Multidimensional Bent Functions

Laurent Poinsot

Université du Sud Toulon-Var
Institut des Sciences de l'Ingénieur de Toulon et du Var
Avenue G. Pompidou
BP 56
83162 La Valette du Var cédex, France
poinsot@univ-tln.fr

Abstract. The concept of bent functions, originally introduced by Dillon and Rothaus, is very relevant in cryptography because this kind of functions represents the maximal resistance against the so-called linear cryptanalysis. In 1997, Logachev, Salnikov and Yashchenko described a fundamental notion of bentness for functions defined on a finite Abelian group G with values in the unit circle of the complex field. In this paper, by replacing this unit circle by the unit hypersphere $\mathcal{S}_{\mathcal{H}}(0_{\mathcal{H}},1)$ of an arbitrary finite-dimensional Hermitian space \mathcal{H} , we develop a generalization of the concept of bentness for $\mathcal{S}_{\mathcal{H}}(0_{\mathcal{H}},1)$ -valued functions defined on G, called multidimensional bent functions.

Keywords: Bent functions, Hermitian spaces and multidimensional Fourier transform.

1 Introduction

Independently introduced by Dillon [Dil74] and Rothaus [Rot76], Boolean bent functions are those \mathbb{F}_2 -valued functions with an even number m of (Boolean) variables such that for all $\alpha \in \mathbb{F}_2^m$, $\widehat{\chi} \circ \widehat{f}(\alpha) = \pm 2^{\frac{m}{2}}$, where \widehat{F} is the Fourier transform of a function $F: \mathbb{F}_2^m \to \mathbb{C}$, $\chi: \mathbb{F}_2^m \to \mathbb{C}$ such that $\chi(x) = (-1)^x$ and the symbol "o" denotes the composition of functions. Such functions are very relevant in cryptography since they exhibit the best resistance against the well-known Matsui's linear cryptanalysis [Mat94] and are also closely related to the differential attack of Biham and Shamir [BS91].

While noticing that for $f: \mathbb{F}_2^m \to \mathbb{F}_2$, $\chi \circ f$ is \mathbb{U} -valued, where \mathbb{U} is the unit circle in the complex field, Logachev, Salnikov and Yashchenko [LSY97] adapted the concept of bentness to a more general context. Following their approach, a \mathbb{U} -valued function f defined on a finite Abelian group G is bent if for all $\alpha \in G$,

$$|\widehat{f}(\alpha)|^2 = |G| \tag{1}$$

where |z| is the complex-modulus of the complex number z and |G| is the cardinality of the group G.

In this paper, we present a natural way to extend this last concept. First note that $\mathbb U$ is the unit sphere of the most simple Hermitian space $\mathbb C$. Then we can naturally consider functions defined on a finite Abelian group G but with values in an higher-dimensional unit hypersphere rather than $\mathbb U$ -valued. So let $f:G\to \mathcal S_{\mathcal H}(0_{\mathcal H},1)$ where $\mathcal S_{\mathcal H}(0_{\mathcal H},1)$ is the unit hypersphere of the Hermitian space $\mathcal H$ with center at the zero of $\mathcal H$. Then the equation (1) can be naturally re-written in this context

$$\|\widehat{f}(\alpha)\|_{\mathcal{H}}^2 = |G| \tag{2}$$

where $||u||_{\mathcal{H}}$ is the norm (that comes from an inner product) of $u \in \mathcal{H}$ and the Fourier transform used is called *multidimensional*. This kind of functions will be called in this paper *multidimensional bent functions*.

2 Hermitian spaces

Let us begin with some general notations used in this paper. If S is a finite set, we denote by "|S|" its cardinality. When $z \in \mathbb{C}$, \overline{z} is its (complex) conjugate and |z| is its complex-modulus ($|z|^2 = \overline{z}z$).

In this paper, G always represents a finite Abelian group (in an additive representation), e_G is its neutral element and $G^* = G \setminus \{e_G\}$.

If V is a complex vector space, 0_V is the zero of V.

In this paper, each time we say that \mathcal{H} is an Hermitian space, we mean that \mathcal{H} is a finite dimensional complex vector space (non reduced to $\{0_{\mathcal{H}}\}$) equipped with an inner product, denoted $\langle u,v\rangle_{\mathcal{H}}$ with $(u,v)\in\mathcal{H}^2$, which is Hermitian (linear in u and anti-linear in v) and positive definite $(\forall u\in\mathcal{H},\langle u,u\rangle_{\mathcal{H}}\geq 0$ and if $\langle u,u\rangle_{\mathcal{H}}=0$ then $u=0_{\mathcal{H}}$). Two Hermitian spaces with the same dimension are isomorphic. In particular \mathbb{C}^n with the usual inner product is a canonical representative for n-dimensional Hermitian spaces. For $u\in\mathcal{H}$, we define its norm (associated with the inner product) as $\|u\|_{\mathcal{H}}^2=\langle u,u\rangle_{\mathcal{H}}$.

