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Abstract

The objective of this contribution is to introduce an analogue to the classical secret-key block ciphers,
such as DES, IDEA or AES, in the nondenumerable setting, namely where cleartexts, plaintexts and keys are
real numbers. The nonlinear part of traditional secret-key block ciphers, the S-boxes, is designed to provide
confusion i.e. to resist to several kind of cryptanalysis such as algebraic, differential or linear attacks. By
analogy we construct S-boxes in the uncountable setting which provide the best resistance to a classical or
modified version of the differential attack. Since our S-boxes are real-valued functions defined on the real-line,
we also need to prevent possible new attacks based on real analysis (such as continuity and derivability), which
are ignored since impossible in the finite case: we must hide the topological structure. So we introduce a new
kind of Discontinuous-boxes for this purpose.

Keywords: S-boxes, differential attack, perfect nonlinear functions, group actions, topological groups and
transfinite cardinal numbers.

1 Introduction and purpose of this contribution
In a classical block cipher, plaintexts, ciphertexts and keys are treated as bit-strings of finite
sizes. The finiteness of lengths is obviously due to implementation and practical requirements.
Nevertheless from a mathematical and theoretical point of view, there are less reasons to re-
strict ourselves to this finite case. In other words one can imagine ideal cryptosystems that deal
with some infinite size quantities such as for instance real numbers rather than binary vectors.
This unrestricted approach can lead to new and relevant idealized results by using some real
analysis tools rather than our usual discrete mathematics toolbox. Obviously such formal real-
izations need to be interpreted when they are projected onto the finite framework, for instance
as asymptotical results. This step is far from obvious and must be carried out with caution since
one may lose a large (and even infinite) number of degrees of freedom when restricting to the
finite universe. This approach is not usual in the theory of secret-key cryptosystems but is well-
known and efficient for public-key cryptologists. Indeed a popular methodology for designing
cryptographic protocols consists of the following two steps. One first designs an ideal system
in which all parties (including the adversary) have oracle access to a truly random function,
and proves the security of this ideal system. Next, one replaces the random oracle by a « good
cryptographic hashing function » (such as MD5 or SHA), providing all parties (including the
adversary) with the succinct description of this function. Thus, one obtains an implementation
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of the ideal system in a « real-world » where random oracles do not exist. This methodology,
explicitly formulated by Bellare and Rogaway in [3], which is called the random oracle model,
has been used in many works and allows to consider ideal hash functions that map infinite bit-
strings to bit-strings of fixed finite length. Apart from pathological protocols (see [7]) which are
secure in the random oracle model but which any implementation of the random oracle results in
insecure schemes, this method seems to be enough efficient to obtain relevant proofs of security.
Moreover some secret-keys cryptosystems over real numbers, called chaos-based cryptosystems
have already been studied ([11, 12, 22, 14]). Their security is relied on ergodic and chaotic prop-
erties rather than algebraic ones. Ergodicity means from a cryptographic point of view that the
output has the same distribution for any input and the term « chaos » refers to a sensitivity
to the initial conditions: a small deviation in the input can cause a large change at the output.
In this paper we do not study such notions since our ambition is to extend the classical notion
of resistance against the differential attack, namely the property of perfect nonlinearity, to the
case of real (or complex) numbers.

In this contribution we consider an ideal mathematical world in which every parties are
able to compute and store real (or complex) numbers. We provide several secret-key cryptosys-
tems that we prove secure against differential attacks. More precisely we exhibit real-valued
S-boxes defined on the real-line that are maximally resistant to a generalized differential
cryptanalysis. The classical differential attack, as introduced by Biham and Shamir [4], takes
advantage on an additive difference in output of a S-box for a fixed additive difference in input
(the addition is usually given by a XOR operation on bit-strings or an addition in a cyclic or
abelian finite group). But there are many other ways to define a « difference » for plaintexts,
keys and ciphertexts: for instance in a field, we can consider both additive and multiplicative
differences. More generally we can define differential attacks based on the notion of group ac-
tions (see [16, 17, 18]). Thus we need to construct S-boxes that are resistant against such new
attacks; these maps are called G-perfect nonlinear functions (similar to classical perfect nonlin-
ear functions with one XOR replaced by a general group action). In short we provide in this
paper several real-valued S-boxes defined on the real-line which are maximally resistant against
a multiplicative or additive version of the differential attack.

