Plar

Fonctions Parfaitement Non Linéaires & Actions de Groupe

Laurent Poinsot

Laboratoire Systèmes Navals Complexes Université du Sud Toulon-Var (France)

15 janvier 2007

Fonctions PN & Actions de Groupe

Laurent Poinsot

Pla

Soient G et H deux groupes finis. Une application $f: G \to H$ est dite parfaitement non linéaire (PN en abrégé) (ou planaire) si pour chaque α non nul dans G et chaque $\beta \in H$,

$$|\{x \in G|f(\alpha+x)-f(x)=\beta\}|=\frac{|G|}{|H|}.$$

Définissons l'application $\sigma_{\alpha}: G \to G$ par $x \mapsto \alpha + x$. L'équation précédente peut naturellement être ré-écrite sous la forme suivante :

$$|\{x \in G | f(\sigma_{\alpha}(x)) - f(x) = \beta\}| = \frac{|G|}{|H|}$$

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Pla

Soient G et H deux groupes finis. Une application $f: G \to H$ est dite parfaitement non linéaire (PN en abrégé) (ou planaire) si pour chaque α non nul dans G et chaque $\beta \in H$,

$$|\{x \in G|f(\alpha+x)-f(x)=\beta\}|=\frac{|G|}{|H|}.$$

Définissons l'application $\sigma_{\alpha}: G \to G$ par $x \mapsto \alpha + x$. L'équation précédente peut naturellement être ré-écrite sous la forme suivante :

$$|\{x \in G | f(\sigma_{\alpha}(x)) - f(x) = \beta\}| = \frac{|G|}{|H|}$$

Fonctions PN & Actions de Groupe

Laurent Poinsot

Pla

Soient G et H deux groupes finis. Une application $f: G \to H$ est dite parfaitement non linéaire (PN en abrégé) (ou planaire) si pour chaque α non nul dans G et chaque $\beta \in H$,

$$|\{x \in G|f(\alpha+x)-f(x)=\beta\}|=\frac{|G|}{|H|}.$$

Définissons l'application $\sigma_{\alpha}: G \to G$ par $x \mapsto \alpha + x$. L'équation précédente peut naturellement être ré-écrite sous la forme suivante :

$$|\{x \in G|f(\sigma_{\alpha}(x)) - f(x) = \beta\}| = \frac{|G|}{|H|}.$$

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Pla

Soient maintenant G et H deux groupes finis et X un ensemble fini non vide sur lequel G agit. Une application $f: X \to H$ est G-parfaitement non linéaire si pour chaque g non nul dans G et pour chaque $g \in H$,

$$|\{x \in X | f(g.x) - f(x) = \beta\}| = \frac{|X|}{|H|}.$$

- 1 Attaques Différentielle & Linéaire
 - Principes de la cryptographie
 - Principes de cryptanalyse
- 2 Approche traditionnelle
 - Non linéarité parfaite
 - Fonctions courbes
 - Ensembles à différences
- 3 Non linéarité parfaite au sens des actions de groupe
 - Actions de groupe
 - G-non linéarité parfaite
- 4 Constructions de fonctions booléennes courbes impossibles
 - Longueur impaire
 - Cas planaire

Laurent Poinsot

- 1 Attaques Différentielle & Linéaire
 - Principes de la cryptographie
 - Principes de cryptanalyse
- 2 Approche traditionnelle
 - Non linéarité parfaite
 - Fonctions courbes
 - Ensembles à différences
- 3 Non linéarité parfaite au sens des actions de groupe
 - Actions de groupe
 - G-non linéarité parfaite
- 4 Constructions de fonctions booléennes courbes impossibles
 - Longueur impaire
 - Cas planaire

Laurent Poinsot

- 1 Attaques Différentielle & Linéaire
 - Principes de la cryptographie
 - Principes de cryptanalyse
- 2 Approche traditionnelle
 - Non linéarité parfaite
 - Fonctions courbes
 - Ensembles à différences
- 3 Non linéarité parfaite au sens des actions de groupe
 - Actions de groupe
 - G-non linéarité parfaite
- Constructions de fonctions booléennes courbes impossibles
 - Longueur impaire
 - Cas planaire

- 1 Attaques Différentielle & Linéaire
 - Principes de la cryptographie
 - Principes de cryptanalyse
- 2 Approche traditionnelle
 - Non linéarité parfaite
 - Fonctions courbes
 - Ensembles à différences
- 3 Non linéarité parfaite au sens des actions de groupe
 - Actions de groupe
 - G-non linéarité parfaite
- 4 Constructions de fonctions booléennes courbes impossibles
 - Longueur impaire
 - Cas planaire

Plan

Fonctions PN & Actions de Groupe

Laurent Poinsot

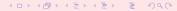
Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Construction:

- 1 Attaques Différentielle & Linéaire
 - Principes de la cryptographie
 - Principes de cryptanalyse
- 2 Approche traditionnelle
 - Non linéarité parfaite
 - Fonctions courbes
 - Ensembles à différences
- 3 Non linéarité parfaite au sens des actions de groupe
 - Actions de groupe
 - G-non linéarité parfaite
- 4 Constructions de fonctions booléennes courbes impossibles
 - Longueur impaire
 - Cas planaire



Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de

Canadauratian

Alice souhaite envoyer un message confidentiel *m* à *Bob* sur un canal public (ex. voie postale, les ondes hertziennes, Internet, *etc.*).

- Un algorithme de chiffrement E
- Un algorithme de déchiffrement *D* ;
- Un ensemble de clefs de chiffrement et un ensemble de clefs de déchiffrement (possiblement différents);
- Pour chaque clef de chiffrement k il y a une clef de déchiffrement notée k^{-1} (non nécessairement unique) telle que pour chaque message clair m

Si
$$c := E(m, k)$$
 alors $m = D(c, k^{-1})$

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de

Companyation

Alice souhaite envoyer un message confidentiel *m* à *Bob* sur un canal public (ex. voie postale, les ondes hertziennes, Internet, *etc.*).

- Un algorithme de chiffrement E
- Un algorithme de déchiffrement *D* ;
- Un ensemble de clefs de chiffrement et un ensemble de clefs de déchiffrement (possiblement différents) ;
- Pour chaque clef de chiffrement k il y a une clef de déchiffrement notée k^{-1} (non nécessairement unique) telle que pour chaque message clair m

Si
$$c := E(m, k)$$
 alors $m = D(c, k^{-1})$

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de groupe

Companyation

Alice souhaite envoyer un message confidentiel *m* à *Bob* sur un canal public (ex. voie postale, les ondes hertziennes, Internet, *etc.*).

- Un algorithme de chiffrement E;
- Un algorithme de déchiffrement *D* ;
- Un ensemble de clefs de chiffrement et un ensemble de clefs de déchiffrement (possiblement différents);
- Pour chaque clef de chiffrement *k* il y a une clef de déchiffrement notée *k*⁻¹ (non nécessairement unique) telle que pour chaque message clair *m*

Si
$$c := E(m, k)$$
 alors $m = D(c, k^{-1})$

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de groupe

Construction

Alice souhaite envoyer un message confidentiel *m* à *Bob* sur un canal public (ex. voie postale, les ondes hertziennes, Internet, *etc.*).

- Un algorithme de chiffrement *E* ;
- Un algorithme de déchiffrement *D*;
- Un ensemble de clefs de chiffrement et un ensemble de clefs de déchiffrement (possiblement différents);
- Pour chaque clef de chiffrement *k* il y a une clef de déchiffrement notée *k*⁻¹ (non nécessairement unique) telle que pour chaque message clair *m*

Si
$$c := E(m, k)$$
 alors $m = D(c, k^{-1})$.

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de aroupe

Construction

Alice souhaite envoyer un message confidentiel *m* à *Bob* sur un canal public (ex. voie postale, les ondes hertziennes, Internet, *etc.*).

- Un algorithme de chiffrement E;
- Un algorithme de déchiffrement *D*;
- Un ensemble de clefs de chiffrement et un ensemble de clefs de déchiffrement (possiblement différents);
- Pour chaque clef de chiffrement *k* il y a une clef de déchiffrement notée *k*⁻¹ (non nécessairement unique) telle que pour chaque message clair *m*

Si
$$c := E(m, k)$$
 alors $m = D(c, k^{-1})$

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Construction

Alice souhaite envoyer un message confidentiel *m* à *Bob* sur un canal public (ex. voie postale, les ondes hertziennes, Internet, *etc.*).

- Un algorithme de chiffrement E;
- Un algorithme de déchiffrement *D*;
- Un ensemble de clefs de chiffrement et un ensemble de clefs de déchiffrement (possiblement différents);
- Pour chaque clef de chiffrement *k* il y a une clef de déchiffrement notée *k*⁻¹ (non nécessairement unique) telle que pour chaque message clair *m*

Si
$$c := E(m, k)$$
 alors $m = D(c, k^{-1})$.

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarit parfaite au sens des actions de groupe

Construction

■ Alice produit le (texte) chiffré c correspondant au (texte) clair m et à la clef de chiffrement k par

$$c := E(m, k)$$
.

- Alice envoie c à Bob sur le canal public ;
- Bob retrouve le clair *m* puisque

$$m=D(c,k^{-1})$$

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

■ Alice produit le (texte) chiffré c correspondant au (texte) clair m et à la clef de chiffrement k par

$$c := E(m, k)$$
.

- Alice envoie *c* à Bob sur le canal public ;
- Bob retrouve le clair *m* puisque

$$m=D(c,k^{-1})$$
.

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Construction

■ Alice produit le (texte) chiffré c correspondant au (texte) clair m et à la clef de chiffrement k par

$$c := E(m, k)$$
.

