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Abstract The Möbius inversion formula, introduced during the 19th century in num-
ber theory, was generalized to a wide class of monoids called locally finite such as the
free partially commutative, plactic and hypoplactic monoids for instance. In this con-
tribution are developed and used some topological and algebraic notions for monoids
with zero, similar to ordinary objects such as the (total) algebra of a monoid, the aug-
mentation ideal or the star operation on proper series. The main concern is to extend
the study of the Möbius function to some monoids with zero, i.e., with an absorbing
element, in particular the so-called Rees quotients of locally finite monoids. Some
relations between the Möbius functions of a monoid and its Rees quotient are also
provided.
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1 Introduction

The classic Möbius inversion formula from number theory, introduced during the
19th century, states that, for any complex or real-valued functions f,g defined on the
positive integers N \ {0}, the following assertions are equivalent:

– For all n, g(n) = ∑
d|n f (d).

– For all n, f (n) = ∑
d|n μ(n/d)f (d).

In both formulae the sums are extended over all positive divisors d of n, and μ is the
classical Möbius function. This result actually uses the fact that μ and ζ are inverse
one from the other with respect to the usual Dirichlet convolution, where ζ is the
characteristic function of positive integers (see for instance [1]).

This classic version of the Möbius inversion formula was generalized in dif-
ferent ways by different authors. P. Doubilet, G.-C. Rota, and R.P. Stanley pro-
posed a systematic treatment of this problem for locally finite posets in [13, 29],
while P. Cartier and D. Foata in [8] proved such a formula holds in a wide
class of monoids called locally finite [16], and the Möbius function was even ex-
plicitly computed for some of them. This paper is a contribution to the study
of the Möbius inversion formula, still in the context of locally finite monoids
but for the particular case of monoids with zero. For instance, let M be the
set {0,1, a, b, c, ab, ac, ba, bc, ca, cb, abc, acb, bac, bca, cab, cba}. It becomes a
monoid with zero when equipped with concatenation of words without common let-
ters, also called standard words; the other products give 0. Let ζ0 be the characteristic
function of M0 = M \ {0}. Then, ζ0 is invertible—with respect to convolution—in
the algebra Z0[M] of all functions that annihilate the zero 0 of M , which is, in a
first approximation, the Z-algebra of polynomials in the noncommutative variables
{a, b, c} with only standard words as monomials. Indeed, ζ0 = 1 + ζ+

0 , where 1 is
the characteristic function of the singleton {1} and since ζ+

0 has no constant term,
as a noncommutative polynomial (that is ζ+

0 (1) = 0), ζ0 is invertible, with inverse
μ0 = ∑

n≥0(−ζ+
0 )n. Due to the particular multiplication in M , the “proper part” ζ+

0
of ζ0 is actually nilpotent, and the previous summation stops after four steps. There-
fore μ0 can be computed by hand, and we obtain μ0 = 1 − a − b − c.

Rather surprisingly, μ0—interpreted as the Möbius function of the monoid with
zero M—is the same as the Möbius function of the free noncommutative monoid
{a, b, c}∗. Moreover such a phenomenon also appears for less tractable monoids with
zero: for instance, let us consider a monoid similar to M but on an infinite alphabet
X: it is the set of all words on X without multiple occurrences of any letter, and with
product ω×ω′ equal to the usual concatenation ωω′ when each letter appears at most
one time in the resulting word, and 0 otherwise. Contrary to M , this monoid is found
infinite. Nevertheless we can prove its characteristic function to be invertible, and
its inverse is still equal to the usual Möbius function of the free monoid X∗. In this
case, it is not as easy to compute because the corresponding “proper part” is no more
nilpotent, and the sum of a series needs to be evaluated in some relevant topology.

The explanation of this general phenomenon is given in the present paper whose
main concern is the development of an algebraic and topological toolbox for a sys-
tematic and rigorous treatment of the Möbius inversion formula for locally finite
monoids with zero.
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2 Monoids with zero

A monoid with zero is an ordinary monoid with a two-sided absorbing element, called
the zero. Such structures obviously occur in ring theory (the multiplicative monoid of
an associative ring with unit is a monoid with zero), but they are also used to solve
some (co)homological problems [25, 26], and mainly in the study of ideal extensions
of semigroups [2, 9, 10].

These structures are defined as follows: let M be an ordinary monoid (with 1M

as its identity element) such that |M| ≥ 2. Then, M is called a monoid with zero
if, and only if, there is a two-sided absorbing element 0M , i.e., x0M = 0M = 0Mx

for every x ∈ M , with1 0M �= 1M . The distinguished element 0M is called the zero
of M (uniqueness is obvious). If in addition M is commutative, then M is called a
commutative monoid with zero. In the sequel, for any monoid M with zero 0M , M0
stands for M \ {0M}.