Outline
Our objective is the construction of S-boxes defined and valued on real numbers that are max-
imally resistant to a group action based differential attack. The achievement of this purpose
is obtained in three steps: first we introduce the generalized version of the differential at-
tack (roughly speaking the XOR operation is replaced by some general group actions) and its
corresponding notion of resistance (called G-perfect nonlinearity) in the finite framework (see
subsection 2.1). In a second step, in subsection 2.2, we extend the concept of G-perfect nonlinear
functions for real-valued maps defined on the real-line. Finally in section 3 several G-perfect
nonlinear S-boxes defined and valued on the real-line are presented and organized into ideal
secret-key encryption schemes. We also introduce some nowhere continuous components for
these cryptosystems, called D-boxes, in order to prevent topological attacks.

2 Group action version of perfect nonlinearity

2.1 The finite framework
In an r-round iterative block cipher such as the Data Encryption Standard (DES) [9] or its suc-
cessor as an American standard, the Advanced Encryption Standard (AES) [10], the ciphertext
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xr is obtained from a plaintext x0 by iterating r times the round function T

y = T (xi−1, ki) 1 ≤ i ≤ r

where ki is the ith round key obtained from a secret quantity (the secret key) by a scheduling
algorithm. Following Shannon’s design recommendations [20] of diffusion and confusion, the
round function is traditionnally divided into two parts. Its linear component should provide a
good level of diffusion i.e. it may distribute the statistics of single or several input symbols of
a plaintext into long sequences of output symbols of the corresponding ciphertext. Usually, in
an iterative round scheme, linear functions are used for this purpose. Confusing the algebraic
relations between plaintexts, ciphertexts or keys means to destroy or hide the mathematical
structures. The nonlinear part of T is designed to provide this confusion. In most cases this
is satisfied by using substitutions over the set of ciphertexts: nonlinear components are then
called S(ubstitution)-boxes. In practice (when we consider blocks as bit-strings), an S-box f is
used after the linear part and a XOR combination between an internal message (or a part of it)
and the round-key (or a part of it)

y = f(ki ⊕ xi−1)

where the symbol «⊕» denotes the XOR operation. The S-boxes are in fact designed to be
resistant against last-round key attacks that try to recover the last-round key. In particular the
distribution of the output (additive) differences f(α ⊕ x) ⊕ f(x) must be as close as possible
to the uniform distribution for any nonzero input difference α. If it is not the case, Biham
and Shamir’s differential attack [4] may take advantage on the resulting bias. One uses XOR
differences in a differential attack because this is exactly the way keys and plaintexts are com-
bined and one wants to control the key influence on the differences propagation into the round
sequence.

However the key can operate on the message in many other fashions. This is not a new remark
since for instance Lai and Massey’s IDEA [13] makes use of an addition and multiplication
of a ring of modular integers. Moreover in the Russian analogue of DES, GOST [21], keys
and plaintexts are combined via an addition of a cyclic group. Our own idea, which has been
introduced in [16, 17, 18], consits in replacing the internal law of a group by a particular external
law: a group action.

Definition 1. Let G be a group and X be any nonempty set. The group G acts on X if there
is a group homomorphism φ from G to S(X) the symmetric group of X (i.e. the set of bijective
maps of X equipped with the composition); φ is called a group action. The action is called
faithful if φ is one-to-one.

In order to simplify the notations, we forget any explicit reference to φ by using the convenient
notation

α.x := φ(α)(x)

with x ∈ X and α ∈ G. Thus the symbol «.» can be interpreted as an external law of composi-
tion.

Definition 2. A topological group is a group G which is a Hausdorff topological space such
that the multiplication (g, g′) 7→ gg′ is a continuous function from G×G to G and the inverse
function g 7→ g−1 is continuous from G to itself. A homomorphism between two topological
groups G and H is just a continuous group homomorphism from G to H. An isomorphism of
topological groups is a group isomorphism which is also a homeomorphism for the underlying
topological spaces.
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For instance, (R,+, 0) and (C,+, 0) with their natural topology are topological groups.
(R∗,×, 1) and (C∗,×, 1) with their usual topology (as open of respectively R and C) are topo-
logical groups.

Definition 3. If G is a topological group and X a nonempty topological space, we define a
topological group action of G on X as a continuous group homomorphism φ : G → Homeo(X),
where Homeo(X) is the homeomorphism group1 of X.

