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Abstract. The concept of bent functions, originally introduced by Dil-
lon and Rothaus, is very relevant in cryptography because this kind of
functions represents the maximal resistance against the so-called linear
cryptanalysis. In 1997, Logachev, Salnikov and Yashchenko described a
fundamental notion of bentness for functions defined on a finite Abelian
group G with values in the unit circle of the complex field. In this paper,
by replacing this unit circle by the unit hypersphere 83 (04, 1) of an arbi-
trary finite-dimensional Hermitian space H, we develop a generalization
of the concept of bentness for Sy (07, 1)-valued functions defined on G,
called multidimensional bent functions.

Keywords : Bent functions, Hermitian spaces and multidimensional Fourier
transform.

1 Introduction

Independently introduced by Dillon [Dil74] and Rothaus [Rot76], Boolean bent
functions are those Fo-valued functions with an even number m of (Boolean)
variables such that for all a € F7, m(a) = +2% where F is the Fourier
transform of a function F' : F9* — C, x : F5* — C such that x(z) = (-1)*
and the symbol “o” denotes the composition of functions. Such functions are
very relevant in cryptography since they exhibit the best resistance against the
well-known Matsui’s linear cryptanalysis [Mat94] and are also closely related to
the differential attack of Biham and Shamir [BS91].

While noticing that for f : F§* — Fy, x o f is U-valued, where U is the unit
circle in the complex field, Logachev, Salnikov and Yashchenko [LSY97] adapted
the concept of bentness to a more general context. Following their approach, a
U-valued function f defined on a finite Abelian group G is bent if for all a € G,

If(@)? = |G| (1)

where |z| is the complex-modulus of the complex number z and |G| is the cardi-
nality of the group G.



In this paper, we present a natural way to extend this last concept. First note
that U is the unit sphere of the most simple Hermitian space C. Then we can
naturally consider functions defined on a finite Abelian group G but with val-
ues in an higher-dimensional unit hypersphere rather than U-valued. So let
f: G — Sy (04,1) where S (04,1) is the unit hypersphere of the Hermitian
space ‘H with center at the zero of H. Then the equation (1) can be naturally
re-written in this context

I f(@) 5= G| (2)

where || u ||% is the norm (that comes from an inner product) of u € H and the
Fourier transform used is called multidimensional. This kind of functions will be
called in this paper multidimensional bent functions.

2 Hermitian spaces

Let us begin with some general notations used in this paper. If S is a finite set,
we denote by “|S|” its cardinality. When z € C, % is its (complex) conjugate and
|2] is its complex-modulus (|z|? = 2z2).
In this paper, G always represents a finite Abelian group (in an additive repre-
sentation), eq is its neutral element and G* = G \ {eg}.
If V is a complex vector space, Oy is the zero of V.
In this paper, each time we say that H is an Hermitian space, we mean that
‘H is a finite dimensional complex vector space (non reduced to {0y}) equipped
with an inner product, denoted (u,v)y with (u,v) € H2, which is Hermitian
(linear in u and anti-linear in v) and positive definite (Vu € H, (u,u)3 > 0 and
if (u,u)yy = 0 then v = 0y). Two Hermitian spaces with the same dimension
are isomorphic. In particular C™ with the usual inner product is a canonical rep-
resentative for n-dimensional Hermitian spaces. For u € H, we define its norm
(associated with the inner product) as || u [|3,= (u,u)#.
Let By be an orthonormal basis of H. By properties of such basis, we have for
eachu € H, u = Z (u, e)ye. We defined the complex number u, as (u,e)y,
e€EBy

then u = Z u.e. Moreover we have

e€cBy

w3, = (u,u)ny
=(> uee, > uee)y

e€By e'€By
Do ue Y Tlee)u
e€By iEBH (3)
-

e€By

(since (e, €'Yy isequal to 0 if e Ze' and to 1 if e = ¢')

=2 [uel-

ecBy



For u € H and p € R such that p > 0, we define the hypersphere in H with center
at u and radius p as

Sulu,r) = {v € H] || v —uln=p}
—fweH Y foo—ult=p}. (4)

e€EBy

Finally the unit hypersphere of H is simply defined as Sy (04, 1).