Let $B_{\mathcal{H}}$ be an orthonormal basis of \mathcal{H} . By properties of such basis, we have for each $u \in \mathcal{H}$, $u = \sum_{e \in B_{\mathcal{H}}} \langle u, e \rangle_{\mathcal{H}} e$. We defined the complex number u_e as $\langle u, e \rangle_{\mathcal{H}}$,

then $u = \sum_{e \in B_{\mathcal{H}}} u_e e$. Moreover we have

$$\| u \|_{\mathcal{H}}^{2} = \langle u, u \rangle_{\mathcal{H}}$$

$$= \langle \sum_{e \in B_{\mathcal{H}}} u_{e} e, \sum_{e' \in B_{\mathcal{H}}} u_{e'} e' \rangle_{\mathcal{H}}$$

$$= \sum_{e \in B_{\mathcal{H}}} u_{e} \sum_{e' \in B_{\mathcal{H}}} \overline{u_{e'}} \langle e, e' \rangle_{\mathcal{H}}$$

$$= \sum_{e \in B_{\mathcal{H}}} u_{e} \overline{u_{e}}$$

$$(\text{since } \langle e, e' \rangle_{\mathcal{H}} \text{ is equal to 0 if } e \neq e' \text{ and to 1 if } e = e')$$

$$= \sum_{e \in B_{\mathcal{H}}} |u_{e}|^{2}.$$

$$(3)$$

For $u \in \mathcal{H}$ and $\rho \in \mathbb{R}$ such that $\rho > 0$, we define the *hypersphere* in \mathcal{H} with center at u and radius ρ as

$$S_{\mathcal{H}}(u,r) = \{ v \in \mathcal{H} | \| v - u \|_{\mathcal{H}} = \rho \}$$

$$= \{ v \in \mathcal{H} | \sum_{e \in B_{\mathcal{H}}} |v_e - u_e|^2 = \rho^2 \} . \tag{4}$$

Finally the unit hypersphere of \mathcal{H} is simply defined as $\mathcal{S}_{\mathcal{H}}(0_{\mathcal{H}}, 1)$.

3 Bent functions of Logachev, Salnikov and Yashchenko

3.1 Fourier transform over finite Abelian groups

Let G be a finite Abelian group (in an additive representation). The $dual\ group\ \widehat{G}$ of G is defined as the group of all homomorphisms from G to $\mathcal{S}_{\mathbb{C}}(0,1)$ (this last set has a group structure). Its elements are called characters and it is isomorphic to G. We fix some isomorphism and assume that all characters $\chi_G^{\alpha} \in \widehat{G}$ are indexed by the elements $\alpha \in G$ (in particular $\forall x \in G,\ \chi_G^{e_G}(x) = 1$). For instance if $G = \mathbb{F}_2^m$ (where \mathbb{F}_2 is the Galois field with two elements 0 and 1), $\chi_{\mathbb{F}_2^m}^{\alpha}(x) = (-1)^{\alpha \cdot x}$ for all $(\alpha, x) \in (\mathbb{F}_2^m)^2$ where the symbol "." denotes the canonical dot product of \mathbb{F}_2^m . Note that for all $(\alpha, x) \in G^2$, $\chi_G^{\alpha}(x) = \chi_G^x(\alpha)$.

The characters satisfy the important following relation

$$\sum_{x \in G} \chi_G^{\alpha}(x) = \begin{cases} |G| \text{ if } \alpha = e_G, \\ 0 \text{ if } \alpha \in G^*. \end{cases}$$
 (5)

Let $f: G \to \mathbb{C}$. The Fourier transform of f is the function $\widehat{f}: G \to \mathbb{U}$ defined for $\alpha \in G$ by

$$\widehat{f}(\alpha) = \sum_{x \in G} f(x) \chi_G^{\alpha}(x) . \tag{6}$$

This transform satisfies the well-known Parseval's relation given below.

$$\sum_{x \in G} |f(x)|^2 = \frac{1}{|G|} \sum_{\alpha \in G} |\widehat{f}(\alpha)|^2 . \tag{7}$$

We have also the following convenient relation

$$\forall \alpha \in G, \ \widehat{\widehat{f}}(\alpha) = |G|f(-\alpha) \ .$$
 (8)

3.2 Classical bent functions

Boolean bent functions [Rot76] are those functions f from \mathbb{F}_2^m to \mathbb{F}_2 such that for all $\alpha \in \mathbb{F}_2^m$, $\widehat{\chi_{\mathbb{F}_2}} \circ f(\alpha) = \pm 2^{\frac{m}{2}}$. They are very relevant in cryptography since they also exhibit the best resistance against the so-called *linear cryptanalysis* [Mat94].

In [LSY97], Logachev, Salnikov and Yashchenko introduced a general notion of bentness for $\mathcal{S}_{\mathbb{C}}(0,1)$ -valued functions defined on a finite Abelian group (note that the values of $\chi^1_{\mathbb{F}_2} \circ f$ belong to $\{\pm 1\} \subset \mathcal{S}_{\mathbb{C}}(0,1)$).

