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Abstract Perfect nonlinear functions are used to construct DES-like cryptosystems that
are resistant to differential attacks. We present generalized DES-like cryptosystems where the
XOR operation is replaced by a general group action. The new cryptosystems, when com-
bined with G-perfect nonlinear functions (similar to classical perfect nonlinear functions
with one XOR replaced by a general group action), allow us to construct systems resistant
to modified differential attacks. The more general setting enables robust cryptosystems with
parameters that would not be possible in the classical setting. We construct several exam-
ples of G-perfect nonlinear functions, both Z2-valued and Z

a
2-valued. Our final constructions

demonstrate G-perfect nonlinear planar permutations (from Z
a
2 to itself), thus providing an

alternative implementation to current uses of almost perfect nonlinear functions.

Keywords G-perfect nonlinear functions · Difference sets

AMS Classifications 05B10 · 11T71

1 Background on cryptosystems and group action modifications

In an r-round iterative block cipher such as the Data Encryption Standard (DES) [17] or the
Advanced Encryption Standard (AES) [9,18] the ciphertext xr is obtained from a plaintext
x0 by r iterations of the round function f

xi = f (xi−1, ki) 1 ≤ i ≤ r
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84 J. A. Davis, L. Poinsot

where ki is the ith round key. The function f usually contains some particular components
called S-boxes. These (vectorial) Boolean functions B map m-bit vectors to n-bit vectors and
are often used just after an XOR (i.e. a component-wise modulo-two sum) combination of
the block xi−1 and the key ki i.e.

y = B(ki + xi−1) .

The S-boxes are designed to be resistant against last-round attacks that intend to recover the
last-round key. In particular the XOR differences of the output values for input values with
a fixed XOR difference must be close to the uniform distribution; otherwise a statistical bias
could be exploited by the differential attack of Biham and Shamir [4]. Nyberg [23] introduced
perfect nonlinear S-boxes for this purpose.

The differential cryptanalysis takes advantage of the XOR combinations with the round
keys. Nevertheless there are many ways to operate on bit-strings other than XOR: for instance
Lai and Massey’s IDEA [21] uses the classical XOR but also the addition in a cyclic group and
the multiplication in the group of units of a finite field. Additionally, the Russian analogue of
DES has S-boxes that use addition in a cyclic group [32]. Pott [30] says the following: “. . . It
seems that in most applications (in particular in cryptography) people use nonlinear functions
on finite fields. However, there is no technical reason why you should restrict yourselves to
this case.” This paper proposes constructing cryptosystems with operations other than XOR.
The new cryptosystems will be r-round iterative block ciphers as in the classical case, and
our task will be to provide S-boxes that are robust against a modified differential attack.

Suppose that the round keys are chosen in a finite group G that acts on a nonempty finite
set X via a group homomorphism φ from G to the symmetric group S(X) and let H be a
finite group. Then in this case the S-boxes are used as follows

y = B(φ(ki)(xi−1)) (1.1)

where xi−1 ∈ X, y ∈ H , ki ∈ G and φ(ki)(xi−1) denotes the action of the ith round key
ki on the message xi−1. Note that in many cryptosystems the output of one S-box is used as
input for another S-box and so we may require y ∈ X rather than y ∈ H . But an operation of
output difference is necessary to lead to differential cryptanalysis, so we need to consider an
algebraic structure that provides such an operation and then the output values must belong
to a group. An alternative way, not followed in this contribution, would be to consider that
X is equipped with a group structure and G acts on its carrier set. We do not choose this
possibility because it is an important constraint and we want to present a more general theory.
The differential attack can be adapted to this context: let f be a round function (then for each
round key k, fk : x �→ f (x, k) is a permutation) that makes use of S-boxes exactly as in Eq.
(1.1). Then the algorithm of a group action version of the differential attack can be easily
derived from the classical one.

(1) Find a pair (g, β) ∈ G × H so that the probability

Pr(R(φ(g)(x)) − R(x) = β)

is far from the uniform distribution, where R is the reduced cipher defined as R =
fkr−1 ◦ . . . ◦ fk1 ;

(2) Choose at random a plaintext x0 and encrypt both x0 and φ(g)(x0). Two pairs of plain-
texts/ciphertexts are obtained: (x0, xr ) and (φ(g)(x0), x

′
r );

(3) Find all the rth round keys k̂r such that

f −1
k̂r

(xr ) − f −1
k̂r

(x′
r ) = β .
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G-Perfect nonlinear functions 85

(4) Iterate steps (2) and (3) until a value k̂r occurs more than the others. It will be considered
as a candidate for the last round key.

The purpose of this paper is the construction of S-boxes that ensure the best resistance of
the generalized DES-like cryptosystem to this G-differential cryptanalysis. We observe that
some of the new systems presented in this paper will have robust S-boxes in cases where
the traditional theory of Boolean perfect nonlinear functions concludes that these classical
objects can not exist.

2 Perfect nonlinear functions: the classical approach

In this paper, the groups we consider are always finite. Note that if a group G is written
additively (resp. multiplicatively) then 0 (resp. 1) denotes its identity element and G∗ stands
for the set of nonidentity elements of G.

