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Pairings

Let A, B, C be three modules over some commutative ring R with a unit.
A pairing is a non-degenerate bilinear map f: Ax B — C.
Non-degeneracy means that

vrac€ A f(a,-)

and
dr: be B f(-,b)

are both one-to-one.
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Examples

eletl +A— G — B — 1 be a short exact sequence of groups, where
A, B are abelian, and A lies in Z(G). The commutator [-, -] of G factors to
a bilinear map [-,*]: B x B — A which is non-degenerate if, and only if,
A= Z(G) (R. Baer, 1938).

o Llet (-]): Ax A— R/Z defined by (a| x) = x(a).
e Weil, Tate pairings and their recent generalizations to Abelian varieties.

e Let K be any field, and X be any set. Let us denote by K(X) the vector
space of finitely supported maps (i.e., the vector space with basis X). The
map (- | -): KX x KX — K given by (f | g) = Y oxex f(x)g(x) is a
pairing.
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Cryptographic applications

e MOV attack to solve the discrete logarithm problem by transport from an
elliptic curve to a finite field.

e A. Joux's one-round key exchange tri-partite Diffie-Hellman protocol.

e Identity-based cryptography.
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Objective of this talk

e Provide a categorical setting to study pairings in a unified way in several
categories (e.g., abelian groups, modules or commutative monoids).

e Provide a classification of pairings — under a suitable equivalence relation
— from finite abelian groups to the complex unit circle (this classification is
rather disappointing).

e Show that the set of equivalence classes of pairings is almost a moduli
space: it is actually a subset of rational points of some (pro-)affine
algebraic variety.

Warning: The classification from this talk is of course different from C.T.C
Wall's classification of skew or symmetric non-singular bilinear forms on
finite abelian groups (1964) because the equivalence relations under
consideration are not the same. My equivalence relation is of a categorical
nature, since it is the relation of isomorphism in a suitable category, and it
is strictly coarser than C.T.C Wall's relation (more pairings are identified).
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Bilinear maps
Let ¢ be an abelian group (e.g., c = Q/Z).

e A bilinear map on c is a pair (f,(a, b)) where a, b are both finite abelian
groups and f is a group homomorphism f: a® b — ¢ (® being the usual
tensor product of abelian groups that classifies bi-additive maps).
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Bilinear maps
Let ¢ be an abelian group (e.g., c = Q/Z).

e A bilinear map on c is a pair (f,(a, b)) where a, b are both finite abelian
groups and f is a group homomorphism f: a® b — ¢ (® being the usual
tensor product of abelian groups that classifies bi-additive maps).

e A pair (a, ) of group homomorphisms between finite abelian groups,
a:a—d, B: b— e, is said to be an arrow or a morphism
(o, B): (f,(a,b)) — (g,(d, e)) if the following triangle commutes

a®b doe (1)

\/

In other terms, go(a(x), B(y)) = fo(x,y) for every x € a, y € b (where
fo: ax b— cand go: d X e — ¢ are the bi-additive maps associated to f
and g respectively).
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Bilinear maps (cont'd)

e Bilinear maps on ¢ with these morphisms form a category denoted by
Bilabfin(¢), the composition of morphisms being defined component-wise
(a1, B1) o (a2, B2) = (a1 © ap, By © B2), and the identity morphism

id(f (a,b)) On (f,(a, b)) being just (ida, idp).
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Bilinear maps (cont'd)

e Bilinear maps on ¢ with these morphisms form a category denoted by
Bilabfin(¢), the composition of morphisms being defined component-wise
(a1, B1) o (a2, B2) = (a1 © ap, By © B2), and the identity morphism

id(f (a,b)) On (f,(a, b)) being just (ida, idp).

e An isomorphism (o, 3) from (f,(a, b)) to (g, (d,e)) is just an arrow
(a,B8): (f,(a,b)) — (g,(c,d)) such that a«: a — d and 3: b — e are
both group isomorphisms (thus (7, (a, b)) = (g, (d, e)) implies a = d and
b = e as finite abelian groups).
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(Perfect) Pairings

e A (perfect) pairing (on c) is a bilinear map (f, (a, b)) on c such that ~¢
and 0¢ are both monomorphisms (respectively, isomorphisms) (recall from
the introduction that v¢(x) = fo(x, ) and 0¢(y) = fo(-,y)).

