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Lie algebras

Let R be a commutative ring with a unit.

A Lie algebra (g,[—, —]) is the data of a R-module g and a bilinear binary
operation [—, —]: g X g — g, called the Lie bracket, such that

e It is alternating: [x,x] = 0 for every x € g.

o It satisfies the Jacobi identity

[Xv [y7z]] + [Y7 [X, Z]] + [27 [X,)/]] =0

for each x,y,z € g.

A Lie algebra is said to be commutative whenever its bracket is the zero
map.
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Universal enveloping algebra

Any (say unital and associative) algebra (A, -) may be turned into a Lie
algebra when equipped with the commutator bracket

[yl=x-y—y-x.
Actually this defines a functor from the category Ass to the category Lie.

This functor admits a left adjoint namely the universal enveloping algebra
U(g) of a Lie algebra g.

One has
U(g) = T(a)/(xy —yx =[x, y]: X,y € 9)
where T(M) is the tensor algebra of a R-module M.
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Poincaré-Birkhoff-Witt theorem

Let g be a Lie algebra (over R).

Let j: g — U(g) be the Lie map defined as the composition

incl

g == T(g) = U(g) (where 7 is the canonical projection, and U(g) is seen
as a Lie algebra under its commutator bracket).

PBW Theorem J

If R is a field, then j is one-to-one.

More generally, P.M. Cohn proved in 1963 that if the underlying R-module
of g is torsion-free, then j is one-to-one.
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Question

Is there a way to extend the notion of universal enveloping algebra to the
differential setting?
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differential setting?

Yes. And even (at least) two different ways.

The first one is a somewhat “trivial” extension. Indeed, a derivation on an
algebra is also a derivation for its commutator bracket. Moreover the
universal enveloping algebra may be equipped with a derivation that
extends the derivation of the Lie algebra, and the Poincaré-Birkhoff-Witt
theorem remains unchanged.

The other one is rather different (since it is not based on the commutator)
and is sketched hereafter.
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Wronskian bracket

Now, let us assume that (A, -, d) is a differential commutative algebra.

There is another bracket given by the Wronskian
W(x,y) =x-d(y) —d(x) -y
which turns A into a Lie algebra.

The above correspondence is actually functorial.
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Wronskian bracket

Now, let us assume that (A, -, d) is a differential commutative algebra.
There is another bracket given by the Wronskian

W(x,y) =x-d(y) —d(x) -y
which turns A into a Lie algebra.

The above correspondence is actually functorial. Whence one can ask a few
questions:

@ Does it admit a left adjoint 7 In other terms, is there a universal
enveloping differential (commutative) algebra 7 (Call it the Wronskian
enveloping algebra.) Yes.

@ Under which assumptions the canonical map from a Lie algebra to its
differential enveloping algebra is one-to-one 7 Unfortunatly, | don’t
know the answer yet.

In this talk | will only address the first question.
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Equational varieties

A class V of X-algebras is said to be an equational variety when each
member of the class satisfies some given axioms or identities.

Each variety of ¥-algebras with its homomorphisms (maps preserving the
structural operations) forms a category.

One of the key features of equational varieties is the fact that they come
equipped with a forgetful functor Uy: V — Set (it maps an algebra to its
carrier set). So they are concrete categories over Set (and even monadic).

Some (counter-)examples

@ Semigroups, inverse semigroups, monoids, commutative monoids,
groups, abelian groups, rings, R-algebras for a unital commutative
ring, Lie algebras, Jordan algebras, etc.

o Fields (the inverse operation is only partially defined) and the category
of monoids with invertible elements (groups!), because it is not closed
under sub-algebras (e.g., the sub-monoid N of Z).
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Algebraic functors

Let V and W be two equational varieties of X-algebras.

A functor F: V — W is said to be an algebraic functor if it preserves the
forgetful functors, i.e., Uy o F = Uy.

Theorem (Bill Lawvere) J

Any algebraic functor admits a left adjoint.