Example 1

1. The set of all natural numbers N with the ordinary multiplication is a commutative
monoid with zero;

2. The multiplicative monoid of any (associative) ring R with a unit 1R is a monoid
with zero 0R ;

3. If M is any usual monoid (with or without zero), then for every 0 �∈ M (take
0 = {M} for instance, in presence of the axiom of foundation), M0 = M ∪ {0} is a
monoid with zero 0: x0 = 0 = 0x for every x ∈ M0 extending the operation of M .
It is commutative if, and only if, the same holds for M . The transformation of M

into M0 is called an adjunction of a zero, and M0 is a monoid with a (two-sided)
adjoined zero. Note that M0 is obviously isomorphic with Mz for every z �∈ M ,
where z plays the same role as 0;

4. The set ℵ0 ∪ {ℵ0} of all cardinal numbers less or equal to ℵ0 (that is, the closed
initial segment [0,ℵ0]), with the usual cardinal addition (recall that ℵ0 = [0,ℵ0[=
N and n + ℵ0 = ℵ0 = ℵ0 + n for every n ≤ ℵ0) is a commutative monoid with ℵ0
as zero. More generally given any transfinite cardinal number κ , the set [0, κ] of
all cardinal numbers smaller than κ , with addition, is also a commutative monoid
with κ as zero;

5. Let C be a small category [22]. Then its set of arrows A(C), together with adjoined
zero 0 and identity 1, is a monoid with zero when arrows composition is extended
using f ◦ g = 0 whenever dom(f ) �= codom(g) for every f ∈ A(C), and f ◦ 1 =
f = 1 ◦ f , f ◦ 0 = 0 = 0 ◦ f for every f ∈ A(C) ∪ {0,1}. Now suppose that P

is a poset, and Int(P ) is the set of its intervals [x, y] = {z ∈ P : x ≤ z ≤ y} for all
x ≤ y in P (see [13, 29]). An interval [x, y] may be seen as an arrow from x to y,
and a composition may be defined: [x, z]◦[z, y] = [x, y]. It follows that P turns to
be a small category, and Int(P )∪ {0,1}, where 0,1 �∈ Int(P ) and 0 �= 1, becomes a

1It is easy to see that our monoids with zero together with the trivial monoid—with 0 = 1—are exactly
the monoid objects in the monoidal category of sets and partial functions, or, equivalently, of pointed sets
and mappings that carry base point to base point (the zero of a monoid being its base point), where the
monoidal structure is the usual set-theoretical Cartesian product.
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monoid with zero. Another specialization is possible: let n ∈ N \ {0} be fixed, and
consider the set I of all pairs (i, j) of integers such that 1 ≤ i, j ≤ n. Any usual
n-by-n matrix unit E(i,j) may be seen as an arrow from i to j , and such arrows
are composed by E(i,k) ◦ E(k,j) = E(i,j). Then I becomes a small category, and
the set of all matrix units, with adjoined 0 and 1, may be interpreted as a monoid
with zero which is also quite similar to A. Connes’s groupoids [12].

A major class of monoids with zero, that deserves a short paragraph on its own, is
given by the so-called Rees quotients (see [2, 10, 19]). Let M be a monoid and I be a
two-sided ideal of M , that is IM ⊆ I ⊇ MI , which is proper (I is proper if, and only
if, I �= M , or, in other terms, 1M �∈ I ). A congruence θI on M is defined as follows:
(x, y) ∈ θI if, and only if, x, y ∈ I or x = y. The equivalence class of x ∈ M modulo
θI is

{
{x} if x �∈ I ;

I if x ∈ I .

Therefore I plays the role of a zero in the quotient monoid M/θI , in such a way that
it is isomorphic with the monoid with zero (M \ I ) ∪ {0}, where 0 �∈ M \ I , and with
operation

x × y =
{

xy for xy �∈ I ,

0 for xy ∈ I
(1)

for every x, y ∈ M \ I , and x × 0 = 0 = 0 × x for every x ∈ (M \ I ) ∪ {0}. This
monoid, unique up to isomorphism (the choice of the adjoined zero), is called the
Rees quotient of M by I , and denoted M/I . In what follows, we identify the carrier
sets of both isomorphic monoids M/θI and (M \ I ) ∪ {0}, and we use juxtaposition
for products in M/I and in M .

Remark 2 The fact that I is proper guarantees that 1M ∈ M \I , and therefore 1M �= 0.

Example 3 Let X = {a, b, c} and I = {ω ∈ X∗ : ∃x ∈ X, such that |ω|x ≥ 2}, where
|ω|x denotes the number of occurrences of the letter x in the word ω. Then X∗/I is
the monoid with zero M described in the Introduction (see Sect. 1).

3 Contracted monoid algebra

Convention In the present paper, a ring is assumed to be associative, commutative
and with a unit 1R ; the zero of a ring is denoted by 0R . An R-algebra A is assumed to
be associative (but non necessarily commutative) and has a unit 1. Its zero is denoted
by 0.