Definition 1. Let G be a finite Abelian group. A function $f: G \to \mathcal{S}_{\mathbb{C}}(0,1)$ is called bent if for all $\alpha \in G$,

$$|\widehat{f}(\alpha)|^2 = |G| . (9)$$

 $\mathcal{B}(G)$ is the set of such bent functions.

Several properties similar to the boolean case remain true in this context. We can recall two of them, summarized in the result below.

Proposition 1. Let G be a finite Abelian group (in an additive representation) and $f: G \to \mathcal{S}_{\mathbb{C}}(0,1)$. We define the derivative of f in direction $\alpha \in G$ by

$$d_{\alpha}f: G \to G$$

$$x \mapsto \overline{f(x)}f(x+\alpha) . \tag{10}$$

We have the following properties.

- f is bent if and only if ∀α ∈ G*, dαf(e_G) = 0.
 If f is bent then the function f̃: G → S_C(0,1), called dual of f and defined by $\tilde{f} = \frac{1}{\sqrt{|G|}} \hat{f}$, is also bent.

Multidimensional Fourier transform

In this section, G is a finite Abelian group in an additive representation and \mathcal{H} is an Hermitian space. We fix some orthonormal basis $B_{\mathcal{H}}$ of \mathcal{H} . Our objective is here to introduce some Fourier's tools in order to treat the case of $\mathcal{S}_{\mathcal{H}}(0_{\mathcal{H}}, 1)$ valued functions in the same way as the $S_{\mathbb{C}}(0,1)$ -valued functions are exploited in the theory of bent functions by Logachev, Salnikov and Yashchenko.

Definition 2. Let $\phi: G \to \mathcal{H}$. The multidimensional Fourier transform of ϕ is the function $\widehat{\phi}^{MD}$ defined by

$$\widehat{\phi}^{MD}: G \to \mathcal{H}$$

$$\alpha \mapsto \sum_{x \in G} \chi_G^{\alpha}(x) \phi(x) . \tag{11}$$

We have also

$$\widehat{\phi}(\alpha) = \sum_{x \in G} \sum_{e \in B_{\mathcal{H}}} \langle \phi(x), \overline{\chi_G^{\alpha}(x)} e \rangle_{\mathcal{H}} e = \sum_{x \in G} \sum_{e \in B_{\mathcal{H}}} \langle \phi(x), e \rangle_{\mathcal{H}} \chi_G^{\alpha}(x) e \ . \tag{12}$$

If $\mathcal{H} = \mathbb{C}$, it is easy to see that the multidimensional Fourier transform coincides with the classical one.

Let $\phi: G \to \mathcal{H}$. Let $e \in B_{\mathcal{H}}$. We define the coordinate function ϕ_e of ϕ on e as

$$\phi_e: G \to \mathbb{C}
x \mapsto \langle \phi(x), e \rangle_{\mathcal{H}} .$$
(13)

According to the properties of orthonormal basis, we can easily observe that $\forall x \in G$,

$$\phi(x) = \sum_{e \in B_{\mathcal{H}}} \phi_e(x)e . \tag{14}$$

We use these coordinate functions in order to establish a connection between the classical and multidimensional versions of the Fourier transform.

Lemma 1. Let $\phi: G \to \mathcal{H}$. Then we have for all $\alpha \in G$,

$$\widehat{\phi}^{MD}(\alpha) = \sum_{e \in B_{\mathcal{H}}} \widehat{\phi_e}(\alpha)e . \tag{15}$$

Proof. Let $\alpha \in G$.

$$\begin{split} \widehat{\phi}^{MD}(\alpha) &= \sum_{x \in G} \chi_G^{\alpha} \phi(x) \\ &= \sum_{x \in G} \sum_{e \in B_{\mathcal{H}}} \chi_G^{\alpha}(x) \phi_e(x) e \\ &= \sum_{e \in B_{\mathcal{H}}} \left(\sum_{x \in G} \phi_e(x) \chi_G^{\alpha}(x) \right) e \\ &= \sum_{e \in B_{\mathcal{H}}} \widehat{\phi_e}(\alpha) e \ . \end{split}$$

In the sequel of this subsection, we establish some properties about the multidimensional Fourier transform, similar to classical ones, for a function $\phi: G \to \mathcal{H}$. Let us compute the Fourier transform of $\widehat{\phi}^{MD}$. Let $\alpha \in G$.