As instances of (topological) group actions one can cite the following. (R∗,×, 1) acts faith-
fully on R by α.x = α × x and (R,+, 0) acts regularly2 (and thus faithfully) on itself by
α.x = α + x. Moreover if G is a nontrivial subgroup of (R∗,×, 1) (for instance ({±1},×, 1),
]0;+∞[ or also (K∗,×, 1) when K is a subfield of R such as Q) G acts faithfully on the nonzero
real numbers by multiplication. In the same way, if G is a nontrivial additive subgroup of R
(so G must be either closed in the usual topology of R, and then must have the form αZ for a
nonzero real number α, or a dense part of R such as Q) acts faithfully on the real line by addition.

Now let suppose that we keep the same simple block ciphers previously described in which
we replace the XOR by a faithful group action of a finite group G on a finite set X. Let H be
any finite group, written additively. In this setting, an S-box is a map f from X to H that is
used in the encryption scheme in the following way

y = f(α.x)

where y ∈ H, α ∈ G and x ∈ X. This kind of modified ciphers may be vulnerable to a differential
attack that does no more take advantage on a XOR difference but on a group action difference
(that is the most natural notion of difference occurring in this context). The algorithm of such
an attack is easily derivated from the classical one.

1. Suppose that the enemy finds a pair (α, β) so that the probability

Pr(R(α.x)−R(x) = β)

is far from the uniform distribution, where R is the reduced cipher defined as R = Tk1 ◦
. . . ◦ Tkr−1 (with the fixed-key round function Tk : x 7→ T (x, k) one-to-one and onto).

2. The enemy chooses a cleartext x0 and he encrypts both x0 and α.x0. Two pairs of plain-
texts/ciphertexts are obtained: (x0, xr) and (α.x0, x

′
r).

3. He finds all the rth round keys K so that

T−1
K (x′r)− T−1

K (xr) = β .

4. He iterates steps (3) and (4) until he is able to distinguish the good value K for the last
key kr.

In order to construct a differential resistant round function f , we need to use differential resistant
S-boxes called G-perfect nonlinear functions [16, 17, 18].

Definition 4. Let X and Y be two finite nonempty sets. A function f : X → Y is called
balanced if for each y ∈ Y , |{x ∈ X|f(x) = y}| = |X|

|Y | .

Such a balanced function is obviously onto.

1The topology of Homeo(X) is the topology of simple convergence.
2An action φ : G→ S(X) is called regular if for each (x, y) ∈ X2 there is one and only one α ∈ G so that α.x = y.

Such an ation is always faithful.
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Definition 5. Let G be a finite group that acts faithfully on a finite nonempty set X and H
be any finite group (written additively). A function f : X → H is called G-perfect nonlinear if
for each nonidentity element α in G, the derivative of f in α

dαf : X → H
x 7→ f(α.x)− f(x)

is balanced.

When X = G, G-perfect nonlinear functions are exactly the classical perfect nonlinear
functions as introduced by Nyberg in [15].

Our objective in this contribution is to construct a cryptosystem on real numbers that is
optimally resistant against a differential attack. So we need to adapt the previous definitions to
the infinite countable or uncountable setting.

2.2 The infinite framework
In order to deal with infinite cardinalities, we introduce the following notations. The (transfinite)
cardinal number of X ⊆ R (or C) is defined as

|X| :=

 the number of elements of X when X is a finite set;
ℵ0 if X is infinite countable;
2ℵ0 if X has the power of the continuum.

A set X is infinite countable if there is a bijection from X to N and X has the power of the
continuum if X and R are equipotent. For instance |N| = |Z| = |Q| = ℵ0 (read « aleph zero »)
and |[0; 1]| = |R| = |C| = 2ℵ0 . If there is a one-to-one map from X to Y we define |X| ≤ |Y | and
if there is a one-to-one map from X to Y but no bijective functions, we define |X| < |Y |. Then
N ∪ {ℵ0, 2ℵ0} is totally ordered. In particular if n ∈ N, we have n < ℵ0 < 2ℵ0 . The classical
arithmetical operations on finite cardinal numbers can be extended to deal with transfinite
cardinal numbers (see [2]). Let c1 and c2 be two cardinal numbers then we have

c1 + c2 :=
{

max{c1, c2} if either c1 or c2 is infinite;
c1 + c2 if both c1 and c2 are finite.

In particular + is associative, commutative and has 0 as neutral element. Similarly we can
define a multiplication of transfinite cardinals3 that extends the usual integer multiplication:

c1c2 := max{c1, c2}

if either c1 or c2 are infinite and both are non zero. In particular 2ℵ0 = 2ℵ02ℵ0 = 2ℵ0ℵ0 = 2ℵ0n
and ℵ0 = ℵ0ℵ0 = ℵ0n for each n ∈ N∗. Moreover one can show that c0 = 0c = 0, 1 is the neutral
element, the multiplication is associative, commutative, distributive over + and there is no zero
divisors. Moreover the following inequality holds∑

i∈I

ci ≤ max{ci}i∈I |I|

for ci ∈ N ∪ {ℵ0, 2ℵ0} and 0 ≤ |I| ≤ 2ℵ0 .
Using these numbers one can extend the notion of balanced functions for infinite cardinalities.

