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Lie algebras

Let R be a commutative ring with a unit.

A Lie algebra (g, [−,−]) is the data of a R-module g and a bilinear binary
operation [−,−] : g× g→ g, called the Lie bracket, such that

It is alternating: [x , x ] = 0 for every x ∈ g.

It satisfies the Jacobi identity

[x , [y , z ]] + [y , [x , z ]] + [z , [x , y ]] = 0

for each x , y , z ∈ g.

A Lie algebra is said to be commutative whenever its bracket is the zero
map.
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Universal enveloping algebra

Any (say unital and associative) algebra (A, ·) may be turned into a Lie
algebra when equipped with the commutator bracket

[x , y ] = x · y − y · x .

Actually this defines a functor from the category Ass to the category Lie.

This functor admits a left adjoint namely the universal enveloping algebra
U(g) of a Lie algebra g.

One has
U(g) ∼= T(g)/〈xy − yx − [x , y ] : x , y ∈ g〉

where T(M) is the tensor algebra of a R-module M.
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Poincaré-Birkhoff-Witt theorem

Let g be a Lie algebra (over R).

Let j : g→ U(g) be the Lie map defined as the composition

g
incl−−→ T(g)

π−→ U(g) (where π is the canonical projection, and U(g) is seen
as a Lie algebra under its commutator bracket).

PBW Theorem
If R is a field, then j is one-to-one.

More generally, P.M. Cohn proved in 1963 that if the underlying R-module
of g is torsion-free, then j is one-to-one.
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Question

Is there a way to extend the notion of universal enveloping algebra to the
differential setting?

Yes. And even (at least) two different ways.

The first one is a somewhat “trivial” extension. Indeed, a derivation on an
algebra is also a derivation for its commutator bracket. Moreover the
universal enveloping algebra may be equipped with a derivation that
extends the derivation of the Lie algebra, and the Poincaré-Birkhoff-Witt
theorem remains unchanged.

The other one is rather different (since it is not based on the commutator)
and is sketched hereafter.
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Wronskian bracket
Now, let us assume that (A, ·, d) is a differential commutative algebra.

There is another bracket given by the Wronskian

W (x , y) = x · d(y)− d(x) · y

which turns A into a Lie algebra.

The above correspondence is actually functorial.

Whence one can ask a few
questions:

1 Does it admit a left adjoint ? In other terms, is there a universal
enveloping differential (commutative) algebra ? (Call it the Wronskian
enveloping algebra.) Yes.

2 Under which assumptions the canonical map from a Lie algebra to its
differential enveloping algebra is one-to-one ? Unfortunatly, I don’t
know the answer yet.

In this talk I will only address the first question.
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Equational varieties
A class V of Σ-algebras is said to be an equational variety when each
member of the class satisfies some given axioms or identities.

Each variety of Σ-algebras with its homomorphisms (maps preserving the
structural operations) forms a category.

One of the key features of equational varieties is the fact that they come
equipped with a forgetful functor UV : V→ Set (it maps an algebra to its
carrier set). So they are concrete categories over Set (and even monadic).

Some (counter-)examples
Semigroups, inverse semigroups, monoids, commutative monoids,
groups, abelian groups, rings, R-algebras for a unital commutative
ring, Lie algebras, Jordan algebras, etc.

Fields (the inverse operation is only partially defined) and the category
of monoids with invertible elements (groups!), because it is not closed
under sub-algebras (e.g., the sub-monoid N of Z).

9 / 40



Algebraic functors

Let V and W be two equational varieties of Σ-algebras.

A functor F : V→W is said to be an algebraic functor if it preserves the
forgetful functors, i.e., UW ◦ F = UV.

Theorem (Bill Lawvere)
Any algebraic functor admits a left adjoint.

In particular the forgetful functor UV itself has a left adjoint. Hence for any
set X , there exists a free algebra V[X ] in the variety V.
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Generalities about differential algebras

Let R be a commutative ring with a unit.