Definition 2.1 Let G and H be (abelian or nonabelian) groups (written additively), and let
f : G → H be a function from G to H . Then f is called perfect nonlinear if for every
(g, h) ∈ G∗ × H, |{x ∈ G|f (g + x) − f (x) = h}| = |G|

|H | .

Let X and Y be two finite nonempty sets. A function g : X → Y is called balanced if
for each y ∈ Y , |{x ∈ X|g(x) = y}| = |X|

|Y | therefore f : G → H is perfect nonlinear if
and only if for each g ∈ G∗ the map, usually called derivative, x �→ f (g + x) − f (x) is
balanced. Perfect nonlinear functions only exist if |H | divides |G|. In particular, if H = Z2,
then we need |G| to be even. Perfect nonlinear functions from Z

a
2 to Z

b
2 are equivalent to bent

functions [22,23]. We will not define bent functions in this paper (see [31]), but we have the
following important result [23] coming from bent functions that restricts the possibilities for
perfect nonlinear functions.

Theorem 2.2 If f : Z
a
2 → Z

b
2 is perfect nonlinear, then a is even and a ≥ 2b.

Note also that such (Boolean) bent functions can not be balanced (Proposition 14 of [7]).
We will see in sect. 4 that we can construct a function f from Z

a
2 to Z2 so that f is both

balanced and a modified version of perfect nonlinear (known as “G-perfect nonlinear”; see
next section).

Bent functions (and hence perfect nonlinear functions) are equivalent to a special type of
difference set, so another approach to understanding perfect nonlinear functions is to use the
known results from difference sets. We include the definitions of difference sets and relative
difference sets below.

Definition 2.3 1. A subset D of cardinality k of a group G (in a multiplicative represen-
tation) of order v is a (v, k, λ) difference set if for every g ∈ G∗ there are exactly λ

elements (x, y) ∈ D2 satisfying y = gx.
2. A subset R of cardinality k of a group G (in a multiplicative representation) of order mn is

an (m, n, k, λ) relative difference set of G relative to a normal subgroup H of order
n if there are exactly λ elements (x, y) of R2 satisfying y = gx for every g ∈ G\H and
there are no elements (x, y) ∈ R2 satisfying y = gx for every g ∈ H ∗.

The most important family of difference sets for this paper, called Hadamard difference
sets, have parameters (4N2, 2N2 −N,N2 −N) or its complement (4N2, 2N2 +N,N2 +N),
where N is an integer. The following theorem describes all known abelian groups containing
a Hadamard difference set (see [3] for details).
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Theorem 2.4 Let G = H × K × (

r∏

i=1

(Zpi
)4) be an abelian group so that:

i: |H | = 22a+2, expH ≤ 2a+2;

ii: K =
s∏

j=1

(Z
3bj )2;

iii: pi prime;

then G contains a (4N2, 2N2 ± N,N2 ± N) difference set where N = 2a3�bj

r∏

i=1

(pi)
2.

Define the indicator function iS of a subset S ⊂ X to satisfy iS(s) = 1 if s ∈ S and
iS(s) = 0 otherwise. The following theorem due to Dillon [11] demonstrates the connection
between Hadamard difference sets and perfect nonlinear functions.

Theorem 2.5 The subset D of the finite group G is a (4N2, 2N2 ± N,N2 ± N) Hadamard
difference set if and only if iD is a perfect nonlinear function from G to Z2.

A similar connection can be made between relative difference sets and general perfect
nonlinear functions. A relative difference set is called semiregular if k = m. Pott [30] showed
the following result which is a minor variation of Theorem 14 of Arasu et al. [1].

Theorem 2.6 Let G and H be arbitrary finite groups and f : G → H . The set Rf :=
{(g, f (g))|g ∈ G} ⊂ G × H is a semiregular (|G|, |H |, |G|, |G|/|H |) relative difference
set in G × H relative to {1G} × H if and only if f is perfect nonlinear.

We comment that there are other applications of perfect nonlinear functions in difference
sets not studied in this paper; indeed Ding and Yuan [12] recently presented a family of
new perfect nonlinear functions and constructed a family of skew Hadamard difference sets
(a different family than the Hadamard difference sets defined above) using these functions
which are shown to be inequivalent in many small cases to the so-called Paley-Hadamard
difference sets [26], refuting a longstanding conjecture on the subject.

We will generalize some connections between difference sets and perfect nonlinear func-
tions in the following sections.

3 Group action approach

A group G is said to act on a nonempty set X if there is a group homomorphism φ : G →
S(X), where S(X) is the set of permutations of X. Let p ∈ X. The orbit of p under the action
of G on X is the set Op = {x ∈ X|x = φ(g)(p) for g ∈ G}. The action is called faithful if
the homomorphism is one-to-one; the action is called transitive if there is only one orbit; and
the action is called regular if for each x ∈ X the function that maps g ∈ G to φ(g)(x) ∈ X is
bijective. Such a regular action is faithful and transitive (the reciprocal assertion is also true
when G is abelian).