- Alice envoie c à Bob sur le canal public ;
- Bob retrouve le clair *m* puisque

$$m=D(c,k^{-1})$$
.

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Construction

■ Alice produit le (texte) chiffré c correspondant au (texte) clair m et à la clef de chiffrement k par

$$c := E(m, k)$$
.

- Alice envoie c à Bob sur le canal public ;
- Bob retrouve le clair *m* puisque

$$m=D(c,k^{-1})$$
.

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Construction

■ Alice produit le (texte) chiffré c correspondant au (texte) clair m et à la clef de chiffrement k par

$$c := E(m, k)$$
.

- Alice envoie c à Bob sur le canal public ;
- Bob retrouve le clair *m* puisque

$$m=D(c,k^{-1})$$
.

Deux principaux types de cryptosystèmes

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

- Les schémas à clef secrète (ou symétriques) : k et k^{-1} sont identiques et (*a priori*) seulement connues par Alice et Bob;
- Les schémas à clef publique (ou asymétrique) : la clef de chiffrement k est publique (connue par tout le monde), la clef de déchiffrement k^{-1} est une quantité secrète détenue par le seul Bob.

Deux principaux types de cryptosystèmes

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

- Les schémas à clef secrète (ou symétriques) : k et k⁻¹ sont identiques et (a priori) seulement connues par Alice et Bob;
- Les schémas à clef publique (ou asymétrique) : la clef de chiffrement k est publique (connue par tout le monde), la clef de déchiffrement k^{-1} est une quantité secrète détenue par le seul Bob.

Deux principaux types de cryptosystèmes

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

- Les schémas à clef secrète (ou symétriques) : k et k^{-1} sont identiques et (*a priori*) seulement connues par Alice et Bob;
- Les schémas à clef publique (ou asymétrique) : la clef de chiffrement k est publique (connue par tout le monde), la clef de déchiffrement k⁻¹ est une quantité secrète détenue par le seul Bob.

Fonctions PN & Actions de Groupe

Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de groupe

Construction

Un procédé de chiffrement par blocs est un cryptosystème (à clef secrète) dans lequel les messages clairs sont divisés en plusieurs blocs de bits de même taille.

Un procédé de chiffrement par blocs itéré consiste en l'application itérative d'une fonction de tour (paramétrée par une clef) *f* sur le clair.

Dans un procédé de chiffrement par blocs itéré à *r* tours nous avons

$$x_i := f(k_i, x_{i-1}) \text{ pour } 1 \le i \le r$$
,

où x_0 est le clair, x_r est le chiffré et k_1, \ldots, k_r sont les sous-clefs de chacun des tours (obtenues à partir d'une clef secrète principale).

Dans de tels cryptosystèmes, pour chaque (sous-)clef k la fonction $f_k: x \mapsto f(x,k)$ est une permutation.

Exemples: DES, IDEA, AES, ...

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de groupe

Construction

Un procédé de chiffrement par blocs est un cryptosystème (à clef secrète) dans lequel les messages clairs sont divisés en plusieurs blocs de bits de même taille.

Un procédé de chiffrement par blocs itéré consiste en l'application itérative d'une fonction de tour (paramétrée par une clef) *f* sur le clair.

Dans un procédé de chiffrement par blocs itéré à *r* tours nous avons

$$x_i := f(k_i, x_{i-1})$$
 pour $1 \le i \le r$,

où x_0 est le clair, x_r est le chiffré et k_1, \ldots, k_r sont les sous-clefs de chacun des tours (obtenues à partir d'une clef secrète principale).

Dans de tels cryptosystèmes, pour chaque (sous-)clef k la fonction $f_k: x \mapsto f(x, k)$ est une permutation.

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentielle & Linéaire

traditionnelle

Non linéarite parfaite au sens des actions de groupe

Construction

Un procédé de chiffrement par blocs est un cryptosystème (à clef secrète) dans lequel les messages clairs sont divisés en plusieurs blocs de bits de même taille.

Un procédé de chiffrement par blocs itéré consiste en l'application itérative d'une fonction de tour (paramétrée par une clef) *f* sur le clair.

Dans un procédé de chiffrement par blocs itéré à *r* tours nous avons

$$x_i := f(k_i, x_{i-1})$$
 pour $1 \le i \le r$,

où x_0 est le clair, x_r est le chiffré et k_1, \ldots, k_r sont les sous-clefs de chacun des tours (obtenues à partir d'une clef secrète principale).

Dans de tels cryptosystèmes, pour chaque (sous-)clef k la fonction $f_k: x \mapsto f(x, k)$ est une permutation.

4D + 4B + 4B + B + 990

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de groupe

Constructions

Un procédé de chiffrement par blocs est un cryptosystème (à clef secrète) dans lequel les messages clairs sont divisés en plusieurs blocs de bits de même taille.

Un procédé de chiffrement par blocs itéré consiste en l'application itérative d'une fonction de tour (paramétrée par une clef) *f* sur le clair.

Dans un procédé de chiffrement par blocs itéré à r tours nous avons

$$x_i := f(k_i, x_{i-1}) \text{ pour } 1 \leq i \leq r$$
,

où x_0 est le clair, x_r est le chiffré et k_1, \ldots, k_r sont les sous-clefs de chacun des tours (obtenues à partir d'une clef secrète principale).

Dans de tels cryptosystèmes, pour chaque (sous-)clef k la fonction $f_k: x \mapsto f(x, k)$ est une permutation. Exemples: DES, IDEA, AES, ...

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de groupe

Construction

Un procédé de chiffrement par blocs est un cryptosystème (à clef secrète) dans lequel les messages clairs sont divisés en plusieurs blocs de bits de même taille.

Un procédé de chiffrement par blocs itéré consiste en l'application itérative d'une fonction de tour (paramétrée par une clef) *f* sur le clair.

Dans un procédé de chiffrement par blocs itéré à r tours nous avons

$$x_i := f(k_i, x_{i-1}) \text{ pour } 1 \le i \le r$$
,

où x_0 est le clair, x_r est le chiffré et k_1, \ldots, k_r sont les sous-clefs de chacun des tours (obtenues à partir d'une clef secrète principale).

Dans de tels cryptosystèmes, pour chaque (sous-)clef k la fonction $f_k : x \mapsto f(x, k)$ est une permutation.

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de groupe

Construction

Un procédé de chiffrement par blocs est un cryptosystème (à clef secrète) dans lequel les messages clairs sont divisés en plusieurs blocs de bits de même taille.

Un procédé de chiffrement par blocs itéré consiste en l'application itérative d'une fonction de tour (paramétrée par une clef) *f* sur le clair.

Dans un procédé de chiffrement par blocs itéré à r tours nous avons

$$x_i := f(k_i, x_{i-1})$$
 pour $1 \le i \le r$,

où x_0 est le clair, x_r est le chiffré et k_1, \ldots, k_r sont les sous-clefs de chacun des tours (obtenues à partir d'une clef secrète principale).

Dans de tels cryptosystèmes, pour chaque (sous-)clef k la fonction $f_k: x \mapsto f(x, k)$ est une permutation.

Exemples: DES, IDEA, AES, ...

Plan

Fonctions PN & Actions de Groupe

Laurent Poinsot

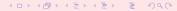
Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Construction:

- 1 Attaques Différentielle & Linéaire
 - Principes de la cryptographie
 - Principes de cryptanalyse
- 2 Approche traditionnelle
 - Non linéarité parfaite
 - Fonctions courbes
 - Ensembles à différences
- 3 Non linéarité parfaite au sens des actions de groupe
 - Actions de groupe
 - G-non linéarité parfaite
- 4 Constructions de fonctions booléennes courbes impossibles
 - Longueur impaire
 - Cas planaire



Attaque par force brute (ou recherche exhaustive)

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnell

Non linéarite parfaite au sens des actions de groupe

Construction

Algorithme

Étant donné un chiffré c, chercher toutes les clefs possibles k telles que D(c, k) produise un clair "correct".

Un cryptosystème est *sûr* s'il n'est vulnérable à aucune attaque plus efficace que la recherche exhaustive.

Attaque par force brute (ou recherche exhaustive)

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnell

Non linéarite parfaite au sens des actions de groupe

Constructions

Algorithme

Étant donné un chiffré c, chercher toutes les clefs possibles k telles que D(c, k) produise un clair "correct".

Un cryptosystème est *sûr* s'il n'est vulnérable à aucune attaque plus efficace que la recherche exhaustive.

Attaques sur le dernier tour d'un procédé par blocs itéré

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnell

Non linéarite parfaite au sens des actions de groupe

Constructions

Objectif

Retrouver la clef k_r utilisée au dernier tour à partir de la connaissance de certains couples de textes clairs/chiffrés.

Attaques sur le dernier tour d'un procédé par blocs itéré (suite)

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

Principe

- Il faut être capable de distinguer de manière statistique le procédé de chiffrement réduit, $R = f_{k_{r-1}} \circ \ldots \circ f_{k_1}$, d'une variable uniformément distribuée.
- Si une telle propriété statistique, appelée un distingueur, peut être trouvée, on peut déduire de l'information sur k_r en vérifiant si, pour une valeur donnée k_r , la fonction

$$x_0\mapsto f_{k_r}^{-1}(x_r)$$

satisfait le distingueur ou non

Les valeurs de k_r pour lesquelles le biais statistique est observé sont des candidates pour être la clef

Attaques sur le dernier tour d'un procédé par blocs itéré (suite)

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

Principe

- Il faut être capable de distinguer de manière statistique le procédé de chiffrement réduit, $R = f_{k_{r-1}} \circ \ldots \circ f_{k_1}$, d'une variable uniformément distribuée.
- Si une telle propriété statistique, appelée un distingueur, peut être trouvée, on peut déduire de l'information sur k_r en vérifiant si, pour une valeur donnée k_r , la fonction

$$x_0 \mapsto f_{k_r}^{-1}(x_r)$$

satisfait le distingueur ou non.