$$\widehat{\widehat{\phi}^{MD}}^{MD}(\alpha) = \sum_{x \in G} \chi_G^{\alpha}(x) \widehat{\phi}^{MD}(x) \text{ (by definition)}$$

$$= \sum_{x \in G} \sum_{e \in B_{\mathcal{H}}} \widehat{\phi_e}(x) \chi_G^{\alpha}(x) e \text{ (according to lemma 1)}$$

$$= \sum_{E \in B_{\mathcal{H}}} \left(\sum_{x \in G} \widehat{\phi_e}(x) \chi_G^{\alpha}(x) \right) e$$

$$= \sum_{e \in B_{\mathcal{H}}} \widehat{\widehat{\phi_e}}(\alpha) e$$

$$= |G| \sum_{e \in B_{\mathcal{H}}} \phi_e(-\alpha) e \text{ (according to relation (8))}$$

$$= |G| \phi(-\alpha) \text{ (according to formula (14))}.$$

Keep in mind the equality $\widehat{\widehat{\phi}^{MD}}^{MD}(\alpha) = |G|\phi(-\alpha)$ which will be useful in the sequel. Moreover we have proved the *inversion formula*:

$$\forall \alpha \in G, \ \phi(\alpha) = \frac{1}{|G|} \sum_{x \in G} \overline{\chi_G^{\alpha}(x)} \widehat{\phi}^{MD}(x) \ . \tag{16}$$

Now we present a certain kind of Parseval's equation in this context.

Theorem 1. (Parseval's equation) Let $\phi: G \to \mathcal{H}$ then

$$\sum_{x \in G} \|\phi(x)\|_{\mathcal{H}}^2 = \frac{1}{|G|} \sum_{\alpha \in G} \|\widehat{\phi}^{MD}(\alpha)\|_{\mathcal{H}}^2 . \tag{17}$$

If $\phi: G \to \mathcal{S}_{\mathcal{H}}(0_{\mathcal{H}}, 1)$ then

$$\sum_{\alpha \in G} \| \widehat{\phi}^{MD}(\alpha) \|_{\mathcal{H}} = |G|^2 . \tag{18}$$

Proof.

$$\sum_{x \in G} \| \phi(x) \|_{\mathcal{H}}^{2} = \sum_{x \in G} \sum_{e \in B_{\mathcal{H}}} |\phi_{e}(x)|^{2}$$

$$= \sum_{e \in B_{\mathcal{H}}} \sum_{x \in G} |\phi_{e}(x)|^{2}$$

$$= \frac{1}{|G|} \sum_{e \in B_{\mathcal{H}}} \sum_{\alpha \in G} |\widehat{\phi_{e}}(\alpha)|^{2}$$
(according to the Parseval's equation applied on ϕ_{e})
$$= \frac{1}{|G|} \sum_{\alpha \in G} \sum_{e \in B_{\mathcal{H}}} |\widehat{\phi_{e}}(\alpha)|^{2}$$

$$= \frac{1}{|G|} \sum_{\alpha \in G} \| \widehat{\phi}^{MD}(\alpha) \|_{\mathcal{H}}^{2}$$
(19)

The second assertion is obvious.

It is possible and even more interesting to obtain this Parseval's equation by an alternative way. Let $(\phi, \psi) \in (\mathcal{H}^G)^2$ and $\alpha \in G$. By replacing the multiplication by the inner product, we define their convolutional product as follows

$$(\phi * \psi)(\alpha) = \sum_{x \in G} \langle \psi(\alpha + x), \phi(x) \rangle_{\mathcal{H}} . \tag{20}$$

Since $\phi * \psi : G \to \mathbb{C}$, we can compute its classical discrete Fourier transform

$$\widehat{(\phi * \psi)}(\alpha) = \sum_{x \in G} (\phi * \psi)(x) \chi_G^{\alpha}(x)$$

$$= \sum_{x \in G} \sum_{y \in G} \chi_G^{\alpha}(x) \langle \psi(x+y), \phi(y) \rangle_{\mathcal{H}}$$

$$= \sum_{x \in G} \sum_{y \in G} \chi_G^{\alpha}(x+y) \overline{\chi_G^{\alpha}(y)} \langle \psi(x+y), \phi(y) \rangle_{\mathcal{H}}$$

$$= \sum_{x \in G} \sum_{y \in G} \langle \chi_G^{\alpha}(x+y) \psi(x+y), \chi_G^{\alpha}(y) \phi(y) \rangle_{\mathcal{H}}$$

$$= \sum_{x \in G} \langle \sum_{x \in G} \chi_G^{\alpha}(x+y) \psi(x+y), \chi_G^{\alpha}(y) \phi(y) \rangle_{\mathcal{H}}$$

$$= \sum_{y \in G} \langle \widehat{\psi}^{MD}(\alpha), \chi_G^{\alpha}(y) \phi(y) \rangle_{\mathcal{H}}$$

$$= \langle \widehat{\psi}^{MD}(\alpha), \sum_{y \in G} \chi_G^{\alpha}(y) \phi(y) \rangle_{\mathcal{H}}$$

$$= \langle \widehat{\psi}^{MD}(\alpha), \widehat{\phi}^{MD}(\alpha) \rangle_{\mathcal{H}}.$$
(21)

It is a kind of simplification of the convolutional product by the Fourier transform. Now let us compute $(\phi * \psi)(e_G)$. There are two ways to do this. The first one is given by definition : $(\phi * \psi)(e_G) = \sum_{x \in G} \langle \psi(x), \phi(x) \rangle_{\mathcal{H}}$. The second one is given by the inversion formula of the usual Fourier transform.