One example of an action, the so-called left regular action of G on itself, is defined by
the homomorphism φ(g)(x) = gx, g, x ∈ G. This action is also called left translation, and
it is the action that is used in the classical definition of the DES cryptosystem in the form of
the XOR operation. As indicated in sect. 1, we will consider a different group action on the
bits than XOR. The generalized differential attack motivates our need to balance the outputs
based on the group action, leading to the following definition [27–29].
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G-Perfect nonlinear functions 87

Definition 3.1 Let G and H be groups, let X be a finite nonempty set with G acting faithfully
on X via the homomorphism φ, and let f : X → H be a function from X to H . Then f

is called G-perfect nonlinear if for every (g, h) ∈ G∗ × H, |{x ∈ X|f (φ(g)(x)) − f (x) =
h}| = |X|

|H | .

We need the action to be faithful in order to avoid the existence of g ∈ G∗ such that
φ(g)(x) = x for all x ∈ X. If such a g exists, then |{x ∈ X|f (φ(g)(x)) − f (x) = h}| ={

0 if h 
= 0,

|X| if h = 0
. The existence of G-perfect nonlinear functions is then impossible. For the

remainder of the paper we implicitly assume that all group actions are faithful. Moreover,
note that |H | must divide |X| in order to have a G-perfect nonlinear function.

We now consider the connection between G-perfect nonlinear functions and difference
sets. The key part of the definition of a difference set is the statement that for every noniden-
tity g ∈ G there are exactly λ solutions (x, y) ∈ D2 satisfying y = gx (similar for relative
difference set). We are implicitly using the left regular action of G on itself, so once again we
generalize this by allowing other group actions. This amounts to finding exactly λ solutions
(x, y) ∈ D2 ⊂ X2 satisfying y = φ(g)(x). We extend the (faithful) group action φ of G on
X to an (faithful) action � of G×H on X ×H defined by �(g, h)(x, h′) = (φ(g)(x), hh′).
We call it the extension of φ. The following definitions generalize difference sets and relative
difference sets.

Definition 3.2 Let φ : G → S(X) define a group action of the group G on the nonempty set
X of cardinality v, and let � be the extension of φ for the group H of cardinality n described
above.

1. A subset D of cardinality k of X is a G− (v, k, λ) difference set of X if for every g ∈ G∗
there are exactly λ elements (x, y) of D2 satisfying y = φ(g)(x).

2. A subset R of cardinality k of X × H is a G × H − (v, n, k, λ)-relative difference set of
X × H relative to {1G} × H if (i) for every (g, h) 
= (1G, h) ∈ G × H there are exactly
λ elements ((x1, h1), (x2, h2)) ∈ R2 so that �((g, h))((x1, h1)) = (x2, h2) and (ii) if
(x, h), (x, h′) ∈ R, then h = h′.
Such a G × H − (v, n, k, λ)-relative difference set is called semiregular if v = k.

We remark that each G × H -semiregular relative difference set R gives rise to a function
f : X → H such that R = {(x, f (x))|x ∈ X}.

Although the definition of G-(relative) difference sets and its traditional counterpart are
quite similar, we note that group actions can be much more general than action via translation.
This suggests that we can expect results which are impossible in the classical framework;
for example, the construction of a function that is simultaneously G-perfect nonlinear and
balanced (see Theorem 4.4).

We also note the similarity between G-difference sets and (v,K, λ)-difference families in
G as defined in Beth, Jungnickel, and Lenz [3]. A (v,K, λ) difference family is a collection
of s sets Bi ⊂ G, 1 ≤ i ≤ s, |G| = v,�|Bi | = K so that every nonidentity element of the
group G can be represented exactly λ times as differences b−b′ where b, b′ ∈ Bi for some i.
If our action is regular on all of its orbits (not a requirement) and if D is a G-difference set of
X, then the fact that the number of solutions φ(g)◦φ(g1)(p) = φ(g2)(p), φ(g1), φ(g2) ∈ D

is λ implies that g = g2g
−1
1 has precisely λ solutions. Our new context, where the group is

acting on a set X, is motivated by the connection to G-perfect nonlinear functions and their
application to DES-like cryptosystems.
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88 J. A. Davis, L. Poinsot

In this paper, we will be exclusively interested in G − (v, k, λ)-difference sets with
k−λ = v

4 . In that case, we get the following theorem linking G-difference sets and Z2-valued
G-perfect nonlinear functions.

Theorem 3.3 Let φ : G → S(X) define a group action of the group G on a nonempty set X

of cardinality v, and let D ⊂ X. The function iD is G-perfect nonlinear if and only if D is a
G − (v, k, λ)-difference set of X so that k − λ = v

4 .

Proof Suppose that D is a G− (v, k, λ)-difference set of X so that k −λ = v
4 . By the defini-

tion of G-difference sets, we see that λ = |φ(g)(D)∩D| for all g ∈ G∗. A counting argument
demonstrates that |{x ∈ X|iD(φ(g)(x)) + iD(x) = 1}| = 2(|D| − |φ(g)(D) ∩ D|) (where
“+” is the modulo-two sum) since iD(φ(g)(x))+ iD(x) = 1 if exactly one of φ(g)(x) and x

is in D. This implies that iD(φ(g)(x))+ iD(x) takes the value 1 exactly 2(k −λ) = v
2 times,

implying that iD(φ(g)(x)) + iD(x) takes the value 0 exactly v
2 times as well. This implies

that iD is G-perfect nonlinear.
Conversely, suppose that iD is G-perfect nonlinear. By applying the same counting argu-

ment as before, we see that 2(|D| − |φ(g)(D) ∩ D|) = v
2 for all g ∈ G∗. Solving this, we

get |φ(g)(D) ∩ D| = k − v
4 , which implies that λ = |φ(g)(D) ∩ D| is the same for all

nonidentity g. Thus, D is a G − (v, k, λ)-difference set as claimed. �

Extending Theorem 2.6 to the group action setting, it is also possible to characterize
G-perfect nonlinear functions by G × H -relative difference sets.

