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ABSTRACT ARTICLE HISTORY

A topological commutative ring is said to be rigid when for every set X, Received 15 July 2018
the topological dual of the X-fold topological product of the ring is iso- Revised 3 December 2018
morphic to the free module over X. Examples are fields with a ring top- E;’;Tc‘r:‘#i“icate‘j by Alberto

ology, discrete rings, and normed algebras. Rigidity translates into a dual
equivalence between categories of free modules and of “topologically free” KEYWORDS

modules and, with a suitable topological tensor product for the latter, one Coalgebras; finite duality;
proves that it lifts to an equivalence between monoids in this category topological dual space;
(some suitably generalized topological algebras) and some coalgebras. In topological basis
particular, we provide a description of its relationship with the standard

duality between algebras and coalgebras, namely finite duality. MATHEMATICS SUBJECT
CLASSIFICATION

13J99; 54H13;
46A20; 19D23

1. Introduction

The main result of [13] states that given a (Hausdorff) topological field (k, ), for every set X, the
topological dual ((k,7)*)" of the X-fold topological product (k,7)* is isomorp]j}ic to the vector
space k™ of finitely supported k-valued maps defined on X (i.e., those maps X—k such that for
all but finitely many members x of X, f{x) = 0).

Actually this topological property of rigidity is shared by more general topological (commuta-
tive unital) rings than only topological fields (a fact not noticed in [13]). For instance any discrete
ring is rigid in the above sense (see Lemma 15). And even if not all topological rings are rigid
(see Section 4.3 for a counterexample), many of them still are (e.g., every real or complex normed
commutative algebra).

It is our intention to study in more details some consequences of the property of rigidity for
arbitrary commutative rings in particular at the level of some of their topological algebras." So
far, for a topological ring (R, 1), rigidity reads as ((R,7)*)" ~ R¥) for each set X. Suitably topolo-
gized (see Section 3.1), the algebraic dual (R¥))* turns out to be isomorphic to (R,7)*.

More appropriately the above correspondence may be upgraded into a dual equivalence of cat-
egories between free and topologically free modules, i.e., those topological modules isomorphic to
some (R,7)* (Theorem 45) under the algebraic and topological dual functors. (This extends a
similar interpretation from [13] to the realm of arbitrary commutative rigid rings.)

Under the rigidity assumption, the aforementioned dual equivalence enables to provide a topo-
logical tensor product ®R ) for topologically free (R,7)-modules by transporting the algebraic
tensor product ®R along the dual equivalence. It turns out that ® ;) is (coherently) associative,

CONTACT Laurent Poinsot @ laurent.poinsot@lipn.univ-paris13.fr @ CREA, French Air Force Academy, Base aérienne 701,
13661 Salon-de-Provence, France.

'The results of the present contribution also serve in a subsequent paper under preparation about topological semisimplicity
of commutative topological algebras.
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commutative, and unital, ie., makes monoidal the category of topologically free modules
(Proposition 61). Not too surprisingly the above dual equivalence remains well-behaved, i.e.,
monoidal, with respect to the (algebraic and topological) tensor products (Theorem 64).
According to the theory of monoidal categories, this in turn provides a dual equivalence between
monoids in the tensor category of topologically free modules (some suitably generalized topo-
logical algebras) and coalgebras with a free underlying module (Corollary 66). So there are two
constructions: a topological dual coalgebra of a monoid (in the tensor category of topologically
free modules) and an algebraic dual monoid of a coalgebra, and these constructions are inverse
one from the other (up to isomorphism).

There already exists a standard duality theory between algebras and coalgebras, over a field,
known as finite duality but contrary to our “topological duality” it is merely an adjunction, not
an equivalence. One discusses how these dualities interact (see Section 7) and in particular one
proves that the algebraic dual monoid of a coalgebra essentially corresponds to its finite dual
(Section 7.2), that over a discrete field, the topological dual coalgebra of a monoid is a subcoalge-
bra of the finite dual coalgebra of its underlying algebra and furthermore that they are equal
exactly when finite duality provides an equivalence of categories (Theorem 77).

2. Conventions, notations, and basic definitions
2.1. Conventions and notations

One assumes that the reader is familiar with standard notions and notations from category theory
([12]), and some others will be introduced in the text.

Except as otherwise stipulated, all topologies are Hausdorff, and every ring is assumed unital
and commutative. Algebras are only assumed associative and commutative.

For a ring R, R denotes both its underlying set and the canonical left R-module structure on
its underlying additive group, and mR : R X R — R is its bilinear multiplication. Likewise if A is
an R-algebra, then A is both its underlying set and its underlying R-module. The unit of a ring
R (resp., unital algebra A) is denoted by 1r (resp. 1a). A ring map (or morphism of rings) is
assumed to preserve the units.

A product of topological spaces always has the product topology unless otherwise stated.
When for each x € X, all (E,, 1,)’s are equal to the same topological space (E, 1), then the X-fold
topological product [],.y(Ex, 7,) is canonically identified with the set E* of all maps from X to E
equipped with the topology of simple convergence, and is denoted by (E,7)*. Under this identifi-
cation, the canonical projections (E,1)*5(E, 1) are given by m.(f) = f(x),x € X,f € EX. The
symbol d always represents the discrete topology.

2.2. Basic definitions

Definition 1. Let R be a ring. A (Hausdorff, following our conventions) topology t of (the carrier
set of) the ring is called a ring topology when addition, multiplication, and additive inversion of the
ring are continuous. By topological ring (R, t) is meant a ring together with a ring topology t on it’.
By a field with a ring topology, denoted (k, 1), is meant a topological ring (k, t) with k a field.

Let (R, 1) be a topological ring. A pair (M, o) consisting of a (left and unital’) R-module M
and a topology ¢ on M which makes continuous the addition, additive inversion, and scalar
multiplication R x M — M, is called a topological (R, 1)-module. Such a topology is referred to as
a (R,7)-module topology. In particular, when R is a field k, then this provides fopological

2In view of Section 2.1, the multiplication of a topological ring is jointly continuous.
3Unital means that the scalar action of the unit of R is the identity on the module.
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(k, 7)-vector. spaces. Given topological (R, 7)-modules (M, a),(N,7), a (continuous) homomorph-
ism (M,0)—=(N,y) is a R-linear map M—N which is continuous. Topological (R, 1)-modules
and these morphisms form a category TopMod(r ;), which is denoted TopVect ), when k is
a field.

A pair (A, o), with A a unital R-algebra, and ¢ a topology on 4, is a topological (R, 7)-algebra,
when ¢ is a module topology for the underlying R-module A, and the multiplication of A is a
bilinear (jointly) continuous map. Given topological (R, 7)-algebras (A, o), (B,7), a continuous
(R, 1)-algebra map (A, o)—(B,y) is a unit preserving R-algebra map A—B which is also continu-
ous. Topological (R,7)-algebras with these morphisms form a category ;TopAlgg . One also
has the full subcategory ;  TopAlgg ., of unital and commutative topological algebras.

2.3. X-fold product and finitely supported maps

Let R be a ring. ModR is the category of unital left-R-modules with R-linear maps. When R is a
field k one uses Vecty instead.

Let X be a set. The R-module R* of all maps from X to R, equivalently defined as the X-fold
power of R in the category Modg, is the object component of a functor P from the opposite

Set of the category of sets to Modr, whose action on maps is as follows: given xLy and
g € RV, Pr(f)(g) = gof. RX is merely not just a R-module but, under point-wise multiplication

RY x R*™RX, a commutative R-algebra, the usual function algebra on X, denoted Ag(X), with

unit Iagx) i= D rex R, where 0%, or simply d,, is the member of RX with 6%(x) = 1r,x € R,

and for y € X,y # x,0%(y) = 0. This actually provides a functor Set°pA—R>17CAlgR, where | (Algg is
the full subcategory spanned by unital and commutative algebras of the category ;Algg of (asso-
ciative) unital R-algebras with unit preserving algebra maps. (The multiplication ma of an algebra

A thus is a R-bilinear map A x ATAA)

Let f € RX. The support of f is the set supp(f) :={ x € X : f(x) # 0 }. Let R®) be the sub-
R-module of R* consisting of all finitely supported maps (or maps with finite support), i.e., the
maps f such that supp(f) is finite.

R¥) is actually the free R-module over X, and a basis is given by { 55 :x € X }. Observe that

(SR
the map X—RX, x+—J,, is one-to-one if, and only if, R is nontrivial and |X|>1, or |X| <1 and R
is arbitrary (even trivial).

Remark 2. There is the free module functor SetﬁModR which is a left adjoint of the usual for-

getful functor ModeSet; Fr(X) := R¥), and for XLY,FR(f)(é)'?) = 5fR(x),x€X. The map

5R
X5 |R™] is the component at X of the unit of the adjunction Fg | - | : Set — Modg.
Let (R,7) be a topological ring and let X be a set. Since for a map X—Y,m, 0 PRy (f) =
yPR(f)

T, X € X, (Ry1)" — (R,7)* is continuous, and thus one has a topological power func-
PR

tor Set°P (—R&)TopMod(RJ).

