, with respective topo-

logical bases B, D. The map B� D !�⊛�ðM; rÞ⊛ðR;sÞðN; cÞ given by ðb; dÞ7!b⊛d, is one-to-one.

Lemma 57. Let ðM; rÞ and ðN; cÞ be both topologically free ðR; sÞ-modules. The map M �
N !�⊛�ðM; rÞ⊛ðR;sÞðN; cÞ is R-bilinear and separately continuous in both variable. Moreover, if
s ¼ d, then ⊛ is even jointly continuous.

Proof. R-bilinearity is clear. Since ðM; rÞ0�RðN; cÞ0 is free on f x� y : x 2 X; y 2 Y g, where X
(resp. Y) is a basis of ðM; rÞ0 (resp. ðN; cÞ0), by Lemma 9, the topology w�

ðR;sÞ on

ðM; rÞ⊛ðR;sÞðN; cÞ is the initial topology induced by the

maps ððM; rÞ0�RððN; cÞ0Þ� !
KðM;rÞ0�RðN;cÞ0 ðx�yÞ

ðR; sÞ; x 2 X; y 2 Y .
Let x 2 X; y 2 Y; u 2 M and v 2 N. Then, KðM;rÞ0�RðN;cÞ0 ðx� yÞ

ðu⊛vÞ ¼ ðu⊛vÞðx� yÞ ¼ xðuÞyðvÞ ¼ mRðxðuÞ; xðvÞÞ, and this automatically guarantees separate
continuity in each variable of ⊛.

Let us assume that s ¼ d. According to the above general case, to see that ⊛ is continuous, by
[19, Theorem 2.14, p. 17], it suffices to prove continuity at zero of ⊛. Let A 	 X � Y be a finite
set, and for each ðx; yÞ 2 A, let Uðx;yÞ be an open neighborhood of zero in ðR; dÞ. Let A1 :¼ f x 2
X : 9y 2 Y; ðx; yÞ 2 A g and A2 :¼ f y 2 Y : 9x 2 X; ðx; yÞ 2 A g. A1, A2 are both finite and
A 	 A1 � A2. Let u 2 M such that x(u) ¼ 0 for all x 2 A1, and v 2 N such that y(v) ¼ 0 for all
y 2 A2. Then, ðu⊛vÞðx� yÞ ¼ 0 2 Uðx;yÞ for all ðx; yÞ 2 A1 � A2. w

Remark 58. Let X, Y be sets, and let f 2 RX; g 2 RY . Since by Lemma 57, ⊛ is separately continu-
ous8

8The second equality in Eq. (15) follows from the proof of [19, Theorem 10.15, p. 78] which, by inspection, shows that the
cited result still is valid more generally after the replacement of a jointly continuous bilinear map by a separately continuous
bilinear map.
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f⊛g ¼ P
x2X f xð ÞdRx

� �
⊛

P
y2Y g yð ÞdRy

� �
¼ P

x;yð Þ2X�Y f xð Þg yð ÞdRx ⊛dRy :

as a sum of a summable familyð Þ
(15)

For the same reason as above, if B is a topological basis of ðM; rÞ and D is a topological basis
of ðN; cÞ, then u⊛v ¼ P

ðb;dÞ2B�D b0ðuÞd0ðvÞb⊛d; u 2 M; v 2 N. In particular, one observes that

ðb⊛dÞ0ðu⊛vÞ ¼ b0ðuÞd0ðvÞ; b 2 B; u 2 M; d 2 D, and v 2 N.

Proposition 59. Let ðM; rÞ and ðN; cÞ be topologically free ðR; sÞ-modules, with respective topo-
logical bases B, D. Then, ðb⊛dÞðb;dÞ2B�D is a topological basis of ðM; rÞ⊛ðR;sÞðN; cÞ.

Proof. By virtue of Lemma 27 and Remark 54, f ðdRx ⊛dRy Þðx;yÞ2X�Y : ðx; yÞ 2 X � Y g is a topo-

logical basis of ðR; sÞX⊛ðR;sÞðR; sÞY since one has ððk�1
X �Rk

�1
Y Þ�

ðð!�1
X;YÞ�ðqX�YðdRðx;yÞÞÞÞÞ ¼ dRx ⊛dRy . Let HB : ðM; rÞ ’ ðR; sÞB;HBðbÞ :¼ db; b 2 B (resp.