Theorem 3.4 Let φ : G → S(X) define a group action of the group G on the finite nonempty
set X, H be a group written additively, and � : G × H → S(X × H) be the extension of
φ. If f : X → H , then f is G-perfect nonlinear if and only if the set Rf = {(x, f (x)) ∈
X×H |x ∈ X} is a G×H −(|X|, |H |, |X|, |X|

|H | )-semiregular relative difference set of X×H

relative to {1G} × H .

Proof Since f is a mapping, |Rf | = |G| and therefore we need to prove that f is G-perfect
nonlinear if and only if Rf satisfies axiom (ii) of G×H -relative difference sets with λ = |X|

|H | .
This last assertion is equivalent to the following ones for each (g, h) ∈ G∗ × H .

|{((x1, h1), (x2, h2)) ∈ R2
f |�((g, h))((x1, h1)) = (x2, h2)}| = |X|

|H |
⇔ |{((x1, h1), (x2, h2)) ∈ R2

f |(φ(g)(x1), h + f (x1)) = (x2, f (x2))}| = |X|
|H |

(by the definition of the action � and the definition of Rf .)
⇔ |{x ∈ X|f (φ(g)(x)) − f (x) = h}| = |X|

|H |
⇔ f is G-perfect nonlinear .

�

In this paper many of our results concern Z2-valued functions rather than the S-boxes
themselves. This is a good place to start our understanding of G-perfect nonlinear functions
due to the following relationship between nonbinary perfect nonlinear functions and their
binary components.

Theorem 3.5 Let Vn be a n-dimensional Hilbert space over the finite field with two elements
Z2 and let 〈., .〉n be its dot-product. Suppose that the group G acts faithfully on a finite non-
empty set X (via φ). A function f : X → Vn is G-perfect nonlinear if and only if for each
β ∈ V ∗

n , 〈β, f 〉n : X → Z2 is G-perfect nonlinear.
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G-Perfect nonlinear functions 89

Proof We can show that g : X → Vn being balanced is equivalent to

∀β ∈ V ∗
n ,

∑

x∈X

(−1)〈β,g(x)〉n = 0 . (3.1)

(This is a simple adaptation of Proposition 14 of [7].) Moreover it is obvious to see that f is
G-perfect nonlinear if and only if for each g ∈ G∗, the map

dgf : X → Vn

x �→ f (φ(g)(x)) + f (x)

is balanced. Using Eq. 3.1, this is equivalent to the fact that for each g ∈ G∗ and for each
β ∈ V ∗

n ,
∑

x∈X

(−1)〈β,dgf (x)〉n = 0. By bilinearity, f is G-perfect nonlinear if and only if for

each g ∈ G∗ and for each β ∈ V ∗
n ,

∑

x∈X

(−1)dg(lβ◦f )(x) = 0 where lβ : y �→ 〈β, y〉n. By

applying Eq. 3.1 with n = 1, the last fact is equivalent to the balancedness of dg(lβ ◦ f ) for
every g ∈ G∗ and therefore lβ ◦ f is also G-perfect nonlinear. �

Our approach in the next section is to construct G-difference sets with |X| = 4(k − λ),
which by Theorem 3.3 will provide relevant cryptographic examples of G-perfect nonlinear
Z2-valued functions.

4 G-difference set constructions

We begin this section with a general theorem that will allow us to build G-difference sets
from smaller G-difference sets.

Theorem 4.1 Let φ : G → S(X) define a group action of the group G on the nonempty set
X of cardinality v, and suppose Di is a G − (v, ki, λi)-difference set of X for 1 ≤ i ≤ t .
Suppose Y = {y1, y2, . . . , yt } is a set of cardinality t , and define the group action � of G on

X × Y by �(g)((x, y)) = (φ(g)(x), y) for (x, y) ∈ X × Y . Then D =
t⋃

i=1

(Di × {yi}) is a

G − (vt,

t∑

i=1

ki,

t∑

i=1

λi)-difference set of X × Y .

Proof Suppose that all of the Di are G−(v, ki , λi)-difference sets of X, and form D ⊂ X×Y

as described. For every g ∈ G∗, the number of solutions of �(g)((x, y)) = (x′, y′), where
(x, y), (x′, y′) ∈ D, must satisfy (φ(g)(x), y) = (x′, y′). Thus, y = y′, and we are simply
counting the number of solutions to φ(g)(x) = x′ in each Di . This yields a total number of

solutions of
t∑

i=1

λi as claimed. The other parameters are obvious. �
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We note that if all of the Di in Theorem 4.1 satisfy v = 4(ki −λi), then vt = 4

(
t∑

i=1

ki−
t∑

i=1

λi

)
. The combined G-difference set D can be used to construct G-perfect nonlinear

functions as described in Theorem 3.3.
As one application of this direct product construction, we combine Theorem 2.4 with

Theorem 4.1 to yield the following G-difference sets all of which satisfy v = 4(k − λ).