Lemma 3. (R, 7)* x (R, r)XAg(R, )% is continuous.

Proof. Mx is of course separately continuous in both of its variables. Continuity at zero of mg

almost directly implies that of My, and thus its continuity by [19, Theorem 2.14, p. 16]. O

ARy s X—((R, )%, My, laq(x)) is a functor too and the diagram below commutes, with the
forgetful functors unnamed.
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1, TopAlg ;) T i LeAlgr

e

TopMod R ;)

(1)

Notation 4. The underlying topological ring of AR (X) is denoted (R, 7)* (and is the X-fold
product of (R, 1) in the category of topological rings).

3. Recollection of results about algebraic and topological duals
3.1. Algebraic dual functor

Let R be a ring. Let M be a R-module. Let M* := Modr(M, R) be the algebraic (or linear) dual
of M. This is readily a R-module on its own.

When (R, 7) is a topological ring, then M* may be topologized with the initial topology ([5, p.
30] or [19, Theorem 2.17, p. 17]) wg ), called the weak-x topology, induced by the family

(M~ —@R)VeM of evaluations at some points, where (Ap(v))(£) := £(v). A basis of neighborhoods

of zero in  this topology is given by the sets of the form
Ner Au(V) " ({ U, }) ={ £ e M :WveF {(v)€ U, }, where FC M is a finite set and for
each v € F,0 € U, € 1. This provides a structure of topological (R, t)-module on M*, which is
even Hausdorff by [5, Corollary 1, p. 78]. As an initial topology it is characterized by the follow-
ing universal property: a linear map NLM*, where (N, ¢) is a topological (R, 7)-module, is con-
tinuous from (M, ¢) to (M*, wig ) if, and only if, Ay(v) of : (N,6) — (R,7) is continuous for
each v € M. f F

Moreover given a linear map M—N,N*—>M* l—f*({) := L of, is continuous for the above

Algg..
topologies. Consequently, this provides a functor Mody g—mf)TopMod(Rﬂ) called the algebraic
dual functor.

Remark 5. M* and f* stand respectively for Algr.)(M) and Algr ;) (f)-

Up to isomorphism, one recovers the module of all R-valued maps on a set X, with its product
topology, as the algebraic dual of the module of all finitely supported maps duly topologized
as above.

Lemma 6. For each set X, (R, r)X ~ AlgRry (RX) (in TopMod R ;) under the map

px: (R)" — ((R<X)) ’W?R,r))
given by
(x(F)(P)) =D _p(x)f (x).f € RS, p € RY

xeX

o~

Z ~
Proof. Let £ € (RX)", Let us define X—R by £(x) := £(J,),x € X. That the two constructions are
linear and inverse one from the other is clear.
It remains to make sure that there are also continuous. Let ¢ € (RX))*, and let x € X. Then,

nx(Z) :Z(x) = {(5y) = (Agw (34))(£), which ensures continuity of ((RX )*,w )= ;(l(R,r)X. Let
fERY, and peRM. As (Ag (0)(px(F) = (px(N))(P) = Xpex PO (%) = ex mx(p)f (x) =
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Y vex Tx(P)7c(f), Age (p) © px is a finite linear combination of projections, whence is continuous
for the product topology, so is px. O

Let M be a free R-module. Let B be a basis of M. This defines a family of R-linear maps, the

coefficient maps (MKR)beB such that each v € M is uniquely represented as a finite linear com-
bination v =), g b*(v)b. One denotes FreeModg the full subcategory of Modr spanned by the
free modules. When K is a field, FreeMody, is just Vecty itself.

Example 7. For each set X, p, = &%, where p, := RM—R¥ SR, x € X.

Remark 8. b*(d) = ,(d),b,d € B. So (—)" : B— B*:={ b* : b € B } is a bijection.
Given a free R-module, any choice of a basis B provides the initial topology IlI; on M*

induced by (Ay(b)),ep- (Of course, IT;; € wig ).)

Lemma 9. Let M be a free R-module. For any basis B of M, Tl = wjg, and (M*,wjg ) =
(R,7)? (in TopMod g .)).

Proof. For £ € M*, (Ap(v))(£) =Yg b (V)E(b) =D s b (v)(Am(D))(€), v € M, thus Ay (v) is a
finite linear combination of some Ay (b)’s, whence is continuous for IIj, and so Wro C H.

The last assertion is clear. 0

3.2. Topological dual functor

Let (R, 1) be a topological ring, and let (M,c) be a topological (R,t)-module. Let (M,q) :=
TopModr - ((M, c), (R, 7)) be the topological dual of (M, c), which is a R-submodule of M*. Let

(M, O')L(N ,7) be a continuous homomorphism between topological modules. Let
(N, y)'L(M, o) be the R-linear map given by f'(¢) := £ o f. All of this evidently forms a func-

tor TopMod?gJ) e “"Modk.

Let (R,7) be a topological ring, and let X be a set. Let R(X)g(RX)* be given
by (Ax(p))(f) = Lyex P()f (x),p € RY. f € RY.

Let px be the map from Lemma 6. Then, for each p € R® Jx(p) = Azw (p) o py» which
ensures continuity of ix(p), ie, Ax(p) € ((R,7)*). Next lemma follows from the equal-

ity p(x) = (Ax(p))(0x),p € RY, x € X.

Lemma 10. /iy : R®) — ((R,7)*) is one-to-one.

4. Rigid rings: definitions and (counter-)examples

The notion of rigidity, recalled at the beginning of the Introduction, was originally but
only implicitly introduced in [13, Theorem 5, p. 156] as the main result therein and the
possibility that its conclusion could remain valid for more general topological rings than
topological division rings was not noticed. Since a large part of this presentation is given
for arbitrary rigid rings (Definition 12 below), one here provides a stock of
basic examples.

As [13, Lemma 13, p. 158], one has the following fundamental lemma.

Lemma 11. Let (R, 1) be a topological ring, and let X be a set. For each f € R¥, (f(x)0x), cx is
summable in (R, ) with sum f.
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Definition 12. Let (R,7) be a topological ring. It is said to be rigid when for each set X,

A
RMZ((R,7)*) is an isomorphism in Modg, i.e., Ax is onto. In this situation, one sometimes
also called rigid a ring topology t such that (R, 7) is rigid.

Lemma 13. Let £ € ((R,7)*). £ € im(Jx) if, and only if, 7:X R given by Ux) = £(3y), belongs
to RX), Moreover, (%) : im(Jx) — RX) € = 3" _ (8,)0,, is the inverse of Jx.

4.1. Basic stock of examples

Of course, the trivial ring is rigid (under the (in)discrete topology!). The first result below is a
slight generalization of [13, Theorem 5, p. 156] since its proof does not use continuity of
the inversion.

Lemma 14. Let (k, ) be a field with a ring topology. Then, (Kk, 1) is rigid.
Lemma 15. For each ring R, the discretely topologized ring (R,d) is rigid.

Proof. Let £ € ((R,d)*)". As a consequence of Lemma 11, (¢(d,)), is summable in (R,d), with
sum £(14,(x)). Since { 0 } is an open neighborhood of zero in (R, d),#(,) = 0 for all but finitely
many x € X ([19, Theorem 10.5, p. 73]). The conclusion follows by Lemma 13. O

Every normed, complex or real, commutative, and unital algebra (e.g., Banach or C*-algebra)
is rigid.
Lemma 16. Let k = R, C. Let (A,||-||) be a commutative normed k-algebra® with a unit. Then,
as a topological ring under the topology induced by the norm, it is rigid.

Proof. Let 7_)| be the topology on A induced by the norm of A, where A is the underlying
k-vector space of A. Let X be a set. Let £ € ((A,IH,H)X)/. Let f € AX be given by f(x) = m 1A

~ -~

if x € supp(¢) and fix) = 0 for x & supp(¢). Since by Lemma 11, (f(x)dx),.x is summable with
sum f, (f(x)€(0x)),cx is summable in (A, 7)_) with sum £(f). So according to [19, Theorem
10.5, p. 73], for 1>€>0, there exists a finite set F. C X such that ||f(x)¢(d,)||<e for all x € X \ F..

o~ o~

But 1 = ||f(x)€(dx)]| for all x € supp({) so that supp(¥) is finite, and Ay is onto by Lemma 13.

4.2. A supplementary example: von Neumann regular rings

A (commutative and unital) ring is said to be von Neumann regular if for each x € R, there exists
y € R such that x = xyx [9, Theorem 4.23, p. 65].
Let us assume that R is a (commutative) von Neumann regular ring. For each x € R, there is

a unique x" € R, called the weak inverse of x, such that x = xx'x and x" = xxx'.