HD : ðN; cÞ ’ ðR; sÞD). By functoriality, HB⊛ðR;sÞHD : ðM; rÞ⊛ðR;sÞðN; cÞ ’ ðR; sÞB⊛ðR;sÞðR; sÞD,
and since ðhB⊛ðR;sÞhDÞðb⊛dÞ ¼ db⊛dd; ðb; dÞ 2 B� D; f b⊛d : ðb; dÞ 2 B� D g is a topological
basis of ðM; rÞ⊛ðR;sÞðN; cÞ. w

Corollary 60. Let ðM; rÞ and ðN; cÞ be topologically free ðR; sÞ-modules. Then, f u⊛v : u 2
M; v 2 N g spans a dense subspace in ðM; rÞ⊛ðR;sÞðN; cÞ.

Let ðMi; riÞ and ðNi; ciÞ, i¼ 1, 2, be topologically free ðR; sÞ-modules. Let ðMi; riÞ!
fi ðNi; ciÞ,

i¼ 1, 2, be continuous homomorphisms. Let ðu; vÞ 2 M1 �M2. By Eq. (13) it is clear that

f1⊛ R;sð Þf2
� �

u⊛vð Þ ¼ f1 uð Þ⊛f2 vð Þ: (16)

If B and D are topological bases of ðM1; r1Þ and ðM2; r2Þ respectively, ðf1⊛ðR;sÞf2Þðu⊛vÞ ¼P
ðb;dÞ2B�Db

0ðuÞd0ðvÞf1ðbÞ⊛f 2ðdÞ (see Remark 58).

6.3. Monoidality of ⊛ðR;sÞ and its direct consequences

Since most of the proofs from this section mainly consist in rather tedious, but simple, inspec-
tions of commutativity of some diagrams, essentially by working with given topological or linear
bases,9 and because they did not provide much understanding, they are not included in the
presentation.

Proposition 61. Let ðR; sÞ be a rigid ring.

TopFreeMod R;sð Þ :¼ TopFreeMod R;sð Þ;⊛ R;sð Þ; R; sð Þ� �
is a symmetric monoidal category.

Corollary 62. For each field ðk; sÞ with a ring topology,

TopFreeVect k;sð Þ :¼ TopFreeVect k;sð Þ;⊛ k;sð Þ; k; sð Þ� �
is a symmetric monoidal category.

Example 63. Let ðR; sÞ be a rigid ring. Let X be a set. Let us define a commutative monoid
MðR;sÞðXÞ :¼ ððR; sÞX; lX; gXÞ in TopFreeModðR;sÞ by lXð f⊛gÞ ¼ P

x2X f ðxÞgðxÞdRx ; f ; g 2 RX

9E.g., associativity of ⊛ðR;sÞ is given by the isomorphism ðb⊛dÞ⊛e 7!b⊛ðd⊛eÞ on basis elements (Lemma 32).
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(under ðR; sÞX⊛ðR;sÞðR; sÞX ’ ðR; sÞX�X from Remark 54) and gXð1RÞ ¼
P

x2X d
R
x . This actually

defines a functor MðR;sÞ : Setop!cMonðTopFreeModðR;sÞÞ.
Let ðR; sÞ be a rigid ring. For each free R-modules M, N, let us define UM;N :¼

ðM�;w�
ðR;sÞÞ⊛ðR;sÞ ðN�;w�

ðR;sÞÞ ¼ AlgðR;sÞððM�;w�
ðR;sÞÞ0�RðN�;w�

ðR;sÞÞ0Þ !ðKM�RKNÞ� ððM�RNÞ�;w�
ðR;sÞÞ.