The main objective of this section is to recall the relevant version of the monoid
algebra of a monoid with zero over some given ring: in brief, the zeros of the monoid
and the ring are identified. Let R be a ring, and X be any set. The support of f ∈
RX is the set {x ∈ X : f (x) �= 0R}. Now let M be a monoid with zero 0M . Let us
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consider the usual monoid algebra R[M] of M over R, which is, as an R-module,
the set R(M) of all maps from M to R with finite support, endowed with the usual
Cauchy product [4]. By contracted monoid algebra of M over R (see [10, 27]), we
mean the factor algebra R0[M] = R[M]/R0M , where R0M is the two-sided ideal
R[(0M)] = {α0M : α ∈ R}. Thus, R0[M] may be identified with the set of all finite
sums

∑
x∈M0

αxx, subject to the multiplication table given by the rule

x × y =
{

xy if xy �= 0M,

0 if xy = 0M

(2)

defined on basis M0 (formula (2) gives the constants of structure, see [4], of the
algebra R0[M]). In what follows we use juxtaposition rather than “×” for the
products. From the definition, it follows directly that for any ordinary monoid M ,
R0[M0] ∼= R[M0]/R0 ∼= R[M]. This fact is extended to the Rees quotients as fol-
lows.

Lemma 4 [10, 27] Let M be a monoid and I be a proper two-sided ideal of M . Then
R0[M/I ] ∼= R[M]/R[I ]. (Note that R[I ] is the semigroup algebra of the ideal I .)

Example 5 Let X be any non empty set and n ∈ N \ {0,1}. Let I be the proper ideal
of X∗ of all words ω of length |ω| ≥ n. Then R0[X∗/I ] consists in noncommutative
polynomials truncated at length n.

The notion of contracted monoid algebra is sufficient to treat the problem of the
Möbius formula for finite and locally finite (see Sect. 5) monoids with zero. Never-
theless infinite monoids with zero also occur, and formal series must be considered
in those cases.

4 Total contracted algebra of a finite decomposition monoid with zero

Let R be a ring, and M be a usual monoid. The set of all functions RM has a natural
structure of R-module. By abuse of notation,2 any function f ∈ RM may be denoted
by

∑
x∈M 〈f,x〉x, where3 〈f,x〉 = f (x) = πx(f ) (πx is the projection onto Rx). The

carrier structure of the algebra R[M] of the monoid M is then seen as a submodule
of RM . Now taking M to be a monoid with zero, we can also construct R[M], how-
ever we would like to identify 0M with 0 of RM in the same way as R0[M]. Let us
consider the set R0M = {f ∈ RM : ∀x �= 0M, 〈f,x〉 = 0R}, i.e., R0M is the cyclic
submodule generated by 0M . Then the quotient module RM/R0M may be identified
with the R-module RM0 of all “infinite” sums4 ∑

x∈M0
〈f,x〉x, or more likely the

2When RM is endowed with the topology of simple convergence, R being discrete, the family
(f (x)x)x∈M is summable, and f = ∑

x∈M f (x)x.
3The notation “〈f,x〉” is commonly referred to as a “Dirac bracket”. It was successfully used by Schützen-
berger to develop his theory of automata [3].
4As in the previous note 2, it can be easily proved that such sums are actually the sums of summable series

in the product topology on RM/R0M , with R discrete.
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space of all functions from M0 to R, i.e., RM0 = {f ∈ RM : f (0M) = 0R}. This quo-
tient module is the completion R̂0[M] of the topological module R0[M] equipped
with the product topology (R is given the discrete topology), also called “topology
of simple convergence” or “finite topology”.5 It should be noticed that the quotient
topology of RM0 induced by RM is equivalent to its product topology.

Recall that an ordinary semigroup (resp. monoid) M is said to be a finite decom-
position semigroup (resp. finite decomposition monoid), or to have the finite decom-
position property, if, and only if, it satisfies the following condition

∀x ∈ M, |{(y, z) ∈ M × M : yz = x}| < +∞. (3)

This condition is called the (D) condition in [4]. If (3) holds, then RM can be
equipped with the usual Cauchy or convolution product: therefore the R-algebra
R[[M]] of all formal power series over M with coefficients in R is obtained, which is
also called the total algebra of the semigroup (resp. monoid) M over R. This notion
is now adapted to the case of monoids with zero.

Definition 6 A monoid M with zero 0M is said to be a finite decomposition monoid
with zero if, and only if, it satisfies the following condition

∀x ∈ M0 = M \ {0M}, |{(y, z) ∈ M × M : yz = x}| < +∞. (4)

Example 7 Let P be a locally finite poset ([13, 29]), i.e., such that every interval
[x, y] ∈ Int(P ) is finite. Then the monoid Int(P ) ∪ {0,1} of Example 1.5 is a finite
decomposition monoid with zero.

Some obvious results are given below without proofs.