$$(\phi * \psi)(e_G) = \frac{1}{|G|} \sum_{\alpha \in G} \widehat{(\phi * \psi)}(\alpha) \overline{\chi_G^{e_G}(\alpha)}$$

$$= \frac{1}{|G|} \sum_{\alpha \in G} \widehat{(\phi * \psi)}(\alpha)$$

$$= \frac{1}{|G|} \sum_{\alpha \in G} \langle \widehat{\psi}^{MD}(\alpha), \widehat{\phi}^{MD}(\alpha) \rangle_{\mathcal{H}}.$$
(22)

Then we have $\sum_{x \in G} \langle \psi(x), \phi(x) \rangle_{\mathcal{H}} = \frac{1}{|G|} \sum_{\alpha \in G} \langle \widehat{\psi}^{MD}(\alpha), \widehat{\phi}^{MD}(\alpha) \rangle_{\mathcal{H}}.$ Now let $\phi = \psi$, then

$$\sum_{x \in G} \langle \phi(x), \phi(x) \rangle_{\mathcal{H}} = \frac{1}{|G|} \sum_{\alpha \in G} \langle \widehat{\phi}(\alpha), \widehat{\phi}(\alpha) \rangle_{\mathcal{H}}$$
 (23)

i.e.

$$\sum_{x \in G} \| \phi(x) \|_{\mathcal{H}}^2 = \frac{1}{|G|} \sum_{\alpha \in G} \| \widehat{\phi}(\alpha) \|_{\mathcal{H}}^2 . \tag{24}$$

5 Multidimensional bent functions

Definition 3. Let $\phi: G \to \mathcal{S}_{\mathcal{H}}(0_{\mathcal{H}}, 1)$. ϕ is said multidimensional bent if $\forall \alpha \in G$, $\| \widehat{\phi}^{MD}(\alpha) \|_{\mathcal{H}}^2 = |G| \ (i.e. \ \widehat{\phi}^{MD}: G \to \mathcal{S}_{\mathcal{H}}(0_{\mathcal{H}}, \sqrt{|G|}))$.

Lemma 2. Let $\phi: G \to \mathcal{H}$. Then $\phi(x) = 0_{\mathcal{H}} \ \forall x \in G^*$ if and only if $\widehat{\phi}^{MD}(\alpha) = \phi(e_G) \ \forall \alpha \in G$.

Proof.
$$\Rightarrow$$
) $\widehat{\phi}^{MD}(\alpha) = \sum_{x \in G} \chi^{\alpha}(x) \phi(x) = \phi(e_G) \ \forall \alpha \in G.$

$$\Leftarrow$$
) $\phi(x) = \frac{1}{|G|} \sum_{\alpha \in G} \overline{\chi_G^{\alpha}(x)} \widehat{\phi}^{MD}(\alpha)$ (by the inversion formula of the multidimen-

sional Fourier transform). Then by hypothesis,
$$\phi(x) = \frac{\phi(e_G)}{|G|} \sum_{\alpha \in G} \chi_G^{\alpha}(x) = 0_{\mathcal{H}}$$
 if $x \in G^*$ and $\phi(e_G)$ otherwise.

Note that this lemma is in particular true for $\mathcal{H}=\mathbb{C}$ and then for the usual Fourier transform.

We now define a kind of derivative for \mathcal{H} -valued functions. Another time we use the natural "multiplication" of \mathcal{H} which is its inner product.

Definition 4. Let $\phi: G \to \mathcal{H}$ and $\alpha \in G$. The derivative of ϕ in direction α is defined by

$$d_{\alpha}\phi: G \to \mathbb{C}$$

$$x \mapsto \langle \phi(\alpha + x), \phi(x) \rangle_{\mathcal{H}}$$
(25)

This derivative measures the default of orthogonality between $\phi(x)$ and $\phi(\alpha+x)$.

Proposition 2. Let $\phi: G \to \mathcal{S}_{\mathcal{H}}(0_{\mathcal{H}}, 1)$. Then ϕ is bent if and only if $\forall \alpha \in G^*$, $\widehat{d_{\alpha}\phi}(e_G) = 0$.

Proof. Let define the following auto-correlation function

$$\begin{array}{c}
AC_{\phi}: G \to \mathbb{C} \\
\alpha \mapsto \widehat{d_{\alpha}\phi}(e_G) \ .
\end{array} \tag{26}$$

We have

$$\widehat{d_{\alpha}f}(e_{G}) = \sum_{x \in G} d_{\alpha}\phi(x)\chi_{G}^{e_{G}}(x)$$

$$= \sum_{x \in G} d_{\alpha}\phi(x)$$

$$= \sum_{x \in G} \langle \phi(\alpha + x), \phi(x) \rangle_{\mathcal{H}}$$

$$= (\phi * \phi)(\alpha) .$$
(27)

Let us compute $\widehat{AC_{\phi}}(\alpha)$.