According to Proposition 41, UM;N is an isomorphism in TopFreeModðR;sÞ. Naturality in M, N is
clear, so this provides a natural isomorphism

U : Alg R;sð Þ �ð Þ⊛ R;sð ÞAlg R;sð Þ �ð Þ ) Alg R;sð Þ ��R�ð Þ :
FreeModopR � FreeModopR ! TopFreeMod R;sð Þ:

(17)

Furthermore, let us consider the isomorphism ðR; sÞ!/ ðR�;w�
ðR;sÞÞ given by /ð1RÞ :¼ idR, with

inverse /�1ð‘Þ ¼ ‘ð1RÞ.
Let ðM; rÞ; ðN; cÞ be topologically free ðR; sÞ-modules. One defines the map

WðM;rÞ;ðN;cÞ :¼ ðM; rÞ0�RðN; cÞ0 !
KðM;rÞ0�RðN;cÞ0 ðAlgðR;sÞððM; rÞ0�RðN; cÞ0ÞÞ0 ¼ ððM; rÞ⊛ðR;sÞðN; cÞÞ0.

This gives rise to a natural isomorphism

W : Top R;sð Þ �ð Þ�RTop R;sð Þ �ð Þ ) Top R;sð Þ �⊛ R;sð Þ�
� �

:

TopFreeModopR;sð Þ � TopFreeModopR;sð Þ ! FreeModR:
(18)

Let also R!w ðR; sÞ0 be given by wð1RÞ ¼ idR and w�1ð‘Þ ¼ ‘ð1RÞ.
Theorem 64. Let ðR; sÞ be a rigid ring.

1. AlgðR;sÞ :¼ ðAlgðR;sÞ;U;/Þ : FreeMod
op
R ! TopFreeModðR;sÞ is a strong symmetric

monoidal functor.
2. TopðR;sÞ :¼ ðTopðR;sÞ;W;wÞ : TopFreeMod

op
ðR;sÞ ! FreeModR is a strong symmetric mono-

idal functor, so is its dualTopd
ðR;sÞ (Remark 51) fromTopFreeModðR;sÞ to FreeMod

op
R .

3. Kop : Topd
ðR;sÞ �AlgðR;sÞ ) id : FreeMod

op
R ! FreeMod

op
R is a monoidal isomorphism.

4. C : id ) AlgðR;sÞ �Topd
ðR;sÞ : TopFreeModðR;sÞ ! TopFreeModðR;sÞ is a monoidal

isomorphism.

In particular, FreeMod
op
R and TopFreeModðR;sÞ are monoidally equivalent.

Corollary 65. For each field ðk; sÞ with a ring topology, the monoidal categories Vect
op
k

and
TopFreeVectðk;sÞ are monoidally equivalent.

Corollary 66. For each rigid ring ðR; sÞ, the natural transformations gKop : gðTopd
ðR;sÞÞ � gAlgðR;sÞ )

idComonðFreeModRÞop and eC : idMonðTopFreeModðR;sÞÞ ) gAlgðR;sÞ � gðTopd
ðR;sÞÞ, induced as in Remark

52 by Kop and C, are natural isomorphisms. So are also the corresponding induced natural transforma-
tions at the level of the respective categories of (co)commutative (co)monoids (Remark 52).

Corollary 67. The equivalence from Corollary 66 restricts to an equivalence between the category
�FinDimCoalgk (resp. �;cocFinDimCoalgk) of finite dimensional (resp. cocommutative) coalgebras
and the category of monoids MonðFinDimVectkÞ (resp. cMonðFinDimVectkÞ),
where FinDimVectk ¼ ðFinDimVectk;�k;kÞ.

7. Relationship with finite duality

Over a field, there is a standard and well-known notion of duality between algebras and coalge-
bras, known as the finite duality [1,6] and we have the intention to understand the relations if
any, between the equivalence of categories from Corollary 66 and this finite duality.
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Let ð�Þ� : ModopR ! ModR be the usual algebraic dual functor. Then, D� :¼ ðð�Þ�;H; hÞ is a
lax symmetric monoidal functor from Mod

op
R to ModR (where H is as in Definition 55, and h :

R ! R� is the isomorphism hð1RÞ ¼ idR (and h�1ð‘Þ ¼ ‘ð1RÞ)). When k is a field, there is the

finite dual coalgebra functor Dfin : MonðVectkÞop!�Coalgk (denoted by ð�Þ0 in [1,6]). The

aforementioned finite duality is the adjunction Dop
fin a fD� : MonðVectkÞ!�Coalg

op
k

(see e.g., [6,

Theorem 1.5.22, p. 44], where fD� is denoted by ð�Þ�).