Les valeurs de k_r pour lesquelles le biais statistique est observé sont des candidates pour être la clef réellement utilisée au dernier tour

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

Principe

- Il faut être capable de distinguer de manière statistique le procédé de chiffrement réduit, $R = f_{k_{r-1}} \circ \ldots \circ f_{k_1}$, d'une variable uniformément distribuée.
- Si une telle propriété statistique, appelée un distingueur, peut être trouvée, on peut déduire de l'information sur k_r en vérifiant si, pour une valeur donnée k_r , la fonction

$$x_0\mapsto f_{k_r}^{-1}(x_r)$$

satisfait le distingueur ou non.

Les valeurs de k_r pour lesquelles le biais statistique es observé sont des candidates pour être la clef réellement utilisée au dernier tour

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

Principe

- Il faut être capable de distinguer de manière statistique le procédé de chiffrement réduit, $R = f_{k_{r-1}} \circ \ldots \circ f_{k_1}$, d'une variable uniformément distribuée.
- Si une telle propriété statistique, appelée un distingueur, peut être trouvée, on peut déduire de l'information sur k_r en vérifiant si, pour une valeur donnée k_r , la fonction

$$x_0 \mapsto f_{k_r}^{-1}(x_r)$$

satisfait le distingueur ou non.

Les valeurs de k_r pour lesquelles le biais statistique est observé sont des candidates pour être la clef réellement utilisée au dernier tour.

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Construction

Différents distingueurs

- Le chiffrement réduit R possède une dérivée, $d_{\alpha}R: x \mapsto R(x \oplus \alpha) \oplus R(x)$, dont les valeurs en sortie ne sont pas uniformément distribuées. Ce distingueur mène à l'attaque différentielle;
- Il existe un combinaison linéaire de bits en entrée et er sortie du chiffrement réduit qui constitue une approximation affine du procédé. Cela conduit à l'attaque linéaire;
- Le chiffrement réduit, vu comme un polynôme de $GF(2^m)[X]$, est de petit degré. Cela conduit à l'attaque par interpolation.

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

0----

Différents distingueurs

- Le chiffrement réduit R possède une dérivée, $d_{\alpha}R: x \mapsto R(x \oplus \alpha) \oplus R(x)$, dont les valeurs en sortie ne sont pas uniformément distribuées. Ce distingueur mène à l'attaque différentielle;
- Il existe un combinaison linéaire de bits en entrée et er sortie du chiffrement réduit qui constitue une approximation affine du procédé. Cela conduit à l'attaque linéaire;
- Le chiffrement réduit, vu comme un polynôme de $GF(2^m)[X]$, est de petit degré. Cela conduit à l'attaque par interpolation.

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnell

Non linéarité parfaite au sens des actions de groupe

Constructions

Différents distingueurs

- Le chiffrement réduit R possède une dérivée, $d_{\alpha}R: x \mapsto R(x \oplus \alpha) \oplus R(x)$, dont les valeurs en sortie ne sont pas uniformément distribuées. Ce distingueur mène à l'attaque différentielle;
- Il existe un combinaison linéaire de bits en entrée et en sortie du chiffrement réduit qui constitue une approximation affine du procédé. Cela conduit à l'attaque linéaire;
- Le chiffrement réduit, vu comme un polynôme de $GF(2^m)[X]$, est de petit degré. Cela conduit à l'attaque par interpolation.

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnell

Non linéarité parfaite au sens des actions de groupe

Constructions

Différents distingueurs

- Le chiffrement réduit R possède une dérivée, $d_{\alpha}R: x \mapsto R(x \oplus \alpha) \oplus R(x)$, dont les valeurs en sortie ne sont pas uniformément distribuées. Ce distingueur mène à l'attaque différentielle;
- Il existe un combinaison linéaire de bits en entrée et en sortie du chiffrement réduit qui constitue une approximation affine du procédé. Cela conduit à l'attaque linéaire;
- Le chiffrement réduit, vu comme un polynôme de $GF(2^m)[X]$, est de petit degré. Cela conduit à l'attaque par interpolation.

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de

Constructions

Trouver une différence (α, β) telle que

$$\Pr(R(x) \oplus R(x \oplus \alpha) = \beta)$$

soit la plus éloignée possible de la distribution uniforme;

- Choisir un clair x_0 et chiffrer à la fois x_0 et $x_0 \oplus \alpha$. Deux couples clairs/chiffrés sont ainsi obtenus (x_0, x_r) et $(x_0 \oplus \alpha, x_r')$;
- Trouver toutes les valeurs possibles \hat{k}_r pour la clef du dernier tour telles que

$$f_{\widehat{k}_r}^{-1}(x_r) \oplus f_{\widehat{k}_r}^{-1}(x_r') = \beta$$
;

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Canadauratian

■ Trouver une différence (α, β) telle que

$$\Pr(R(x) \oplus R(x \oplus \alpha) = \beta)$$

soit la plus éloignée possible de la distribution uniforme ;

- Choisir un clair x_0 et chiffrer à la fois x_0 et $x_0 \oplus \alpha$. Deux couples clairs/chiffrés sont ainsi obtenus (x_0, x_r) et $(x_0 \oplus \alpha, x_r')$;
- Trouver toutes les valeurs possibles k_r pour la clef du dernier tour telles que

$$f_{\widehat{k}_r}^{-1}(x_r) \oplus f_{\widehat{k}_r}^{-1}(x_r') = \beta ;$$

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Canadauratiana

■ Trouver une différence (α, β) telle que

$$\Pr(R(x) \oplus R(x \oplus \alpha) = \beta)$$

soit la plus éloignée possible de la distribution uniforme;

- Choisir un clair x_0 et chiffrer à la fois x_0 et $x_0 \oplus \alpha$. Deux couples clairs/chiffrés sont ainsi obtenus (x_0, x_r) et $(x_0 \oplus \alpha, x_r')$;
- Trouver toutes les valeurs possibles k_r pour la clef du dernier tour telles que

$$f_{\widehat{k}_r}^{-1}(x_r) \oplus f_{\widehat{k}_r}^{-1}(x_r') = \beta$$

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

■ Trouver une différence (α, β) telle que

$$\Pr(R(x) \oplus R(x \oplus \alpha) = \beta)$$

soit la plus éloignée possible de la distribution uniforme;

- Choisir un clair x_0 et chiffrer à la fois x_0 et $x_0 \oplus \alpha$. Deux couples clairs/chiffrés sont ainsi obtenus (x_0, x_r) et $(x_0 \oplus \alpha, x_r')$;
- Trouver toutes les valeurs possibles \hat{k}_r pour la clef du dernier tour telles que

$$f_{\widehat{k}_r}^{-1}(x_r) \oplus f_{\widehat{k}_r}^{-1}(x_r') = \beta$$
;

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

■ Trouver une différence (α, β) telle que

$$\Pr(R(x) \oplus R(x \oplus \alpha) = \beta)$$

soit la plus éloignée possible de la distribution uniforme;

- Choisir un clair x_0 et chiffrer à la fois x_0 et $x_0 \oplus \alpha$. Deux couples clairs/chiffrés sont ainsi obtenus (x_0, x_r) et $(x_0 \oplus \alpha, x_r')$;
- Trouver toutes les valeurs possibles \hat{k}_r pour la clef du dernier tour telles que

$$f_{\widehat{k}_r}^{-1}(x_r) \oplus f_{\widehat{k}_r}^{-1}(x_r') = \beta ;$$

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de

Constructions

Trouver un masque (α, β) pour lequel l'équation

$$\alpha.x_0\oplus\beta.R(x_0)=0$$

est satisfaite pour la plupart des clairs x_0 et clefs de tour k_1, \ldots, k_{r-1} ;

- Choisir au hasard un clair x_0 et calculer le chiffré correspondant x_r ;
- Trouver toutes les valeurs possibles k_r de la clef du dernier tour telles que

$$\alpha.x_0 \oplus \beta.f_{\widehat{k}_r}^{-1}(x_r) = 0$$

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

■ Trouver un masque (α, β) pour lequel l'équation

$$\alpha.x_0 \oplus \beta.R(x_0) = 0$$

est satisfaite pour la plupart des clairs x_0 et clefs de tour k_1, \ldots, k_{r-1} ;

- Choisir au hasard un clair x_0 et calculer le chiffré correspondant x_r ;
- Trouver toutes les valeurs possibles k_r de la clef du dernier tour telles que

$$\alpha.x_0 \oplus \beta.f_{\widehat{k}_r}^{-1}(x_r) = 0$$

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques
Différentielle
& Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

■ Trouver un masque (α, β) pour lequel l'équation

$$\alpha.x_0 \oplus \beta.R(x_0) = 0$$

est satisfaite pour la plupart des clairs x_0 et clefs de tour k_1, \ldots, k_{r-1} ;

- Choisir au hasard un clair x_0 et calculer le chiffré correspondant x_r ;
- Trouver toutes les valeurs possibles k_r de la clef du dernier tour telles que

$$\alpha.x_0 \oplus \beta.f_{\widehat{k}_r}^{-1}(x_r) = 0 ;$$

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

■ Trouver un masque (α, β) pour lequel l'équation

$$\alpha.x_0 \oplus \beta.R(x_0) = 0$$

est satisfaite pour la plupart des clairs x_0 et clefs de tour k_1, \ldots, k_{r-1} ;

- Choisir au hasard un clair x_0 et calculer le chiffré correspondant x_r ;
- Trouver toutes les valeurs possibles k_r de la clef du dernier tour telles que

$$\alpha.X_0 \oplus \beta.f_{\widehat{k}_r}^{-1}(X_r) = 0 ;$$

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

■ Trouver un masque (α, β) pour lequel l'équation

$$\alpha.x_0 \oplus \beta.R(x_0) = 0$$

est satisfaite pour la plupart des clairs x_0 et clefs de tour k_1, \ldots, k_{r-1} ;

- Choisir au hasard un clair x_0 et calculer le chiffré correspondant x_r ;
- Trouver toutes les valeurs possibles \hat{k}_r de la clef du dernier tour telles que

$$\alpha.\mathbf{X}_0\oplus\beta.f_{\widehat{k}_r}^{-1}(\mathbf{X}_r)=0\;;$$

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Construction

- Pour chaque bloc non nul α , la distribution des différences $S(x \oplus \alpha) \oplus S(x)$ doit être la plus proche possible de l'équiprobabilité (fonctions booléennes parfaitement non linéaires) ;
- Pour chaque bloc non nul β , la fonction booléenne $x \mapsto \beta.S(x)$ doit être suffisament loin de toutes fonctions affines (fonctions booléennes courbes).