In particular the forgetful functor Uy itself has a left adjoint. Hence for any
set X, there exists a free algebra V[X] in the variety V.
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Generalities about differential algebras

Let R be a commutative ring with a unit.

Let V be a variety of (not necessarily associative nor unital) R-algebras
(i.e., R-modules M with a binary operation -: M ®g M — M subject to
some axioms).

For V have in mind Ass or Lie.
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Generalities about differential algebras

Let R be a commutative ring with a unit.

Let V be a variety of (not necessarily associative nor unital) R-algebras
(i.e., R-modules M with a binary operation -: M ®g M — M subject to
some axioms).

For V have in mind Ass or Lie.
A derivation d: M — M is a R-linear map that satisfies Leibniz identity
d(x-y)=d(x)-y+x-d(y) .

By considering algebras (M, -) of V with a derivation d and
homomorphisms of algebras commuting with derivations, one gets a variety,
say DiffV, of differential algebras (in V).
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Differential ideals

A (differential) ideal I of a differential algebra (M, -, d) is just an ideal of
(M,-) (i.e., M- 1 C 1 D 1- M) such that d(/) C /.

It turns out that M// becomes a differential algebra with derivation

d(x + 1) = d(x) + I and the natural epimorphism M — M/ is a
homomorphism of differential algebras.

It makes also sense to talk about the least differential ideal generated by a
set.
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Reflective sub-category (1/2)

The variety V embeds into the variety DiffV since any algebra in V may be
seen as a differential algebra with the zero (or trivial) derivation.

Of course this embedding preserves the forgetful functors, hence admits a

left adjoint, i.e., V is a reflective sub-category of DiffV, this means that
any differential algebra (in V) “freely generates” an algebra in V.
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Reflective sub-category (1/2)

The variety V embeds into the variety DiffV since any algebra in V may be
seen as a differential algebra with the zero (or trivial) derivation.

Of course this embedding preserves the forgetful functors, hence admits a
left adjoint, i.e., V is a reflective sub-category of DiffV, this means that
any differential algebra (in V) “freely generates” an algebra in V.

The construction: let (M, -, d) be a member of DiffV. Let Iy be the
(algebraic) ideal generated im(d). Thus, M/l; is a member of V, and the
natural projection m: M — M /Iy is a homomorphism of algebras.
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Reflective sub-category (2/2)

Universal property

Given an algebra (N, -) and a homomorphism of differential algebras

¢: (M,-,d) — (N,-,0), because ¢ o d =0, it passes to the quotient and
gives rise to a unique homomorphism of algebras ¢: (M/l4,-) — (N, )
such that ¢ o = ¢.
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Forgetful functor (1/2)

Conversely, there is an obvious forgetful functor DiffV — V which also
admits a left adjoint.

Hence any algebra in V “freely generates” a differential algebra (in V).
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Forgetful functor (1/2)

Conversely, there is an obvious forgetful functor DiffV — V which also
admits a left adjoint.

Hence any algebra in V “freely generates” a differential algebra (in V).

The construction: let (M, -) be an algebra in V. Let FDiffV/(|M|) be the
free differential algebra generated by the set |M| (carrier set of (M, +)), and
let j: |M| — |FDiffV/(|M])| be the canonical inclusion. Let / be the
differential ideal generated by j(x + y) —j(x) —j(y), j(x - y) —j(x)j(y),
J(rx) —rj(x), x,y € [M|, r € R.

Then, FDiffV(|M])/] is the free differential algebra generated by (M, -).
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Forgetful functor (2/2)

Universal property

Let (N, -, e) be a differential algebra, and let ¢: (M,-) — (N, -) be an
algebra map.

Let ngﬁA: FDiffV(|M|) — (N, -, e) be the unique differential algebra map such
that g oj = ¢.

Of course | C ker ¢ (since ¢ is an algebra map).