7.1. The underlying algebra

Let ðR; sÞ be a rigid ring. Let ðM; rÞ; ðN; cÞ be topologically free ðR; sÞ-modules. According to

Lemma 57, M � N !�⊛�ðM; rÞ⊛ðR;sÞðN; cÞ is R-bilinear. Denoting by TopFreeModðR;sÞ !
jj⊛jj

ModR
the canonical forgetful functor, this means that there is a unique R-linear map

jjðM; rÞjj�RjjðN; cÞjj !NðM;rÞ;ðN;cÞjjðM; rÞ⊛ðR;sÞðN; cÞjj such that for
each u 2 M; v 2 N;NðM;rÞ;ðN;cÞðu� vÞ ¼ u⊛v.

Lemma 68. A :¼ ðjj�jj; ðNðM;rÞ;ðN;cÞÞðM;rÞ;ðN;cÞ; idRÞ is a lax symmetric monoidal functor from
TopFreeModðR;sÞ to ModR.

Let eA : MonðTopFreeModðR;sÞÞ ! MonðModRÞ be the functor induced by A. Using the
functorial isomorphism O : MonðModRÞ’1AlgR (Example 50), to any monoid in
TopFreeModðR;sÞ is associated an ordinary algebra.

Definition 69. Let us define UA :¼ MonðTopFreeModðR;sÞÞ !O�
eA
1AlgR. Given a monoid

ððM; rÞ; l; gÞ in TopFreeModðR;sÞ, UAððM; rÞ; l; gÞ ¼ Oð eAððM; rÞ; l; gÞÞ is referred to as the
underlying (ordinary) algebra of the monoid ððM; rÞ; l; gÞ. In details, UAððM; rÞ; l; gÞ ¼
ðM; lbil; gð1RÞÞ with lbil : M �M ! M given by lbilðu; vÞ :¼ lðu⊛vÞ.

Remark 70. Since by Lemma 68, A is symmetric, it also induces a functor (see Remark 51)eA:cMonðTopFreeModðR;sÞÞ!cMonðModRÞ. Because one has the co-restriction
O:cMonðModRÞ!1;cAlgR, one may consider the underlying algebra func-

tor UA¼cMonðTopFreeModðR;sÞÞ !O�
eA
1;cAlgR.

Example 71. (Continuation of Example 63) UAðMðR;sÞðXÞÞ ¼ ARX.

7.2. Relations with the algebraic dual algebra functor fD�

Let ðR; sÞ be a rigid ring. Let FreeModR!E ModR be the canonical embedding functor. Since
FreeModR is a symmetric monoidal subcategory of ModR it follows that E ¼ ðE; id; idÞ is a
strict monoidal functor from FreeModR to ModR.

One claims that D� �Ed ¼ A �AlgðR;sÞ. In particular, if k is a field (and s is a ring topology
on k), then this reduces to D� ¼ A �Algðk;sÞ.

That jj�jj � AlgðR;sÞ ¼ ð�Þ� � Eop is due to the very definition of AlgðR;sÞ. Of course, jj/jj ¼ h.
That for each free modules M, N, jjðKM � KNÞ�jj � NM�;N� ¼ HM;N is easy to check. So ðð�Þ� �
Eop;H; hÞ ¼ ðjj�jj;N; idRÞ � ðAlgðR;sÞ;U;/Þ ¼ ðjj�jj � AlgðR;sÞ; ðjjUM;N jj � NM�;N� ÞM;N ; jj/jjÞ.

It follows that the algebraic dual monoid (in Vectk) fD�ðCÞ of a k-coalgebra C, is equal toeAð gAlgðk;sÞ ðCÞÞ whatever is the ring topology s on the field k, and thus as ordinary alge-

bras, OðfD�ðCÞÞ ¼ UAð gAlgðk;sÞ ðCÞÞ.
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Proposition 72. Let ðk; sÞ be a field with a ring topology. Then the functor O � eA :
MonðFreeTopVectðk;sÞÞ!1Algk has a left adjoint, namely gAlgðk;sÞ � Dop

fin � O�1.