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Construction

- Pour chaque bloc non nul α , la distribution des différences $S(x \oplus \alpha) \oplus S(x)$ doit être la plus proche possible de l'équiprobabilité (fonctions booléennes parfaitement non linéaires) ;
- Pour chaque bloc non nul β , la fonction booléenne $x \mapsto \beta.S(x)$ doit être suffisament loin de toutes fonctions affines (fonctions booléennes courbes).

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Construction

- Pour chaque bloc non nul α , la distribution des différences $S(x \oplus \alpha) \oplus S(x)$ doit être la plus proche possible de l'équiprobabilité (fonctions booléennes parfaitement non linéaires) ;
- Pour chaque bloc non nul β , la fonction booléenne $x \mapsto \beta.S(x)$ doit être suffisament loin de toutes fonctions affines (fonctions booléennes courbes).

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Construction

- Pour chaque bloc non nul α , la distribution des différences $S(x \oplus \alpha) \oplus S(x)$ doit être la plus proche possible de l'équiprobabilité (fonctions booléennes parfaitement non linéaires);
- Pour chaque bloc non nul β , la fonction booléenne $x \mapsto \beta.S(x)$ doit être suffisament loin de toutes fonctions affines (fonctions booléennes courbes).

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

- Pour chaque bloc non nul α , la distribution des différences $S(x \oplus \alpha) \oplus S(x)$ doit être la plus proche possible de l'équiprobabilité (fonctions booléennes parfaitement non linéaires);
- Pour chaque bloc non nul β , la fonction booléenne $x \mapsto \beta.S(x)$ doit être suffisament loin de toutes fonctions affines (fonctions booléennes courbes).

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

- Pour chaque bloc non nul α , la distribution des différences $S(x \oplus \alpha) \oplus S(x)$ doit être la plus proche possible de l'équiprobabilité (fonctions booléennes parfaitement non linéaires);
- Pour chaque bloc non nul β , la fonction booléenne $x \mapsto \beta.S(x)$ doit être suffisament loin de toutes fonctions affines (fonctions booléennes courbes).

Plan

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de groupe

Construction:

- 1 Attaques Différentielle & Linéaire
 - Principes de la cryptographie
 - Principes de cryptanalyse
- 2 Approche traditionnelle
 - Non linéarité parfaite
 - Fonctions courbes
 - Ensembles à différences
- 3 Non linéarité parfaite au sens des actions de groupe
 - Actions de groupe
 - G-non linéarité parfaite
- 4 Constructions de fonctions booléennes courbes impossibles
 - Longueur impaire
 - Cas planaire

Historique

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentiell & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

Définition (Nyberg, 1991)

Une application $f: \mathbb{Z}_2^m \longrightarrow \mathbb{Z}_2^n$ est parfaitement non linéaire si pour chaque α non nul de \mathbb{Z}_2^m et chaque $\beta \in \mathbb{Z}_2^n$,

$$|\{x \in \mathbb{Z}_2^m | f(\alpha \oplus x) \oplus f(x) = \beta\}| = 2^{m-n}.$$

Garantit la résistance maximale contre l'attaque différentielle.

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

Pour un groupe G, O_G représente son élément neutre et $G^* = G \setminus \{O_G\}$.

Définition

Soient X et Y deux ensembles finis non vides. Une application $f: X \to Y$ est équilibrée si pour chaque $y \in Y$, $|\{x \in X | f(x) = y\}| = \frac{|X|}{|Y|}$;

$$d_{\alpha}f: G \rightarrow H$$

 $x \mapsto f(\alpha+x)-f(x)$.

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques
Différentielle
& Linéaire

Approche traditionnelle

Non linéarit parfaite au sens des actions de groupe

Constructions

Définition

Une application $f: G \to H$ est (classiquement) parfaitement non linéaire (ou PN) si $\forall \alpha \in G^*$, $d_{\alpha}f$ est équilibrée, i.e.

 $\forall \alpha \in G^* \text{ and } \forall \beta \in H$,

$$|\{x \in G | f(\alpha + x) - f(x) = \beta\}| = \frac{|G|}{|H|}$$

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques
Différentielle
& Linéaire

Approche traditionnelle

Non linéarit parfaite au sens des actions de groupe

Constructions

Définition

Une application $f: G \to H$ est (classiquement) parfaitement non linéaire (ou PN) si $\forall \alpha \in G^*$, $d_{\alpha}f$ est équilibrée, *i.e.* $\forall \alpha \in G^*$ and $\forall \beta \in H$,

$$|\{x \in G | f(\alpha+x) - f(x) = \beta\}| = \frac{|G|}{|H|}.$$

Caractérisations équivalentes

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

La non linéarité parfaite (traditionnelle) ⇔

- Par la transformée de Fourier : notion de fonctions courbes ;
- Caractérisation combinatoire par les ensembles à différences.

Caractérisations équivalentes

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de groupe

Constructions

La non linéarité parfaite (traditionnelle) ⇔

- Par la transformée de Fourier : notion de fonctions courbes ;
- Caractérisation combinatoire par les ensembles à différences.

Caractérisations équivalentes

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

La non linéarité parfaite (traditionnelle) ⇔

- Par la transformée de Fourier : notion de fonctions courbes ;
- Caractérisation combinatoire par les ensembles à différences.

Plan

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de groupe

Construction

- 1 Attaques Différentielle & Linéaire
 - Principes de la cryptographie
 - Principes de cryptanalyse
- 2 Approche traditionnelle
 - Non linéarité parfaite
 - Fonctions courbes
 - Ensembles à différences
- 3 Non linéarité parfaite au sens des actions de groupe
 - Actions de groupe
 - G-non linéarité parfaite
- 4 Constructions de fonctions booléennes courbes impossibles
 - Longueur impaire
 - Cas planaire

Historique

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentiell & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

Définition (Dillon 1974, Rothaus 1976)

Une application $f: \mathbb{Z}_2^m \to \mathbb{Z}_2$ est courbe si pour chaque $\alpha \in \mathbb{Z}_2^m$,

$$\sum_{x \in \mathbb{Z}_2^m} (-1)^{f(x) \oplus \alpha.x} = \pm 2^{\frac{m}{2}}.$$

Assure la résistance maximale contre l'attaque linéaire.

Exemple

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques
Différentielle
& Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

L'application suivante

$$f: \mathbb{Z}_2^m \times \mathbb{Z}_2^m \to \mathbb{Z}_2$$

$$(x,y) \mapsto x.y = \bigoplus_{i=1}^m x_i y_i.$$

est une fonction courbe.

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques
Différentiell
& Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de groupe

Constructions

Le groupe dual de G, noté \widehat{G} , est l'ensemble de tous homomorphismes de groupes de G dans \mathbb{U} équippé de la multiplication point-à-point.

Il est isomorphe à G lui-même. Ses éléments sont appelés des caractères : pour $\alpha \in G$, le caractère correspondant à G (via l'isomorphisme de G sur G) est noté χ_G^{α} . Par exemple si G est \mathbb{Z}_2^m et $\alpha \in \mathbb{Z}_2^m$, alors $\chi_G^{\alpha}(x) = (-1)^{\alpha \cdot x}$.

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentiell & Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de groupe

Constructions

Le groupe dual de G, noté \widehat{G} , est l'ensemble de tous homomorphismes de groupes de G dans \mathbb{U} équippé de la multiplication point-à-point.

Il est isomorphe à G lui-même. Ses éléments sont appelés des caractères : pour $\alpha \in G$, le caractère correspondant à α (via l'isomorphisme de G sur \widehat{G}) est noté χ_G^{α} .

Par exemple si G est \mathbb{Z}_2^m et $\alpha \in \mathbb{Z}_2^m$, alors $\chi_G^{\alpha}(x) = (-1)^{\alpha . x}$.

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentiell & Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de groupe

Constructions

Le groupe dual de G, noté \widehat{G} , est l'ensemble de tous homomorphismes de groupes de G dans \mathbb{U} équippé de la multiplication point-à-point.

Il est isomorphe à G lui-même. Ses éléments sont appelés des caractères : pour $\alpha \in G$, le caractère correspondant à α (via l'isomorphisme de G sur \widehat{G}) est noté χ_G^{α} .

Par exemple si G est \mathbb{Z}_2^m et $\alpha \in \mathbb{Z}_2^m$, alors $\chi_G^{\alpha}(x) = (-1)^{\alpha \cdot x}$.