Corollary 4.2 Let G = H × K ×
(

r∏

i=1

(Zpi
)4

)
be an abelian group so that:

i |H | = 22a+2, expH ≤ 2a+2;

ii K =
s∏

j=1

(Z
3bj )2;

iii pi prime.

Let φ : G → S(G) be the left regular action on G, and let � be the action on G × Y defined
by �(g)((g′, y)) = (gg′, y) for Y a set of cardinality t . Then there is a G− (4N2t, j (2N2 −
N) + (t − j)(2N2 + N), j (N2 − N) + (t − j)(N2 + N))-difference set in G × Y for all

0 ≤ j ≤ t where N = 2a3
∑

bj

r∏

i=1

(pi)
2.

Proof Theorem 2.4 provides G− (4N2, 2N2 ±N,N2 ±N)-difference sets based on the left
regular action of G on itself, and Theorem 4.1 allows us to combine them into a G-difference
set on G×Y . The different j values come from how many of the Di used in the construction
have the parameters (4N2, 2N2 − N,N2 − N). �

As an example of the power of this corollary, we can construct G-difference sets with
parameters (512, 192, 64), (512, 196, 68), (512, 200, 72), . . . , (512, 320, 192) by using 32
copies of the (16, 6, 2) difference set or its complement in the group G, where G is a group
of order 16 that acts regularly on the 32 orbits of a set X of order 512. Since 512 is an odd
power of 2, Theorem 2.2 implies that there are no perfect nonlinear functions with these
parameters. Thus, this theorem provides great flexibility in producing G-perfect nonlinear
functions for parameters that are impossible for traditional perfect nonlinear functions.

We remark here that there are G-difference sets with the same parameters as the previous
corollary that are not necessarily on a set that is a direct product of G and Y . If we have
a group action of G on a set X with the property that the action is faithful and regular on
each of its orbits (sometimes called a free action), then we can use a Hadamard difference
set in each orbit Oi to choose the elements of X from that orbit. We do this by identifying
a point pi ∈ Oi , write all other points q ∈ Oi as q = φ(g)(pi) for some g ∈ G, and let
Di = {x ∈ Oi |x = φ(d)(pi) for some d ∈ Di}. The union of the Di is the G-difference set.

The second general theorem below provides a way to modify existing G-difference
sets to get new ones. The technique in the theorem is based on the trivial result in dif-
ference sets that the complement of a (v, k, λ) difference set is a (v, v − k, v − 2k + λ)

difference set.

Theorem 4.3 Let G be a group that acts on a nonempty set X, and suppose D is a G −
(v, k, λ)-difference set of X. If Op is the orbit containing p ∈ X and Cp = D ∩ Op , then
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G-Perfect nonlinear functions 91

D′ = (D\Cp) ∪ (Op\Cp) is a G − (v, k + |Op| − 2|Cp|, λ + |Op| − 2|Cp|)-difference set
of X.

Proof Suppose D meets the conditions of the statement of the theorem. For a given g ∈ G∗,
there are � solutions to the equation y = φ(g)(x), where (x, y) ∈ Cp . By a counting argu-
ment, there are 2(|Cp|−�) pairs (x, y) with exactly one of the components in Cp. This implies
that there are |Op| − (2(|Cp| − �)) − � = |Op| − 2|Cp| + � elements x ∈ (Op\Cp) for
which y = φ(g)(x) ∈ (Op\Cp). Thus, the number of solutions to y = φ(g)(x) is changed
by |Op|− 2|Cp|, independent of the group element g. Similarly, the size of the G-difference
set is changed by adding |Op| − |Cp| and subtracting |Cp|, yielding the result. �

Any G-difference set constructed by the method suggested in Theorem 4.3 will preserve
the equation k − λ = v

4 . Thus, once we get a G-difference set with the appropriate property,
we can construct a whole family with differing parameters that still satisfy the conditions
needed to build G-perfect nonlinear functions.

A permutation π of a set X (that contains at least two distinct elements) is a fixed-point
free involution if

i π ◦ π is the identity map of X (or equivalently π = π−1);
ii ∀x ∈ X, π(x) 
= x.

Theorem 4.4 Let m be a nonzero positive integer. Let X and Y be two sets of same cardi-
nality 2m and such that X ∩ Y = ∅. Let π ∈ S(X ∪ Y ) such that π(x) = x for all x ∈ X,
π(y) 
= y, π(π(y)) = y and π(y) ∈ Y for all y ∈ Y (i.e. the permutation π is the identity on
X and a fixed-point free involution on Y ). There is a function f : X ∪Y → Z2 such that f is
〈π〉-perfect nonlinear and balanced. Moreover the 〈π〉-difference set of X∪Y corresponding
to f has parameters (4m, 2m,m).