Example 17. A field is von Neumann regular with x" :=x~!,x # 0, and 0" = 0. More generally,
let (k;),c; be a family of fields. Let R be a ring, and let j: R — ][, k; be a one-to-one ring map.
Assume that for each x € R, j(x)" € im(}), where for (x;),; € [[,c; ki (xi)1; := (x]),c;- Then, R
is von Neumann regular.

“n a normed algebra (A, || -]|), unital or not, commutative or not, the norm is assumed sub-multiplicative, i.e.,
[lxy|| < |Ix]]|lyl], which ensures that the multiplication of A is jointly continuous with respect to the topology induced by
the norm.
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Remark 18. Let R be a von Neumann regular ring. For each x € R, x # 0 if, and only if, xx" # 0.
Also xx" belongs to the set E(R) of all idempotents (¢ = e) of R.

Proposition 19. Let (R,7) be a topological ring with R von Neuwmann regular. If
0ZER)\{ 0 }, then (R,7) is rigid. In particular, if E(R) is finite, then (R, 1) is rigid.

Proof. That the second assertion follows from the first is immediate. Let X be a set. Let us assume
that 0 Z E(R)\ { 0 }. Let V € B(r(0)° such that VN (E(R)\ { 0 }) = 0. Let £ € ((R,7)")"
Let f € RX be given by f(x) := £(d,)" for each x € X. Since (f(x)£(dy)),.y is summable in (R, t)
with sum /(f), by Cauchy’s condition [19, Definition 10.3, p. 72], there exists a finite set Asy C
X such that for all x¢& Ary,f(x)€(;) € V. But for x € X,f(x)l(x) = 0(5,)'¢(5,) € E(R).
Whence, in view of Remark 18, for all but finitely many x’s, f(x)¢(d,) = 0, i.e., £(d,) = 0. O

Remark 20.

1. Let us point out that a von Neumann regular ring with only finitely many idempotents is
classically semisimple so is (by commutativity) a finite product of fields.

2. Lemma 14 becomes a consequence of Proposition 19.

Now, let (E;,7;);c; be a family of topological spaces. On []
p. 107] a basis of open sets of which is given by the “box” [[,; Vi, where each V; € 1;,i € I. The
product [, E; together with the box topology is denoted by Mic(E;, 7). (This topology is
Hausdorff as soon as all the (E;, 7;)’s are.)

It is not difficult to see that given a family (R;,;),; of topological rings, then Mic;(R;, 7;) still
is a topological ring (under component wise operations).

E; is defined the box topology (8,

iel

Proposition 21. Let (K;),.; be a family of fields, and for each i € I, let 1; be a ring topology on K.
Let R be a ring with a one-to-one ring map ) : R, —[[,;, Ki. Let us assume that for each x €
R,1(x)" € im()) ((x:)] as in Example 17). Let R be topologized with the subspace topology 1, inher-
ited from Mier(ky, t;). Then, (R, 1,) is rigid.

Proof. Naturally (x;),.; € E(][,c; ki) if, and only if, x; € { 0,1y, } for each i € I. Now, for each
i €1, let U; be an open neighborhood of zero in (k;,t;) such that 1y, ¢ U;. Then, [[; U; is an
open neighborhood of zero in Mir(k;,7;) whose only idempotent member is 0.
Therefore, 0 € E([[;c; ki) \ { 0 }.

Under the assumptions of the statement, an application of Example 17 states that R is a (com-
mutative) von Neumann regular ring. It is also of course a topological ring under 7, (since j is a
one-to-one ring map). It is also clear that E(R)~ E(J(R)) C E(][;k;). Furthermore,
JERIN{ 0 }) =EQR)N{ 0} NI(R) CE(L k) \ {0}, and thus 0 ¢ E(R) \ { 0 } accord-
ing to the above discussion. Therefore, by Proposition 19, (R, t,) is rigid. |

4.3. A counterexample

Let (R, 7) be a topological ring, and let us consider the topological (R,7)*-module ((R,7)*)* for

a given set X. To avoid confusion one, denotes by (RX)XEﬁRX the canonical projection, x € X.
Let us define a linear map (R¥)*5(R,7)* by setting d(f) : x—(f(x))(x),f € (RX). d is con-
tinuous, and thus belongs to (((R,7)*)*)’, since for each x € X, 7, o d = 7, o II,. Now, for each

>Given a topological space (E;7) and x € E, B (x) is the set of all neighborhoods of x.
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x € X, (AR (x) = (% (0)(x) = Ipr(x) = 1r, ie, d(6%)=6R, so that supp(d)=X,
when R # (0).

Proposition 22. Let (R, 1) be a nontrivial topological ring, and let X be a set. If X is infinite, then
(R,7)" is not rigid.
The above negative result may be balanced by the following.

Proposition 23. Let (R, 1) be a rigid ring. If I is finite, then (R,7)" is rigid too.

Proof. Let (R,7) be a topological ring. For a set I, recall from Notation 4 that (R,7)" is the
underlying ring of AR (I). Any topological (R,7)"-module is also a topological (R,7)-module

under restriction of scalars along the unit map (R, 7)-%(R,t)’,7;(1g) = 1gi, which of course is a
ring map, and is continuous (because #;(a) = mgr(n;(«), 1gr), o € R.)

Let X be a set, and let £ e (((R,7)")"), ie, ((R,‘C)I)XL(R7 1) is continuous and R!-linear,
and by restriction of scalar along #; it is also a continuous homomorphism of topological

(R, 7)-modules. Therefore for each i€ I, ((R, r)I)XL(R,‘E)Ig(& 7) belongs to the topological
dual space of ((R,7)")* seen as a (R, 7)-module. -
Let us assume that (R,7) is rigid. Then, by Lemma 13, supp(m; o £) is finite for each i € L.

One also has supp(?) = Ujes supp(n,»/o\f), with XLRI,?(x) = 6(551),x € X. Whence if I is finite,

~

then supp(¢) is finite too. O

5. Rigidity as an equivalence of categories

The main result of this section is Theorem 45 which provides a translation of the rigidity condi-
tion on a topological ring into a dual equivalence between the category of free modules and that
of topologically free modules (see below), provided by the topological dual functor with equiva-
lence inverse the (opposite of the) algebraic dual functor, with both functors conveniently co-
restricted. The purpose of this section thus is to prove this result.

Topologically free modules. Let (R,7) be a topological ring. Let (M,o) be a topological
(R,7)-module. It is said to be a topologically free (R,t)-module if (M, o)~ (R,7)*, in
TopMod R, for some set X. Such topological modules span the full subcategory
TopFreeMod R ;) of TopModr ). For a field (k, ) with a ring topology, one defines correspond-
ingly the category TopFreeVecty ;) of topologically free (K, t)-vector spaces.

PR«
Remark 24. The topological power functor Set°? g)TopMod(R‘r) factors as indicated below (the
co-restriction obtained is still called Pg r)).

op TR
Set°® ———— TopMod g ;)

2)
P(R,T)I‘
opFreeMod g -

Topologically free modules are characterized by having “topological bases” (see Corollary
28 below) which makes easier a number of calculations and proofs, once such a basis
is chosen.

Definition 25. Let (M, g) be a topological (R, t)-module. Let B C M. It is said to be a topological
basis of (M, o) if the following hold.
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1. For each v € M, there exists a unique family ('(v)),.p, with b’(v) € R for each b € B, such that
(b'(v)b)cp is summable in (M, ) with sum v. b'(v) is referred to as the coefficient of v at b € B.

2. For each family (op),.; of elements of R, there is a member v of M such that
b’ (v) = ap, b € B. (By the above point such v is unique.)

3. o0 is equal to the initial topology induced by the (topological) coefficient maps
(M—(R, 1)),cp- (According to the two above points, each b’ is R-linear.)

Remark 26. It is an immediate consequence of the definition that for a topological basis B of
some topological module, 0¢B and b'(d) = dy(d),b,d € B (since
> pepOp(d)b=d =3, ., V/(d)b). In particular, (=)' : B— B':= { b/ : b € B } is a bijection.

Lemma 27. Let (M,o6) and (N,y) be isomorphic topological (R,1)-modules. Let ® : (M, o) ~
(N,7) be an isomorphism (in TopMod(r ;). Let B be a topological basis of (M, o). Then, ©(B) =
{ ©(b) : b € B } is a topological basis of (N, 7).

Corollary 28. Let (M, ) be a (Hausdorff) topological (R,t)-module. It admits a topological basis
if, and only if, it is topologically free.

Example 29. Let (R, 7) be a topological ring. For each set X, { d,: x € X } is a topological basis
of (R,7)*. Moreover 7, = &, x € X.

Let us now take the time to establish a certain number of quite useful properties of topo-
logical bases.

Lemma 30. Let (M, o) be a topologically free (R, t)-module with topological basis B. Then, B is
R-linearly independent and the linear span (B) of B is dense in (M, o).