Lemma 8

1. Let M be a monoid with zero which has the finite decomposition property as an
ordinary monoid. Then M is finite.

2. Suppose that M is a finite decomposition monoid. Then M0 is a finite decomposi-
tion monoid with zero.

3. Suppose that M is a finite decomposition monoid and I is a two-sided proper ideal
of M . Then the Rees quotient monoid M/I is a finite decomposition monoid with
zero.

Let us suppose that M is a finite decomposition monoid with zero. Let f,g ∈
RM/R0M . Then we can define the corresponding Cauchy product:

fg =
∑

x∈M0

(
∑

yz=x

〈f,y〉〈g, z〉
)

x. (5)

5Actually R0[M] is equipped with the initial topology with respect to the projections which coincides with

the subspace topology induced on R0[M] by the product topology for RM0 ; we shall call this the product
topology on R0[M].
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The algebra RM/R0M is then denoted R0[[M]] and called the total contracted alge-
bra of the monoid M over R. The R-module R0[[M]] is the completion of R0[M]
and because the Cauchy product of “formal series” in R0[[M]] is the continuous ex-
tension of its polynomial version in R0[M] (this product is separately continuous and
continuous at zero [5]), the following lemma holds.

Lemma 9 Let M be a finite decomposition monoid with zero. Then R0[[M]] is the
completion of the contracted algebra R0[M], and, in particular, R0[[M]] is a topo-
logical algebra.

Let M be an ordinary monoid and I be a two-sided proper ideal of M . Then the
R-module RM/I /R0 is isomorphic to the set of all formal infinite R-linear combina-
tions

∑
x �∈I 〈f,x〉x, where f ∈ RM . Now suppose that M is a finite decomposition

monoid. According to Lemma 8, M/I is a finite decomposition monoid with zero.
We can define both total algebras R[[M]] and R0[[M/I ]], with respectively RM and
RM/I /R0 as carrier sets. The product on RM/I /R0 is therefore given by

⎛

⎝
∑

x �∈I

〈f,x〉x
⎞

⎠

⎛

⎝
∑

x �∈I

〈g,x〉x
⎞

⎠ =
∑

x �∈I

(
∑

yz=x

〈f,y〉〈g, z〉
)

x. (6)

Let define

Φ : R[[M]] → R0[[M/I ]],
∑

x∈M

〈f,x〉x �→
∑

x �∈I

〈f,x〉x. (7)

Then Φ is an R-algebra homomorphism, which is onto and obviously continu-
ous (for the topologies of simple convergence). Moreover ker(Φ) = R[[I ]], then
R0[[M/I ]] ∼= R[[M]]/R[[I ]]. According to Lemma 9, R0[[M/I ]] is complete (as
an R-algebra) for the product topology. In summary we obtain:

Proposition 10 Let M be a finite decomposition monoid and I be a proper two-sided
ideal of M . Then,

R0[[M/I ]] ∼= ̂R0[M/I ]
∼= R[[M]]/R[[I ]].

(8)

5 Locally finite monoids with zero

In order to study the Möbius inversion formula for monoids with zero, we need
to characterize invertible series in the total contracted algebra. This can be done
by exploiting a star operation on series without constant terms (i.e., for which
〈f,1M 〉 = 0). This star operation is easily defined when a topology on the algebra
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of series is given by some filtration which generalizes the ordinary valuation. A par-
ticular class of monoids with zero satisfies this requirement. First we recall some
classic results, and then we mimic them in the context of monoids with zero.

A locally finite monoid M [8, 16] is a monoid such that

∀x ∈ M, |{(n, x1, . . . , xn) : x = x1 . . . xn, xi �= 1M}| < +∞. (9)

For instance, any free partially commutative monoid [8, 14] is locally finite. A locally
finite monoid is obviously a finite decomposition monoid, but the converse is false
since every non trivial finite group has the finite decomposition property, but is not
locally finite because it has torsion. Furthermore, in a locally finite monoid, xy =
1M ⇒ x = y = 1M , or in other terms, M \{1M} is a semigroup (and actually a locally
finite semigroup in a natural sense), or, equivalently, the only invertible element of M

is the identity (such monoids are sometimes called conical [11]).

Remark 11 In [7, 28] the authors—L.N. Shevrin and T.C. Brown—used another no-
tion, well-known in universal algebra. They called locally finite any semigroup in
which every finitely-generated sub-semigroup is finite. This concept is really differ-
ent and not comparable from the one used in this paper which follows [16].