If X and Y are two finite sets so that |Y | divides |X|, a function f : X → Y is balanced if for
each y ∈ Y , the inverse image f−1({y}) := {x ∈ X|f(x) = y} has the same cardinal number
|X|
|Y | or in other terms {f−1({y})}y∈Y is a partition of X in subsets of same size |X|

|Y | .

3In order to define such a multiplication, we need to suppose that the axiom of choice holds in our underlying
theory of sets ([2]).
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Definition 6. Let X and Y be two sets so that 0 < |X| ≤ 2ℵ0 , 0 < |Y | ≤ 2ℵ0 and |X| ≥ |Y |. Let
f : X → Y be a mapping. The function f is balanced if |f−1({y})| is a constant in N∪{ℵ0, 2ℵ0}
when y describes Y .

The assumption |X| ≥ |Y | in the previous definition is necessary since a balanced function
is onto. We can also observe that when |X| and |Y | are both finite then this is equivalent to
the classical notion of balancedness. Now let suppose that we have a balanced map f : X → Y .
Let’s try to compute the constant c := |f−1({y})|. The set {f−1({y})}y∈Y is a partition of X

and then X =
⋃

y∈Y

f−1({y}). Since f is balanced, we obtain |X| = |Y |c.

For each of the following cases, we compute the constant c by using the particular multipli-
cation of transfinite cardinal numbers:

1. |X| = ℵ0 and 0 < |Y | < ℵ0. Then c = ℵ0;

2. |X| = ℵ0 and |Y | = ℵ0. Then c ∈ N∗ ∪ {ℵ0};
3. |X| = 2ℵ0 and 0 < |Y | < 2ℵ0 . Then c = 2ℵ0 ;

4. |X| = 2ℵ0 and |Y | = 2ℵ0 . Then c ∈ N∗ ∪ {ℵ0, 2ℵ0}.
Below are given some instances and counter-examples of balanced functions in each case.

Examples 1.

1. The indicator function f of the even integers is a balanced function from Z to Z2 = {0, 1}
with c = ℵ0. Let E be a nonempty finite subset of Z, then the function g : Z → Z2 defined
as the indicator function of E is surjective but not balanced since |g−1({1})| = |E| ∈ N∗

and |g−1({0})| = |Z \ E| = ℵ0;

2. The identity function f of Z is a balanced function with c = 1. Let define the mapping

f : N → N

n 7→
{

0 if n ∈ {0, 1};
f(2k − 1) + 1 if n ∈ {2k, 2k + 1} with k ∈ N∗.

Then f is balanced with c = 2. Let g : Z → N such that for each n ∈ Z, g(±n) = n. Then
g is surjective but not balanced since for each nonzero n ∈ N, |g−1({n})| = |{±n}| = 2
and |g−1({0})| = |{0}| = 1;

3. Let f : Z × Z∗ → Q defined as f(a, b) = a
b . Then f is balanced with c = ℵ0. Let

g : Z×Z∗∪{(0, 0)} → Q∪{↑} (with ↑6∈ Q) such that for each (a, b) ∈ Z×Z∗, g(a, b) = f(a, b)
as previously defined and g(0, 0) =↑. Then g is surjective but not balanced since for each
q ∈ Q, |g−1({q})| = |f−1({q})| = ℵ0 but |g−1({↑})| = |{(0, 0)}| = 1;

4. Let f be the indicator function of [0;+∞[ then f : R → Z2 is balanced with c = 2ℵ0 .
The map g : R → Z2 defined as the indicator function of a finite or countable subset
E (E 6= ∅) of R is surjective but not balanced since |g−1({1})| = |E| ∈ N∗ ∪ {ℵ0} and
|g−1({0})| = |R \ E| = 2ℵ0 ;

5. Let f : [0; +∞[→ N defined by f([n, n + 1[) = n for each n ∈ N. Then f is balanced with
c = 2ℵ0 . The function g : {−1} ∪ [0;+∞[→ {−1} ∪ N defined as f when restricted to
[0;+∞[ and g(−1) = −1 is surjective but not balanced since for each n ∈ N, |g−1({n})| =
|[n;n + 1[| = 2ℵ0 but |g−1({−1})| = |{−1}| = 1;