Proof. Concerning the assertion of independence, it suffices to note that 0 may be written as
> pep Ob, and conclude by the uniqueness of the decomposition in a topological basis. Let u € M
and let V:={veM:b'(v)cUy,bcA }cDBy(0), where A is a finite subset of B and
Uy, € Q3(|q71¢)(0)7 beA Let o,€Uy,beA, and v:= ZbeA opb— ZbeB\A bubeV. So
u+ v € (B). Thus, u+ V meets (B) and (B) is dense in (M, g). O

Corollary 31. Let (M, o) be a topologically free (R,t)-module, and let (N,y) be a topological
(R,1)-module. Let (M,0)— g(N ) be two continuous homomorphisms of topologlcal (R, 7)-mod-
ules. f=g if, and only if, for any topological basis B of (M, a),f(b) = g(b) for each b € B.

Topologically free modules allow for the definition of changes of topological bases (see
Proposition 48 for a related construction).

Lemma 32. Let (M, o) and (N,7) be topologically free (R,1)-modules, with respective topological
bases B, D. Let f : B— D be a bijection. Then, there is a unique isomorphism g in TopMod(R
such that g(b) = f(b),b € B.

Proof. The question of uniqueness is settled by Corollary 31, and an isomorphism is given

by g(v) = Yuep(f () (v)d, v € M. O

Lemma 33. Let M be a free module with basis B. Then, (M*,WZFR_T)) is a topologically free module
with topological basis B* :={ b*: b € B }. '

Proof. According to Lemma 9, (M*, WR, T>) is a topologically free module. Let 05 : M — R(®) be
the isomorphism given by 0p(b) = ;,b € B. Thus, 0f: (R®)" ~M*, and 050 py:RE ~
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(RB)* ~ M* is given by 0%(pp(0%)) = py(d%) 0 05 = pj 0 0 = b* for b € B (see Example 7 for
the definition of pg). Now, { &, : b € B } being a topological basis of R?, by Lemma 27 this
shows that B” is a topological basis of (M", wg ). O

Example 34. { p,: x € X } is a topological basis of (R*))* (Example 7).

Remark 35. If B is a basis of a free module M, then B~ B* under b—b*, because for
each b,d € B,b*(d) = ,(d).

Corollary 36. Let (R,t) be a topological ring. The functor AlgR ;) : ModY — TopModr ) factors
as illustrated in the diagram below.® Moreover the resulting co-restriction of AlgRry) (the bottom
arrow of the diagram) is essentially surjective on objects.

AlgR,~
1\/Iod‘F)<p — TopMod R ;)

(4)
FreeMody —— TopFreeMod g

Proof. The first assertion is merely Lemma 33. Regarding the second assertion, let (M, o) be a
topologically ~free module. So, for some set X, (M,s)~ (R,t)*. By Lemma
6, (R, 1) ~ Algr o (RX)). O

Lemma 37. Let (R, ) be a rigid ring. Let (M, o) be a topologically free (R, t)-module with topo-
logical basis B. Then, (M, c)" is free with basis B :={ b/ : b € B }.

Proof. Let @ : (M, o) ~ (R,1)” be given by @p(b) = J;. Thus @ : ((R,7)")' ~ (M, ), and thus

one has an isomorphism @/ o /p : R®) ~ (M, ¢)". Since a module isomorphic to a free module is

free, (M, )" is free. The previous isomorphism acts as: @} (43(dy)) = m, 0 @ = b’ for b € B. It
!

follows from Lemma 27 that B’ is a basis of (M, o). O

Example 38. Let (R,7) be a rigid ring. Let (M,0) = (R,)*. By Example 29, { 0, :x € X } =
{ m,:x€X }is a linear basis of ((R,1)¥)’.

Corollary 39. Let (R, 1) be a rigid ring. The functor TopMod(()s 0 Topes, ModgR factors” as indicated
by the diagram below.

®When k is a field with a ring topology 7, then one has the corresponding factorization of Alg ) : Vect;” — TopVect ).

op Alg(i,+)
Vect,” ——— TopVect, .,

3)
TopFreeVect, .,
"Correspondingly for a field (k, 7) with a ring topology,
o Top(,+)
TopVect(np< 5~ Vecty
(6)
TopFreeVect®?

(k,7)
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TOp(R,T)

TopMod’?

(R,7) MOdR

(6)

TopFreeMod(()E - — FreeModg

The topological dual of the algebraic dual of a free module. Let (R,7) be a topological ring.
Let M be a R-module, and let us consider as in Section 3.1, the R-linear map

MM, Wigay) (Au(V)(0) = £(v),v € M, L € M.

Lemma 40. Let M be a projective R-module. Then, Ay is one-to-one. This holds in particular
when M is a free R-module.

Proof. Let us consider a dual basis for M, i.e., sets BC M and { ¢, : e € B } C M*, such that for
all ve M,l,(v)=0 for all but finitely many ¢, € B* and v=>", 0 (v)e ([9, p. 23]). Let
v € kerAyy, ie., (Ay(v))(¢) = £(v) = 0 for each ¢ € M*. Then, in particular, Ay (v)(4,) = £o(v) =
0 for all e € B, and thus v=0. 0

Let (R, 1) (resp. (k,7)) be a rigid ring (resp. field). The functors provided by Corollaries 36
and 39 are stil denoted by Algr,) : FreeMody — TopFreeModr.  (resp.
Alg(c o) : Vect;” — TopFreeVect ;) and by  Topry : TopFreeMod‘(’gJ) — FreeModg
(resp. Topx - :TopFreeVect?]E ) = Vecty).

T

Proposition 41. Let us assume that (R,t) is rigid. A:= (Ay)) :id = Toprq OAng)'gr) :
FreeModr — FreeModg is a natural isomorphism.

Proof. Naturality is clear. Let (R,7) be a topological ring. Let M be a frege R-module. For each
free basis X of M, the following diagram commutes in Modgr, where M—R™X) is the canonical
isomorphism given by 6yx(x) = 0%, x € X. Consequently, when (R,7) is rigid Ay is an
isomorphism.

M (M e )
Ox Q)
(RS wig )" 7)

=

RO 5 (R,7)Y)
X
|
Corollary 42. Let us assume that (K, 1) is a field with a ring topology. Then, A = (Aum),, : id =
Top(xr) © Alg?kpﬁf) : Vecty — Vecty is a natural isomorphism.

The algebraic dual of the topological dual of a topologically-free module. Let (M, o) be a topo-
logical (R,7)-module. Let us consider the R-linear map Iy, : M — ((M,0))" by set-
ting (Fa,0)(v))(£) = £(v).

Proposition 43. Let us assume that (R,t) is a rigid ring. Then, I :id = Algr oTop?g‘T):
TopFreeMod R ;) — TopFreeModr ;) is a natural isomorphism, with I := (F(Mﬁ))(MJ). '
Proof. Naturality is clear. Let © : (M,¢) ~ (R,7)* be an isomorphism (in TopMod R ). Since

(R, 1) is rigid, Zx : R¥) ~ ((R,7)*)" is an isomorphism. Therefore R(X)g((R, r)X)/g(M7 o) is an
isomorphism too in Modg. In particular, (M,c)’ is free with basis { ©'(Jx(6%)) :x € X }. By
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Lemma 9, the weak-* topology on ((M,s)/)" is the same as the initial topology given by the

Do gy (1:00)

maps ((M, o)) —  (R,7),x € X, because @ (/x(5F)) = @' (n,) = 7, 0 ©. Therefore, T3,
is continuous if, and only if, for each x € X, A,y (n:0®) 0oy, =m0 O is continuous.
Continuity of I'(y; 5 thus is proved.

That [y is an isomorphism in TopMod(r ;) follows from the commutativity of the diagram
(in TopModr)) below.

Ty IN* %
o (Mo) =3 (M, o))" wig 1)
(R, )X T((ew*)* (8)
PX (X)\* * X\ * *
((ROO)" i 1) 5y (R 1)) 0 ) .

Corollary 44. Let us assume that (K, ) is a field with a ring topology. T : id = Alg(y. ) o Top?ﬁ’f) :
TopFreeVect ;. ;) — TopFreeVect ;) with I := (F(Mﬂ))(M,a)’ is a natural isomorphism.

The equivalence and some of its immediate consequences. Collecting Propositions 41 and 43,
one immediately gets the following.

Theorem 45. Let us assume that (R, 1) is rigid. TopRr ) : TopFreeMod?ng) — FreeModR is an equiva-
lence of categories, with equivalence inverse the functor Algzg o FreeModr — TopFreeMod?'g.T).

Corollary 46. Top(y . : TopFreeVect)y  — Vecty is an equivalence of categories, and Algyy , :

)T g
VectkHTopFreeVect?ﬂgr) is its equivalence inverse, whenever (k,t) is a field with a

ring topology.

Finite-dimensional vector spaces. Let k be a field. Let (M, o) be a topologically free (k,d)-vec-
tor space with M finite dimensional. Then, ¢ is the discrete topology d on M. It follows that
(M, 6)" = M*, and the equivalence established in Corollary 46 coincides with the classical dual
equivalence FinDimVect, ~ FinDimVect;” under the algebraic dual functor, where
FinDimVecty is the category of finite dimensional k-vector spaces.