3 Bent functions of Logachev, Salnikov and Yashchenko

3.1 Fourier transform over finite Abelian groups

Let G be a finite Abelian group (in an additive representation). The dual group G
of G is defined as the group of all homomorphisms from G to S¢(0, 1) (this last set
has a group structure). Its elements are called characters and it is isomorphic to
G. We fix some isomorphism and assume that all characters x& € @G are indexed
by the elements a € G (in particular Vo € G, x¢ (x) = 1). For instance if G =
F5* (where 5 is the Galois field with two elements 0 and 1), Xfm () = (—1)**
for all (a,z) € (F')? where the symbol “.” denotes the canonical dot product
of F7'. Note that for all (a,z) € G?, x&(z) = x%(a).

The characters satisfy the important following relation

o Glifa=eq,
ORCIORS IS ®)
zel@ )
Let f : G = C. The Fourier transform of f is the function f: G — U defined
for a € G by

Fl@) =) fa)xg(@) - (6)
z€G

This transform satisfies the well-known Parseval’s relation given below.

S @) = ﬁ G (1)

z€G a€cG

We have also the following convenient relation

Va € G, f(a) = GIf(~a) . (8)

3.2 Classical bent functions

Boolean bent functions [Rot76] are those functions f from F5* to Fy such that

—

for all a € F5*, x¢, o f(@) = 4+2% . They are very relevant in cryptography since
they also exhibit the best resistance against the so-called linear cryptanalysis
[Mat94].

In [LSY97], Logachev, Salnikov and Yashchenko introduced a general notion of
bentness for Sc(0,1)-valued functions defined on a finite Abelian group (note
that the values of x, o f belong to {£1} C S¢(0,1)).



Definition 1. Let G be a finite Abelian group. A function f : G — S¢(0,1) is
called bent if for all « € G,

f@))*=1a] . )
B(G) is the set of such bent functions.

Several properties similar to the boolean case remain true in this context. We
can recall two of them, summarized in the result below.

Proposition 1. Let G be a finite Abelian group (in an additive representation)
and f: G — Sc(0,1). We define the derivative of f in direction o € G by

dof :G—> G
= f(@)f(z+a). (10)

We have the following properties.
1. f is bent if and only if Va € G*, czx\f(eg) =0.
2. If f is bent then the function f : G = Sc(0,1), called dual of f and defined

~ 1
wI= e

f, is also bent.

4 Multidimensional Fourier transform

In this section, G is a finite Abelian group in an additive representation and H
is an Hermitian space. We fix some orthonormal basis By of . Our objective
is here to introduce some Fourier’s tools in order to treat the case of Sy (04, 1)-
valued functions in the same way as the S¢(0, 1)-valued functions are exploited
in the theory of bent functions by Logachev, Salnikov and Yashchenko.

Definition 2. Let ¢ : G — H. The multidimensional Fourier transform of ¢ is
the function ¢MP defined by

oMD .G 5 H
a - Z x&(z)p(x) . (11)

zeG

We have also

pa)=>" > (d@).xg@eue =Y Y (d@),e)ux&@e .  (12)

z€G e€By zEG e€EBy

If H = C, it is easy to see that the multidimensional Fourier transform coincides
with the classical one.
Let ¢ : G — H. Let e € By. We define the coordinate function ¢, of ¢ on e as

¢ : G —C

o - ($(x), e (13)



According to the properties of orthonormal basis, we can easily observe that

Yz € G,
= z de(x)e . (14)
e€By
We use these coordinate functions in order to establish a connection between
the classical and multidimensional versions of the Fourier transform.