Let V be a variety of (not necessarily associative nor unital) R-algebras
(i.e., R-modules M with a binary operation · : M ⊗R M → M subject to
some axioms).

For V have in mind Ass or Lie.

A derivation d : M → M is a R-linear map that satisfies Leibniz identity

d(x · y) = d(x) · y + x · d(y) .

By considering algebras (M, ·) of V with a derivation d and
homomorphisms of algebras commuting with derivations, one gets a variety,
say DiffV, of differential algebras (in V).
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Differential ideals

A (differential) ideal I of a differential algebra (M, ·, d) is just an ideal of
(M, ·) (i.e., M · I ⊆ I ⊇ I ·M) such that d(I ) ⊆ I .

It turns out that M/I becomes a differential algebra with derivation
d̃(x + I ) = d(x) + I and the natural epimorphism M → M/I is a
homomorphism of differential algebras.

It makes also sense to talk about the least differential ideal generated by a
set.
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Reflective sub-category (1/2)

The variety V embeds into the variety DiffV since any algebra in V may be
seen as a differential algebra with the zero (or trivial) derivation.

Of course this embedding preserves the forgetful functors, hence admits a
left adjoint, i.e., V is a reflective sub-category of DiffV, this means that
any differential algebra (in V) “freely generates” an algebra in V.

The construction: let (M, ·, d) be a member of DiffV. Let Id be the
(algebraic) ideal generated im(d). Thus, M/Id is a member of V, and the
natural projection π : M → M/Id is a homomorphism of algebras.
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Reflective sub-category (2/2)
Universal property

Given an algebra (N, ·) and a homomorphism of differential algebras
φ : (M, ·, d)→ (N, ·, 0), because φ ◦ d = 0, it passes to the quotient and
gives rise to a unique homomorphism of algebras φ̂ : (M/Id , ·)→ (N, ·)
such that φ̂ ◦ π = φ.
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Forgetful functor (1/2)

Conversely, there is an obvious forgetful functor DiffV→ V which also
admits a left adjoint.

Hence any algebra in V “freely generates” a differential algebra (in V).

The construction: let (M, ·) be an algebra in V. Let FDiffV (|M|) be the
free differential algebra generated by the set |M| (carrier set of (M, ·)), and
let j : |M| → |FDiffV (|M|)| be the canonical inclusion. Let I be the
differential ideal generated by j(x + y)− j(x)− j(y), j(x · y)− j(x)j(y),
j(rx)− rj(x), x , y ∈ |M|, r ∈ R .

Then, FDiffV (|M|)/I is the free differential algebra generated by (M, ·).
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Forgetful functor (2/2)
Universal property

Let (N, ·, e) be a differential algebra, and let φ : (M, ·)→ (N, ·) be an
algebra map.

Let φ̂ : FDiffV (|M|)→ (N, ·, e) be the unique differential algebra map such
that φ̂ ◦ j = φ.

Of course I ⊆ ker φ̂ (since φ is an algebra map).

Hence there is a unique differential algebra map
φ̃ : FDiffV (|M|)/I → (N, ·, e) such that φ̃ ◦ π ◦ j = φ.
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Extension of the usual universal enveloping algebra to the
differential setting

Let (A, d) be a differential (associative) algebra.

One has d([x , y ]) = d(xy − yx) = d(x)y + xd(y)− d(y)x − yd(x) =
[d(x), y ] + [x , d(y)]. Hence, (A, [−,−], d) is a differential Lie algebra.

This gives rise to a functor DiffAss→ DiffLie which makes commute the
following diagram (of forgetful functors).

DiffAssComm. bracket//

forgets der .
��

DiffLie

forgets der .
��

Ass //
Comm. bracket

// Lie

All functors in this diagram admit a left adjoint.
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A construction

Let (g, [−,−], d) be a differential Lie algebra.