Proof Let {X1, X2} be a partition of X such that |Xi | = m for i = 1, 2. Since π is a fixed-
point free involution on Y we can choose Y1 as a subset of Y of cardinality m such that for
each y ∈ Y1, π(y) ∈ Y2 := Y\Y1. Then {Y1, Y2} is a partition of Y such that |Yi | = m for
i = 1, 2. Let define f : X ∪ Y → Z2 as follows

f (x) =
{

1 x ∈ X1 ∪ Y1 ,

0 x ∈ X2 ∪ Y2 .

Thus f is obviously balanced. Moreover if x ∈ X then π(x) = x and therefore f (π(x)) +
f (x) = 0 and ify ∈ Y1 (resp.y ∈ Y2) thenπ(y) ∈ Y2 (resp.π(y) ∈ Y1), sof (π(y))+f (y) =
1. We conclude that f is 〈π〉-perfect nonlinear since |X| = |Y | = 2m and |X∪Y |

2 = 2m.
Since f is the indicator function of D := {x ∈ X∪Y |f (x) = 1} = X1 ∪Y1, by Theorem 3.3,
D is a 〈π〉 − (4m, 2m, λ) difference set of X ∪ Y such that 2m − λ = m. Hence λ = m. �

If we choose in the previous theorem {X, Y } as a partition of Z
k+2
2 (with k ≥ 0) such that

both X and Y have the same cardinality 2k+1 (here m = 2k) and we define π as the identity
on X and a fixed-point free involution on Y then we can construct a balanced 〈π〉-perfect
nonlinear Boolean function f : Z

k+2
2 → Z2 which is impossible in the traditional setting.

Finally if m = 1 then the minimal G-difference set corresponding to a G-perfect nonlinear
function built as in the previous theorem has parameters (4, 2, 1) which are different from
the trivial classical difference sets (4, 1, 0) or (4, 3, 2).

A group G is called a group of fixed-point free involutions of a nonempty set X if the
homomorphism for the group action maps each nonidentity element of G to a fixed-point
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free involution. Note that the action of such a group is always faithful. As an example,
let a and b be two integers such that a ≥ b. For each x = (x1, x2, . . . , xb) ∈ Z

b
2 and each

y = (y1, y2, . . . , ya) ∈ Z
a
2 , define φ(x)(y) = (x1 +y1, x2 +y2, . . . , xb +yb, yb+1, . . . , ya).

The group G = Z
b
2 and all its conjugate group are (isomorphic) groups of fixed-point free

involutions of the set X = Z
a
2. Such involutional groups are rather interesting in cryptography

since their action on Z
a
2 is similar to the classical XOR combination and therefore constitute a

natural extension to the traditional addition of the round-key in block ciphers. The following
theorem uses groups of fixed-point free involutions to demonstrate that not all G-difference
sets with k − λ = v

4 will be constructed as in Corollary 4.2.

Theorem 4.5 (Hyperplane construction) Let G be a group of order 2a of fixed-point free
involutions acting on Z

2a
2 . There is a G−(22a, (2a−1 −1)(2a −1)+1, (2a−1 −1)(2a−1 −2))

difference set of Z
2a
2 .

Proof Since all of the nonidentity elements of G have order 2, G must be isomorphic to Z
a
2.

There are 2a −1 subgroups of G of order 2a−1, denoted Hi, 1 ≤ i ≤ 2a −1. We observe that
each G-orbit has 2a elements since all of the involutions are fixed-point free, so there are 2a

distinct orbits. We identify a special element of each orbit, pi ∈ Oi . We associate the sub-
group Hi to the ith orbit Oi , and we construct the set Di = {φ(h)(pi)|h ∈ Hi, h 
= 1} ⊂ Oi .

We claim that D = (

2a−1⋃

i=1

Di) ∪ {p2a } is a G-difference set with the parameters listed in the

theorem. We can easily see that v and k have the correct sizes, so we are left with verifying
that there are λ solutions (x, y) ∈ D × D to the equation y = φ(g)(x) for a given noniden-
tity g ∈ G. We need only consider ordered pairs (x, y) where x and y are in the same orbit
(if not, then there won’t be any solutions to our equation). Suppose (x, y) ∈ (Di)

2 satisfies
y = φ(g)(x) for g 
∈ Hi . Then y = φ(h)(pi) and x = φ(h′)(pi) for some h, h′ ∈ Hi implies
that φ(h)(pi) = y = φ(g)(x) = φ(g)(φ(h′)(pi)) = φ(gh′)(pi). Since the group action on
the orbit is regular, we get that h = gh′, or g = h(h′)−1 ∈ Hi . This contradiction shows
that there are no solutions (x, y) ∈ (Di)

2 when g 
∈ Hi . A similar argument shows that we
will have solutions when (x, y) ∈ (Di)

2 and g ∈ Hi , and we will have a solution whenever
g = h(h′)−1 for h, h′ ∈ Hi . There are 2a−1 − 2 solutions h, h′ ∈ Hi (there are |Hi | = 2a−1

solutions in elements of Hi , but we lose two of those solutions since we excluded the identity
element in the construction of the Di). Since g is contained in 2a−1 − 1 subgroups, we get
λ = (2a−1 − 1)(2a−1 − 2).

�

We note that G-difference sets in Theorem 4.5 satisfy k − λ = v
4 and hence can be used

to construct G-perfect nonlinear functions. We could construct G-difference sets in similar
sets by using subspaces other than the hyperplanes, but those constructions fall outside the
scope of this paper.