Lemma 1. Let ¢ : G — H. Then we have for all a € G,
$MPa) = Y bel(ae. (15)
e€By
Proof. Let a € G.

MP(a) = 3 x& ()

zeG

=3 Y x&@oe(x)e

z€EG e€EBy

¥ (z ¢e<w>xz<x>> ‘

e€By \zeG

= Y bela)e

eceBy
O

In the sequel of this subsection, we establish some properties about the multidi-
mensional Fourier transform, similar to classical ones, for a function ¢ : G — H.
Let us compute the Fourier transform of ¢MP. Let a € G.

MD

pMD Z X&(z (z)$MP () (by definition)
z€G

Z Z (ﬁe )e (according to lemma 1)

z€G ecBy

> (Z a@)xzs(a:)) e
EEBHA:EEG

Z de()e

e€EBy

= |G| Z ¢e(—a)e (according to relation (8))
=|G |<;?53) (according to formula (14)) .

Keep in mind the equality ¢MP  (a) = |G|¢(—a) which will be useful in the
sequel. Moreover we have proved the inversion formula :

Vo € G, ¢(a |G| > Xxg@)eMP () . (16)

zeG

Now we present a certain kind of Parseval’s equation in this context.



Theorem 1. (Parseval’s equation) Let ¢ : G — H then

Y l1é(@) 1= |G| Yo I16M (@) I3 - (17)

z€G a€G
If ¢ : G — Sy (0%, 1) then

> 16"P(@) =GP - (18)

acG
Proof.

Do le@ =) Y e

zeG z€G e€EBy

DY el

€€B’H zeG

> D lbela
|G| e€By a€G (19)
(accordlng to the Parseval’s equation applied on @)

|ZZ|¢e a)l?

a€eG eEBn

a€eG

The second assertion is obvious. O

It is possible and even more interesting to obtain this Parseval’s equation by
an alternative way. Let (¢,v) € (H%)? and a € G. By replacing the multiplica-
tion by the inner product, we define their convolutional product as follows

(@xv)@) =Y (ba+z),d(@)wn - (20)
z€G

Since ¢ x 1 : G — C, we can compute its classical discrete Fourier transform

@*9)@) = Y (¢ *9)(2)x& ()

T€G
=3 3 x& @)W +y), 61)n
z€G yeG
=3 Y x @+ 9)xEW) W@ +9), )
z€G yeG
= Z Z (z +y)(z +y), x& (W) oY) u
G yeG (21)
=33 xa @+ y)v(e + ), x&@)Y))n
yeG wAeG
= Z(@bMD(a),x‘é(yM(y))H
yEG
¢MD Z X&(y

yeG

= ($MP(a), $MD(a))n :



It is a kind of simplification of the convolutional product by the Fourier trans-
form. Now let us compute (¢ * )(ec). There are two ways to do this. The first
one is given by definition : (¢ x ¢¥)(eq) = Z(v,b(x), ¢(x))7- The second one is

zeG
given by the inversion formula of the usual Fourier transform.

(¢ %) (ec) = |G|Z¢w X (@)

acG

\Glé b+9)(a (22)
&7 L (@), M @)
aEG

Then we have Z(zﬁ(m), W = |G| Z wMD ¢MD( .

z€G aclG
Now let ¢ =, then
S (6(@), 6(@))n = |G| 3 (3(e), Bla) (23)
zeG a€eG
i.e.
Do) 5= |G| >l ) B - (24)
zeG aelG

5 Multidimensional bent functions

Definition 3. Let ¢ : G — S3;(04,1). ¢ is said multidimensional bentif Va € G,
1 M2 (a) [13,= |G| (i-e. $MP : G = Sy (03, \/IG])).

Lemma 2. Let ¢ : G — H. Then ¢(z) = 0y Vz € G* if and only if $MD () =
¢(eq) Ya € G.