Let ∂ be the unique derivation on T(g) that extends d . It satisfies
∂(xy−yx−[x , y ]) = d(x)y+xd(y)−d(y)x−yd(x)−[d(x), y ]−[x , d(y)] =
d(x)y − yd(x)− [d(x), y ] + xd(y)− d(y)x − [x , d(y)], so it factors as a
linear map ∂̃ : U(g)→ U(g) which is easily seen to be a derivation.
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Universal property (1/2)

(U(g), ∂̃) satisfies the following universal property:

Let (A,D) be a differential algebra, and let
φ : (g, [−,−], d)→ (A, [−,−],D) be a homomorphism of differential Lie
algebras.

Then, there is a unique homomorphism of differential algebras
φ̂ : (U(g), ∂̃)→ (A,D) such that φ̂ ◦ j = φ.
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Universal property (2/2)

Indeed, φ is of course a homomorphism of Lie algebras from (g, [−,−]) to
(A, [−,−]), hence there is a unique algebra map φ̂ : U(g)→ A such that
φ̂ ◦ j = φ.

It remains to check that φ̂ commutes to the derivations.

Let φ̄ : T(g)→ A
be the unique algebra map that extends φ. Of course, φ̄ = φ̂ ◦ π. By
recurrence (on the length of a simple tensor) one can check that
φ̄ ◦ ∂ = D ◦ φ̄ (one uses the fact that φ commutes to the derivations).
Thus, one has φ̂ ◦ ∂̃ ◦ π = φ̂ ◦ π ◦ ∂ = φ̄ ◦ ∂ = D ◦ φ̄ = D ◦ φ̂ ◦ π. Hence
φ̂ ◦ ∂̃ = D ◦ φ̂ (since π is onto).
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The Wronskian bracket

Let (A, d) be a commutative differential (associative and unital) R-algebra.

Let us define the Wronskian bracket

W (x , y) := xd(y)− d(x)y .

Of course it is alternating W (x , x) = xd(x)− d(x)x = 0 (since A is
commutative).

Moreover it satisfies Jacobi identity.

Hence (A,W ) turns to be a Lie algebra.
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Moreover d(W (x , y)) = d(xd(y)− d(x)y) =
d(x)d(y) + xd2(y)− d2(x)y − d(x)d(y) = xd2(y)− d2(x)y .

While
W (d(x), y) + W (x , d(y)) = d(x)d(y)− d2(x)y + xd2(y)− d(x)d(y).

Hence (A,W , d) is a differential Lie algebra.

This defines a functor, say the Wronskian, (A, d) 7→ (A,W , d) from
DiffComAss to DiffLie.
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Wronskian enveloping algebra

One observes that the Wronskian functor preserves the obvious forgetful
functors,

so it is an algebraic functor,

and it admits a left adjoint W, the Wronskian enveloping algebra.
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Construction of the differential enveloping algebra (1/2)

Let (g, [−,−], d) be a differential Lie algebra.

Let S(g) be the symmetric algebra of the module g which becomes a
differential algebra with the unique derivation ∂ that extends the map
∂(x) = d(x) on the generators x ∈ g

Remark
Actually, one defines the derivation ∂ on the tensor algebra T(g), and since
it commutes to the permutation of variables, it factors through S(g).
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Construction of the Wronskian enveloping algebra (2/2)

Let us consider the (algebraic) ideal I generated by d(x)y − xd(y)− [x , y ],
x , y ∈ g.

One observes that ∂(I ) ⊆ I . Hence I is actually a differential ideal.

Then, the Wronskian enveloping algebra W(g, [−,−], d) is (S(g)/I , ∂̃).
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Universal property of the Wronskian enveloping algebra

Let (A, δ) be any commutative differential algebra, and let
φ : (g , [−,−], d) 7→ (A,W , δ) be a homomorphism of differential Lie
algebras.

Then, there exists a unique differential algebra map
φ̃ : (S(g)/I , ∂̃)→ (A, δ) such that φ̃(x + I ) = φ(x) for each x ∈ g.
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Proof

Let φ̂ : S(g)→ A be the unique algebra map that extends φ.