Dans le cadre des groupes finis commutatifs (2)

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de groupe

Constructions

Définition

Soit G un groupe abélien fini et $\varphi:G\longrightarrow\mathbb{C}$. La transformée de Fourier (discrète) de φ est l'application $\widehat{\varphi}$ definie comme suit

$$\widehat{\varphi}: \quad \boldsymbol{G} \quad \to \quad \mathbb{C}$$

$$\alpha \quad \mapsto \quad \sum_{\boldsymbol{x} \in \boldsymbol{G}} \varphi(\boldsymbol{x}) \chi_{\boldsymbol{G}}^{\alpha}(\boldsymbol{x}) \; .$$

Caractérisation "duale"

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques
Différentielle
& Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

Théorème (Carlet & Ding and Pott, 2004)

Soient G et H deux groupes finis commutatifs. Soit $f:G\to H$. L'application f est parfaitement non linéaire si et seulement si $\forall \alpha\in G,\,\forall \beta\in H^*,$

$$|\widehat{\chi_H^{\beta} \circ f}(\alpha)|^2 = |G|.$$

Lorsque $G = \mathbb{Z}_2^m$ et $H = \mathbb{Z}_2$, il s'agit de la notion classique de fonctions courbes introduite par Dillon.

En 2006, ce résultat a été généralisé aux cas des groupes finis **non commutatifs** (la notion de caractères est alors remplacée par celle plus générale de représentations linéaires).

Caractérisation "duale"

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

Théorème (Carlet & Ding and Pott, 2004)

Soient G et H deux groupes finis commutatifs. Soit $f:G\to H$. L'application f est parfaitement non linéaire si et seulement si $\forall \alpha\in G,\,\forall \beta\in H^*,$

$$|\widehat{\chi_H^{\beta} \circ f}(\alpha)|^2 = |G|$$
.

Lorsque $G = \mathbb{Z}_2^m$ et $H = \mathbb{Z}_2$, il s'agit de la notion classique de fonctions courbes introduite par Dillon.

En 2006, ce résultat a été généralisé aux cas des groupes finis **non commutatifs** (la notion de caractères est alors remplacée par celle plus générale de représentations linéaires).

Caractérisation "duale"

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Construction

Théorème (Carlet & Ding and Pott, 2004)

Soient G et H deux groupes finis commutatifs. Soit $f:G\to H$. L'application f est parfaitement non linéaire si et seulement si $\forall \alpha\in G,\,\forall \beta\in H^*,$

$$|\widehat{\chi_H^{\beta} \circ f}(\alpha)|^2 = |G|$$
.

Lorsque $G = \mathbb{Z}_2^m$ et $H = \mathbb{Z}_2$, il s'agit de la notion classique de fonctions courbes introduite par Dillon.

En 2006, ce résultat a été généralisé aux cas des groupes finis **non commutatifs** (la notion de caractères est alors remplacée par celle plus générale de représentations linéaires).

Plan

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de groupe

Construction:

- 1 Attaques Différentielle & Linéaire
 - Principes de la cryptographie
 - Principes de cryptanalyse
- 2 Approche traditionnelle
 - Non linéarité parfaite
 - Fonctions courbes
 - Ensembles à différences
- 3 Non linéarité parfaite au sens des actions de groupe
 - Actions de groupe
 - G-non linéarité parfaite
- 4 Constructions de fonctions booléennes courbes impossibles
 - Longueur impaire
 - Cas planaire

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques
Différentiell
& Linéaire

Approche traditionnelle

Non linéarit parfaite au sens des actions de groupe

Constructions

- $\mathbf{v} = |G|;$
- k = |D|;
- Pour chaque $\alpha \in G^*$, l'équation $x y = \alpha$ admet λ solutions (x, y) dans D^2 .

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentiell & Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de groupe

Constructions

- $\mathbf{v} = |G|;$
- = k = |D|;
- Pour chaque $\alpha \in G^*$, l'équation $x y = \alpha$ admet λ solutions (x, y) dans D^2 .

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Différentielle & Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de groupe

Constructions

- $\mathbf{v} = |G|;$
- $\mathbf{k} = |D|;$
- Pour chaque $\alpha \in G^*$, l'équation $x y = \alpha$ admet λ solutions (x, y) dans D^2 .

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentiell & Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de groupe

Constructions

- $\mathbf{v} = |G|;$
- k = |D|;
- Pour chaque $\alpha \in G^*$, l'équation $x y = \alpha$ admet λ solutions (x, y) dans D^2 .

Ensembles à différences de Hadamard

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentiell & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

Définition

Un (v, k, λ) ensemble à différences D de G est dit de Hadamard si

$$(v, k, \lambda) = (4n^2, 2n^2 \pm n, n(n \pm 1))$$
.

pour un certain entier *n*.

Caractérisation combinatoire

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentiell & Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de groupe

Construction

Théorème (Carlet & Ding, 2004)

Soit G un groupe fini commutatif tel que $|G| = 4n^2$. Une fonction $f: G \longrightarrow \mathbb{Z}_2$ est parfaitement non linéaire si et seulement si son support $S_f = \{x \in G | f(x) = 1\}$ est un ensemble à différences de Hadamard de G.

Il s'agit d'une généralisation d'un résultat de Dillon (1974) concernant les fonctions booléennes.

Les cas impossibles

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentiell & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Canaluustians

En vue d'une implantation logicielle ou matérielle, les cryptographes s'intéressent aux fonctions booléennes $f: \mathbb{Z}_2^m \to \mathbb{Z}_2^n$ mais les fonctions booléennes courbes n'existent que si m est un entier pair et $m \geq 2n$.

Cas impossibles : Longueur impaire (m est un entier impair et le cas planaire (m = n).

Les cas impossibles

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentiell & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

En vue d'une implantation logicielle ou matérielle, les cryptographes s'intéressent aux fonctions booléennes $f: \mathbb{Z}_2^m \to \mathbb{Z}_2^n$ mais les fonctions booléennes courbes n'existent que si m est un entier pair et $m \geq 2n$. Cas impossibles : Longueur impaire (m est un entier impair) et le cas planaire (m = n).

Plan

Fonctions PN & Actions de Groupe

Laurent Poinsot

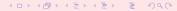
Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Construction

- 1 Attaques Différentielle & Linéaire
 - Principes de la cryptographie
 - Principes de cryptanalyse
- 2 Approche traditionnelle
 - Non linéarité parfaite
 - Fonctions courbes
 - Ensembles à différences
- 3 Non linéarité parfaite au sens des actions de groupe
 - Actions de groupe
 - G-non linéarité parfaite
- 4 Constructions de fonctions booléennes courbes impossibles
 - Longueur impaire
 - Cas planaire



Actions de groupe (1)

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentiell & Linéaire

Approche traditionnell

Non linéarité parfaite au sens des actions de groupe

Construction

Soit un groupe (G,*) et X un ensemble non vide. Une action de groupe (à gauche) de G sur X est un homomorphisme de groupes ϕ de G vers le groupe S(X)des permutations sur X (appelé *groupe symétrique* lorsque X est fini). En particulier,

$$\forall (g_1, g_2) \in G^2, \, \phi(g_1 * g_2) = \phi(g_1) \circ \phi(g_2)$$

Actions de groupe (1)

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentiell & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

Soit un groupe (G,*) et X un ensemble non vide. Une action de groupe (à gauche) de G sur X est un homomorphisme de groupes ϕ de G vers le groupe S(X)des permutations sur X (appelé *groupe symétrique* lorsque X est fini). En particulier,

$$\bullet$$
 $\phi(0_G) = Id_X$;

$$\forall (g_1, g_2) \in G^2, \ \phi(g_1 * g_2) = \phi(g_1) \circ \phi(g_2).$$

Actions de groupe (2)

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques
Différentielle
& Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Canatruations

Notation

Pour $x \in X$ et $g \in G$, on note

$$g.x = \phi(g)(x)$$
.

Intuitivement une action de groupe s'interprète comme un loi de composition externe de *G* sur *X*.

Actions de groupe (2)

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentiell & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

Notation

Pour $x \in X$ et $g \in G$, on note

$$g.x = \phi(g)(x)$$
.

Intuitivement une action de groupe s'interprète comme un loi de composition externe de G sur X.

Actions de groupe (3)

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentiell & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

Définition

L'action ϕ de G sur X est dite

- \blacksquare fidèle si ϕ est injective :
- régulière si quels que soient x et y dans X, il existe un et un seul g de G tel que $g.x_1 = x_2$.

Actions de groupe (3)

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentiell & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

Définition

L'action ϕ de G sur X est dite

- **fidèle** si ϕ est injective;
- régulière si quels que soient x et y dans X, il existe un et un seul g de G tel que $g.x_1 = x_2$.

Actions de groupe (3)

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentiell & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

Définition

L'action ϕ de G sur X est dite

- **fidèle** si ϕ est injective;
- régulière si quels que soient x et y dans X, il existe un et un seul g de G tel que $g.x_1 = x_2$.

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

- L'action de G sur lui-même par translation à gauche est régulière. Pour α et x dans G, $\alpha.x := \alpha * x$;
- Si *H* est un sous-groupe de *G* alors l'action de *H* sur *G* par translation à gauche est fidèle;
- L'action du groupe multiplicatif \mathbb{K}^* d'un corps \mathbb{K} sur un \mathbb{K} -espace vectoriel V par multiplication scalaire est fidèle. Pour $\lambda \in \mathbb{K}^*$ et $v \in V$, on a $\lambda . v := \lambda v$.