Remark

In category-theoretical terms, a monomorphism f is a left-cancellable
morphism. For the categories of sets, abelian groups, commutative
monoids, modules over some commutative unital ring, and many other
categories but not all, monomorphisms coincide with one-to-one maps.

11/38



(Perfect) Pairings

e A (perfect) pairing (on c) is a bilinear map (f, (a, b)) on c such that ~¢
and 0¢ are both monomorphisms (respectively, isomorphisms) (recall from
the introduction that v¢(x) = fo(x, ) and 0¢(y) = fo(-,y)).

Remark

In category-theoretical terms, a monomorphism f is a left-cancellable
morphism. For the categories of sets, abelian groups, commutative
monoids, modules over some commutative unital ring, and many other
categories but not all, monomorphisms coincide with one-to-one maps.

e Let us denote by Pairppfin(c) (resp. Perfapfin(c)) the full sub-category
of Bilapfin(c) with objects the (perfect) pairings on c.

11/38



(Perfect) Pairings

e A (perfect) pairing (on c) is a bilinear map (f, (a, b)) on c such that ~¢
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Some easy functorial properties

e Functorially, if ¢; < ¢, then PairAbﬁn(cl) — PairAbﬁn(cz) (full
embedding of categories).
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. Functorially, if c; = ¢, then PairAbfi,,(cl) — PairAbﬁn(cz) (full
embedding of categories).

e Functorially, if ¢ = ¢, then Perfapgin(c1) = Perf apfin(c2) (isomorphic
categories).

e Of course, if c; = ¢, then also Pairapgin(c1) = Pairapfin(c2) (isomorphic
categories), but the converse is false. For instance,
Pairapfin(0) = Pairapfin(Z).
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Isomorphisms preserve non-degeneracy

e An isomorphism class of bilinear maps on ¢ either contains no pairings or
all its members are pairings (in other terms, a bilinear map is isomorphic to
a pairing if, and only if, it is itself a pairing).
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e An isomorphism class of bilinear maps on ¢ either contains no pairings or
all its members are pairings (in other terms, a bilinear map is isomorphic to
a pairing if, and only if, it is itself a pairing).

e The same holds replacing bilinear maps by pairings, and pairings by
perfect pairings in the above sentence.

o |t follows that

i“Abfin(C) = PiirAbfin(C) U MAbfin(c)

of course with

Pairppsin(¢) N Degen =

Abfin(€)
and
Pairppgin(c) = Perfppgn(c) Ulmp, o (c)
with
Perfppin(c) N Imp, o (c) =0
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Remark

Everything remains valid if one replaces

- the category of abelian groups by any closed symmetric monoidal
category C (i.e., with a tensor bifunctor, an internal hom functor, and some

properties...),

- the category of finite abelian groups by any full sub-category D of C.
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Remark

Everything remains valid if one replaces

- the category of abelian groups by any closed symmetric monoidal
category C (i.e., with a tensor bifunctor, an internal hom functor, and some
properties...),

- the category of finite abelian groups by any full sub-category D of C.

For instance, C may be
- the category of sets (® = x) with D the category of finite sets,

- the category of commutative monoids (® = ®y similar to ®z), with D
that of finite commutative monoids,

- the category kMod of modules on a commutative ring R (# 0) with a
unity (® = ®g), and D = gModfreefin, the category of free R-modules of

finite rank.
14/38



Table of contents

© A symmetric monoidal structure on Bilapgin(c)

15 /38



Direct sum of abelian groups

Let a, b be two abelian groups, and let a @ b denote their direct sum with
canonical injections g,: a < a® b, x — (x,0) and
Gp: b—=a®b,y—(0,y).
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Let a, b be two abelian groups, and let a @ b denote their direct sum with
canonical injections g,: a < a® b, x — (x,0) and
Gp: b—=a®b,y—(0,y).

Categorically, the direct sum @ is characterized by a universal property: for
every abelian group d, and every group homomorphisms «: a — d and

B: b — d, there is a unique group homomorphism v: a® b — d that
makes commute the following diagram.

a—2ambd— (2)

NA

d

In concrete terms, y(x,y) = a(x) + B(y).
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® distributes over @

It is a well-known fact that for every abelian groups as, as, b1, b,

(1@ a)@(bi®b)=(a1®@b) @ (a1 ®b) & (a2 ® b1) @ (a2 @ bo).
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® distributes over @

It is a well-known fact that for every abelian groups as, as, b1, b,

(1@ a)@(bi®b)=(a1®@b) @ (a1 ®b) & (a2 ® b1) @ (a2 @ bo).