One easily observes that φ̂ commutes to the derivations, and so defines a
homomorphism of differential algebras.

Moreover it satisfies
φ̂(d(x)y − xd(y)− [x , y ]) = δ(φ(x))φ(y)− φ(x)δ(φ(y))− [φ(x), φ(y)] =
W (φ(x), φ(y))− [φ(x), φ(y)] = 0.

Hence it factors through I and provides a unique homomorphism of
differential algebras φ̃ from (S(g)/I , ∂̃) to (A, δ) such that
φ̃(x + I ) = φ(x), x ∈ g.
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A special case: a Lie algebra with the zero derivation

Let (g, [−,−]) be a Lie algebra. Then it may be faithfully identified with
the differential Lie algebra (g, [−,−], 0).

The derivation on S(g) that extends the zero derivation is also just the zero
derivation.

The differential ideal I is equal to the (algebraic) ideal generated by [x , y ],
x , y ∈ g.

Hence it follows that in case g is not commutative (i.e., [−,−] is not
identically null), g does not embed into its universal enveloping differential
(commutative) algebra W(g) even if R is a field!

Of course if g is a commutative Lie algebra (i.e., with a zero bracket), then
it embeds into its Wronskian enveloping algebra which is just S(g) (and the
same as its universal enveloping algebra).
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sl2(K)

Let K be a field of characteristic zero.

The Lie algebra sl2(K) embeds into the algebra of vector fields of K[x ] by
the identification of the elements of its Chevalley basis e = −1, h = −2x ,
and f = x2 (the familiar commutation rules are satisfied [h, e] = 2e,
[h, f ] = −2f and [e, f ] = h).

It is a differential Lie algebra when equipped with the usual derivation of
polynomials.

Hence it embeds into the commutative differential algebra (K[x ], ∂) as a
sub-Lie algebra under the Wronskian bracket, therefore it embeds into its
Wronskian enveloping algebra.
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Conclusion

The problem of embeddability of a differential Lie algebra into its
Wronskian enveloping algebra seems to be quite harder than the classical
situation (e.g., the case of a non-commutative differential Lie algebra with
a zero derivation).

It also seems to be connected to the (faithful) realization of a Lie algebra
as a Lie algebra of vector fields. For instance, given two polynomials (seen
as vector fields) P(x) d

dx ,Q(x) d
dx , one has

[P(x) d
dx ,Q(x) d

dx ] = W (P(x),Q(x)) d
dx .

But Lie algebras of vector fields satisfy some non-trivial identities.
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Generalities about Rota-Baxter algebras
Let R be a commutative ring with a unit.

Let V be a variety of (not
necessarily associative nor unital) R-algebras (i.e., modules M with a
bilinear binary operation · : M ×M → M).

A Rota-Baxter operator (of weight zero) B : M → M is a R-linear map
satisfying the Rota-Baxter identity

B(x) · B(y) = B(B(x) · y + x · B(y)) .

By considering algebras (M, ·) of V with a Rota-Baxter operator R and
homomorphisms commuting with the Rota-Baxter operators, one obtains a
variety RBV of Rota-Baxter algebras. In what follows we are interested in
the cases where V = Ass and V = Lie.

The variety V embeds into the variety RBV since any algebra in V may be
seen as a Rota-Baxter algebra with the trivial Rota-Baxter operator.
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Rota-Baxter (associative) algebras

Let us consider a Rota-Baxter (associative) algebra (of weight zero)
(A, ·,B).

Let us define the double product

x ∗B y := B(x) · y + x · B(y) .

This bilinear product is associative, so that (A, ∗B) is an (associative)
algebra.

Moreover, B becomes an algebra map from (A, ∗B) to (A, ·).
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The double Rota-Baxter algebra

(A, ∗B ,B) is again a Rota-Baxter algebra.

Indeed,
B(x) ∗B B(y) = B2(x) ·B(y) + B(x) ·B2(y) = B(B(x) ∗B y + x ∗B B(y)).