Linearly compact vector spaces. Let k be a field. A topological (k,d)-vector space (M, ) is said
to be a linearly compact k-vector space when (M,s)~ (k,d)* for some set X (see [4,
Proposition 24.4, p. 105]). The full subcategory LCpVect; of TopVect(;q) spanned by these
spaces is equal to TopFreeVecty g).

Corollary 47. (of Theorem 45) Let R be a ring. For each rigid topologies t,0 on R, the categories
TopFreeMod R ;) and TopFreeModr ) are equivalent. Moreover, for each field (k,t) with a ring
topology, TopFreeVect y ;) is equivalent to LCpVect.

In particular, one recovers the result from [7] that Vectip ~ LCpVecty,.
The universal property of (R,7)*. For a ring R, the functor |- | : Modg — Set (see Remark 2)
may be restricted as indicated in the following commutative diagram, and the restriction still is
denoted | - | : FreeModg — Set.

Modg L Set

)
FreeModpg
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Likewise Fr : Set — ModR (see again Remark 2) may be co-restricted as indicated by the com-
mutative diagram below, and the co-restriction is given the same name Fr : Set — FreeModRg.

Set i> Modg

(10)
FreeModg
(When R is a field k, there is no need to consider the corresponding co-restrictions.)
The adjunction Fr |- |: Set — Modgr gives rise to a new one Fr |- |: Set — FreeModr

[12, p. 147], and by composition, for each rigid ring (R,7), there is also the adjunction
Alg?,g_r) oFr 4| |oTopry : Set — TopFreeMod?,gﬂ. Since (R, 7)* ~ ((R¥)*, Wiry) (Lemma
6), this may be translated into a universal property of (R, )", as explained below, which somehow
legitimates the terminology topologically free.

Proposition 48. Let us assume that (R, 1) is rigid. Let X be a set. For each topologically free mod-

ule (M,0) and any map f:X — |(M,q)'|, there is a unique continuous homomorphism f* :
(M, 6) — (R, 7)" such that |(f*)'| o |\x| 0 0% = f (recall that 6} (x) = 6%, x € X).

Proof. There is a unique R-linear map f : R¥) — (M, o) such that |f| o 6% = f. Let us define the

Tors =
continuous linear map (M, a)f (R, 1) := (M, 0) %)(((M, o)), WZFR‘T))(Q

(RO wis )KE(R,’E)X. One has

!
ICips] 0 |((f) ) o 1(x!)] o lixl 0 68
= 1Tl o 1)) 1o g 008

(because (p5!)" o 4x = Ay ()
= Tl o Aoy o I 0 5%

(by naturahty of A)
= [flodf

(tnangular identities for an adjunction [12,p. 85])

= f.

1(F%)'] o Ax] 0 0%

It remains to check uniqueness of f*. Let (M, a) (R,7)* be a continuous linear map such
that || o|ix| o 6R =f. Then, g oix=f. Thus, 2o (g/)" :JN‘* =pyoffo F&‘a). So pyo
L 1 o (gN" = px ofﬂol“ M) Decause Tp x = = (A%") o px (by direct inspection), and thus
I"(RIJ) o(gN* =ffol, (M,)- Then, by naturality of !go F =fto F (M) O
Corollary 49. Let (R,t) be a rigid ring. PR :Set — TopFreeMod(, , is a left adjoint of

Topr+ —
TopFreeMod(()pr) P—(s')FreeMode—lSet, and thus is naturally equivalent

Algfg 4 °FR
to Set — TopFreeMod

Proof. A quick calculation shows that PR (f) = (|Ay|ody o f)m for a set theoretic map
f:X— Y. The relation fi—(iy o 6% of)* provides a functor from Set® to TopFreeModr ;)
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whose opposite is, by construction, a left adjoint of |—| o Topr) (this is basically the content of
Proposition 48). O

6. Tensor product of topologically free modules

In this section most of the ingredients so far introduced and developed fit together to lift the
equivalence FreeMod ~ TopFreeMod?gj) to a duality between some (suitably generalized) topo-
logical algebras and some coalgebras.

6.1. Monoidal categories, monoidal functors, and (co-)monoids

Most of the notations and notions from the theory of monoidal categories needed hereafter are
taken from [14, Section 2, pp. 4874-4876] and only a few more are introduced below, since they
are indispensable.
Monoidal categories. Recall that each natural transformation o : F = G : C — D has an opposite
natural transformation o : G = F°P : C°®® — D% with (a°P). = (ac)*® for each C-object C,
where for f € C(C,D),f° € C°°(D,C) = C(C,D) is the corresponding C°°-morphism. Recall
also that for every categories C, D, (C x D)°® = C% x D,

If C=(C,—®—,Ia,Ap)=(C,—®—,I) is a (symmetric) monoidal category, then so is its
dual C° := (C%®, —@%— I, (") (¢, (A™)°). (In [14] it is denoted by C instead
of C°P)

Example 50. Let R be a ring. For each R-modules M, N, M®gN stands for their (algebraic) ten-
sor product, and ®:MxN— M®rN is the wuniversal R-bilinear = map.
Modg := (Modg, ®r, R), with the ordinary coherence constraints of associativity, of left and
right units and of symmetry, is a symmetric monoidal category ([18, Example 11.2, p. 70]).

1. Mon(Modg) is isomorphic to the category ;Algg of “ordinary” unital R-algebras under the
functor O, concrete over Modgr, such that O(A):= (A,mp,1a), with
ma(x,y) = u(x®y),x,y € A, and 1a:=n(lr), where A= (A,up,na) is a monoid
in Modg.

2. Likewise ;Mon(ModRr)~; (Algg under the (co-)restriction of the above functor O.

3. Comon(Modg) is the category (Coalgg of counital R-coalgebras ([1,6]), and the category of
cocommutative coalgebras . c,.Coalgg is cocComon(Modg).

By a (symmetric) monoidal subcategory of a (symmetric) monoidal category C = (C,— ® —,I)
we mean a subcategory C' of C, closed under tensor products, containing I, and the coherence
constraints of C between C'-objects. (The last condition is automatically fulfilled when C' is a
full subcategory.) The embedding E¢ of C' into C then is a strict monoidal functor £ (see e.g.,
[14, Definition 2, p. 4876]).

For instance, since given free modules M, N over a ring R, M®grN is free too, FreeModgr =
(FreeModg, ®r,R) is a symmetric monoidal subcategory of Modgr. Comon(FreeModg)
(resp., cocComon(FreeModgr)) thus corresponds to the full subcategory of .Coalgg (resp.,
c.cocCoalgg) spanned by the (resp. cocommutative) coalgebras whose underlying module is free.

Monoidal functors and their induced functors. For a (symmetric) monoidal category
C,idg = (idc,id_g—,id;), or simply id, is a strict (symmetric, [18, p. 86]) monoidal functor
from C to itself, which acts as a unit for the usual composition of monoidal functors (see [3,
Chapter 3, p. 72]). By direct inspection one observes that the composite of strong (resp. symmet-
ric) monoidal functors is strong (resp. symmetric) too.
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Remark 51. Recall that for a monoidal functor F : C — C’, one let F : MonC — MonC’ be the
induced functor as described in [14, Proposition 3, p. 4876].

1. ﬂdc—ldMon ) and GoF =G oT.
2. When F is symmetrlc (and C, C’ also are symmetric), then [ also provides an induced func-
tor ;MonC to MonC’ with s1m11ar properties as above.

A stron§ monoidal functor ' = (F,®, ¢) : C — C’ may be considered as a strong monoidal
functor [ := (FP (® )P, (¢ 1)P): C® — (CH®, the dual of F ([16, Proposition 17,
p. 639]).

Monoidal transformations and equivalences.

Remark 52.
1. Leta:F=G:C — C’Nbe a_monoidal transformation (see [3, pp. 64-65]). It induces a nat-
ural transformation & : F = G : MonC — MonC' with %(cme) = tic ([3, Proposition 3.30,
p. 781).
2. When the monoidal functors and categories are symmetric, then a also induces o : F=
G: MonC— MonC' ([3, Proposition 3.38]).
A monoidal equivalence of monoidal categories is given by a monoidal functor I : C — C’
such that there are a monoidal functor G : C' — C and monoidal isomorphisms ([15, p. 948])
n:id = GolF and e: FoG = id. In this situation C, C’ are said monoidally equivalent.

Remark 53. If F is a monoidal equivalence, then [ is an equivalence between the corresponding
categories of monoids.

6.2. Topological tensor product of topologically free modules

We now wish to take advantage of the equivalence of categories FreeModgr ~ TopFreeMod
(Theorem 45) for a rigid ring (R, 7), to introduce a topological tensor product of topologlcally
free modules.

From here to the end of Section 6.2, (R, 1) denotes a rigid ring.