More precisely, (a1 @ a2) ® (b1 @ by) admits a direct sum presentation as

a® b a1 ® by

W\‘q‘ﬁ/{gqb/

(a1 @ a2) ® (b1 @ bo)

a ® by a ® by

(This comes from the fact that for every abelian group a, both functors
a® — and — ® a admit a right adjoint, and this is true in any symmetric

monoidal closed category with binary coproducts.)
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A tensor bifunctor L

It is thus possible to define for every abelian group d, and any group
homomorphisms a1: a1 @ by — d, f1: a1 @ by — d, ap: a2 ® by — d, and
B2: ap ® bp — d, a unique group homomorphism

~v: (a1 ® a2) ® (b1 @ by) — d (using the universal property of the direct

sum).
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This makes feasible to define the following (functorial) operation on the
bilinear maps (f1, (a1, b1)) and (f2, (a2, b2)) on ¢ by
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B2: ap ® bp — d, a unique group homomorphism

~v: (a1 ® a2) ® (b1 @ by) — d (using the universal property of the direct
sum). In more concrete terms,

Y((x1, %)@ (y1,2)) = c1(x1 @ y1) +a2(x2 @ y1) + L1 (x1 @ y2) + L2 (x2 @ y2).

This makes feasible to define the following (functorial) operation on the
bilinear maps (f1, (a1, b1)) and (f2, (a2, b2)) on ¢ by

(ﬂ, (31, bl))J_(fz, (82, bg)) = (flJ_fQ, (31 @ ap, by @ bg)), where

filfy: (a1 ® ap) ® (b1 @ by) — c is defined as y above using

-ar=h:a1 @b —c,

—042:0: az®blﬁc,

-f1=0:a1® b —c,

-Pr=hra®b —c.

In concrete terms, (A LH)((x1,x2) @ (y1,¥2)) = A(x1 @ y1) + h(x2 @ y2)
(informally speaking, one imposes to ap, b1, and also to aj, by, to be

“orthogonal” one to the other with respect to fi_Lf).
18/38



L and non-degeneracy

Proposition
Let (1, (a1, b2)) and (f2, (a2, b2)) be two bilinear maps on c.
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L and non-degeneracy

Proposition
Let (1, (a1, b2)) and (f2, (a2, b2)) be two bilinear maps on c.

The bilinear map (fi_Lf, (a1 ® a2, by @ by)) is a pairing (respectively, a
perfect pairing) if, and only if, (f, (a;, b)), i = 1,2, are both pairings
(respectively, perfect pairings).
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Commutative monoid of isomorphic classes of bilinear maps

Of course, being functorial L factors through the set of isomorphism
classes of bilinear maps, more precisely it gives rise to a structure of
monoid on Bilppgin(€).
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Commutative monoid of isomorphic classes of bilinear maps

Of course, being functorial L factors through the set of isomorphism
classes of bilinear maps, more precisely it gives rise to a structure of
monoid on Bilapgin(c). The unit of this monoid being the isomorphism
class of the zero bilinear map 0 ® 0 — c.

From the previous proposition, we see that
Perf apsin(c) € Pairppgin(c) € Bilapgin(c) are inclusions of sub-monoids.
Definition

We refer to the monoid Pairppg,(c) to as the moduli space of pairings on
c.
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Some notions about monoids

Let (M, x, e) be a monoid (i.e., m is an associative binary operation on M
with a two-sided unit e).
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oryel.

e Any ideal / of a monoid M gives rise to a monoid with a zero M/I, called
the Rees quotient monoid of M by /, and defined by M/l = (M\ 1)L {0},
and for every x,y € M\ I, x -y = x xy whenever xxy ¢ I, and 0
otherwise (and of course x-0=0=0-x, x € M/I). In case / is a prime
ideal, then M\ [ is already a submonoid of M, and M// is just the monoid
(M\ )% i.e., M\ I with a zero 0 freely added.
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Back to the monoid of bilinear maps

The previous proposition about preservation of non-degeneracy by L also
implies that

Degen is a prime ideal of Bilapgin(c),

Abfin(€)
and
B7“Abfin(C)/DegenAbﬁn(C) = (PiirAbfin(C))o<>
Also Imp, .. (c) is a prime ideal of Pairppgp,(c)

and

Pairppgin(€)/Imp e (€) = (Perfppgn(c))™

Remark

Everything remains valid if we replace abelian groups for instance by
R-modules or by commutative monoids, and Abfin by any full sub-category
of these.
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Bialgebras

Let R be a commutative ring with a unity.