6. Let define f : R∗ →]0;+∞[ so that f(x) = x2. Then f is balanced with c = 2. Now if we
consider g : R → [0;+∞[ such that g(x) = x2. Then g is surjective but not balanced since
|g−1({0})| = 1 and for each x ∈]0;+∞[, |g−1({x})| = 2;
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7. The function
f : R → {z ∈ C | |z| = 1}

t 7→ eit

is balanced with c = ℵ0 since f−1({z}) = arg(z) + 2πZ;

8. The projection
f : C → R

a + ib 7→ a

is balanced with c = 2ℵ0 since for each a ∈ R, f−1({a}) = a + iR.

The notion of infinite balancedness allows us to extend the concept of (G)-perfect nonlinearity
in the transfinite setting.

Definition 7. Let G be a group acting faithfully on a nonempty set X (|X| ≤ 2ℵ0) and let H
be a group in an additive notation with (|H| ≤ |X|). A map f : X → H is called G-perfect
nonlinear if for each nonidentity α ∈ G, the derivative of f in direction α

dαf : X → H
x 7→ f(α.x)− f(x)

is balanced.
If G is a topological group, X a (nonempty) topological space such that there is a faithful
topological group action of G on X and H is a topological group, we say that f : X → H
is (topological) G-perfect nonlinear if f is continuous and for each nonidentity α ∈ G, dαf is
continuous and balanced.

When in a cryptosystem, keys and plaintexts are combined via a topological group action as
it is the case in the encryption schemes presented in section 3, we must confuse the group and
topological structures. We make the assumption that the two requirements are independent and
must be provided by different components. As in the finite case, we use (G-)perfect nonlinear
functions to hide the group structure; but they have no role in confusing the topological struc-
ture. This is the reason why we define the notion of topological G-perfect nonlinear functions.
In the next section, we introduce the notion of D-boxes4 whose role in an encryption scheme is
precisely to provide the topological confusion.

3 Proposed cryptosystems and their security
In this section are presented several versions of an iterative block cipher in an ideal world where
the plaintexts, keys and ciphertexts are taken in some noncountable subsets of the real line. In
its version first the block cipher is maximally resistant against a multiplicative differential attack
but vulnerable against its additive version. The second block cipher is an improvement that
ensures both resistance against multiplicative and additive differential cryptanalysis. Moreover
since we deal with real-valued functions defined on real numbers, we need to consider some
attacks based on real analysis. So we introduce a new kind of cryptographic components, the
D-boxes, to prevent such attacks by hiding the topological structures. Finally we present an
extension in the complex plane.

4The letter « D » refers to the word « discontinuous ».
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3.1 First encryption scheme using a multiplicative perfect nonlinear
S-box
Theorem 1. The exponential function

Exp : R ↔ ]0;+∞[
x 7→ ex

is a (R∗,×, 1)-perfect nonlinearity homeomorphism from R onto (]0;+∞[,×, 1).

Proof. We only need to check the property of perfect nonlinearity. Let α be a nonidentity
element of (R∗,×, 1) i.e. α ∈ R∗ \ {1}. The derivative of Exp in direction α is defined as

dαExp : R → ]0;+∞[
x 7→ Exp(αx)

Exp(x) .

Then we need to prove that dαExp is balanced. So let β ∈]0;+∞[. Let us compute the number
of solutions x ∈ R such that dαExp(x) = β.

dαExp(x) = β

⇔ eαx

ex = β
⇔ eαx−x = β
⇔ e(α−1)x = β
⇔ (α− 1)x = ln(β) (since β > 0)
⇔ x = ln(β)

α−1 (because α 6= 1)

and then dαExp is onto. But actually since dαExp = Exp ◦ τα−1, where for γ ∈ R∗

τγ : R → R
x 7→ γx

which is a homeomorphism since γ 6= 0, by composition of homeomorphisms (α 6= 1 then τα−1

is one-to-one and onto), dαExp is also a homeomorphism and thus is balanced.

Corollary 1. Let a ∈]0;+∞[\{1}. We define the exponential function with base a by

Expa : R → ]0;+∞[
x 7→ ax := exln(a) .

Note that Expe = Exp. Then Expa is a (R∗,×, 1)-perfect nonlinear homeomorphism from R to
(]0;+∞[,×, 1).