Proof. =) $MP(a) = x° d(eq) Ya € G.
zeG
o(x) e Z x&(x d)MD ) (by the inversion formula of the multidimen-
| | aeG
sional Fourier transform). Then by hypothesis, ¢(z) = ¢|(ZT) Z x&(z) = 0y if
acG
z € G* and ¢(eg) otherwise. O

Note that this lemma is in particular true for 4 = C and then for the usual
Fourier transform.

We now define a kind of derivative for #-valued functions. Another time we use
the natural “multiplication” of H which is its inner product.



Definition 4. Let ¢ : G — H and o € G. The derivative of ¢ in direction « is
defined by
dot:G—C
z = (¢l + 2),6(x))n

This derivative measures the default of orthogonality between ¢(x) and ¢(a+z).

Proposition 2. Let ¢ : G — Sy (04,1). Then ¢ is bent if and only if Va € G*,
da¢(eG) =0.

Proof. Let define the following auto-correlation function

(25)

AC¢ :G—=C
a — dydleq) -

We have .
dofleq) =Y dat(@)XE (2)

z€G

= Z da¢(x)

z€G (27)
=3 (gla + 1), @)

zeG

=(¢x9)(a) .
Let us compute ZC\q;(a).

ACy(a) =Y AC(2)x8 (=)
zeG

=Y (@9 (@)x& (@)

= (28)
— ()
= (pMP(a), pMP (a))% (by the formula (21))

=l $MP(a) 13, -

Then we have Ya € G*, dag(eg) = 0 < Va € G*, ACy(a) =0

& VYaeQG, A/C'\d)(a) = ACy(eq) (according to lemma 2)

& VaeG, || §MP(a) [I= ACs(eq).

As ACy(eq) = (¢ * d)(eq) = D {($(x),6(@))n = Y |l d(x) [I3,= |G| (since ¢

zeG zeG
is 83 (04¢,1)-valued), we conclude the expected result. O

Let us also see a notion of dual function for multidimensional bentness similar
to the traditional one.

Proposition 3. Let ¢ : G — Sy (04,1) be a multidimensional bent function.
- - 1 ~
Then the function ¢ : G — Sy (04,1), defined by ¢ = ——¢™MP and called

V1G]

dual of ¢, is also multidimensional bent.



Proof. Let first check that ¢() € Sy (0, 1) for all @ € G. We have || ¢(a) [2,=
1

Il | $™P(a) ||2,= 1 (since ¢ is multidimensional bent). Now let compute

~MD 1 ——MD |G|

¢ (o) = ——=0oMP (a) = = v/|G|¢(—a). Then we have that
VIG| Vv |G|

¢ () I3= G|l ¢(~a) [I5= |G| (by hypothesis). O

6 Some constructions of multidimensional bent functions

6.1 Concatenation construction

Let p = Z pe€ € Sy (044,1) and ¢ : G = Sy, (04, 1) such that for each e € By,
ecBy

1, is defined as p.¢. where ¢, : G = Sc(0,1) is an element of B(G) (i.e. ¢, is

classical bent). Then 1 is a multidimensional bent function.

First let us check that for all z € G, ¢(z) € Sp(0y,1). We have || ¢(z) ||3,=

Z |¢e Z |pe¢e |2 =1

e€By e€By
Now let show that ¢ is bent. We have 9P (a) = Z Pede(a)e. Then we have
e€cBy
1942 (@) = D [pede(@) =G| D lpel” = |G-
e€EBy e€By

This construction is a kind of concatenation of usual bent functions. We can
generalized it as follows.

Fori=1,...,n,H; denotes an Hermitian space with a finite dimension (with
(s yn; and || . ||3;). We define the product Hermitian space H = HHi' Let
i=1
(U1, un), (V1,...,v,)) € H?, we have
n
((Ul,---,Un),(’Ul,---,Un»H = Z(ulJU'L)Hz (29)
i=1
and then .
I (s yun) 5= D0 i 3, - (30)
i=1

Fori=1,...,n, wesuppose given ¢; : G = S3;,(0%,,1) C H; amultidimensional
bent function. Let p = (p1,...,pn) € Scn(0cn, 1) C C". We define
¢:G—H
T = (pl(ﬁl(m)a s 5pn¢n($)) .