An R-algebra A is said to be a coassociative and counital R-bialgebra if it
is equipped with two algebra maps A: A > A®r A, and e: A— R,
respectively called coproduct and counit which are coassociative and
counital.

This means that the two following diagrams commute.

6®idA idA®6

A A L AQRA RIRA<A AR A—2S A®r R
Al lMA®A o AT ~
A QQR‘A AZKESZﬂﬁ KR /\Q@R A A
(3)
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About representable functors

Let C be any category, and ¢ be an object of C. We define the covariant
hom-functor h® = C(c, —) from the category C to the category of sets,
that maps an object d to the set of morphisms h(d) = C(c, d), and that
sends any morphism f: d — d’ to the map h°(f): C(c,d) — C(c,d’)
defined by g — f o g.

e A functor F from C to the category of sets is said to be a representable
functor if it is isomorphic (in the functor category) to a functor of the form
h¢ for some object c. This object ¢ is then shown to be unique up to
isomorphism, and is called the representing object of F.

e A consequence of the Yoneda lemma is that the category of representable
functors of C is equivalent to the opposite category C°P of C (any
representable functor corresponding to its representing object). Recall that
C°P has the same objects and morphisms as C but the composition therein
is the opposite of that of C.
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Affine schemes in brief

Let R be any commutative ring with a unity. Let CAlgg be the category of
commutative R-algebras with a unity.

e The category of representable functors of CAlgg is called the category of
affine schemes (on R). It is thus equivalent to CAlg} .

When R is an algebraically closed field, and the representing objects are
restricted to finitely-generated R-algebras, then representable functors are
often called affine algebraic varieties, and if we drop the finiteness
assumption, then we obtain pro-affine algebraic varieties.

e For instance let | be any set, and let us consider the polynomial algebra
R[Xi: i € I] in the indeterminates X;. Then, the algebra R[X;: i € /] is the
representing object of the affine scheme A — CAlgg(R[X;: i € I],A) = Al
(thus, when [ is finite this gives an affine space).

e Let R be any algebraically closed field. Let F be an affine scheme with
representing object the algebra O(F). The R-rational points of F are given
by F(R) = CAlgr(O(F), R).
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Monoid schemes

e A monoid scheme M is an affine scheme such that for every algebra A,
the set M(A) is a usual monoid, and this naturally in A.

e By Yoneda's lemma, this is equivalent to the fact that the representing
algebra O(M) of M is actually a (commutative, unital) coassociative and
counital R-bialgebra.
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Finite decomposition monoids

Let (M, x, e) be a monoid. It is said to be a finite decomposition monoid if
its multiplication % has finite fibers, i.e., for every x € M, there is only
finitely many y,z € M such that x = y * z.

If M is a finite decomposition monoid, and A is a commutative R-algebra
with a unit, then AM is provided with a structure of a R-algebra (and even
of A-algebra), which is commutative if, and only if, M is, and with
multiplication given by

(f)(x) =Y f(y)e(2)

yz=x

for f,g € AM, x € M. This algebra is denoted by A[[M]] and is called the
large algebra of M.
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Theorem
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o (—)[[M]]: A~ A[[M]] defines a functor from CAIgg to the category
of sets;
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Finite decomposition monoids (cont'd)

Theorem
For every finite decomposition monoid M,

o (—)[[M]]: A~ A[[M]] defines a functor from CAIgg to the category
of sets;

@ It is representable with representing algebra R[X,: x € M];

@ R[X«: x € M] is a coassociative and counital bialgebra, so that
(=)[[M]] is a monoid scheme;

@ M embeds as a sub-monoid into the underlying multiplicative monoid
of R[[M]].

Proof: The map X — A(X«) = >_,,_, Xy ® X; extends uniquely to an
algebra map from R[Xi: x € M] — R[Xx: x € M] ®g R[Xx: x: x € M],
and turns to be a coassociative coproduct. The map X, — ¢(Xy) =1
provides the counit. [J
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What about the moduli space of pairings 7
Let us denote by |a| the order of a finite abelian group a.