Proof. Expa is a homeomorphism because Expa = Exp ◦ τln(a) and ln(a) 6= 0 since a 6= 1.
Moreover for each α ∈ R∗ \ {1} we have dαExpa = Exp ◦ τα ◦ τln(a) and then dαExpa is an
homeomorphism and thus is balanced.

Cryptosystem K1(R):
For each a ∈]0;+∞[\{1}, we can define the following block cipher. The set of plaintexts is
R, the set of keys is R∗ and the set of ciphertexts is ]0;+∞[. For each key k, one encrypts
a message x by T (x, k) = Tk(x) := Expa(kx) = akx. The decryption algorithm is given by
T−1

k (c) := τ 1
kln(a)

◦ ln(c) for each ciphertext c ∈]0;+∞[. Obviously this is the description of one
round and K1(R) can be seen as a Substitution-Permutation Network (SPN).
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According to corollary 1 this cryptosystem is secure against a multiplicative differential
attack. Nevertheless it is vulnerable against a classical additive differential cryptanalysis since
the map Expa is a morphism: Expa(α + x) = Expa(α)Expa(x). So an enemy should be able
to use this linearity in order to recover the key. To avoid such an additive attack, we need to
complete K1(R) with an additive perfect nonlinear S-box.

3.2 Second encryption scheme using an additive perfect nonlinear S-
box
Theorem 2. The map

X2 : R → R
x 7→ x2

is continuous and perfect nonlinear from (R,+, 0) to itself.

Proof. Let α ∈ R∗. We have dαX2(x) = X2(α + x)−X2(x) = (α + x)2− x2 = 2αx + α2. Then
dαX2 is a homeomorphism of R and therefore is balanced.

Cryptosystem K2(R):
So now in order to avoid both multiplicative and additive differential attacks, we complete the
SPN K1(R) in the following way. The set of plaintexts is R, the set of keys is ]0;+∞[2 and
the set of ciphertexts is ]0;+∞[. Let x be a message to encrypt and let (k1, k2) ∈]0;+∞[2 be
the round key. At first, the quantity Expa(k1x) = ak1x is computed. This step ensures the
resistance against the multiplicative differential attack. Then we insert the second part k2 of
the secret key by addition: k2 + ak1x. Finally the ciphertext is given by

X2(k2 + ak1x) = (k2 + ak1x)2 = k2
2 + 2k2a

k1x + a2k1x .

This last step guarantees the solidity against the additive version of the differential cryptanalysis.
Given a ciphertext c ∈]0;+∞[ and a secret key (k1, k2) ∈]0;+∞[2 we obtain the plaintext x by
computing

x :=
1

k1ln(a)
ln(
√

c− k2) .

3.3 Real analysis based attacks and discontinuous D-boxes
The two maps used in the block cipher K2(R) both are continuous and even (indefinitely)
derivable by respect to the usual topology of the real-line. These properties lead to possible
cryptanalysis of the system.
Continuity attack: By continuity two close ciphertexts are obtained from two close plaintexts.
Therefore the diffusion aspect is not guaranteed in such a cryptosystem.
Derivability attack: Let x0 be a plaintext and h be an infinitely small number. Since Expa

is derivable, Expa(k(x0 + h)) − Expa(kx0) = ak(x0+h) − akx0 is close to hkakx0 and then
an enemy may be able to distinguish the key k. In a similar way, if h is sufficient small,
(x0 + h + k)2 − (x0 + k)2 is close to h(2x0 + 2k) and such a linear relation may be use to find
the key k.

In order to avoid such topological attacks we need to use another kind of components which
must hide the topological structures: so we need discontinuous D-boxes. They must ensure
the diffusion requirement by destroying the underlying topological structures.

9



Theorem 3. Let define the following function.

D : R → R
x 7→ 1Q(x) + x

where 1Q is the indicator function of the field of rational numbers. Then D is a permutation
nowhere continuous. Moreover D ◦ ln :]0;+∞[→ R is also a permutation nowhere continuous.