Proof. One has fD� ¼ eA � gAlgðk;sÞ , whence fD� � gðTopd
ðk;sÞÞ ¼ eA � gAlgðk;sÞ � gðTopd

ðk;sÞÞop ’eA (natural isomorphism) by Theorem 64. Since gAlgðk;sÞ � Dop
fin is a left adjoint of

fD� � gðTopd
ðk;sÞÞ, it follows that it is also the left adjoint of eA. w

7.3. The underlying topological algebra

Let R be a ring. Let A ¼ ððA; rÞ; l; gÞ be an object of MonðTopFreeModðR;dÞÞ. One knows

that ðA; rÞ is an object of TopModðR;dÞ and UAðAÞ is an object of 1AlgR. Moreover, ðA; rÞ �
ðA; rÞ!lbilðA; rÞ is continuous, since it is equal to the composition ðA; rÞ �
ðA; rÞ !�⊛�ðA; rÞ⊛ðR;dÞðA; rÞ!l ðA; rÞ of continuous maps (see Lemma 57). Now, let

ððA; rÞ; l; gÞ!f ððB; cÞ; �; fÞ be a morphism in MonðTopFreeModðR;dÞÞ. In particular,

ðA; rÞ!f ðB; cÞ is linear and continuous, and the following diagram commutes.

(19)

Since by assumption, one also has f � g ¼ f, it follows that f ðgð1RÞÞ ¼ fð1RÞ, and thus f is a
continuous algebra map from ððA; rÞ; lbil; gð1RÞÞ to ððB; cÞ; �bil; fð1RÞÞ.

So is obtained a functor MonðTopFreeModðR;dÞÞ!TA1TopAlgðR;dÞ, referred to as the topo-
logical algebra functor, and the following diagram commutes (the unnamed arrows are either the
obvious forgetful functors or the evident embedding functor), so that TA is concrete over
TopModðR;dÞ, whence faithful.

(20)

Remark 73. When A is a commutative monoid in TopFreeModðR;dÞ, then TAðAÞ is a commu-
tative topological algebra.

Example 74. For each set X, TAðMðR;dÞðXÞÞ ¼ AðR;dÞðXÞ.
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Proposition 75. TA is a full embedding functor.

Proof. Let A ¼ ððA; rÞ; l; gÞ and B ¼ ððB; cÞ; �; fÞ be monoids in TopFreeModðR;dÞ. Let

TAðAÞ!g TAðBÞ be a morphism in 1TopAlgðR;dÞ. Therefore in particular,

g21AlgRðUAðAÞ;UAðBÞÞ \ TopððjAj; rÞ; ðjBj; cÞÞ. (Recall from Remark 2 that ModR!j�j Set is the
usual forgetful functor, and Top is the category of Hausdorff topological spaces.)

By assumption, for each u; v 2 A; gðlðu⊛vÞÞ ¼ gðlbilðu; vÞÞ ¼ �bilðgðuÞ; gðvÞÞ ¼ �ðgðuÞ⊛gðvÞÞ.
Thus, g � l ¼ � � ðg⊛ðR;dÞgÞ on f u⊛v : u; v 2 A g. Since this set spans a dense subset of
ðA; rÞ�ðR;sÞðA; rÞ (according to Corollary 60), by linearity and continuity, g � l ¼ � � ðg⊛ðR;dÞgÞ
on the whole of ðA; rÞ⊛ðR;dÞðA; rÞ.

Moreover, gðgð1RÞÞ ¼ fð1RÞ, then g � g ¼ f. Therefore, g may be seen as a morphism A!f B in
MonðTopFreeModðR;dÞÞ with TA(f) ¼ g, i.e., TA is full.

Let A ¼ ððA; rÞ; l; gÞ;B ¼ ððB; cÞ; �; fÞ be monoids in TopFreeModðR;dÞ such that
TAðAÞ ¼ TAðBÞ. In particular, ðA; rÞ ¼ ðB; cÞ, and g ¼ f. By assumption lbil ¼ �bil. Whence l ¼
� on f u⊛v : u 2 A; v 2 B g, and by continuity they are equal on ðA; rÞ⊛ðR;dÞðB; cÞ. So A ¼ B,
i.e., TA is injective on objects. w

As a consequence of Proposition 75, MonðTopFreeModðR;dÞÞ is isomorphic to a full subcat-
egory of 1TopAlgðR;dÞ ([2, Proposition 4.5, p. 49]).