$$\widehat{AC_{\phi}}(\alpha) = \sum_{x \in G} AC_{\phi}(x)\chi_{G}^{\alpha}(x)$$

$$= \sum_{x \in G} (\phi * \phi)(x)\chi_{G}^{\alpha}(x)$$

$$= (\widehat{\phi} * \widehat{\phi})(\alpha)$$

$$= \langle \widehat{\phi}^{MD}(\alpha), \widehat{\phi}^{MD}(\alpha) \rangle_{\mathcal{H}} \text{ (by the formula (21))}$$

$$= \|\widehat{\phi}^{MD}(\alpha)\|_{\mathcal{H}}^{2}.$$
(28)

Then we have $\forall \alpha \in G^*$, $\widehat{d_{\alpha}\phi}(e_G) = 0 \Leftrightarrow \forall \alpha \in G^*$, $AC_{\phi}(\alpha) = 0$ $\Leftrightarrow \forall \alpha \in G$, $\widehat{AC_{\phi}}(\alpha) = AC_{\phi}(e_G)$ (according to lemma 2) $\Leftrightarrow \forall \alpha \in G$, $\parallel \widehat{\phi}^{MD}(\alpha) \parallel_{\mathcal{H}}^2 = AC_{\phi}(e_G)$. As $AC_{\phi}(e_G) = (\phi * \phi)(e_G) = \sum_{x \in G} \langle \phi(x), \phi(x) \rangle_{\mathcal{H}} = \sum_{x \in G} \parallel \phi(x) \parallel_{\mathcal{H}}^2 = |G|$ (since ϕ is $\mathcal{S}_{\mathcal{H}}(0_{\mathcal{H}}, 1)$ -valued), we conclude the expected result. \square

Let us also see a notion of dual function for multidimensional bentness similar to the traditional one.

Proposition 3. Let $\phi: G \to \mathcal{S}_{\mathcal{H}}(0_{\mathcal{H}}, 1)$ be a multidimensional bent function. Then the function $\tilde{\phi}: G \to \mathcal{S}_{\mathcal{H}}(0_{\mathcal{H}}, 1)$, defined by $\tilde{\phi} = \frac{1}{\sqrt{|G|}} \widehat{\phi}^{MD}$ and called dual of ϕ , is also multidimensional bent.

Proof. Let first check that $\tilde{\phi}(\alpha) \in \mathcal{S}_{\mathcal{H}}(0_{\mathcal{H}}, 1)$ for all $\alpha \in G$. We have $\|\tilde{\phi}(\alpha)\|_{\mathcal{H}}^2 = \frac{1}{|G|} \|\hat{\phi}^{MD}(\alpha)\|_{\mathcal{H}}^2 = 1$ (since ϕ is multidimensional bent). Now let compute $\hat{\tilde{\phi}}^{MD}(\alpha) = \frac{1}{\sqrt{|G|}} \hat{\phi}^{MD}(\alpha) = \frac{|G|}{\sqrt{|G|}} \phi(-\alpha) = \sqrt{|G|} \phi(-\alpha)$. Then we have that $\|\hat{\tilde{\phi}}^{MD}(\alpha)\|_{\mathcal{H}}^2 = |G| \|\phi(-\alpha)\|_{\mathcal{H}}^2 = |G|$ (by hypothesis).

6 Some constructions of multidimensional bent functions

6.1 Concatenation construction

Let $\rho = \sum_{e \in B_{\mathcal{H}}} \rho_e e \in \mathcal{S}_{\mathcal{H}}(0_{\mathcal{H}}, 1)$ and $\psi : G \to \mathcal{S}_{\mathcal{H}}(0_{\mathcal{H}}, 1)$ such that for each $e \in B_{\mathcal{H}}$,

 ψ_e is defined as $\rho_e \phi_e$ where $\phi_e : G \to \mathcal{S}_{\mathbb{C}}(0,1)$ is an element of $\mathcal{B}(G)$ (i.e. ϕ_e is classical bent). Then ψ is a multidimensional bent function.

First let us check that for all $x \in G$, $\psi(x) \in \mathcal{S}_{\mathcal{H}}(0_{\mathcal{H}}, 1)$. We have $\|\psi(x)\|_{\mathcal{H}}^2 = \sum_{e \in B_{\mathcal{H}}} |\psi_e(x)|^2 = \sum_{e \in B_{\mathcal{H}}} |\rho_e \phi_e(x)|^2 = 1$.

Now let show that ψ is bent. We have $\widehat{\psi}^{MD}(\alpha) = \sum_{e \in B_{\mathcal{H}}} \rho_e \widehat{\phi}_e(\alpha) e$. Then we have

$$\|\widehat{\psi}^{MD}(\alpha)\|_{\mathcal{H}}^{2} = \sum_{e \in B_{\mathcal{H}}} |\rho_{e}\widehat{\phi_{e}}(\alpha)|^{2} = |G| \sum_{e \in B_{\mathcal{H}}} |\rho_{e}|^{2} = |G|.$$

This construction is a kind of concatenation of usual bent functions. We can generalized it as follows.