The isomorphism relation of bilinear maps (7, (a, b)) = (g,(d,e)) on ¢
implies that a = d and b = e (isomorphic groups), and thus |a] = |d| and
6] = [el.

Since |a @ b| = |a||b| and |0] = 1, we obtain a well-defined homomorphism
of monoids s: Bilapgin(c) — N* x N* given by s([f, (a, b)]) = (|al, |b]),
where [f, (a, b)] is the isomorphism class of (f, (a, b)).

It follows that Bilapgn(c) is a finite decomposition monoid, and thus also
are Pairppsin(c) and Perfapgn(c).

According to the previous theorem, if R is an algebraically closed field, then
the moduli space of pairings is a sub-monoid of the R-rational points of an
affine monoid scheme.
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Let a be a finite abelian group, and let us denote by 3 = Ab(a, Q/Z) its

dual (or character) group.

It is well-known that a = 3.

Let (f, (a, b)) be an object of Pairapfin(Q/Z). Then, a < b~ b 522

so that a = b, and (f, (a, b)) is a perfect pairing. We thus obtain

Lemma
Pairapfin(Q/Z) = Perf apfin(Q/Z).

Remark

This equality may be false when ¢ # Q/Z (or more precisely when
¢ € Q/Z). For instance, le p be a prime number, and m > 1, then
f:(Z/pZ)" x Z/pZ — (Z/pZ)™ given by

f((xi mod p)™,,y mod p) = (x;y mod p)7, is an imperfect pairing.
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The duality pairing

Let a be a finite abelian group. The duality pairing on a is (nat,, (a, 3))
given by nat,(x ® y) = x(x) for x € a, x € a.

Theorem
Let (7, (a, b)) be a pairing on Q/Z. Then,

(f,(a, b)) = (nat,, (a,3)) .
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the corresponding group homomorphism.
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Since a = b, we may choose an isomorphism «: b — a.
Let us define a bi-additive map gp: a x a — Q/Z by
go(x,y) = f(x®a"(y)), x,y € a, and let us denote by g: a® a — Q/Z

the corresponding group homomorphism.
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Let us define a bi-additive map gp: a x a — Q/Z by
go(x,y) = f(x®a"(y)), x,y € a, and let us denote by g: a® a — Q/Z

the corresponding group homomorphism.

Both bilinear maps f and g are isomorphic, and thus g also is a perfect
pairing.

In particular, §g: a = a, x — go(+,x), is an isomorphism from a to a.

Let us define a third perfect pairing h = g o (id, ® (5?), isomorphic to g
(and of course to f).

We have for every x € a, and x € 3,
h(x @ x) = g(x ® 051 (x)) = 6g(35 (X)) (x) = x(x) = nata(x @ x). [
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We have (a @ b) = 36 b, so it follows that
(nat,ep, (2@ b, (a ® b)) = (nata, (a,3)) L(naty, (b, b)).
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monoid generated by all the (p, i)'s, where p is a prime number, and
i€ N*.

Let p be a prime number, and let Z(p™) be the Priifer p-group, i.e., the
direct limit 0 < Z/pZ < Z/p*Z — - - - Let ,Abfin be the category of
finite abelian p-groups. Then, Pair apfin(Z(p™) < Pairapin(Q/Z) (full
embedding of categories).

Corollary

;)I'he monoid Pair_apin(Z(p™)) is free (as a commutative monoid) with
asis N*.

36/38



Why is the classification so simple ?

This is because the isomorphism relation identifies too many objects, and
much more than C.T.C Wall's equivalence relation.

37/38



Why is the classification so simple ?

This is because the isomorphism relation identifies too many objects, and
much more than C.T.C Wall's equivalence relation.

Recall that C.T.C Wall considers pairings on Q/Z

37/38



Why is the classification so simple ?

This is because the isomorphism relation identifies too many objects, and
much more than C.T.C Wall's equivalence relation.

Recall that C.T.C Wall considers pairings on Q/Z and his equivalence
relation to classify them is the following (f,(a,a)) = (g, (b, b)) if, and only
if, there is an isomorphism «:: a — b such that f(x, y) = g(a(x), a(y)),
X,y € a.

37/38



Why is the classification so simple ?

This is because the isomorphism relation identifies too many objects, and
much more than C.T.C Wall's equivalence relation.

Recall that C.T.C Wall considers pairings on Q/Z and his equivalence
relation to classify them is the following (f,(a,a)) = (g, (b, b)) if, and only
if, there is an isomorphism «:: a — b such that f(x, y) = g(a(x), a(y)),
X,y € a.