Moreover, given a Rota-Baxter map φ : (A1, ·,B1)→ (A2, ·,B2), then φ is
also a Rota-Baxter map from (A1, ∗B1 ,B1) to (A2, ∗B2 ,B2). Indeed,
φ(x ∗B1 y) = φ(B1(x)) · φ(y) + φ(x) · φ(B1(y)) =
B2(φ(x)) · φ(y) + φ(x) · B2(φ(y)) = φ(x) ∗B2 φ(y).

Hence one gets a functor Dbl : RBAss→ RBAss.
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Rota-Baxter Lie algebras

The same phenomenon occurs in the case of Rota-Baxter Lie algebras.

A Rota-Baxter Lie algebra is given as a 3-tuple (g, [−,−],B) where
(g, [−,−]) is a Lie algebra and B : g→ g is a linear map satisfying the
Rota-Baxter identity

[B(x),B(y)] = [[B(x), y ] + [x ,B(y)]] .

Let us once again define the double bracket

[x , y ]B := [B(x), y ] + [x ,B(y)] .
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Double bracket

The double bracket is of course alternating (since [−,−] is so).

It satisfies Jacobi identity. Indeed,
[x , [y , z ]B ]B = [B(x), [y , z ]B ] + [x ,B([y , z ]B)] =
[B(x), [B(y), z ] + [y ,B(z)]] + [x ,B([B(y), z ] + [y ,B(z)])] =
[B(x), [B(y), z ]] + [B(x), [y ,B(z)]] + [x , [B(y),B(z)]].

[[x , y ]B , z ]B = [B([x , y ]B), z ] + [[x , y ]B ,B(z)] =
[B([B(x), y ] + [x ,B(y)]), z ] + [[B(x), y ] + [x ,B(y)],B(z)] =
[[B(x),B(y)], z ] + [[B(x), y ],B(z)] + [[x ,B(y)],B(z)].

[y , [x , z ]B ]B = [B(y), [x , z ]B ] + [y ,B([x , z ]B)] =
[B(y), [B(x), z ] + [x ,B(z)]] + [y ,B([B(x), z ] + [x ,B(z)])] =
[B(y), [B(x), z ]] + [B(y), [x ,B(z)]] + [y , [B(x),B(z)]].

Hence (g, [−,−]B) is again a Lie algebra
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The double Rota-Baxter Lie algebra

Moreover B([x , y ]B) = B([B(x), y ] + [x ,B(y)]) = [B(x),B(y)] hence B is
a Lie map from (g, [−,−]B) to (g, [−,−]).

It follows that
[B(x),B(y)]B = [B2(x),B(y)] + [B(x),B2(y)] = B([B(x), y ] + [x ,B(y)])
= B([x , y ]B), hence (g, [−,−]B ,B) is a Rota-Baxter Lie algebra.

Therefore one gets a functor DblLie : RBLie→ RBLie.
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Commutator

Let (A, ·,B) be a Rota-Baxter algebra.

Then, (A, [−,−],B) is a
Rota-Baxter Lie algebra (where [−,−] is the commutator bracket).

Indeed,
[B(x),B(y)] = B(x)B(y)− B(y)B(x) = B(B(x)y + xB(y)− B(y)x −
yB(x)) = B(B(x)y − yB(x) + xB(y)−B(y)x) = B([B(x), y ] + [x ,B(y)]).

Therefore, one gets a functor RBAss→ RBLie.
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Commutative diagram of “forgetful” functors

Ass Comm. bracket // Lie

RBAss

forgets RB op.

OO

Comm. bracket
// RBLie

forgets RB op.

OO

RBAss

Dbl

OO

Comm. bracket
// RBLie

DblLie

OO

Each of these functors is algebraic, hence admits a left adjoint.

In
particular, one can form the universal enveloping Rota-Baxter algebra on a
Rota-Baxter Lie algebra.
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