Proof. D is nowhere continuous on R: let x0 ∈ Q. Since Q is dense in R for each ν > 0, there
is x ∈ R \ Q so that |x0 − x| < ν but |D(x0) −D(x)| = |1 + x0 − x| > 1. Let x0 ∈ R \ Q. By
density for each ν > 0, there is x ∈ Q such that |x0 − x| < ν and |D(x0)−D(x)| > 1. Thus D
is nowhere continuous.
Now let prove that D is a bijection. Let x ∈ Q. Then x − 1 is also an element of Q. So we
have D(x − 1) = 1Q(x − 1) + x − 1 = 1 + x − 1 = x. Let x ∈ R \ Q. We have D(x) = x. So
D is onto. Finally let suppose that D(x) = D(y). Then if x ∈ R \ Q, x = D(x) = D(y). If
y ∈ R\Q then D(y) = y and x = y. If y ∈ Q, D(y) = y +1 ∈ Q and in particular x = y +1 ∈ Q
which is a contradiction. If x ∈ Q, then x + 1 = D(x) = D(y). If y ∈ Q, D(y) = y + 1, then
x = y. If y ∈ R \ Q then x + 1 = D(y) = y ∈ R \ Q which is a contradiction. Therefore
D is one-to-one. Note that for each x ∈ R, we have D−1 = x − 1Q(x). By composition of
permutations, D ◦ ln is bijective. Since ln is a homeomorphism, D ◦ ln is continuous at every
point where D is continuous.

Cryptosystem K3(R):
We can use the permutation D ◦ ln as a D-box in order to avoid the attacks based on continuity
or derivability of the S-boxes. We just use the output of K2(R) as an imput of D. So a plaintext
x ∈ R is encrypted via the following round function, for the secret key (k1, k2) ∈]0;+∞[2:

T (x, (k1, k2)) := D◦ln◦X2(k2+Expa(k1x)) = 1Q(ln(k2
2+2k2a

k1x+a2k1x))+ln(k2
2+2k2a

k1x+a2k1x) .

If c ∈ R is a ciphertext corresponding to the key (k1, k2), the plaintext x is recovered by

x :=
1

k1ln(a)
ln(

√
ec−1Q(c) − k2) .

3.4 Complex-plane extension
In this subsection we propose to extend our results to the complex-plane. Unfortunatly, due
to inversion problems, the cryptosystem K3(R) does not fit naturally into the complex setting.
Therefore we will use some complex extensions of the previous S-boxes but in a Feistel structure
in order to neglect the inversibility of the internal components.

Theorem 4. The map

Exp : C → C
z = x + iy 7→ ez := exeiy = ex(cos(y) + isin(y))

is holomorphic (C∗,×, 1)-perfect nonlinear from C to (C∗,×, 1).

Proof. Let β ∈ C∗. Then ez = β ⇔ there is k ∈ Z such that z = ln(|β|) + i(arg(β) + 2kπ).
Let α ∈ C∗ \ {1}. We have dαez = eαze−z = e(α−1)z and therefore dαExp is holomorphic on
the complex-plane and thus is continuous. Moreover e(α−1)z = β if and only if there is k ∈ Z
such that z = 1

(α−1) (ln(|β|) + i(arg(β) + 2kπ)) (since α 6= 1). Finally we deduce that for each
α ∈ C∗ \ {1} and each β ∈ C, (dαExp)−1({β}) = { 1

(α−1) (ln(|β|) + i(arg(β) + 2kπ))}k∈Z and
therefore |(dαExp)−1({β})| = ℵ0 and Exp is (C∗,×, 1)-perfect nonlinear from C to (C∗,×, 1).
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Theorem 5. The map
Z2 : C → C

z 7→ z2

is holomorphic perfect nonlinear from (C,+, 0) to itself.

Proof. Let α ∈ C∗. We have

Z2(α + z)− Z2(z) = (α + z)2 − z2

= α2 + 2αz + z2 − z2

= α2 + 2αz .

Since α 6= 0, dαZ2 is a bijection (and even a homeomorphism since it is holomorphic as a
polynomial function) and therefore is balanced.

Note that both Exp and Z2 are holomorphic at every point of the complex plane (since
they are entire functions) and thus, as analytic functions, they are infinitely often complex-
differentiable at every point of C. As in the real case, we need to use a nonholomorphic compo-
nents, the D-boxes, in order to avoid an attack based on continuity or derivability and to ensure
a good level of diffusion.

Theorem 6. Let define the function

D : C → C
z = x + iy 7→ x + iy + 1Q(x) + i1Q(y)

Then D is a permutation nowhere continuous.

Proof. Let z0 ∈ C. Since Q is dense in R, for each ν > 0 one can always find z ∈ C, |z− z0| < ν
but |D(z)−D(z0)| > 1 and therefore D is noncontinuous.
Let z = x + iy. Then we have

x + iy =


D(x + iy) if (x, y) ∈ (R \Q)2;
D(x− 1 + iy) if (x, y) ∈ Q× (R \Q);
D(x + iy − i) if (x, y) ∈ (R \Q)×Q;
D(x− 1 + iy − i) if (x, y) ∈ Q2.