Using the hyperplane construction and Theorem 4.1 we can establish the following cor-
ollary that leads to relevant cryptographic examples.

Corollary 4.6 Let φ be a homomorphism from G = Z
a
2 to the symmetries of the set

X = Z
2a+b
2 defined by φ((g1, g2, . . . , ga)((x1, x2, . . . , x2a+b)) = (g1 + x1, . . . , ga +

xa, xa+1, . . . , x2a+b). There is a G−(22a+b, 2b((2a−1−1)(2a−1)+1), 2b(2a−1−1)(2a−1−
2)) difference set of Z

2a+b
2 .
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Proof By Theorem 4.5, there exists a G−(22a, (2a−1−1)(2a −1)+1, (2a−1−1)(2a−1−2))

difference set D of Z
2a
2 . By Theorem 4.1,

⋃

y∈Z
b
2

(D×{y}) is a G−(22a+b, 2b((2a−1 −1)(2a −

1) + 1), 2b(2a−1 − 1)(2a−1 − 2)) difference set of Z
2a+b
2 . �

If we choose a and b to be odd integers and G is Z
a
2 so that there is no perfect nonlinear

(or bent) functions f : Z
a
2 → Z2 or f : Z

2a+b
2 → Z2, then Corollary 4.6 demonstrates

that we are able to construct Za
2 -perfect nonlinear functions from Z

2a+b
2 to Z2. The group

action based approach for perfect nonlinearity (and difference set) ensures the existence of
G-perfect nonlinear functions in cases impossible for the traditional theory.

Finally we can combine all of the constructions in this section by applying Theorems 4.1
and 4.3 to Corollary 4.2 and Theorem 4.5, yielding the following corollary.

Corollary 4.7 Let G be a group of order 22a of fixed-point free involutions acting on a set X

with 24at elements. There is a G−(24at, (22a−1−1)(s(22a −1)−i)+(22a−1+1)i+(s−j)+
(22a−1)j+(22a−1−2a)(t−s−�)+(22a−1+2a)�, (22a−1−1)(22a−1−2)s+(22a−2−2a)(t−
s)+2i+(22a−2)j+2a+1�)-difference set of X for 0 ≤ s ≤ t, 0 ≤ i ≤ (22a−1)s, 0 ≤ j ≤ s,
and 0 ≤ � ≤ t − s.

Proof We will use Hadamard difference sets in 22as of the orbits of this group action; we can
choose to use the Hadamard difference set or its complement in these orbits. In the remaining
22a(t − s) orbits, we will have (t − s) complete hyperplane constructions each of which uses
22a orbits. We can complement any of the orbits: the parameter i in the corollary refers to the
orbits associated to the hyperplanes; the parameter j refers to the orbit with a single element
in the hyperplane construction; the parameter � refers to the orbits with Hadamard difference
sets. Simple counting gives the result. �

The number of G-difference sets with different orbit-intersection sizes in Corollary 4.7

is
t∑

s=0

[{(t − s)22a + 1}(s + 1)(s(22a − 1) + 1)]. As an example, there are 12,790 different

G-difference sets, where G is a group of order 16 acting on a set X with 1024 elements. Not
all of these G-difference sets will have distinct values for k = |D|, but they will have distinct
patterns of orbit-intersection sizes. Compare this with the classical difference set case, where
all of the difference sets in a group of order 1024 have either 496 or 528 elements (only two
choices). All of these G-difference sets coming from Corollary 4.7 satisfy k − λ = v

4 and
hence can be used to construct G-perfect nonlinear functions.

5 G-relative difference set constructions and vector-valued g-perfect nonlinear
functions

By Theorem 3.4, H -valued G-perfect nonlinear functions are equivalent to G × H semireg-
ular relative difference sets (RDSs) in X×H relative to {1G}×H . This motivates our search
for G × H -RDSs with H = Z

a
2 for a > 1: any constructions will yield G-perfect nonlin-

ear functions whose range is larger than Z2 and hence can be used to construct generalized
S-boxes. The next theorem involves G × H -relative difference set constructions modelled
on the G-difference set constructions presented in Theorem 4.1 (the proof is similar and is
omitted).
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Theorem 5.1 Let φ : G → S(X) define a group action of the group G on the nonempty set
X of cardinality m, let H be a group of order n, and suppose Di is a G×H − (m, n, ki , λi)-
relative difference set of X × H for 1 ≤ i ≤ t . Suppose Y = {y1, y2, . . . , yt } is a set of
cardinality t , and define the group action � of G×H on X×H×Y by �((g, h))((x, h′, y)) =
(φ(g)(x), hh′, y) for (x, h′, y) ∈ X × H × Y . Then D =

t⋃

i=1

(Di × {yi}) is a G × H −

(mt, n,

t∑

i=1

ki,

t∑

i=1

λi)-difference set of X × H × Y .

If G is any abelian group of order 22a with a subgroup isomorphic to Z
a
2 and if H = Z

a
2,

then [10] demonstrates that there is a (22a, 2a, 22a, 2a)-relative difference set in G × H

relative to {1G} × H . If we allow X = G and φ(g)(x) = gx (left translation as the group
action), then we get the following G × H -RDSs.