For any abelian group without 2-torsion ¢, no two non-trivial (i.e., # 0)
bilinear maps f,g: a x a — ¢, f symmetric and g skew-symmetric, may be
equivalent modulo =.

37/38



Why is the classification so simple ?

This is because the isomorphism relation identifies too many objects, and
much more than C.T.C Wall's equivalence relation.

Recall that C.T.C Wall considers pairings on Q/Z and his equivalence
relation to classify them is the following (f,(a,a)) = (g, (b, b)) if, and only
if, there is an isomorphism «:: a — b such that f(x, y) = g(a(x), a(y)),
X,y € a.

For any abelian group without 2-torsion ¢, no two non-trivial (i.e., # 0)
bilinear maps f,g: a x a — ¢, f symmetric and g skew-symmetric, may be
equivalent modulo =. Indeed, if f(x,y) = g(a(x),a(y)) for an
automorphism « of a,

37/38



Why is the classification so simple ?

This is because the isomorphism relation identifies too many objects, and
much more than C.T.C Wall's equivalence relation.

Recall that C.T.C Wall considers pairings on Q/Z and his equivalence
relation to classify them is the following (f,(a,a)) = (g, (b, b)) if, and only
if, there is an isomorphism «:: a — b such that f(x, y) = g(a(x), a(y)),
X,y € a.

For any abelian group without 2-torsion ¢, no two non-trivial (i.e., # 0)
bilinear maps f,g: a x a — ¢, f symmetric and g skew-symmetric, may be
equivalent modulo =. Indeed, if f(x,y) = g(a(x),a(y)) for an
automorphism « of a, then

glaly), alx)) = f(y,x)

37/38



Why is the classification so simple ?

This is because the isomorphism relation identifies too many objects, and
much more than C.T.C Wall's equivalence relation.

Recall that C.T.C Wall considers pairings on Q/Z and his equivalence
relation to classify them is the following (f,(a,a)) = (g, (b, b)) if, and only
if, there is an isomorphism «:: a — b such that f(x, y) = g(a(x), a(y)),
X,y € a.

For any abelian group without 2-torsion ¢, no two non-trivial (i.e., # 0)
bilinear maps f,g: a x a — ¢, f symmetric and g skew-symmetric, may be
equivalent modulo =. Indeed, if f(x,y) = g(a(x),a(y)) for an
automorphism « of a, then

gla(y), a(x)) = f(y,x) = f(x,y)

37/38



Why is the classification so simple ?

This is because the isomorphism relation identifies too many objects, and
much more than C.T.C Wall's equivalence relation.

Recall that C.T.C Wall considers pairings on Q/Z and his equivalence
relation to classify them is the following (f,(a,a)) = (g, (b, b)) if, and only
if, there is an isomorphism «:: a — b such that f(x, y) = g(a(x), a(y)),
X,y € a.

For any abelian group without 2-torsion ¢, no two non-trivial (i.e., # 0)
bilinear maps f,g: a x a — ¢, f symmetric and g skew-symmetric, may be
equivalent modulo =. Indeed, if f(x,y) = g(a(x),a(y)) for an
automorphism « of a, then

glaly), alx)) = f(y,x) = f(x,y) = g(a(x), a(y))

37/38



Why is the classification so simple ?

This is because the isomorphism relation identifies too many objects, and
much more than C.T.C Wall's equivalence relation.

Recall that C.T.C Wall considers pairings on Q/Z and his equivalence
relation to classify them is the following (f,(a,a)) = (g, (b, b)) if, and only
if, there is an isomorphism «:: a — b such that f(x, y) = g(a(x), a(y)),
X,y € a.

For any abelian group without 2-torsion ¢, no two non-trivial (i.e., # 0)
bilinear maps f,g: a x a — ¢, f symmetric and g skew-symmetric, may be
equivalent modulo =. Indeed, if f(x,y) = g(a(x),a(y)) for an
automorphism « of a, then

gla(y), a(x)) = fy,x) = f(x,y) = gla(x), aly)) = —g(a(y), a(x)).

37/38



Why is the classification so simple ?

This is because the isomorphism relation identifies too many objects, and
much more than C.T.C Wall's equivalence relation.