Then ¢ is a multidimensional bent function.
First let see that ¢ is a Sy (04, 1)-valued function

(31)



I ¢(z) 5= lez|2“¢z

7—[, Z |pz|2

Let a € G, we have ¢MD Z X“ Z(X?;(SL")m(ﬁl (@), x&(®)pn

z€G zeG
—~MD

bn(@)) = (plam’(a),...,pm (@))-

n

Then || $42(a) 5= S il 1 i (@)
=1

.= 1G1 Y loil* = |G-
i=1

6.2 Disjoint supports construction

The following constructions are not based anymore on the concatenation of sev-
eral usual bent functions and so are even more interesting.
Let G be a non trivial (G is not reduced to eg) finite Abelian group. Let

B = {ek}‘k(i‘l be the canonical basis of C/¢! (equipped with the usual inner
product). Let i : G — {1,...,|G|} be a bijection. We define the following func-
tion

. |G|
¢:G—->C (32)
T = €i(g) -
(=)
We have || ¢(2) [|2e: =]l €i(z) |l )= 1 and then ¢ is S¢ia| (O¢ier, 1)-valued.
|G|
We have ¢MP (o Z X&€i(z) = ZXG ~L(k))ey i.e we find that ¢MP(a) =

zeG
|G|

(X&), -, x&(ETH(G]))) and then || 6P () 1= Z|XG k) =

|G| and so, ¢ is multidimensional bent.

We now show that the component functions of ¢ can not be, up to a factor, usual
bent functions. First of all, none of the component functions (in the canonical ba-
sis of C/%!) is usual bent since for k € {1,..., |G|}, we have ¢y, () = OVz # i~ (k)
(it is possible since |G| > 1) and then ¢y, can not be S¢(0, 1)-valued. Now suppose
that we can find p = (p1,...,p/q|) € Scici(Ogici,1) C Cl¢landfork=1,...,|G|,
Y : G = Sc(0,1) C C usual bent functions such that ¢ = (p11, .-, pjq1%¥|q))-
As we know that for each k € {1,...,|G|}, we have Vz € G such that i(z) # k,
¢r(xz) = 0 then pry(xz) = 0 and then pr = 0 or 9, (x) = 0. Since ¢ must be
Sc(0,1)-valued, pr, = 0. As it is true for all k, we deduce that p = (0,...,0)
which is a contradiction with the fact that p € Sgia1(0gial, 1).

The previous construction can be generalized as follows. Let G be a non trivial
finite Abelian group. Let A = {u(’)}ﬁ‘l be a set of exactly |G| vectors of C'“! such
that for each i € {1,...,|G|} it exists one and only one k € {1,..., |G|}, denoted

; : (@ _ Jwiif j = k()
k(i), and w; € Sc(0,1) such that u;” = { if 5 £ k(i)
is an element of Sgiei(Ogisl, 1). Note that & : {1,...,|G|} = {1,...,|G|} is a

> In particular each u(®



bijective map. Let i : G — {1,...,|G|} be a bijection. We define the function

$:G — ClC
r o uli®) | (33)
Then ¢ is multidimensional bent. .
Let z € G. ¢(x) € Sgici(0gier, 1) because ¢(z) = u®) € Sgie (0gial, 1).
|G|
Let a € G. We have d)MD Z X& u(z(w)) = ZX —1( u(J) which is

zelG

equal to (x& (™" (1))wk-1(1); - - - ,X?;(i‘l(IGI))wk—luan)- Then || 6" (a) [Ige1=
|G|

ZlXG )P lwr-1 P = |G
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