For $i=1,\ldots,n,\,\mathcal{H}_i$ denotes an Hermitian space with a finite dimension (with $\langle .,.\rangle_{\mathcal{H}_i}$ and $\| . \|_{\mathcal{H}_i}$). We define the product Hermitian space $\mathcal{H}=\prod_{i=1}^n\mathcal{H}_i$. Let $((u_1,\ldots,u_n),(v_1,\ldots,v_n))\in\mathcal{H}^2$, we have

$$\langle (u_1, \dots, u_n), (v_1, \dots, v_n) \rangle_{\mathcal{H}} = \sum_{i=1}^n \langle u_i, v_i \rangle_{\mathcal{H}_i}$$
 (29)

and then

$$\| (u_1, \dots, u_n) \|_{\mathcal{H}}^2 = \sum_{i=1}^n \| u_i \|_{\mathcal{H}_i}^2 .$$
 (30)

For $i=1,\ldots,n$, we suppose given $\phi_i:G\to\mathcal{S}_{\mathcal{H}_i}(0_{\mathcal{H}_i},1)\subset\mathcal{H}_i$ a multidimensional bent function. Let $\rho=(\rho_1,\ldots,\rho_n)\in\mathcal{S}_{\mathbb{C}^n}(0_{\mathbb{C}^n},1)\subset\mathbb{C}^n$. We define

$$\phi: G \to \mathcal{H}
x \mapsto (\rho_1 \phi_1(x), \dots, \rho_n \phi_n(x)) .$$
(31)

Then ϕ is a multidimensional bent function.

First let see that ϕ is a $\mathcal{S}_{\mathcal{H}}(0_{\mathcal{H}}, 1)$ -valued function

$$\parallel \phi(x) \parallel_{\mathcal{H}}^2 = \sum_{i=1}^n |\rho_i|^2 \parallel \phi_i(x) \parallel_{\mathcal{H}_i}^2 = \sum_{i=1}^n |\rho_i|^2 = 1.$$

Let
$$\alpha \in G$$
, we have $\widehat{\phi}^{MD}(\alpha) = \sum_{x \in G} \chi^{\alpha}(x)\phi(x) = \sum_{x \in G} (\chi_{G}^{\alpha}(x)\rho_{1}\phi_{1}(x), \dots, \chi_{G}^{\alpha}(x)\rho_{n})$
 $\phi_{n}(x) = (\rho_{1}\widehat{\phi_{1}}^{MD}(\alpha), \dots, \rho_{n}\widehat{\phi_{n}}^{MD}(\alpha)).$
Then $\|\widehat{\phi}^{MD}(\alpha)\|_{\mathcal{H}}^{2} = \sum_{i=1}^{n} |\rho_{i}|^{2} \|\widehat{\phi}_{i}^{MD}(\alpha)\|_{\mathcal{H}_{i}}^{2} = |G|\sum_{i=1}^{n} |\rho_{i}|^{2} = |G|.$

6.2 Disjoint supports construction

The following constructions are not based anymore on the concatenation of several usual bent functions and so are even more interesting.

Let G be a non trivial (G is not reduced to $e_G)$ finite Abelian group. Let $B=\{e_k\}_{k=1}^{|G|}$ be the canonical basis of $\mathbb{C}^{|G|}$ (equipped with the usual inner product). Let $i:G\to\{1,\ldots,|G|\}$ be a bijection. We define the following function

$$\phi: G \to \mathbb{C}^{|G|}
 x \mapsto e_{i(x)} .$$
(32)

We have $\|\phi(x)\|_{\mathbb{C}^{|G|}}^2 = \|e_{i(x)}\|_{\mathbb{C}^{|G|}}^2 = 1$ and then ϕ is $\mathcal{S}_{\mathbb{C}^{|G|}}(0_{\mathbb{C}^{|G|}}, 1)$ -valued.

We have
$$\widehat{\phi}^{MD}(\alpha) = \sum_{x \in G} \chi_G^{\alpha} e_{i(x)} = \sum_{k=1}^{|G|} \chi_G^{\alpha}(i^{-1}(k)) e_k$$
 i.e we find that $\widehat{\phi}^{MD}(\alpha) = \sum_{k=1}^{|G|} \chi_G^{\alpha}(i^{-1}(k)) e_k$ i.e we find that

$$(\chi_G^{\alpha}(i^{-1}(1)), \dots, \chi_G^{\alpha}(i^{-1}(|G|)))$$
 and then $\|\hat{\phi}^{MD}(\alpha)\|_{\mathbb{C}^{|G|}}^2 = \sum_{k=1}^{|G|} |\chi_G^{\alpha}(i^{-1}(k))|^2 =$

|G| and so, ϕ is multidimensional bent.