Therefore D is onto.
Let suppose that D(z) = D(z′). In order to prove that D is one-to-one, we should make a proof
by cases. But since the proof is almost the same in all cases, we only detail a single case: let
suppose that z ∈ (R \ Q) + i(R \ Q) then z = D(z) = D(z′). If z′ ∈ (R \ Q) + i(R \ Q) then
z = D(z′) = z′. If z′ = x′ + iy′ ∈ Q + i(R \Q) then z = D(z′) = x + 1 + iy. This implies that
the real part of z is equal to x + 1 which is a contradiction. If z′ = x′ + iy′ ∈ (R \ Q) + iQ
then z = D(z′) = x + iy + i. So in particular the imaginary part of z is equal to y + 1 ∈ Q
which is a contradiction. If z′ = x′ + iy′ ∈ Q + iQ then z = D(z′) = x′ + iy′ and we also find a
contradiction.

Cryptosystem K4(C):
The complex exponential function Exp is a permutation from R+ i[0; 2π[ onto C∗. Unfortunatly
R+ i[0; 2π[ is not invariant under the multiplication of C∗. Moreover Z2 is not a permutation of
the entire complex-plane even if in some cases it is possible to define an holomorphic function of
square root as it is briefly recalled now (see for instance [5] for more details). A determination of
the logarithm on an open set U ⊂ C∗ is an holomorphic function L : U → C such that ∀z ∈ U ,
eL(z) = z. Note that there is no determination of the logarithm on the open set C∗ but there
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is a determination on C∗\]−∞; 0[ and more generally there is a determination on every simply
connected open that does not contain 0. On every open U of C∗ where there is a determination
L of the logarithm, we can define a determination of the power of exponent a ∈ C by

∀z ∈ U, za := Exp(aL(z)) .

In particular if n is an integer greater or equal to 2 the function

n
√ : U → C

z 7→ n
√

z := Exp( 1
nL(z))

is holomorphic on U and satisfies ∀z ∈ U, ( n
√

z)n = z. Such a function is called a determination
on U of the nth square root.
The sequence of S-boxes compositions used in K3(R) can not be easily and naturally adapted
to the complex-plane. In this case, it seems to be more accurate to use a Feistel network. For
instance we can sequentially use two Feistel’s permutations F1 and F2, defined by

F1((x, y), k1) := (y, ek1y + x)

and
F2((x, y), k2) := (D(y), D((k2 + y)2 + x))

for (x, y) ∈ C2 and (k1, k2) ∈ C∗ × C. So in a single round we compute the ciphertext c as
follows (the secret-key is (k1, k2)).

c := (D(ek1y + x), D((k2 + ek1y + x)2 + y)) .

The decryption of c = (c1, c2) is obtained by the following formula.

(x, y) = (D−1(c1)− Exp(k1(D−1(c2)−X2(k2 + D−1(c1)))), D−1(c2)−X2(k2 + D−1(c1))) .

3.5 How to implement such cryptosystems on the real-line or the
complex-plane ?
The construction of ideal cryptosystems on the real-line or the complex-plane raises the crucial
question of their practical implementation in the « real world ». In this contribution we do not
give a detailed and rigorous method to solve this problem but a possible direction to follow: the
super-Turing computations.
Super-Turing models of computations: Hypercomputation or super-Turing computation
refers to various models for the computation of non-Turing-computable functions or recursive
functions. Within these models the so-called Church-Turing thesis ([6, 23]) ceases to be valid.
Such a powerful model was already intoduced by Alan Turing himself in his 1939 paper [24].
This paper invistigated some mathematical ideal systems in which an oracle was available, which
could compute a single arbitrary non-recursive function over natural integers. Since then other
methods have been proposed by different authors. One can cite (see [25]) the accelerated Turing
machine independently proposed by Russel [19], Blake [1] and Weyl [26] which is defined as a
process that performs its first step in one unit of time and each subsequent step in half the time
of the step before such that a process could complete an infinity of steps in only two units of
time, a neural network with real numbers as weights should be able to compute over real numbers
and finally a Turing machine in a special kind of relativistic spacetime, called Malament-Hogarth
spacetime [8], can perform an infinite number of operations while remaining in the past light cone
of a particular event. This kind of models of computation should be very relevant to compute
over the real-line or the complex-plane and thus should be used to implement our « continuous
» cryptosystems. However at this stage, none of these models seem physically plausible. Thus
these « hypercomputers » are likely to remain as mathematical ideal models.
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