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

- L'action de G sur lui-même par translation à gauche est régulière. Pour α et x dans G, $\alpha.x := \alpha * x$;
- Si H est un sous-groupe de G alors l'action de H sur G par translation à gauche est fidèle;
- L'action du groupe multiplicatif \mathbb{K}^* d'un corps \mathbb{K} sur un \mathbb{K} -espace vectoriel V par multiplication scalaire est fidèle. Pour $\lambda \in \mathbb{K}^*$ et $v \in V$, on a $\lambda \cdot v := \lambda v$.

Laurent Poinsot

Attaques Différentiell & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

- L'action de G sur lui-même par translation à gauche est régulière. Pour α et x dans G, $\alpha . x := \alpha * x$;
- Si H est un sous-groupe de G alors l'action de H sur G par translation à gauche est fidèle;
- L'action du groupe multiplicatif \mathbb{K}^* d'un corps \mathbb{K} sur un \mathbb{K} -espace vectoriel V par multiplication scalaire est fidèle. Pour $\lambda \in \mathbb{K}^*$ et $v \in V$, on a $\lambda \cdot v := \lambda v$.

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

- L'action de G sur lui-même par translation à gauche est régulière. Pour α et x dans G, $\alpha . x := \alpha * x$;
- Si H est un sous-groupe de G alors l'action de H sur G par translation à gauche est fidèle;
- L'action du groupe multiplicatif \mathbb{K}^* d'un corps \mathbb{K} sur un \mathbb{K} -espace vectoriel V par multiplication scalaire est fidèle. Pour $\lambda \in \mathbb{K}^*$ et $v \in V$, on a $\lambda . v := \lambda v$.

Plan

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques
Différentielle
& Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Construction

- Attaques Différentielle & Linéaire
 - Principes de la cryptographie
 - Principes de cryptanalyse
- 2 Approche traditionnelle
 - Non linéarité parfaite
 - Fonctions courbes
 - Ensembles à différences
- 3 Non linéarité parfaite au sens des actions de groupe
 - Actions de groupe
 - G-non linéarité parfaite
- 4 Constructions de fonctions booléennes courbes impossibles
 - Longueur impaire
 - Cas planaire

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentiell & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

- Supposons que les clefs de tour sont choisies dans un groupe fini G qui agit sur un ensemble fini non vide X et soit H un groupe fini;
- Dans ce cas les boîtes-S sont utilisées comme suit :

$$y = S(k_i.x_{i-1})$$

avec $x_{i-1} \in X$, $y \in H$, $k_i \in G$;

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

Supposons que les clefs de tour sont choisies dans un groupe fini G qui agit sur un ensemble fini non vide X et soit H un groupe fini;

Dans ce cas les boîtes-S sont utilisées comme suit :

$$y = S(k_i.x_{i-1})$$

avec $x_{i-1} \in X$, $y \in H$, $k_i \in G$;

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

Supposons que les clefs de tour sont choisies dans un groupe fini G qui agit sur un ensemble fini non vide X et soit H un groupe fini;

Dans ce cas les boîtes-S sont utilisées comme suit :

$$y = S(k_i.x_{i-1})$$

avec $x_{i-1} \in X$, $y \in H$, $k_i \in G$;

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques
Différentielle
& Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

- Supposons que les clefs de tour sont choisies dans un groupe fini G qui agit sur un ensemble fini non vide X et soit H un groupe fini;
- Dans ce cas les boîtes-S sont utilisées comme suit :

$$y = S(k_i.x_{i-1})$$

avec
$$x_{i-1} \in X$$
, $y \in H$, $k_i \in G$;

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques
Différentielle
& Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

- Supposons que les clefs de tour sont choisies dans un groupe fini G qui agit sur un ensemble fini non vide X et soit H un groupe fini;
- Dans ce cas les boîtes-S sont utilisées comme suit :

$$y = S(k_i.x_{i-1})$$

avec
$$x_{i-1} \in X$$
, $y \in H$, $k_i \in G$;

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

■ Trouver une paire $(\alpha, \beta) \in G \times H$ telle que la probabilité

$$Pr(R(\alpha.x) - R(x) = \beta)$$

- Tirer au hasard un texte clair x_0 et soumettre au chiffrement à la fois x_0 et $\alpha.x_0$. On obtient deux couples clair/chiffré : (x_0, x_r) et $(\alpha.x_0, x_r')$;
- Trouver toutes les valeurs possibles \hat{k}_r pour la clef du dernier tour telles que

$$f_{\hat{k}_r}^{-1}(x_r') - f_{\hat{k}_r}^{-1}(x_r) = \beta$$

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

■ Trouver une paire $(\alpha, \beta) \in G \times H$ telle que la probabilité

$$Pr(R(\alpha.x) - R(x) = \beta)$$

- Tirer au hasard un texte clair x_0 et soumettre au chiffrement à la fois x_0 et $\alpha.x_0$. On obtient deux couples clair/chiffré : (x_0, x_r) et $(\alpha.x_0, x_r')$;
- Trouver toutes les valeurs possibles \hat{k}_r pour la clef du dernier tour telles que

$$f_{\hat{k}_r}^{-1}(x_r') - f_{\hat{k}_r}^{-1}(x_r) = \beta$$

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

■ Trouver une paire $(\alpha, \beta) \in G \times H$ telle que la probabilité

$$Pr(R(\alpha.x) - R(x) = \beta)$$

- Tirer au hasard un texte clair x_0 et soumettre au chiffrement à la fois x_0 et $\alpha.x_0$. On obtient deux couples clair/chiffré : (x_0, x_r) et $(\alpha.x_0, x_r')$;
- Trouver toutes les valeurs possibles \hat{k}_r pour la clef du dernier tour telles que

$$f_{\hat{k}_r}^{-1}(x_r') - f_{\hat{k}_r}^{-1}(x_r) = \beta$$
.

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

■ Trouver une paire $(\alpha, \beta) \in G \times H$ telle que la probabilité

$$Pr(R(\alpha.x) - R(x) = \beta)$$

- Tirer au hasard un texte clair x_0 et soumettre au chiffrement à la fois x_0 et $\alpha.x_0$. On obtient deux couples clair/chiffré : (x_0, x_r) et $(\alpha.x_0, x_r')$;
- Trouver toutes les valeurs possibles \hat{k}_r pour la clef du dernier tour telles que

$$f_{\hat{k}_r}^{-1}(x_r') - f_{\hat{k}_r}^{-1}(x_r) = \beta$$
.

Objectif

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentiell & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Construction:

Construction de boîtes-S maximalement résistantes à l'attaque différentielle modifiée.

Cela conduit à la notion de fonctions *G*-parfaitement nor linéaires.

Objectif

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentiell & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Construction:

Construction de boîtes-S maximalement résistantes à l'attaque différentielle modifiée.

Cela conduit à la notion de fonctions *G*-parfaitement non linéaires.

Définition

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentiell & Linéaire

Approche traditionnell

Non linéarité parfaite au sens des actions de groupe

Constructions

Soit G un groupe fini commutatif agissant sur un ensemble fini non vide X. Soit H un (éventuellement autre) groupe fini commutatif. Une application $f: X \to H$ est dite G-parfaitement non linéaire si pour chaque $\alpha \in G$ et chaque $\beta \in H$.

$$|\{x \in X | f(\alpha.x) - f(x) = \beta\}| = \frac{|X|}{|H|}.$$

Caractérisation "duale"

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

Soit G un groupe fini commutatif agissant sur un ensemble fini non vide X. Soit H un (éventuellement autre) groupe fini commutatif. Pour chaque application $f: X \to H$ et chaque $x \in X$, on définit l'application

$$f_X: G \rightarrow H$$

 $g \mapsto f_X(g) := f(g.X)$.

Théorème

L'application f est G-parfaitement non linéaire si et seulement si pour chaque $\alpha \in G$ et chaque $\beta \in H^*$, on a

$$\frac{1}{|X|} \sum_{\mathbf{x} \in X} |\widehat{(\chi_H^2 \circ f_{\mathbf{x}})}(\alpha)|^2 = |G|$$
.

Caractérisation "duale"

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

Soit G un groupe fini commutatif agissant sur un ensemble fini non vide X. Soit H un (éventuellement autre) groupe fini commutatif. Pour chaque application $f: X \to H$ et chaque $x \in X$, on définit l'application

$$f_X: G \rightarrow H$$

 $g \mapsto f_X(g) := f(g.x)$.

Théorème

L'application f est G-parfaitement non linéaire si et seulement si pour chaque $\alpha \in G$ et chaque $\beta \in H^*$, on a

$$\frac{1}{|X|} \sum_{x \in X} |\widehat{(\chi_H^\beta \circ f_x)}(\alpha)|^2 = |G|.$$

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentiell & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Canaluusliana

Définition

Soit G un groupe fini agissant sur un ensemble fini non vide X et D un sous-ensemble de X. D est un

- |X| = v;
- |D| = k;
- Pour chaque $\alpha \in G^*$, l'équation $x = \alpha y$ adme exactement λ solutions $(x, y) \in D^2$.

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

Définition

Soit G un groupe fini agissant sur un ensemble fini non vide X et D un sous-ensemble de X. D est un

- |X| = v;
- |D| = k;
- Pour chaque $\alpha \in G^*$, l'équation $x = \alpha . y$ admer exactement λ solutions $(x, y) \in D^2$.

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Canaluuslians

Définition

Soit G un groupe fini agissant sur un ensemble fini non vide X et D un sous-ensemble de X. D est un

- |X| = v;
- |D| = k;
- Pour chaque $\alpha \in G^*$, l'équation $x = \alpha y$ adme exactement λ solutions $(x, y) \in D^2$.