The bifunctor ®r ). Let (M,a),(N,7) be two topologically free (R,7)-modules. One defines
their topological tensor product over (R, 1) as

(M, 0)® R (N,7) == Algr (M, 0)®@r(N,7)). (12)

One immediately observes that (M, c)®r (N, 7) still is a topologically free (R, 7)-module as
(M,5)" and (N,7)" are free R-modules (Lemma 37), so is (M,c)®r(N,7), and the algebraic
dual of a free module is topologically free (Lemma 33).

Actually, this definition is just the object component of a bifunctor

-®r
TopFreeMod R ;) x TopFreeMod g ;) —>TopFreeMod Ry

Top(h , xTop®h %P Algr.
that is TopFreeMod g ;) X TopFreeMod g ;) ————~ModZ x Mod% = Mod% 569
TOpMOd(RJ).
Given fi € TopFreeModr ) ((M;, 5i), (N;,7;))s i=1, 2, then
(fl®rf)"
®Rrafs = (M1,01)®R:)(Mz,02) " = (N1,71)® R (N2, 7). Let Le

((Ml,Gl)/(@R(Mz,O'z) ) ,61 c (N],”/l)/ and Ez S (Nz,’))z),. Then,
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((1®Raf) (L))t ® ) = L((th o) ® (20 f5)): (13)

Remark 54. For every sets X, Y, (R, t)XGB(RJ) (R,7)" ~ (R, 7)**" under pxl, o Ty o (Ax®rAy)",
where Yxy : R®Y) ~ R®@gRM) is the unique isomorphism such
that Yxﬁy(él(?x‘y)) = 55 ® 5§,x eX,yey.

A topological basis of (M,5)®R)(N,y). Our next goal will be to explicitly describe a topo-
logical basis (Definition 25) of (M,0)®r)(N,y) in terms of topological bases of (M,a)
and (N, 7).

Definition 55. Given a ring S, for every S-modules M, N, one has a natural S-linear map

OuN

M*®@sN* = (M®sM)" given by (Oun(l1 ®46))(u®@v)=">0(u)ly(v),l; € M*,l, € N ueM
and v € N.

Let (M, ), (N,7) be topologically free (R, 7)-modules. Let u € M and v € N. Let us define
u®v := 0y oy vy (L) (WERT (v (V) € (M, 0)@ R (N, 7). (14)
In details, given ¢, € (M, )" and ¢, € (N,y)", (u®v)(£; @ £;) = b1 (u)l2(v).
Lemma 56. Let (M,a) and (N,7y) be both topologically free (R,1)-modules, with respective topo-
logical bases B, D. The map B x D7§>7(M7 0)® R (N,y) given by (b, d)—b®d, is one-to-one.

Lemma 57. Let (M,o) and (N,y) be both topologically free (R,7)-modules. The map M X

Nfgf(M, 0)®Rq)(N,y) is R-bilinear and separately continuous in both variable. Moreover, if
T =d, then ® is even jointly continuous.

Proof. R-bilinearity is clear. Since (M,a) ®r(N,7) is free on { x®@y:x € X,y €Y }, where X

(resp. Y) is a basis of (M,s)" (resp. (N,7)), by Lemma 9, the topology WRro On

(M,0)®R)(N,7) is the initial topology induced by the
Ay oV orm (v (X

maps (M, o) @r((N 7)) " ( ®y)(R, 1),x€EX,y€Y.

Let xeX,yeYueM and vEN. Then, Aoy erivgy (X @)
(u®v) = (u®v)(x ® y) = x(u)y(v) = mr(x(u),x(v)), and this automatically guarantees separate
continuity in each variable of ®.

Let us assume that t = d. According to the above general case, to see that ® is continuous, by
[19, Theorem 2.14, p. 17], it suffices to prove continuity at zero of ®. Let A C X x Y be a finite
set, and for each (x,y) € A, let U,,) be an open neighborhood of zero in (R,d). Let A; := { x €
X:3yeY (x,y)eA} and Ay:={yeY:3IxeX, (x,y) €A }. A, A, are both finite and
A C Ay X A, Let u € M such that x(u) = 0 for all x € A}, and v € N such that y(v) = 0 for all
y € Ay. Then, (u®v)(x ® y) = 0 € Uy for all (x,y) € A} x As. O

Remark 58. Let X, Y be sets, and let f € R*, ¢ € RY. Since by Lemma 57, ® is separately continu-

0u38

8The second equality in Eq. (15) follows from the proof of [19, Theorem 10.15, p. 78] which, by inspection, shows that the
cited result still is valid more generally after the replacement of a jointly continuous bilinear map by a separately continuous
bilinear map.
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f@g = (Luxf0)0F)®(3,cr210F)
= Z(xy)eXfo(x)g(y)é;I?@é; (15)

(as a sum of a summable family)

For the same reason as above, if B is a topological basis of (M, o) and D is a topological basis
of (N,7), then u®v =73", yp pb(u)d (v)b®d,u € M,v € N. In particular, one observes that

(b®d) (u®v) = b'(u)d'(v),b € Bju € M,d € D, and v € N.

Proposition 59. Let (M,c) and (N,v) be topologically free (R,t)-modules, with respective topo-
logical bases B, D. Then, (b®d), ycp,p is a topological basis of (M, o)® R (N, 7).

€Bx
Proof. By virtue of Lemma 27 and Remark 54, { (55@55)(%},)@(” :(x,y) €X XY } is a topo-
logical basis of (R, T)XGB(R’T) (R,7)" since one has (Vx5 '®rAy)"
() (pxxr(05.,))) = 65@SR. Let  O@p: (M,0) ~ (R,7)°, @p(b) :=3y,b € B (resp.
Op : (N,7) ~ (R,7)"). By functoriality, Op® R )Op : (M,0)®R(N,7) ~ (R,T)BGB(R‘T) (R,7)",
and since (0p® R ;)0p)(b®d) = 6,®0dy, (b,d) € Bx D,{ b®d : (b,d) € Bx D } is a topological
basis of (M, 0)®r ;) (N, 7). O

Corollary 60. Let (M,q) and (N,7y) be topologically free (R,t)-modules. Then, { u®v:u €
M,v € N } spans a dense subspace in (M,)®r (N, 7).

Let (M;,0;) and (N;,7;), i=1, 2, be topologically free (R,t)-modules. Let (Mi,ai)L(Ni,yi),
i=1, 2, be continuous homomorphisms. Let (u,v) € M; x M,. By Eq. (13) it is clear that

(f1®<RJ)f2) (u®v) = f1(u)®f(v). (16)

If B and D are topological bases of (M;,01) and (M,,0;) respectively, (fi®rfs)(u®v) =
> wayenxpt (W)d (V)fi(b)®f,(d) (see Remark 58).

6.3. Monoidality of ®r ;) and its direct consequences

Since most of the proofs from this section mainly consist in rather tedious, but simple, inspec-
tions of commutativity of some diagrams, essentially by working with given topological or linear
bases,” and because they did not provide much understanding, they are not included in the
presentation.

Proposition 61. Let (R, 1) be a rigid ring.

TopFreeMod ) := (TopFreeModr), ®r ), (R, 7))
is a symmetric monoidal category.
Corollary 62. For each field (k,t) with a ring topology,

TopFreeVect, . := (TopFreeVect( ., ® ), (k, 7))

is a symmetric monoidal category.

Example 63. Let (R,7) be a rigid ring. Let X be a set. Let us define a commutative monoid
Mg o(X) = (R,0)", iy, nx) in TopFreeModgy by ux(f®g) = 3 exf(x)g(x)05.f.g € R*

°E.g., associativity of ®g ) is given by the isomorphism (b®d)®e—b®(d®e) on basis elements (Lemma 32).
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(under (R,‘E)X@(RJ)(R, 1) ~ (R,7)"* from Remark 54) and ny(1r) = 3, 0. This actually
defines a functor MR ;) : Set®®— Mon(ToplreeModr)).

Let (R,7) be a rigid ring. For each free R-modules M, N, let us define @y :=

* * * * * * * * (A @RA )* * *
(M aW(RJ))GB(R‘r) (N >W(R,¢)) = Algr((M aW(R,T))/®R(N aW(R,T))l) rST ((M®grN) aW(R,T))-

According to Proposition 41, @y is an isomorphism in TopFreeMod R ;). Naturality in M, N is
clear, so this provides a natural isomorphism

O : Alg(R,-:)(_)®(R‘T)Alg(R,r)(_) = Alg(R‘T)(—®R—) :

FreeMod0p X FreeModop — TopFreeMod< R1)- (17)

Furthermore, let us consider the isomorphism (R, ‘c) (R*, w(g ,)) given by ¢(1Rr) := idr, with

inverse ¢ ' (¢) = £(1R).
Let (M,a),(N,7) be topologically free (R,7)-modules. One defines the map

Aoy ogmay
Yo, (v = (M, 0) @R(N,p) =" (Algr o (M, 0) @R(N, 7)) = ((M,0)®R (N, 7))"
This gives rise to a natural isomorphism

¥ Topr o) (—)@RTOPR ) (=) = ToPpR) (—®Ro)—)

TopFreeMod?g‘f) X TopFreeMod?gir) — FreeModg. (18)

Let also Ri>(R7 1)’ be given by y(1r) = idg and ¥ ' (¢) = £(1R).
Theorem 64. Let (R, 1) be a rigid ring.