We now show that the component functions of ϕ can not be, up to a factor, usual bent functions. First of all, none of the component functions (in the canonical basis of $\mathbb{C}^{|G|}$) is usual bent since for $k \in \{1, \ldots, |G|\}$, we have $\phi_k(x) = 0 \forall x \neq i^{-1}(k)$ (it is possible since |G| > 1) and then ϕ_k can not be $\mathcal{S}_{\mathbb{C}}(0, 1)$ -valued. Now suppose that we can find $\rho = (\rho_1, \ldots, \rho_{|G|}) \in \mathcal{S}_{\mathbb{C}^{|G|}}(0_{\mathbb{C}^{|G|}}, 1) \subset \mathbb{C}^{|G|}$ and for $k = 1, \ldots, |G|$, $\psi_k : G \to \mathcal{S}_{\mathbb{C}}(0, 1) \subset \mathbb{C}$ usual bent functions such that $\phi = (\rho_1 \psi_1, \ldots, \rho_{|G|} \psi_{|G|})$. As we know that for each $k \in \{1, \ldots, |G|\}$, we have $\forall x \in G$ such that $i(x) \neq k$, $\phi_k(x) = 0$ then $\rho_k \psi_k(x) = 0$ and then $\rho_k = 0$ or $\psi_k(x) = 0$. Since ψ_k must be $\mathcal{S}_{\mathbb{C}}(0, 1)$ -valued, $\rho_k = 0$. As it is true for all k, we deduce that $\rho = (0, \ldots, 0)$ which is a contradiction with the fact that $\rho \in \mathbb{S}_{\mathbb{C}^{|G|}}(0_{\mathbb{C}^{|G|}}, 1)$.

The previous construction can be generalized as follows. Let G be a non trivial finite Abelian group. Let $A = \{u^{(i)}\}_{i=1}^{|G|}$ be a set of exactly |G| vectors of $\mathbb{C}^{|G|}$ such that for each $i \in \{1, \ldots, |G|\}$ it exists one and only one $k \in \{1, \ldots, |G|\}$, denoted k(i), and $\omega_i \in \mathcal{S}_{\mathbb{C}}(0,1)$ such that $u_j^{(i)} = \begin{cases} w_i \text{ if } j = k(i) \\ 0 \text{ if } j \neq k(i) \end{cases}$. In particular each $u^{(i)}$ is an element of $\mathcal{S}_{\mathbb{C}^{|G|}}(0_{\mathbb{C}^{|G|}},1)$. Note that $k:\{1,\ldots,|G|\} \to \{1,\ldots,|G|\}$ is a

bijective map. Let $i: G \to \{1, \dots, |G|\}$ be a bijection. We define the function

$$\phi: G \to \mathbb{C}^{|G|}
 x \mapsto u^{(i(x))} .$$
(33)

Then ϕ is multidimensional bent.

Let
$$x \in G$$
. $\phi(x) \in \mathcal{S}_{\mathbb{C}^{|G|}}(0_{\mathbb{C}^{|G|}}, 1)$ because $\phi(x) = u^{(i(x))} \in \mathcal{S}_{\mathbb{C}^{|G|}}(0_{\mathbb{C}^{|G|}}, 1)$.

Let
$$\alpha \in G$$
. We have $\widehat{\phi}^{MD}(\alpha) = \sum_{x \in G} \chi_G^{\alpha}(x) u^{(i(x))} = \sum_{j=1}^{|G|} \chi_G^{\alpha}(i^{-1}(j)) u^{(j)}$ which is equal to $(\chi_G^{\alpha}(i^{-1}(1))\omega_{k^{-1}(1)}, \dots, \chi_G^{\alpha}(i^{-1}(|G|))\omega_{k^{-1}(|G|)})$. Then $\|\widehat{\phi}^{MD}(\alpha)\|_{\mathbb{C}^{|G|}}^2 = \|G\|_{\mathcal{C}^{|G|}}$

equal to
$$(\chi_G^{\alpha}(i^{-1}(1))\omega_{k^{-1}(1)}, \dots, \chi_G^{\alpha}(i^{-1}(|G|))\omega_{k^{-1}(|G|)})$$
. Then $\|\hat{\phi}^{MD}(\alpha)\|_{\mathbb{C}^{|G|}}^2 = \sum_{i=1}^{|G|} |\chi_G^{\alpha}(i^{-1}(j))|^2 |\omega_{k^{-1}(j)}|^2 = |G|$.

References

- [BS91] E. BIHAM, A. SHAMIR: Differential cryptanalysis of DES-like cryptosystems. In *Journal of Cryptology*, vol. 4, no. 1, p. 3-72, 1991
- [Dil74] J. F. DILLON: Elementary Hadamard difference sets. PhD Thesis, University of Maryland, 1974
- [LSY97] O. A. LOGACHEV, A. A. SALNIKOV, V. V. YASHCHENKO: Bent functions on a finite Abelian group. In Discrete Math. Appl., vol. 7(6), pp. 547-564, 1997
- [Mat94] M. MATSUI: Linear Cryptanalysis Method for DES Cipher. In Advances in Cryptology - Eurocrypt '93, vol. 765 of Lecture Notes in Computer Science, pp. 386-397, 1994
- [Rot76] O. S. Rothaus: On bent functions. In Journal of Combinatorial Theory A, vol. 20, pp. 300-365, 1976