It is clear that cMonðTopFreeModðR;dÞÞ!TA1;cTopAlgðR;dÞ of TA (see Remark 73) also is a
full embedding functor.

7.4. Relations with the finite dual coalgebra functor dfin

Let V be any vector space on a field k. Then, V� has a somewhat natural topology called the V-
topology ([1]) or the finite topology ([6]), with a fundamental system of neighborhoods of zero
consisting of subspaces

W† :¼ ‘ 2 V� : 8w 2 W; ‘ wð Þ ¼ 0
	 


(21)

where W runs over the finite dimensional subspaces of V. This is manifestely the same topology
as our w�

ðk;dÞ (see Section 3.1). Accordingly this turns V� into a linearly compact k-vector space
(p. §). The closed subspace of ðV�;w�

ðk;dÞÞ are exactly the subspaces of the form W†, where W is
any subspace of V ([4, Proposition 24.4, p. 105]).

Lemma 76. Let W be a subspace of V. codimðW†Þ is finite if, and only if, dimðWÞ is finite. In this
case, codimðW†Þ ¼ dimðWÞ.
Proof. One observes that V�=W† ’ W� because the map incl�W : V� ! W� is onto, where inclW :
W ! V is the canonical inclusion, and kerincl�W ¼ W†. Since V�=W† ’ W�, it follows
that codimðW†Þ ¼ dimW�. w

Theorem 77. Let k be a field. For each monoid A in TopFreeVectðk;dÞ, the topological dual

coalgebra gðTopd
ðk;dÞÞðAÞ of A is a subcoalgebra of Dop

finð eAðAÞÞ. Furthermore, the assertions below

are equivalent.

1. In TAðAÞ every finite codimensional ideal is closed.
2. eAðAÞ is reflexive10.

10A monoid A in Vectk is reflexive when A ’ fD� ðDop
finðAÞÞ under the linear map u7!ð‘7!‘ðuÞÞ, which is the unit of the

adjunction Dop
fin a fD� .
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3. The coalgebra gðTopd
ðk;dÞÞðAÞ is coreflexive11.

4. gðTopdðk;dÞÞðAÞ ¼ Dop
finð eAðAÞÞ.

Proof. Let A ¼ ððA; rÞ; l; gÞ be a monoid in TopFreeModðk;dÞ. Whence its underlying topo-

logical vector space is a linearly compact vector space (p. 15). Let C :¼ gðTopd
ðk;dÞÞðAÞ. Since eA �

gAlgðk;dÞ ¼ fD� it follows that eA ’ eA � gAlgðk;dÞ � gðTopd
ðk;dÞÞ ’ fD� � gðTopd

ðk;dÞÞ (naturally iso-

morphic). In particular, eAðAÞ ’ fD�ðCÞ. By construction, the underlying topological vector space
of A, namely ðA; rÞ, is also the underlying topological vector space of TAðAÞ. Also A;TAðAÞ andeAðAÞ share the same underlying vector space A, which is isomorphic to C�, where C is the
underlying vector space of the coalgebra C. Of course, ðA; rÞ ’ Algðk;dÞðCÞ ¼ ðC�;w�

ðk;dÞÞ.
Therefore, up to such an isomorphism, ðA; rÞ has a fundamental system of neighborhoods of
zero consisting of V† ¼ f ‘ 2 A : 8v 2 V; ‘ðvÞ ¼ 0 g where V is a finite dimensional subspace of
C (see Eq. (21)).

Let ‘ 2 ðA; rÞ0. By continuity of ‘, there exists a finite dimensional subspace V of C such that
V† 	 ker‘. Let B be a (finite) basis of V, and let D be the (necessarily finite dimensional, by [10,
Theorem 1.3.2, p. 21]) subcoalgebra of C it generates. Then, V 	 D, which implies that
D† 	 V† 	 ker‘. But D† is a finite codimensional ideal of eAðAÞ (by Lemma 76 and [1, Theorem
2.3.1, p. 78]), whence ‘ 2 A0.12

It remains to check that the above inclusion inclðA;rÞ0 is a coalgebra map from gðTopd
ðk;dÞÞðAÞ

to Dop
finð eAðAÞÞ, which would equivalently mean that ðA; rÞ0 is a subcoalgebra of Dop

finð eAðAÞÞ. One
thus needs to make explicit the two coalgebra structures so as to make possible a comparison. By

construction the comultiplication of gðTopd
ðk;dÞÞðAÞ is given by the composition K�1