When M is locally finite, the R-algebra R[[M]] may be equipped with a star
operation defined for every proper series f (i.e. such that 〈f,1M 〉 = 0R) by f ∗ =∑

x∈M(
∑

n≥0
∑

x1···xn=x〈f,x1〉 · · · 〈f,xn〉)x (i.e. by f ∗ = ∑
n∈N

f n). It follows that
the augmentation ideal M = {f ∈ R[[M]] : f is proper}, kernel of the usual aug-
mentation map ε(f ) = 〈f,1M 〉 for every f ∈ R[[M]], has the property that 1 + M

is a group (under multiplication; the inverse of 1 − f ∈ 1 + M, when f is proper,
is precisely f ∗), called the Magnus group (see [14] for instance). For this kind
of monoids, we can define a natural notion of order function. Let x ∈ M , then
ωM(x) = max{n ∈ N : ∃x1, . . . , xn ∈ M \ {1M}, x = x1 . . . xn}. For instance if M

is a free partially commutative monoid M(X,C), then ωM(w) is the length |w′| of
any element w′ ∈ X∗ in the class w.

Let us adapt this situation to the case of monoids with zero. In what follows, if M

is any monoid (ordinary or with zero), then M+ = M \ {1M}. A locally finite monoid
with zero (see [17] for a similar notion) is a monoid with zero M such that

∀x ∈ M0, |{(n, x1, · · · , xn) : x = x1 . . . xn, xi �= 1M}| < +∞. (10)

A locally finite monoid with zero obviously is also a finite decomposition monoid
with zero. As in the case of usual monoids, the converse is false. Besides, if M is a
locally finite monoid, and I is a two-sided proper ideal of M , then the Rees quotient
M/I is a locally finite monoid with zero.

Example 12 Let M = X∗/I . Then ωM/I (w) = |w| for every w ∈ X∗ \ I .

Counter-example 13 The monoid with zero Int(P )∪{0,1} of a non void locally finite
poset is not a locally finite monoid with zero, since for every x ∈ P , 1 �= [x, x] =
[x, x] · [x, x] holds.
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As in the classical case, we can define a natural notion of order function in a lo-
cally finite monoid with zero: let x ∈ M0, then ωM(x) = max{n ∈ N : ∃x1, . . . , xn ∈
M+, x = x1 · · ·xn} (we use the notation “ ω(x)” when no confusion arises). There-
fore ω(x) = 0 if, and only if, x = 1M . Moreover for every x ∈ M0, if x = yz, then
ω(x) ≥ ω(y)+ω(z). If M is a locally finite monoid and I is a two-sided proper ideal
of M , then we already know that M/I is a locally finite monoid with zero, and more
precisely for every x ∈ M \ I , ωM/I (x) = ωM(x).

Now let, f ∈ R0[[M]] (the total contracted algebra exists because M is a finite
decomposition monoid with zero since it is a locally finite monoid with zero). We
define an order function or pseudo-valuation (that extends the order function ωM

of M): ω(f ) = inf{ωM(x) : x ∈ M0, 〈f,x〉 �= 0R}, where the infimum is taken in
N ∪ {+∞}. In particular, ω(f ) = +∞ if, and only if, f = 0. The following holds:

1. ω(1) = 0;
2. ω(f + g) ≥ min{ω(f ),ω(g)};
3. ω(fg) ≥ ω(f ) + ω(g).

Let us introduce M = {f ∈ R0[[M]] : 〈f,1M 〉 = 0R} = {f ∈ R0[[M]] : ω(f ) ≥ 1}.
This set obviously is a two-sided ideal of R0[[M]], called—as in the ordinary case—
the augmentation ideal.6 For each n ∈ N, let M≥n = {f ∈ R0[[M]] : ω(f ) ≥ n},
in such a way that M≥0 = R0[[M]], and M≥1 = M. The following lemma holds
trivially.

Lemma 14 For every n, M≥n is a two-sided ideal of R0[[M]], and the sequence
(M≥n)n is an exhaustive and separated decreasing filtration on R0[[M]], i.e.,
M≥n+1 ⊆ M≥n,

⋃
n≥0 M≥n = R0[[M]], and

⋂
n≥0 M≥n = (0).

According to Lemma 14, R0[[M]] with the topology F defined by the filtration
(M≥n)n is an Hausdorff topological ring (note also that this topology is metriz-
able [6]), and even an Hausdorff topological R-algebra when R is discrete.

Remark 15 It can be proved that if for every n ∈ N, M(n) = {x ∈ M0 : ωM(x) = n}
is finite, then the topology of simple convergence and the topology F on R0[[M]] are
equivalent. In all cases, the topology defined by the filtration is always finer than the
product topology (in particular, each projection πx : R0[[M]] → R is continuous for
the filtration), and it can be even strictly finer as it is shown in the following example.

Example 16 Let us consider a countable set X = {xi}i∈N (that is xi �= xj for every
i �= j ). We consider M as the monoid X∗ with some zero 0 adjoined. It is obvi-
ously a locally finite monoid with zero but the number of elements of a given order
is not finite (for instance the number of elements of order 1 is ℵ0). We denote by
|ω| the usual length of a word in X∗. Now let us consider the sequence of series
fn = ∑n

k=0 xk ∈ R0[M] ⊂ R0[[M]] which converges to the sum f = ∑∞
k=0 xk in

R0[[M]] endowed with the product topology (f is the characteristic function of the
alphabet X). But this series does not converge in R0[[M]] with the topology defined

6It is the kernel of the character ε : R0[[M]] → R given by ε(f ) = 〈f,1M 〉 = π1M
(f ), for f ∈ R0[[M]].