L. Algr, = (AlgRra), D, ¢) : FreeModg” — TopFreeModgr,) is a strong symmetric
monoidal functor.

2. Topry = (Toprq, ¥, ¥) : T@pFr@eM@de — [FreeModRg is a strong symmetric mono-
1dalfunctor, 50 is its dual T@p (Remark 51) rom TopFreeMod g, to FreeModg’.

3. A°p T@p(RT o Alg R, = rd Fr@@M@de — FreeModg® is a monoidal 1somorphzsm

4, Did = A]lg R.7) © T@pd T@pFr@@MQd Ry — lopFreeModgr, is a monoidal
1somorphlsm

In particular, FreeModg® and ToplFreeMod g ) are monoidally equivalent.

Corollary 65. For each field (k,t) with a ring topology, the monoidal categories Vect,” and
TopFreeVect ) are monoidally equivalent.

Corollary 66. For each rigid ring (R, 1), the natural transformatzons A% . (T@p ) o Alingﬂ =
id comon(TreeModg)® aNd I: idnon( (TopFreeModg,) = Aﬂg (R) (T@p(R,T)), mduced as in Remark

52 by A% and T, are natural isomorphisms. So are also the corresponding induced natural transforma-
tions at the level of the respective categories of (co)commutative (co)monoids (Remark 52).

Corollary 67. The equivalence from Corollary 66 restricts to an equivalence between the category
[FinDimCoalg, (resp. .., FinDimCoalg, ) of finite dimensional (resp. cocommutative) coalgebras
and the category of monoids Mon(FinDimVecty) (resp. Mon(FinDimVecty)),
where FinDimVecty = (FinDimVecty, ®j, k).

7. Relationship with finite duality

Over a field, there is a standard and well-known notion of duality between algebras and coalge-
bras, known as the finite duality [1,6] and we have the intention to understand the relations if
any, between the equivalence of categories from Corollary 66 and this finite duality.
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Let (—)" : Mody — Modg be the usual algebraic dual functor. Then, D, := ((—)",®,0) is a
lax symmetric monoidal functor from Modg” to Modg (where © is as in Definition 55, and 0 :
R — R* is the isomorphism 0(1r) = idg (and 6'(¢) = £(1Rr))). When Kk is a field, there is the
finite dual coalgebra functor Dpy, : Mon(Vect )% —, Coalgk (denoted by (—)0 in [1,6]). The

aforementioned finite duality is the adjunction D}’ D, : Mon(Vecty )—.Coalg’ (see e.g., [6,
Theorem 1.5.22, p. 44], where D, is denoted by (=)).

7.1. The underlying algebra

Let (R,7) be a rigid ring. Let (M, o), (N,y) be topologically free (R,)-modules. According to
—®- ®

Lemma 57, M x N it (M,0)® R (N,y) is R-bilinear. Denoting by TopFreeMod<R7r)”—>”ModR

the canonical forgetful functor, this means that there is a unique R-linear map

1M, ) 2RIV, 92 (M, 0)®ip (N, )] such that for
each u € M,v € N,E (0 (ny) (U@ V) = u@v.

M(:) (N.y)

Lemma 68. A := (||—=|[, (E(me),Ny) (M), ()0 1R) is a lax symmetric monoidal functor from
TopFreeModr ) to M@dR
Let A : Mon(ToplreeModr,)) — Mon(Modr) be the functor induced by A. Using the
functorial isomorphism O : Mon(Modgr)~;Algg (Example 50), to any monoid in
ToplFreeMod g is associated an ordinary algebra.
Oo A X

Definition 69. Let us define UA := Mon(TopFreeModg,) — 1Algg. Given a monoid
((M,0),1,n) in TopFreeMod ), UA((M,a), u,n) = O(A((M, ), 1,n)) is referred to as the
underlying (ordinary) algebra of the mon01d (M, a),1,1n). In deta1ls, UA((M,0),u,n) =
(M, gy, n(1R)) with g : M x M — M given by pu(u,v) = p(u@v).

Remark 70. Since by Lemma 68, A is symmetric, it also induces a functor (see Remark 51)

A ::Mon(TopFreeModr)—Mon(Modgr). Because one has the co-restriction
O::Mon(Modgr)—;Algg, one may consider the underlying algebra  func-

tor UA=Mon(ToplreeModr . ) = “AlgR

Example 71. (Continuation of Example 63) UA(Mr ) (X)) = ArX.

7.2. Relations with the algebraic dual algebra functor 15*

Let (R,7) be a rigid ring. Let FreeModg—Modg be the canonical embedding functor. Since
FreeModg is a symmetric monoidal subcategory of Modg it follows that E = (E, id, id) is a
strict monoidal functor from FreeModgr to Modg.

One claims that D, o B = A o Alg R In particular, if k is a field (and 7 is a ring topology
on k), then this reduces to D, = A o Aﬂg K,7)

That ||—|| 0 Algrs) = (=) 0 E° is due to the very definition of Alg(r ). Of course, ||¢|| = 0.
That for each free modules M, N, ||(Ay ® An)*|| 0 Epe v+ = Oumy is easy to check. So ((—)" o
E%,0,0) = (||, Z,idw) o (Algme), @, ) = (11| 0 Algir, ([Parel| © Enave) s 41D

It follows that the algebraic dual monoid (in Vecty) D, (C) of a k-coalgebra C, is equal to
A(Aﬂg(kﬂ)(C)) whatever is the ring topology t on the field k, and thus as ordinary alge-
bras, O(D. (C)) = UA(AlZ, ) (C)).
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Proposition 72. Let (k,7) be a field with a ring topology. Then the ﬁmctor 0o A :
Mon(FreeTopVect ) —1Algy has a left adjoint, namely Alg . o fm 007!

Proof. One has D, =Ao AJ@H&J), whence D, o (T@E’)‘\({ﬂﬁ =Ao A]lg(m o (T@ﬁ%ﬂ;))” ~
A (natural isomorphism) by Theorem 64. Since Alg OD};E is a left adjoint of

D, o (T@E[i;f‘vkﬂ)), it follows that it is also the left adjoint of A. O

7.3. The underlying topological algebra

Let R be a ring. Let A= ((A,0), 1, n) be an object of Mon(TopFreeModgg)). One knows
that (A, o) is an object of TopModrq) and UA(A) is an object of ;Algz. Moreover, (A, d) x
(A, )m"l(A g) is continuous, since it is equal to the composition (A,0) X
(A, ) - (A, )®(R3d)(A,a)i>(A,a) of continuous maps (see Lemma 57). Now, let
((A, ) )f =((B,7),v,{) be a morphism in Mon(ToplreeModmrg)). In particular,
(4,

) (B,7) is linear and continuous, and the following diagram commutes.

(A,0) x (A,0) red
_®_
(A7U) ®(R,d) (Av U) - (Av U)
Ixf EICEV R 1f (19)
(B,7) &Ry (B,7) 3 (B,7)
"

“®
(B77) X (B77) Uil

Since by assumption, one also has f o n = (, it follows that f(1(1r)) = {(1r), and thus f is a
continuous algebra map from ((4, a), tyi, 1(1R)) to ((B,7), Vpir, ((1IR)).

So is obtained a functor Mon(T@pFr@@M@d(R’d))ElTopAlg(Rﬁd), referred to as the fopo-
logical algebra functor, and the following diagram commutes (the unnamed arrows are either the
obvious forgetful functors or the evident embedding functor), so that TA is concrete over
TopMod r q), whence faithful.

Mon(T@lp[FmeM@d(R,d)) T4, 1T0PA1g(R,d)

2 ! !

TopFreeMod g 4y~ TopMod g 4

LI /
Mon(Modg) ————— Modg 1Algg

\—//)

(20)

Remark 73. When A is a commutative monoid in TopFreeModrg), then TA(A) is a commu-
tative topological algebra.

Example 74. For each set X, TA(MR q)(X)) = AR, (X).
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Proposition 75. TA is a full embedding functor.

Proof. Let A= ((A,0),u,n) and B = ((B,7),v,{) be monoids in ToplFreeModgrg. Let
TA(A) £1A (B) be a morphism in TopAlggry.  Therefore in  particular,

g€1Algr (UA(A), UA(B)) NTop((|A], 0), (|B,7)). (Recall from Remark 2 that ModRiSet is the
usual forgetful functor, and Top is the category of Hausdorff topological spaces.)

By assumption, for each u,v € A, g(u(u®v)) = g(upia(u,v)) = vpn(g(u), g(v)) = v(g(u)®g(v)).
Thus, gou=vo (g®rag) on { u®v:u,vc A }. Since this set spans a dense subset of
(A,0)®r ) (A, ) (according to Corollary 60), by linearity and continuity, go u = v o (§®rq)g)
on the whole of (A, 0)®r4)(A, 7).