ðA;rÞ0�kðA;rÞ0 � l0.
So for ‘ 2 ðA; rÞ0; ðK�1

ðA;rÞ0�kðA;rÞ0 � l0Þð‘Þ ¼
Pn

i¼1 ‘i � ri, for some ‘i; ri 2 ðA; rÞ0. Therefore, given
‘ 2 ðA; rÞ0; u; v 2 A; ‘ðlðu ? vÞÞ ¼ Pn

i¼1 ‘iðuÞriðvÞ. The counit of gðTopd
ðk;dÞÞðAÞ is

ðA; rÞ0!g
0
ðk; dÞ0!w

�1

k, i.e., ‘ 7!‘ðgð1kÞÞ. It follows easily, from the explicit description of DfinðBÞ
provided in [6, p. 35], for a monoid B in Vectk, that the above comultiplication coincides with

that of Dfinð eAðAÞÞ, and because it is patent that the counit of gðTopd
ðk;dÞÞðAÞ is the restriction of

that of Dop
finð eAðAÞÞ; ðA; rÞ0 is a subcoalgebra of Dop

finð eAðAÞÞ.
It remains to prove the equivalence of the four assertions given in the statement. 2 () 3 since

finite duality restricts to an equivalence of categories between the full categories of reflexive alge-
bras and of coreflexive coalgebras (in a standard way; see e.g., [11, Proposition 4.2, p. 16]),
and eAðAÞ ’ fD�ð gðTopd

ðk;dÞÞðAÞÞ.
The coalgebra C :¼ gðTopd

ðk;dÞÞðAÞ is coreflexive if, and only if, every finite codimensional
ideal of fD�ðCÞ ’ eAðAÞ is closed in the finite topology of C� ([1, Lemma 2.2.15, p. 76]), which
coincides with our topology w�

ðk;dÞ, and thus it turns out that ðfD�ðCÞ;w�
ðk;dÞÞ ’ TAðAÞ (since C�

under the finite topology is equal to Algðk;dÞðCÞ ’ ðA; rÞ by functoriality). Whence 3 () 1.
Let us assume that in TAðAÞ every finite codimensional ideal is closed. Let ‘ 2 Dfinð eAðAÞÞ. By

definition ker‘ contains a finite codimensional ideal say I of eAðAÞ. Since I is closed, there exists
a finite dimensional subspace D of C such that D† ¼ I (since the closed subspaces are of the

11A coalgebra C is coreflexive, when C ’ Dop
finðfD� ðCÞÞ under the natural inclusion u7!ð‘7!‘ðuÞÞ, which is the counit

of Dop
fin a fD� .

12A0 :¼ f ‘ 2 A� : ker‘ contains a finite-codimensional (two-sided) ideal of UAðAÞ } is the underlying vector space of the
finite dual coalgebra Dfinð eAðAÞÞ.
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form D† for a subspace D of C and by Lemma 76, codimðIÞ ¼ codimðD†Þ ¼ dimðDÞ), whence I
is open, which shows that ðA; rÞ!‘ ðk; dÞ is continuous so 1)4.

Let C :¼ gðTopd
ðk;dÞÞðAÞ ¼ Dop

finð eAðAÞÞ, so that eAðAÞ ’ fD�ðCÞ, as above. Whence

C ¼ Dop
finð eAðAÞÞ ’ Dop

finðfD�ðCÞÞ. This is not sufficient to ensure coreflexivity of C, since there is

at this stage no guaranty that the above isomorphism corresponds to the counit of the adjunction

Dop
fin a fD� (see Footnote 3). One knows from the beginning of the proof that eAðeCAÞ : AðAÞ ’

eAð gAlgðk;dÞ ð gðTopd
ðk;dÞÞðAÞÞÞ which, in this case where gðTopd

ðk;dÞÞðAÞ ¼ Dop
finð eAðAÞÞ, is the iso-

morphism jjCðA;rÞjj : A ’ ððA; rÞ0Þ� ¼ ðA0Þ�; u7!ð‘ 7!‘ðuÞÞ. So eAðAÞ is reflexive, and thus its
finite dual coalgebra C is coreflexive. Thus 4)3. w

Example 78. Let R be a ring. Let CRX ¼ ðRðXÞ; dX; eXÞ be the group-like coalgebra on X, i.e.,
dXðdxÞ ¼ dx � dx, and eXðdxÞ ¼ 1R; x 2 X. The following diagram commutes for a rigid
ring ðR; sÞ.