Möbius inversion formula for monoids with zero 455

by the filtration, because ω(f −fn) = 1 for all n. Nevertheless f belongs to R0[[M]]
since it is the completion of R0[M] in the product topology.

Without technical difficulties the lemma below is obtained.

Lemma 17 The algebra R0[[M]] with the topology F is complete.

Remark 18 Suppose that M is a locally finite monoid (with or without zero) which
is also finite, then there exists N ∈ N such that for every n ≥ N , M≥n = (0). In this
case, the topology defined by the filtration coincides with the discrete topology on
R[[M]] = R[M] (or R0[[M]] = R0[M]). So no topology is needed in this case as
explained in Introduction (Sect. 1).

6 Star operation and the Möbius inversion formula

In this section, M is assumed to be a locally finite monoid with zero.

Lemma 19 For every f ∈ M, (1 − f ) is invertible and (1 − f )−1 = ∑
n≥0 f n.

Proof First of all,
∑+∞

n=0 f n is convergent in R0[[M]] (in the topology defined by the
filtration), and is even summable, because ω(f n) → ∞ when n → +∞ (see [6]).
Now for every N ∈ N, (1 − f )

∑N
n=0 f n = 1 − f N+1 → 1 when N → +∞. Since∑

n≥0 f n is summable, and R0[[M]] is a topological algebra, we obtain asymptoti-
cally (1 − f )

∑
n≥0 f n = 1. �

According to Lemma 19, for every element f ∈ M, we can define, as in the ordi-
nary case, the star operation f ∗ = ∑

n≥0 f n.

Remark 20 Suppose that M is a locally finite monoid with zero which is also finite.
Then for every f ∈ M, f is nilpotent (since (f n)n∈N is summable in the discrete
topology). So in this particular case, there is no need of topology to compute f ∗, as
the example given in the Introduction.

Lemma 21 The set 1 + M is a group under multiplication.

Proof It is sufficient to prove that 〈f ∗,1M 〉 = 1R for every f ∈ M. For every n > 0,
〈f n,1M 〉 = 0. Since the projection π1M

is continuous, we have

〈f ∗,1M 〉 =
〈

1 +
∑

n≥1

f n,1M

〉

= 〈1,1M 〉 +
∑

n≥0

〈f n,1M 〉 = 1R. (11)
�

If M is an ordinary locally finite monoid, the characteristic series of M is define as
the series ζ = ∑

x∈X x ∈ R[[M]]. If X ⊆ M , then X = ∑
x∈X x is the characteristic

series of X. More generally, if M is a locally finite monoid with zero, then we also
define the characteristic series of M by ζ0 = ∑

x∈M0
x ∈ R0[[M]], and if X ⊆ M ,
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then its characteristic series is X0 = ∑
x∈X0

x where X0 = X \ {0M}. We are now
in a position to state the Möbius inversion formula in the setting of (locally finite)
monoids with zero.

Proposition 22 (Möbius inversion formula) The characteristic series ζ0 is invertible.

Proof It is sufficient to prove that ζ0 ∈ 1 + M, which is obviously the case since
ζ0 = 1 + ζ+

0 , where ζ+
0 = M+

0 = ∑
x∈M0\{1M } x ∈ M. �

We now apply several of the previous results on Rees quotients. So let M be a
locally finite monoid and I be a two-sided proper ideal of M in such a way that
M/I is a locally finite monoid with zero. Let us denote by MI (resp. M) the aug-
mentation ideal of M/I (resp. M). Let Φ : R[[M]] → R0[[M/I ]] be the R-algebra
epimorphism defined in (7). We know that it is continuous when both R[[M]] and
R0[[M/I ]] have their topology of simple convergence. It is also continuous for the
topologies defined by the filtrations (M≥n)n and ((MI )≥n)n. Indeed, let n ∈ N, then
for every f ∈ M≥n, Φ(f ) ∈ (MI )≥n. It admits a section s from R0[[M/I ]] into
R[[M]] (so Φ(s(f )) = f for every f ∈ R0[[M/I ]]) defined by

〈s(f ), x〉 =
{

〈f,x〉 if x �∈ I,

0R otherwise.

This map is easily seen as an R-module morphism but in general not a ring homo-
morphism.

Lemma 23 Let f ∈ 1 + MI , then s(f ) ∈ 1 + M, and f −1 = Φ(s(f ))−1.