Hence there is a unique differential algebra map
¢: FDIiffV(IM|)/1 — (N, -, e) such that g oo j = ¢.
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Extension of the usual universal enveloping algebra to the
differential setting

Let (A, d) be a differential (associative) algebra.

One has d([x, y]) = d(xy — yx) = d(x)y + xd(y) — d(y)x — yd(x) =
[d(x),y] + [x,d(y)]. Hence, (A,[—,—],d) is a differential Lie algebra.

This gives rise to a functor DiffAss — DiffLie which makes commute the
following diagram (of forgetful functors).

DiffAss=2m™- bkt g je
forgets der.i \Lforgets der.

Ass ——— > Lie
Comm. bracket

All functors in this diagram admit a left adjoint.
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A construction

Let (g,[—, —], d) be a differential Lie algebra.

Let O be the unique derivation on T(g) that extends d. It satisfies
Oy —yx =[x, y]) = d(x)y +xd(y) = d(y)x—yd(x) - [d(x), y] =[x, d(y)] =
d(x)y — yd(x) — [d(x),y] + xd(y) — d(y)x — [x,d(y)], so it factors as a

linear map 0: U(g) — U(g) which is easily seen to be a derivation.
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Universal property (1/2)

(U(g), D) satisfies the following universal property:

Let (A, D) be a differential algebra, and let
¢:(g,[—,—],d) = (A,[—, =], D) be a homomorphism of differential Lie
algebras.

Then, therNe is a unique homomorphism of differential algebras
¢: (u(g)aa) — (A, D) SUCh that ¢ O_j = d)
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Universal property (2/2)

Indeed, ¢ is of course a homomorphism of Lie algebras from (g, [, —]) to
(A,[—, —]), hence there is a unique algebra map ¢: U(g) — A such that
poj=o.

It remains to check that ¢ commutes to the derivations.
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Universal property (2/2)

Indeed, ¢ is of course a homomorphism of Lie algebras from (g, [, —]) to
(A,[—,—]), hence there is a unique algebra map ¢: U(g) — A such that

~

poj=o.

It remains to check that ¢ commutes to the derivations. Let ¢: T(g) — A
be the unique algebra map that extends ¢. Of course, ¢ = ¢ o 7. By
recurrence (on the length of a simple tensor) one can check that

¢ 00 = Do ¢ (one uses the fact that ¢ commutes to the derivations).
Thus, one has podom =dorod =¢od=Dod=Dodom. Hence
$od=Do¢ (since 7 is onto).
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The Wronskian bracket

Let (A, d) be a commutative differential (associative and unital) R-algebra.
Let us define the Wronskian bracket

W(x,y) :=xd(y) —d(x)y .

Of course it is alternating W(x, x) = xd(x) — d(x)x = 0 (since A is
commutative).

Moreover it satisfies Jacobi identity.

Hence (A, W) turns to be a Lie algebra.
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Moreover d(W(x,y)) = d(xd(y) — d(x)y) =
d(x)d(y) + xd?(y) — d*(x)y — d(x)d(y) = xd*(y) — d*(x)y.

While
W(d(x),y) + W(x,d(y)) = d(x)d(y) — d*(x)y + xd*(y) — d(x)d(y).

Hence (A, W, d) is a differential Lie algebra.

This defines a functor, say the Wronskian, (A, d) — (A, W, d) from
DiffComAss to DiffLie.
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Wronskian enveloping algebra

One observes that the Wronskian functor preserves the obvious forgetful
functors,

so it is an algebraic functor,

and it admits a left adjoint W, the Wronskian enveloping algebra.
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Construction of the differential enveloping algebra (1/2)

Let (g,[—, —], d) be a differential Lie algebra.

Let S(g) be the symmetric algebra of the module g which becomes a
differential algebra with the unique derivation 9 that extends the map
J(x) = d(x) on the generators x € g

Remark

Actually, one defines the derivation O on the tensor algebra T(g), and since
it commutes to the permutation of variables, it factors through S(g).
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Construction of the Wronskian enveloping algebra (2/2)

Let us consider the (algebraic) ideal / generated by d(x)y — xd(y) — [x, y],
X,y € 9.