(22)

Moreover g0Xð‘Þ ¼ wðeXðkXð‘ÞÞÞ for each ‘ 2 ððR; sÞXÞ0. All of this shows that kX :gðTopd
ðR;sÞÞðMðR;sÞðXÞÞ ’ CRX is an isomorphism of coalgebras.

Let k be a field. It follows from Theorem 77 and Example 74 that in Aðk;dÞðXÞ every finite
codimensional ideal is closed if, and only if CkX is coreflexive if, and only if, f px : x 2
X g¼1AlgkðAkðXÞ;kÞ ([17, Corollary 3.2, p. 528]). This holds in particular if jXj � jkj (see [17,
Corollary 3.6, p. 529]). If k is a finite field, then CkðXÞ is coreflexive if, and only if, X is finite
(see [17, Remark 3.7, p. 530]).
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[6] D�asc�alescu, S., N�ast�asescu, C., Raianu, Ş. (2001). Hopf Algebras. Pure and Applied Mathematics, Vol. 401.

New York: Marcel Dekker.
[7] Dieudonn�e, J. (1951). Linearly compact spaces and double vector spaces over sfields. Amer. J. Math. 73(1):

13–19.
[8] Kelley, J. L. (1955). General Topology, Vol. 27. Berlin, Germany: Springer-Verlag.
[9] Lam, T. Y. (1999). Lectures on Modules and Rings, Vol. 189. Berlin, Germany: Springer-Verlag.

COMMUNICATIONS IN ALGEBRAVR 3479



[10] Lambe, L. A., Radford, D. E. (2013). Introduction to the Quantum Yang-Baxter Equation and Quantum
Groups: An Algebraic Approach, Vol. 423. Berlin, Germany: Springer-Verlag.

[11] Lambek, J., Scott, P. J. (1988). Introduction to Higher-order Categorical Logic, Vol. 7. Cambridge, UK: CUP.
[12] MacLane, S. (1998). Categories for the Working Mathematician, Vol. 5. Berlin, Germany: Springer-Verlag.
[13] Poinsot, L. (2015). Rigidity of topological duals of spaces of formal series with respect to product topolo-

gies. Topol. Appl. 189:147–175.
[14] Poinsot, L., Porst, H.-E. (2015). Free monoids over semigroups in a monoidal category: Construction and

applications. Comm. Algebra 43(11):4873–4899.
[15] Poinsot, L., Porst, H.-E. (2016). The dual rings of an R-coring revisited. Comm. Algebra 44(3):944–964.
[16] Porst, H. E. (2015). The formal theory of Hopf algebras part I: Hopf monoids in a monoidal category.

Quaest. Math. 38(5):631–682.
[17] Radford, D. E. (1973). Coreflexive coalgebras. J. Algebra 26(3):512–535.
[18] Street, R. (2007). Quantum Groups: A Path to Current Algebra. Cambridge, UK: CUP.
[19] Warner, S. (1993). Topological Rings, Vol. 178. Amsterdam, Netherlands: Elsevier.

3480 L. POINSOT


	Abstract
	Introduction
	Conventions, notations, and basic definitions
	Conventions and notations
	Basic definitions
	X-fold product and finitely supported maps

	Recollection of results about algebraic and topological duals
	Algebraic dual functor
	Topological dual functor

	Rigid rings: definitions and counter-examples
	Basic stock of examples
	A supplementary example: von Neumann regular rings
	A counterexample

	Rigidity as an equivalence of categories
	Tensor product of topologically free modules
	Monoidal categories, monoidal functors, and co-monoids
	Topological tensor product of topologically free modules
	Monoidality of R, and its direct consequences

	Relationship with finite duality
	The underlying algebra
	Relations with the algebraic dual algebra functor D*
	The underlying topological algebra
	Relations with the finite dual coalgebra functor dfin

	Acknowledgements
	References