Recall that C.T.C Wall considers pairings on Q/Z and his equivalence
relation to classify them is the following (f,(a,a)) = (g, (b, b)) if, and only
if, there is an isomorphism «:: a — b such that f(x, y) = g(a(x), a(y)),
X,y € a.

For any abelian group without 2-torsion ¢, no two non-trivial (i.e., # 0)
bilinear maps f,g: a x a — ¢, f symmetric and g skew-symmetric, may be
equivalent modulo =. Indeed, if f(x,y) = g(a(x),a(y)) for an
automorphism « of a, then

gla(y), a(x)) = fy,x) = f(x,y) = gla(x), aly)) = —g(a(y), a(x)).

Let p > 2 be a prime number, and let f,, f_: (Z/pZ)? x (Z/pZ)* — Z/pZ
given by £((x1,x2), (x3,xa)) = x1xa x xox3, x € { £ }.

37/38



Why is the classification so simple ?

This is because the isomorphism relation identifies too many objects, and
much more than C.T.C Wall's equivalence relation.

Recall that C.T.C Wall considers pairings on Q/Z and his equivalence
relation to classify them is the following (f,(a,a)) = (g, (b, b)) if, and only
if, there is an isomorphism «:: a — b such that f(x, y) = g(a(x), a(y)),
X,y € a.

For any abelian group without 2-torsion ¢, no two non-trivial (i.e., # 0)
bilinear maps f,g: a x a — ¢, f symmetric and g skew-symmetric, may be
equivalent modulo =. Indeed, if f(x,y) = g(a(x),a(y)) for an
automorphism « of a, then

gla(y), a(x)) = fy,x) = f(x,y) = gla(x), aly)) = —g(a(y), a(x)).

Let p > 2 be a prime number, and let f,, f_: (Z/pZ)? x (Z/pZ)* — Z/pZ
given by £ ((x1,x2), (x3,%a)) = x1X4 *x x2x3, * € { & }. We observe that ;.
is symmetric, while f_ is skew-symmetric.

37/38



Why is the classification so simple ?

This is because the isomorphism relation identifies too many objects, and
much more than C.T.C Wall's equivalence relation.

Recall that C.T.C Wall considers pairings on Q/Z and his equivalence
relation to classify them is the following (f,(a,a)) = (g, (b, b)) if, and only
if, there is an isomorphism «:: a — b such that f(x, y) = g(a(x), a(y)),
X,y € a.

For any abelian group without 2-torsion ¢, no two non-trivial (i.e., # 0)
bilinear maps f,g: a x a — ¢, f symmetric and g skew-symmetric, may be
equivalent modulo =. Indeed, if f(x,y) = g(a(x),a(y)) for an
automorphism « of a, then

gla(y), a(x)) = fy,x) = f(x,y) = gla(x), aly)) = —g(a(y), a(x)).

Let p > 2 be a prime number, and let f,, f_: (Z/pZ)? x (Z/pZ)* — Z/pZ
given by £ ((x1,x2), (x3,%a)) = x1X4 *x x2x3, * € { & }. We observe that ;.
is symmetric, while f_ is skew-symmetric. Thus they cannot be equivalent
mod =,

37/38



Why is the classification so simple ?

This is because the isomorphism relation identifies too many objects, and
much more than C.T.C Wall's equivalence relation.
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relation to classify them is the following (f,(a,a)) = (g, (b, b)) if, and only
if, there is an isomorphism «:: a — b such that f(x, y) = g(a(x), a(y)),
X,y € a.
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automorphism « of a, then

gla(y), a(x)) = fy,x) = f(x,y) = gla(x), aly)) = —g(a(y), a(x)).

Let p > 2 be a prime number, and let f,, f_: (Z/pZ)? x (Z/pZ)* — Z/pZ
given by £ ((x1,x2), (x3,%a)) = x1X4 *x x2x3, * € { & }. We observe that ;.
is symmetric, while f_ is skew-symmetric. Thus they cannot be equivalent
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To conclude

When ¢ = Q/Z, the classification of pairings is achieved (there is a
one-one correspondence between isomorphic classes of finite abelian groups
and isomorphic classes of pairings).

To obtain more isomorphic classes we must

- either consider other choices for ¢, for instance a finite non-cyclic abelian
group (in the case c is finite, it may be proved that f: a® b — cis a
pairing, then a and b share the same exponent).

- or consider the category of finite commutative monoids in which we
should have a richer structure for the moduli space of pairings since there is
no dualizable object such as Q/Z.
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