Proof Since 〈f,1M/I 〉 = 1R , then 〈s(f ),1M 〉 = 1R (because 1M/I = 1M ). There-
fore s(f ) ∈ 1 + M. Thus s(f )−1 ∈ 1 + M, and Φ(s(f )−1) = Φ(s(f ))−1 (because
Φ is a ring homomorphism). Finally, f Φ(s(f ))−1 = Φ(s(f ))Φ(s(f ))−1 = 1 and
Φ(s(f ))−1 is a right inverse of f . The same holds for the left-side. �

In the ordinary case, i.e., when M is a (locally finite) monoid, the inverse (−ζ+)∗
of the characteristic series ζ = 1 + ζ+ is called the Möbius series, and denoted by
μ(M). By analogy, we define the Möbius series of a locally finite monoid with zero
M as the series μ0(M) = (−ζ+

0 )∗, inverse of ζ0 = 1 + ζ+
0 in R0[[M]]. Therefore it

satisfies μ0(M)ζ0 = ζ0μ0(M) = 1.

Lemma 24 Let M be a locally finite monoid and I be a two-sided proper ideal
of M . Then, μ0(M/I) = Φ(μ(M)). Moreover if 〈μ(M),x〉 = 0R for every x ∈ I ,
then μ0(M/I) = μ(M).

Proof The Rees quotient M/I is a locally finite monoid with zero, and so its Möbius
series exists. Moreover ζ0 = M/I

0
∈ 1 + MI , and according to Lemma 23, s(ζ0) ∈

1 + M, and (ζ0)
−1 = Φ(s(ζ0))

−1. We have

s(ζ0) =
∑

x �∈I

x
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= M \ I

= M − I

= ζ − I . (12)

The series ζ+ − I ∈ R[[M]] belongs to the augmentation ideal M of R[[M]] (as we
already know), so the series ζ − I = 1 + ζ+ − I is invertible in R[[M]] with inverse
(I − ζ+)∗. Therefore, according to Lemma 23,

μ0(M/I) = Φ(s(ζ0))
−1

= Φ(s(M/I
0
))−1

= Φ(s(M/I
0
)−1)

= Φ((I − M+)∗)

= Φ((I − ζ+)∗)

= (Φ(I − ζ+))∗

(because Φ is a continuous—for the filtrations—algebra

homomorphism)

= (Φ(I)
︸ ︷︷ ︸

=0

−Φ(ζ+))∗

= Φ((−ζ+)∗)

= Φ((1 + ζ+)−1)

= Φ(ζ−1)

= Φ(μ(M)). (13)

Now, if 〈μ(M),x〉 = 0R for every x ∈ I , then μ0(M) = Φ(μ(M)) = μ(M). �

Corollary 25 Let X be any nonempty set. Let I be a proper two-sided ideal of X∗.
Then,

μ0(X
∗/I) =

{
μ(X∗) if X ∩ I = ∅,

μ((X \ I )∗) if X ∩ I �= ∅.
(14)

Proof We can apply Lemma 24 to obtain μ0(X
∗/I) = Φ(μ(X∗)). According to [8],

μ(X∗) = 1 − ∑
x∈X x. If X ∩ I = ∅, then μ0(X

∗/I) = Φ(μ(X∗)) = μ(X∗), and if
X ∩ I �= ∅, then let Y = X \ I . We have Φ(μ(X∗)) = 1 − ∑

y∈Y y = μ(Y ∗). �

Example 26

1. Let X be any nonempty set. Let I = {ω ∈ X∗ : ∃x ∈ X, |ω|x ≥ 2}. The set X∗/I
consists of all standard words, i.e., word without repetition of any letter. Then
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according to Corollary 25, μ0(X
∗/I) = μ(X∗) = 1 − X as announced in Sect. 1

Introduction.
2. Let X be any set. A congruence ≡ on X∗ is said to be multihomogeneous [14, 15]

if, and only if, ω ≡ ω′ implies |ω|x = |ω′|x for every x ∈ X. A quotient monoid
X∗/ ≡ of X∗ by a multihomogeneous congruence is called a multihomogeneous
monoid. For instance, any free partially commutative monoid, the plactic [23],
hypoplactic [21, 24], Chinese [15] and sylvester [20] monoids are multihomoge-
neous. Such a monoid M = X∗/ ≡ is locally finite and therefore admits a Möbius
function μ with μ(1M) = 1 and μ(x) = −1 for every x ∈ X. An epimorphism
Ev from M onto the free commutative monoid X⊕, the commutative image, is
given by Ev(ω) = ∑

x∈X |ω|xδx , where δx is the indicator function of x. Any
proper ideal I of X⊕ gives rise to a proper two-sided ideal Ev−1(I ) of M . Let
I = {f ∈ X⊕ : ∑

x∈X f (x) ≥ 2}. Then, as sets, M/Ev−1(I ) = {0,1M} ∪ X and
μ0(M/Ev−1(I )) = 1 − X.