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Canalmiatiana

Définition

Soit G un groupe fini agissant sur un ensemble fini non vide X et D un sous-ensemble de X. D est un

- |X| = v;
- |D| = k;
- Pour chaque $\alpha \in G^*$, l'équation $x = \alpha \cdot y$ admet exactement λ solutions $(x, y) \in D^2$.

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentiell & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

Théorème

Soit G un groupe fini agissant sur un ensemble fini non vide X. Une fonction booléenne $f: X \to \mathbb{Z}_2$ est G-PN si et seulement si son support S_f est un G-ensemble à différences de X dont les paramètres (v,k,λ) satisfont l'égalité

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentiell & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

Théorème

Soit G un groupe fini agissant sur un ensemble fini non vide X. Une fonction booléenne $f: X \to \mathbb{Z}_2$ est G-PN si et seulement si son support S_f est un G-ensemble à différences de X dont les paramètres (v,k,λ) satisfont l'égalité

$$V = 4(k - \lambda)$$
.

Plan

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

- 1 Attaques Différentielle & Linéaire
 - Principes de la cryptographie
 - Principes de cryptanalyse
- 2 Approche traditionnelle
 - Non linéarité parfaite
 - Fonctions courbes
 - Ensembles à différences
- 3 Non linéarité parfaite au sens des actions de groupe
 - Actions de groupe
 - G-non linéarité parfaite
- 4 Constructions de fonctions booléennes courbes impossibles
 - Longueur impaire
 - Cas planaire

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentiell & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

Une action de G sur X induit une partition de X constituée d'orbites $\mathcal{O}(x) = \{\alpha.x | \alpha \in G\} = G.x$ pour $x \in X$.

On dit que l'action est libre si quel que soit $x \in X$, $|G| = |\mathcal{O}(x)|$. Notons qu'une action libre est fidèle. Soit V_m un espace vectoriel de dimension m sur le corps fini à deux éléments. Soit G un groupe fini agissant librement sur V_m . On suppose en outre que G contient des ensembles à différences de Hadamard classiques (en particulier $|G| = 4N^2$).

Pour chaque $x \in V_m$, l'application orbitale de x définie par

$$\phi_X: \quad G \quad \to \quad \mathcal{O}(X) \subset V_n$$

$$\alpha \quad \mapsto \quad \alpha.X$$

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de groupe

Constructions

Une action de G sur X induit une partition de X constituée d'orbites $\mathcal{O}(x) = \{\alpha.x | \alpha \in G\} = G.x$ pour $x \in X$. On dit que l'action est libre si quel que soit $x \in X$, $|G| = |\mathcal{O}(x)|$. Notons qu'une action libre est fidèle.

Soit V_m un espace vectoriel de dimension m sur le corps fin à deux éléments. Soit G un groupe fini agissant librement sur V_m . On suppose en outre que G contient des ensembles à différences de Hadamard classiques (en particulier $|G| = 4N^2$).

Pour chaque $x \in V_m$, l'application orbitale de x définie par

$$\phi_{\mathsf{X}}: \quad \mathbf{G} \quad \to \quad \mathcal{O}(\mathsf{X}) \subset V_{\mathsf{ff}}$$

$$\alpha \quad \mapsto \quad \alpha.\mathsf{X}$$

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentiell & Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de groupe

Constructions

Une action de G sur X induit une partition de X constituée d'orbites $\mathcal{O}(x) = \{\alpha.x | \alpha \in G\} = G.x$ pour $x \in X$. On dit que l'action est libre si quel que soit $x \in X$, $|G| = |\mathcal{O}(x)|$. Notons qu'une action libre est fidèle. Soit V_m un espace vectoriel de dimension m sur le corps fini à deux éléments. Soit G un groupe fini agissant librement sur V_m . On suppose en outre que G contient des ensembles à différences de Hadamard classiques (en particulier $|G| = 4N^2$).

Pour chaque $x \in V_m$, l'application orbitale de x définie par

$$\phi_X: \quad G \quad \to \quad \mathcal{O}(X) \subset V_m$$

$$\alpha \quad \mapsto \quad \alpha.X$$

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentiell & Linéaire

Approche traditionnell

Non linéarité parfaite au sens des actions de groupe

Constructions

Une action de G sur X induit une partition de X constituée d'orbites $\mathcal{O}(x) = \{\alpha.x | \alpha \in G\} = G.x$ pour $x \in X$. On dit que l'action est libre si quel que soit $x \in X$, $|G| = |\mathcal{O}(x)|$. Notons qu'une action libre est fidèle. Soit V_m un espace vectoriel de dimension m sur le corps fini à deux éléments. Soit G un groupe fini agissant librement sur V_m . On suppose en outre que G contient des ensembles à différences de Hadamard classiques (en particulier $|G| = 4N^2$).

Pour chaque
$$x \in V_m$$
, l'application orbitale de x définie par

$$\phi_{\mathsf{X}}: \quad \mathsf{G} \quad \to \quad \mathcal{O}(\mathsf{X}) \subset \mathsf{V}_{\mathsf{m}}$$

$$\alpha \quad \mapsto \quad \alpha.\mathsf{X}$$

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

À chaque orbite \mathcal{O} de la partition de V_m , on associe un élément x de V_m tel que $\mathcal{O}(x)=\mathcal{O}$ et un ensemble à différences de Hadamard D_x de G. De la sorte on constitu un ensemble noté V_m/G de représentants des orbites. On peut montrer que $\phi_x(D_x)$ est un G-ensemble à différences de $\mathcal{O}(x)$ dont les paramètres sont les mêmes que ceux de l'ensemble à différences de Hadamard D_x . Si $(x,y)\in (V_m/G)^2$ et $x\neq y$ alors $\phi_x(D_x)\cap\phi_y(D_y)=\emptyset$. On définit alors $D:=\bigcup_{x\in G} \phi_x(D_x)$.

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de

Constructions

À chaque orbite \mathcal{O} de la partition de V_m , on associe un élément x de V_m tel que $\mathcal{O}(x)=\mathcal{O}$ et un ensemble à différences de Hadamard D_x de G. De la sorte on constitue un ensemble noté V_m/G de représentants des orbites.

On peut montrer que $\phi_X(D_X)$ est un G-ensemble à différences de $\mathcal{O}(x)$ dont les paramètres sont les mêmes que ceux de l'ensemble à différences de Hadamard D_X . Si $(x,y) \in (V_m/G)^2$ et $x \neq y$ alors $\phi_X(D_X) \cap \phi_Y(D_Y) = \emptyset$. On définit alors $D := \{ 1 \mid \phi_Y(D_Y) \}$

 $x \in V_m/G$

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de

Constructions

À chaque orbite \mathcal{O} de la partition de V_m , on associe un élément x de V_m tel que $\mathcal{O}(x)=\mathcal{O}$ et un ensemble à différences de Hadamard D_x de G. De la sorte on constitue un ensemble noté V_m/G de représentants des orbites. On peut montrer que $\phi_x(D_x)$ est un G-ensemble à différences de $\mathcal{O}(x)$ dont les paramètres sont les mêmes que ceux de l'ensemble à différences de Hadamard D_x .

Si $(x, y) \in (V_m/G)^2$ et $x \neq y$ alors $\phi_X(D_X) \cap \phi_Y(D_Y) = \emptyset$. On définit alors $D := \bigcup_{x \in \mathcal{D}} \phi_X(D_X)$.

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de

Constructions

À chaque orbite \mathcal{O} de la partition de V_m , on associe un élément x de V_m tel que $\mathcal{O}(x)=\mathcal{O}$ et un ensemble à différences de Hadamard D_x de G. De la sorte on constitue un ensemble noté V_m/G de représentants des orbites. On peut montrer que $\phi_x(D_x)$ est un G-ensemble à différences de $\mathcal{O}(x)$ dont les paramètres sont les mêmes que ceux de l'ensemble à différences de Hadamard D_x . Si $(x,y)\in (V_m/G)^2$ et $x\neq y$ alors $\phi_x(D_x)\cap\phi_y(D_y)=\emptyset$.

On définit alors $D := \bigcup \phi_X(D_X)$.

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de

Constructions

À chaque orbite \mathcal{O} de la partition de V_m , on associe un élément x de V_m tel que $\mathcal{O}(x) = \mathcal{O}$ et un ensemble à différences de Hadamard D_x de G. De la sorte on constitue un ensemble noté V_m/G de représentants des orbites. On peut montrer que $\phi_x(D_x)$ est un *G*-ensemble à différences de $\mathcal{O}(x)$ dont les paramètres sont les mêmes que ceux de l'ensemble à différences de Hadamard D_x . Si $(x, y) \in (V_m/G)^2$ et $x \neq y$ alors $\phi_x(D_x) \cap \phi_y(D_y) = \emptyset$. On définit alors $D := \bigcup \phi_X(D_X)$. $x \in V_m/G$

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques
Différentielle
& Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de groupe

Constructions

L'ensemble D ainsi défini est un G- $(2^m, (2N^2 - N)j + (2N^2 + N)(\frac{2^m}{4N^2} - j), (N^2 - N)j + (N^2 + N)(\frac{2^m}{4N^2} - j))$ - ensemble à différences de V_m où j est un entier entre 0 et $\frac{2^m}{4N^2}$ désignant le nombre d'ensembles à différences D_X choisis dont les paramètres sont de la forme $(4N^2, 2N^2 - N, N^2 - N)$. Les paramètres de D satisfont en particulier l'équation $V = 4(k - \lambda)$.