Moreover, g(n(1r)) = {(1r), then g o = {. Therefore, ¢ may be seen as a morphism A—>B in
Mon(ToplreeModrq)) with TA(f) = g, i.e., TA is full.

Let A= ((A,0),u,1),B=((B,7),r,{) be monoids in ToplFreeModgrg such that
TA(A) = TA(B). In particular, (A,g) = (B,7), and 1 = {. By assumption f,; = vp;. Whence u =
von{ u®v:ucAvecB }, and by continuity they are equal on (A,0)®rq) (B,7y). So A=B,
i.e., TA is injective on objects. O

As a consequence of Proposition 75, Mon(TopFreeModgg4)) is isomorphic to a full subcat-
egory of 1TopAlg g 4 ([2, Proposition 4.5, p. 49])

It is clear that Mon(ToplreeModr g )—>15T0pAlg R.d) of TA (see Remark 73) also is a
full embedding functor.

7.4. Relations with the finite dual coalgebra functor dg,

Let V be any vector space on a field k. Then, V* has a somewhat natural topology called the V-
topology ([1]) or the finite topology ([6]), with a fundamental system of neighborhoods of zero
consisting of subspaces

Wh={/leV :¥Ywe W l(w)=0} (21)

where W runs over the finite dimensional subspaces of V. This is manifestely the same topology
as our wj, 4 (see Section 3.1). Accordingly this turns V* into a linearly compact k-vector space
(p- §). The closed subspace of (V*, W?ﬂ«ﬁd)) are exactly the subspaces of the form W', where W is
any subspace of V ([4, Proposition 24.4, p. 105]).

Lemma 76. Let W be a subspace of V. codim(W") is finite if, and only if, diim(W) is finite. In this
case, codim(W") = dim(W).

Proof. One observes that V*/W' ~ W* because the map inclj, : V* — W* is onto, where incly :
W — V is the canonical inclusion, and kerinclj, = WT. Since V*/W'~ W*, it follows
that codim(W') = dimW*. O

Theorem 77. Let k be a field. For each monoid A in T@pFr@@V@@t k.d), the topological dual

coalgebra (T@p(k d))( ) of A is a subcoalgebra ofDm( (A\). Furthermore, the assertions below
are equivalent.

1. In TA(A) every finite codimensional ideal is closed.
2. A(A) is reflexive'.

1°A monoid A in Vecty is reflexive when A~ D, (Dh(A)) under the linear map ur— (¢—¢(u)), which is the unit of the
adjunction Dg7 + D..
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3. The coalgebra (T@b\cﬂ/ )(A) is coreflexive''.
4. (TOP?ug,d))( ) = ﬁE(A(A))'

Proof. Let A= ((A, ), 1, 1) be a monoid in TopFreeMody 4. Whence its underlying topo-
logical vector space is a linearly compact vector space (p. 15). Let C := (T@p‘(dlk d))(A)' Since A o

A@(}{,d) = DD, it follows that A ~ A o Aﬂ’gf(/k‘d) o (T@p&d)) ~D,o (T@p‘gﬂk’d)) (naturally iso-

morphic). In particular, A(A) ~ D, (C). By construction, the underlying topological vector space
of A, namely (A, 0), is also the underlying topological vector space of TA(A). Also A, TA(A) and

A(A) share the same underlying vector space A, which is isomorphic to C*, where C is the
underlying vector space of the coalgebra C. Of course, (A,0) ~ Algy q)(C) = (C, W?Jk-,d))'
Therefore, up to such an isomorphism, (A, o) has a fundamental system of neighborhoods of
zero consisting of VI ={ € A:Vv € V,{(v) =0 } where V is a finite dimensional subspace of
C (see Eq. (21)).

Let £ € (A, ¢)". By continuity of /, there exists a finite dimensional subspace V of C such that
VT C ker/. Let B be a (finite) basis of V, and let D be the (necessarily finite dimensional, by [10,
Theorem 1.3.2, p. 21]) subcoalgebra of C it generates. Then, V C D, which implies that
D' C VT C ker/. But D' is a finite codimensional ideal of A (A) (by Lemma 76 and [1, Theorem
2.3.1, p. 78]), whence £ € A%." -

It remains to check that the above inclusion incl, ,y is a coalgebra map from (T@p (k d))(A)

to D}:E(A(A)), which would equivalently mean that (A, )" is a subcoalgebra of D n(A(A)). One

thus needs to make explicit the two coalgebra structures so as to make possible a comparison. By

construction the comultiplication of (T@pﬁlk‘ d))(A) is given by the composition A(AIJ),&( a0y O K.
So for £ € (A,0), (A(_Al_,(;)/@k(A,g)/ o)) =31 4@, for some £, r; € (A, o). Therefore, given
te (A o) uveAl(u(uxv) =37 G(wr(v). The counit of (Topf y)(A) is

(A,a)’L(k,d)/;k, ie, 6—L(n(1y)). It follows easily, from the explicit description of Dy, (B)
provided in [6, p. 35], for a monoid B in Vecty, that the above comultiplication coincides with

that of D, (A( A)), and because it is patent that the counit of (T@pdk d)) (A) is the restriction of

that of D;S(A(A))7 (A, ) is a subcoalgebra of Dﬁn(A(A)).

It remains to prove the equivalence of the four assertions given in the statement. 2 <= 3 since
finite duality restricts to an equivalence of categories between the full categories of reflexive alge-
bras and of coreflexive coalgebras (in a standard way; see e.g., [11, Proposition 4.2, p. 16]),
and A (A) = D. ((Topl o )(&))

The coalgebra C := (T@p k d))(A) is coreflexive if, and only if, every finite codimensional
ideal of D, (C) ~ A(A) is closed in the finite topology of C* ([1, Lemma 2.2.15, p. 76]), which
coincides with our topology w( 4, and thus it turns out that (D.(0), Wi, d>) ~ TA(A) (since C*
under the finite topology is equal to Alg(x 4)(C) ~ (A, ¢) by functoriality). Whence 3 <= 1.

Let us assume that in TA(A) every f1n1te codimensional ideal is closed. Let £ € Df,n(A (A)). By
definition ker/ contains a finite codimensional ideal say I of A( ). Since I is closed, there exists
a finite dimensional subspace D of C such that D' =1 (since the closed subspaces are of the

"'A coalgebra C is coreflexive, when C =~ Dop(D (€)) under the natural inclusion u—(6—#(u)), which is the counit

of D +D.. "

120 :={ £ € A* : ker{ contains a finite-codimensional (two-sided) ideal of UA(A) } is the underlying vector space of the
finite dual coalgebra D, (A (A)).
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form D' for a subspace D of C and by Lemma 76, codim(I) = codim(D") = dim(D)), whence I
is open, which shows that (A, 0)—(k,d) is continuous so 1=4.
Let C:= (T@p&@)ﬂ(é) = DEZ(A(A)), so that A(A)~D,(C), as above. Whence

C= D;S(A(A)) ~ D;E(D* (C)). This is not sufficient to ensure coreflexivity of C, since there is

at this stage no guaranty that the above isomorphism corresponds to the counit of the adjunction
D?iz 41D, (see Footnote 3). One knows from the beginning of the proof that A(l:A) : A(A) ~
A(ALg 1 q) ((Topf, 4)(A)) which, in this case where (Topf, 4)(A) = DI (A(A)), is the iso-
morphism ||T(4 0] : A~ ((4,0))" = (A°)", u—(l—£(u)). So A(A) is reflexive, and thus its
finite dual coalgebra C is coreflexive. Thus 4=>3. O

Example 78. Let R be a ring. Let CrX = (R¥), dy, ex) be the group-like coalgebra on X, i..,
dx(0x) = 0, ® 0y, and ex(dx) = 1r,x € X. The following diagram commutes for a rigid
ring (R, 7).

7

I
((R,7)™) . (R, 7)Y ®r.r) (R, 7))
Axd (R Xy R((R)X ) (22)
RO — R @g R —— (R, 7)%) @r (R, 7)Y)’
X )‘X ®R)\X

Moreover 1 (£) = W(ex(Zx(€))) for each ¢e ((R,7)X). All of this shows that iy :

(T@p‘éiR_ﬂ)(M(RJ) (X)) ~ CrX is an isomorphism of coalgebras.

Let k be a field. It follows from Theorem 77 and Example 74 that in A q)(X) every finite
codimensional ideal is closed if, and only if CyX is coreflexive if, and only if, { n,:x €
X }=1Alg, (Ax(X),k) ([17, Corollary 3.2, p. 528]). This holds in particular if |X| < |k]| (see [17,
Corollary 3.6, p. 529]). If k is a finite field, then Cy(X) is coreflexive if, and only if, X is finite
(see [17, Remark 3.7, p. 530]).
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