7 Some remarks about Hilbert series

Now, let X be a finite set, and I be a proper two-sided ideal of X∗. For any S ⊆
X∗ or S ⊆ X∗/I , we define S(n) = {w ∈ S : |w| = n} for any n ∈ N. (Note that
the notation M(n) is consistent with the given one in Remark 15 for M = X∗/I .)
Let K be a field. Let define An = KX∗(n) (the K-vector space spanned by X∗(n)),
and Bn = K(X∗/I)(n) for every n ∈ N, in such a way that K[X∗] = ⊕

n≥0 An and
K0[X∗/I ] = ⊕

n≥0 Bn. (Note that for every w,w′ ∈ X∗/I , we have |ww′| = |w| +
|w′| if ww′ �= 0, in such a way that BmBn ⊆ Bm+n since 0 ∈ Bi for every i.) Since
X is finite, for every integer n, X∗(n) and (X∗/I)(n) are finite, and therefore An and
Bn are finite-dimensional K-vector spaces. Moreover dim(Bn) = dim(An) − |I (n)|
because (X∗/I)(n) = X∗(n) \ I (n). So in particular respective Hilbert series7 are
related by

HilbK0[X∗/I ](t) = HilbK[X](t) −
∑

n≥0

|I (n)|tn = 1

1 − |X|t −
∑

n≥0

|I (n)|tn. (15)

Note that since I is a proper ideal, I (0) = ∅, and
∑

n≥1 |I (n)|tn may be interpreted
rather naturally as the Hilbert series of the ideal K[I ] = ⊕

n≥1 KI (n) (it also follows
that HilbK[I ](t) is not invertible in Z[[t]]). We have

HilbK0[X∗/I ](t) = HilbK[X](t) − HilbK[I ](t). (16)

This equation may be recovered from (12), namely s(ζ0) = ζ − I , using an eval-
uation map. Suppose now that K is a field of characteristic zero, and t is a
variable. Let e : X∗ → {t i}i∈N be the unique morphism of monoids such that
e(x) = t for every x ∈ X. We extend it to a Z-linear map from Z[X∗] to Z[t] by

7Let A = ⊕
n≥0 An be a graded algebra, where for every n, An is finite dimensional. The Hilbert series

of A (in the variable t ) is defined by Hilb A(t) = ∑
n≥0 dim(An)tn .
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e(
∑

w∈X∗ nww) = ∑
n∈N

(
∑

w∈X∗, |w|=n nw)tn from . Moreover since X is finite, for
every n ∈ N, X(n) is also finite (of cardinality |X|n), and therefore for every se-
ries f = ∑

w∈X∗ nww ∈ Z[[X∗]], by summability, we have f = ∑
n∈N

fn, where
fn = ∑

w∈X∗(n) nww ∈ Z[X∗] for every n ∈ N, and we extend e (by continuity) as a
linear map from Z[[X∗]] to Z[[t]] by e(f ) = ∑

n∈N
e(fn) = ∑

n∈N
(
∑

w∈X∗(n) nw)tn.
Now, applying e on both side of (12), we obtain (note that s(ζ0), ζ and I belong to
Z[[X∗]])

e(s(ζ0)) = e(ζ ) − e(I )

⇐⇒ e

⎛

⎝
∑

w �∈I

w

⎞

⎠ = e

(
∑

w∈X∗
w

)

− e

(
∑

w∈I

w

)

⇐⇒ e

(
∑

n∈N

X(n) \ I (n)

)

= e

(
∑

n∈N

X(n)

)

− e

(
∑

n∈N

I (n)

)

⇐⇒
∑

n∈N

(|X(n)| − |I (n)|)tn =
∑

n∈N

|X(n)|tn −
∑

n∈N

|I (n)|tn

⇐⇒ HilbK0[X∗/I ](t) = HilbK[X](t) − HilbK[I ](t). (17)

Last equality is nothing else than the obvious relation between the ordinary generat-
ing functions of the combinatorial class X∗ \ I , X∗ and I , where the notion of size is
the length of words (see [18], Theorem I.5 “implicit specifications”).

Example 27

1. Suppose that I = {ω ∈ X∗ : ∃x ∈ X, |ω|x ≥ 2}. It is clear that for every
n > |X|, I (n) = X(n). For every n ≤ |X|, |(X∗/I)(n)| = ∏n−1

i=0 (|X| − i) =
|X|n (in particular, |(X∗/I)(0)| = |{ε}| = 1, and |(X∗/I)(1)| = |X|). If follows
that HilbK0[X∗/I ](t) = ∑|X|

n=0 |X|ntn, and therefore HilbK[I ](t) = ∑
n≥2(|X|n −

|X|n)tn.
2. Let n0 ∈ N such that n0 ≥ 1. Let I = {w ∈ X∗ : |w| > n0}. Then HilbK0[X∗/I ](t) =∑n0

n=0 |X|ntn, HilbK[I ](t) = ∑
n≥n0+1 |X|ntn.
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