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentiell & Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de groupe

Constructions

L'ensemble D ainsi défini est un G- $(2^m, (2N^2 - N)j + (2N^2 + N)(\frac{2^m}{4N^2} - j), (N^2 - N)j + (N^2 + N)(\frac{2^m}{4N^2} - j))$ - ensemble à différences de V_m où j est un entier entre 0 et $\frac{2^m}{4N^2}$ désignant le nombre d'ensembles à différences D_x choisis dont les paramètres sont de la forme $(4N^2, 2N^2 - N, N^2 - N)$.

Les parametres de D satisfont en particulier l'equation $v = 4(k - \lambda)$.

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarit parfaite au sens des actions de groupe

Constructions

L'ensemble D ainsi défini est un G- $(2^m, (2N^2-N)j+(2N^2+N)(\frac{2^m}{4N^2}-j), (N^2-N)j+(N^2+N)(\frac{2^m}{4N^2}-j))$ - ensemble à différences de V_m où j est un entier entre 0 et $\frac{2^m}{4N^2}$ désignant le nombre d'ensembles à différences D_x choisis dont les paramètres sont de la forme $(4N^2, 2N^2-N, N^2-N)$. Les paramètres de D satisfont en particulier l'équation $V=4(k-\lambda)$.

Fonctions PN & Actions de Groupe

> Laurent Poinsot

Attaques Différentiell & Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de groupe

Constructions

On peut instancier la construction précédente de manière à obtenir des fonctions booléennes " courbes " en longueur impaire.

Soient m et k tels que $m \ge 2k$. On peut montrer que V_{2k} agit librement sur V_m et contient des ensembles à différences de Hadamard.

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentiell & Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de groupe

Constructions

On peut instancier la construction précédente de manière à obtenir des fonctions booléennes " courbes " en longueur impaire.

Soient m et k tels que $m \ge 2k$. On peut montrer que V_{2k} agit librement sur V_m et contient des ensembles à différences de Hadamard.

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarit parfaite au sens des actions de groupe

Constructions

On peut instancier la construction précédente de manière à obtenir des fonctions booléennes " courbes " en longueur impaire.

Soient m et k tels que $m \ge 2k$. On peut montrer que V_{2k} agit librement sur V_m et contient des ensembles à différences de Hadamard.

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentiell & Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de groupe

Constructions

On peut instancier la construction précédente de manière à obtenir des fonctions booléennes " courbes " en longueur impaire.

Soient m et k tels que $m \ge 2k$. On peut montrer que V_{2k} agit librement sur V_m et contient des ensembles à différences de Hadamard.

Plan

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques
Différentielle
& Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

- Attaques Différentielle & Linéaire
 - Principes de la cryptographie
 - Principes de cryptanalyse
- 2 Approche traditionnelle
 - Non linéarité parfaite
 - Fonctions courbes
 - Ensembles à différences
- 3 Non linéarité parfaite au sens des actions de groupe
 - Actions de groupe
 - G-non linéarité parfaite
- 4 Constructions de fonctions booléennes courbes impossibles
 - Longueur impaire
 - Cas planaire

Non linéarité parfaite au sens des actions de groupe

Constructions

On a déjà vu qu'il n'existe pas de fonction courbe

 $f: V_m \rightarrow V_m$.

Dès que l'on a une solution x_0 à l'équation $f(\alpha \oplus x) \oplus f(x) = \beta$, on en trouve immédiatement une autre $\alpha \oplus x_0$.

Le mieux que l'on puisse esperer pour f est qu'elle soit presque parfaitement non linéaire i.e. pour chaque $(\alpha,\beta)\in V_m^*\times V_m, |\{x\in V_m|f(\alpha\oplus x)\oplus f(x)=\beta\}|\in\{0,2\}$

Attaques Différentiell & Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de groupe

Constructions

On a déjà vu qu'il n'existe pas de fonction courbe $f: V_m \to V_m$. Dès que l'on a une solution x_0 à l'équation $f(\alpha \oplus x) \oplus f(x) = \beta$, on en trouve immédiatement une autre $\alpha \oplus x_0$.

Le mieux que l'on puisse espèrer pour f est qu'elle soit presque parfaitement non linéaire i.e. pour chaque $(\alpha, \beta) \in V_m^* \times V_m$, $|\{x \in V_m | f(\alpha \oplus x) \oplus f(x) = \beta\}| \in \{0, 2\}$

Attaques Différentiell & Linéaire

Approche traditionnelle

Non linéarité parfaite au sens des actions de groupe

Constructions

On a déjà vu qu'il n'existe pas de fonction courbe

 $f: V_m \rightarrow V_m.$

Dès que l'on a une solution x_0 à l'équation

$$f(\alpha \oplus x) \oplus f(x) = \beta$$
, on en trouve immédiatement une autre $\alpha \oplus x_0$.

Le mieux que l'on puisse espérer pour *f* est qu'elle soit presque parfaitement non linéaire *i.e.* pour chaque

$$(\alpha,\beta) \in V_m^* \times V_m, |\{x \in V_m | f(\alpha \oplus x) \oplus f(x) = \beta\}| \in \{0,2\}.$$

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques
Différentiell
& Linéaire

Approche traditionnelle

Non linéarit parfaite au sens des actions de groupe

Constructions

Conjecture

Il n'existe pas de bijection presque parfaitement non linéaire pour *m* pair.

Fonctions PN & Actions de Groupe

Laurent Poinsot

Attaques Différentiell & Linéaire

Approche traditionnelle

Non linéarite parfaite au sens des actions de groupe

Constructions

Théorème

Soit m un entier strictement positif quelconque. Soit $f: GF(2^m) \to GF(2^m)$ un automorphisme additif. Alors f est une bijection $GF(2^m)^*$ -PN.

Non linéarit parfaite au sens des actions de groupe

Constructions

Preuve

$$f(\alpha.x) \oplus f(x) = \beta$$

$$\Leftrightarrow f(\alpha x) \oplus f(x) = \beta$$

$$\Leftrightarrow f(\alpha x \oplus x) = \beta$$

$$\Leftrightarrow f((\alpha \oplus 1)x) = \beta$$

$$\Leftrightarrow (\alpha \oplus 1)x = f^{-1}(\beta)$$

$$\Leftrightarrow x = \frac{f^{-1}(\beta)}{\alpha \oplus 1}$$

Non linéarite parfaite au sens des actions de groupe

Constructions

Preuve

$$f(\alpha.x) \oplus f(x) = \beta$$

$$\Leftrightarrow f(\alpha x) \oplus f(x) = \beta$$

$$\Leftrightarrow f(\alpha x \oplus x) = \beta$$

$$\Leftrightarrow f((\alpha \oplus 1)x) = \beta$$

$$\Leftrightarrow (\alpha \oplus 1)x = f^{-1}(\beta)$$

$$\Leftrightarrow x = \frac{f^{-1}(\beta)}{\alpha \oplus 1}$$

Non linéarite parfaite au sens des actions de groupe

Constructions

Preuve

$$f(\alpha.x) \oplus f(x) = \beta$$

$$\Leftrightarrow f(\alpha x) \oplus f(x) = \beta$$

$$\Leftrightarrow f(\alpha x \oplus x) = \beta$$

$$\Leftrightarrow f((\alpha \oplus 1)x) = \beta$$

$$\Leftrightarrow (\alpha \oplus 1)x = f^{-1}(\beta)$$

$$\Leftrightarrow x = \frac{f^{-1}(\beta)}{\alpha \oplus 1}$$

Non linéarit parfaite au sens des actions de groupe

Constructions

Preuve

$$f(\alpha.x) \oplus f(x) = \beta$$

$$\Leftrightarrow f(\alpha x) \oplus f(x) = \beta$$

$$\Leftrightarrow f(\alpha x \oplus x) = \beta$$

$$\Leftrightarrow f((\alpha \oplus 1)x) = \beta$$

$$\Leftrightarrow (\alpha \oplus 1)x = f^{-1}(\beta)$$

$$\Leftrightarrow x = \frac{f^{-1}(\beta)}{\alpha \oplus 1}$$

Non linéarite parfaite au sens des actions de groupe

Constructions

Preuve

$$f(\alpha.x) \oplus f(x) = \beta$$

$$\Leftrightarrow f(\alpha x) \oplus f(x) = \beta$$

$$\Leftrightarrow f(\alpha x \oplus x) = \beta$$

$$\Leftrightarrow f((\alpha \oplus 1)x) = \beta$$

$$\Leftrightarrow (\alpha \oplus 1)x = f^{-1}(\beta)$$

$$\Leftrightarrow x = \frac{f^{-1}(\beta)}{\alpha \oplus 1}$$

Non linéarit parfaite au sens des actions de groupe

Constructions

Preuve

$$f(\alpha.x) \oplus f(x) = \beta$$

$$\Leftrightarrow f(\alpha x) \oplus f(x) = \beta$$

$$\Leftrightarrow f(\alpha x \oplus x) = \beta$$

$$\Leftrightarrow f((\alpha \oplus 1)x) = \beta$$

$$\Leftrightarrow (\alpha \oplus 1)x = f^{-1}(\beta)$$

$$\Leftrightarrow x = \frac{f^{-1}(\beta)}{\alpha \oplus 1}$$

Attaques Différentielle & Linéaire

Approche traditionnelle

Non linéarit parfaite au sens des actions de groupe

Constructions

Preuve

$$f(\alpha.x) \oplus f(x) = \beta$$

$$\Leftrightarrow f(\alpha x) \oplus f(x) = \beta$$

$$\Leftrightarrow f(\alpha x \oplus x) = \beta$$

$$\Leftrightarrow f((\alpha \oplus 1)x) = \beta$$

$$\Leftrightarrow (\alpha \oplus 1)x = f^{-1}(\beta)$$

$$\Leftrightarrow x = \frac{f^{-1}(\beta)}{\alpha \oplus 1}$$