Corollary 5.2 Suppose G is a group of order 22a with a subgroup isomorphic to Z
a
2 , H =

Z
a
2 , and Y is a set of cardinality t . If G acts on itself by left translation, then there is a

G×H −(22a+t , 2a, 22a+t , 2a+t )−relative difference set in G×H ×Y relative to {1G}×H .

As indicated in Theorem 3.4, this implies G-perfect nonlinear vector-valued functions
from X × Y to H where G and H are as in the Corollary.

The following construction yields a very nice application indicating the potential appli-
cations of the generalized approach. In the classical case, many cryptographic applications,
namely substitution-permutation networks [16] such as the AES, require functions f :
Z

a
2 → Z

a
2. In this case, it is clearly impossible to have a perfect nonlinear function: if x is

a solution of f (α + x) + f (x) = β, then α + x is a distinct second solution of the deriva-
tive equation, and only one solution is allowed. The optimal resistance against the classical
differential attack is represented by Almost Perfect Nonlinear (APN) functions that come
as close to perfect nonlinear as possible. An APN function f : Z

a
2 → Z

a
2 requires that for

each nonzero α ∈ Z
a
2 and each β ∈ Z

a
2, the equation f (α + x) + f (x) = β has either 0

or 2 solutions. Since their introduction by Nyberg [24] and their initial study by Chabaud
and Vaudenay [8] a large literature has arisen around constructions of APN functions. The
substitution-permutation networks use invertible S-boxes and therefore need APN permu-
tations. Unfortunately it is conjectured that such permutations exist only when a is an odd
integer [6,20]; for instance the AES uses as a S-box the inverse involution in a finite field
GF(2a) which is an APN permutation when a is odd and differentially 4-uniform when a

is even [25]. However, the following theorem demonstrates that we can construct G-perfect
nonlinear permutations f : Z

a
2 → Z

a
2 for a very large group G even if a is an even integer.

An associative division ring (also called skew field) satisfies all the properties as a field except
possibly commutativity of multiplication.

Theorem 5.3 (Planar construction) Let K be any associative division ring, let M be a left
K-module, and let f be any automorphism of the additive group of M . If K

∗ is the multipli-
cative group of K that acts on M by left multiplication (which is a faithful action), then f is
a K

∗-perfect nonlinear function from M to itself.

Proof First note that the notion of G-perfect nonlinearity for functions from M to itself is
here implicitly and rather naturally extended to an eventual infinite setting. We need to show
that f (αx) − f (x) = β has a unique solution for α ∈ K

∗, α 
= 1 and β ∈ M . Since f is
an additive automorphism, f (αx) − f (x) = f (αx − x) = f ((α − 1)x). Now since f is a
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bijection, f −1 exists and (α − 1)x = f −1(β). Finally, since α 
= 1, (α − 1) is invertible in
the division ring, and x = (α − 1)−1f −1(β) is the unique solution to the derivative equation
as required. �

As indicated above, if we choose in the previous theorem the finite field with 2a elements
GF(2a) as K and M , we obtain GF(2a)∗-perfect nonlinear permutations of GF(2a) whether
a is an even or an odd integer.

We comment that this result works for all associative division rings, even infinite and/or
nonabelian (for instance the quaternions). Thus, if there were ever an application for an infi-
nite-dimensional (abelian or nonabelian) S-box, this construction could be adapted for that
situation. The proof also works for any semifield S (a kind of nonassociative skew field; for
instance the octonions) and module M over the semifield. Since the nonzero elements of a
semifield S

∗ form a loop (a kind of nonassociative group), they do not operate as a permu-
tation group on the module. Therefore in this case we do not formally obtain an S

∗-perfect
nonlinear function f : M → M . However for each α ∈ S

∗, x �→ αx is a permutation of M

and if α 
= 1, then αx 
= x for every x 
= 0M ; so the left multiplication is close to a faithful
group action and f seems like a S

∗-perfect nonlinear function.
Until recently [5,15] the only known examples of APN functions were some power func-

tion x �→ xd in a (characteristic 2) finite field [2,13,14,19,25]. Our last construction gives
similar result in the group action setting.

Theorem 5.4 (Monomial construction) Let p be a prime number, let GF(pa)∗ act faith-
fully on GF(pa) by multiplication and let d ∈ N such that 1 ≤ d ≤ pa −1 which is invertible
modulo pa − 1. Then the monomial mapping f : x �→ xd of GF(pa) is a GF(pa)∗-perfect
nonlinear permutation.

Proof Since d is invertible modulo pa −1, f is a permutation. To see that f is also GF(pa)∗-
perfect nonlinear, we need to compute the number of solutions to the equation

(αx)d − xd = β (5.1)

for each (α, β) ∈ (GF(pa)∗\{1})×GF(pa). The above equation is equivalent to xd = β

αd−1
(α 
= 1). If we raise both sides to the power e corresponding to the inverse of d modulo pa −1
we get x = (

β

αd−1
)e as the unique solution to the Eq. 5.1. �

Obviously not all power permutations are additive automorphisms of a finite field (for
instance the APN power permutations), therefore the monomial and planar constructions can
lead to possibly different G-perfect nonlinear permutations.
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