One observes that 9(/) C . Hence [ is actually a differential ideal.

Then, the Wronskian enveloping algebra W(g, [—, —], d) is (S(g)/!,d).
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Universal property of the Wronskian enveloping algebra

Let (A, d) be any commutative differential algebra, and let
o: (g,[—,—),d) — (A W,5) be a homomorphism of differential Lie

algebras.

'I:hen, there exists a unique differen:cial algebra map
¢: (S(g)/1,0) — (A,0) such that ¢(x + 1) = ¢(x) for each x € g.
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Proof

Let ¢: S(g) — A be the unique algebra map that extends ¢.
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Proof

Let ¢: S(g) — A be the unique algebra map that extends ¢.

One easily observes that ¢ commutes to the derivations, and so defines a
homomorphism of differential algebras.

Moreover it satisfies

H(d(x)y —xd(y) = [x,¥]) = 8(6(x))9(y) = $(x)8(6(y)) — [$(x), 6(¥)]
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Let ¢: S(g) — A be the unique algebra map that extends ¢.
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homomorphism of differential algebras.
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W(o(x), ¢(y)) — [¢(x), &(¥)]
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homomorphism of differential algebras.
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Proof

Let ¢: S(g) — A be the unique algebra map that extends ¢.

One easily observes that ¢ commutes to the derivations, and so defines a
homomorphism of differential algebras.

Moreover it satisfies
P(d(x)y — xd(y) — [x,y]) = 4(
W(o(x), o(y)) — [¢(x), o(¥)] =

Hence it factors through / and provides a unique homomorphism of
differential algebras ¢ from (S(g)//, ) to (A, J) such that

Sx+1)=d(x), x € g. O

(() x))o(y) — ¢(x)o(o(y)) — [¢(x), o(y)] =
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A special case: a Lie algebra with the zero derivation

Let (g,[—, —]) be a Lie algebra. Then it may be faithfully identified with
the differential Lie algebra (g,[—, —],0).

The derivation on S(g) that extends the zero derivation is also just the zero
derivation.

The differential ideal / is equal to the (algebraic) ideal generated by [x, y],
X,y eg.

Hence it follows that in case g is not commutative (i.e., [, —] is not
identically null), g does not embed into its universal enveloping differential
(commutative) algebra W(g) even if R is a field!

Of course if g is a commutative Lie algebra (i.e., with a zero bracket), then
it embeds into its Wronskian enveloping algebra which is just S(g) (and the

same as its universal enveloping algebra).
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5[2(K)

Let K be a field of characteristic zero.

The Lie algebra sl»(K) embeds into the algebra of vector fields of K[x] by
the identification of the elements of its Chevalley basis e = —1, h = —2x,
and f = x2 (the familiar commutation rules are satisfied [h, €] = 2e,

[h, f] = —2f and [e, f] = h).

It is a differential Lie algebra when equipped with the usual derivation of
polynomials.

Hence it embeds into the commutative differential algebra (K[x],d) as a
sub-Lie algebra under the Wronskian bracket, therefore it embeds into its
Wronskian enveloping algebra.
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Conclusion

The problem of embeddability of a differential Lie algebra into its
Wronskian enveloping algebra seems to be quite harder than the classical
situation (e.g., the case of a non-commutative differential Lie algebra with
a zero derivation).

It also seems to be connected to the (faithful) realization of a Lie algebra

as a Lie algebra of vector fields. For instance, given two polynomials (seen

as vector fields) P(x)d%7 Q(X)%, one has

[P(x) & QL) &I = W(P(x), Q(x)) &

But Lie algebras of vector fields satisfy some non-trivial identities.
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Generalities about Rota-Baxter algebras

Let R be a commutative ring with a unit.
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A Rota-Baxter operator (of weight zero) B: M — M is a R-linear map
satisfying the Rota-Baxter identity

B(x)-B(y) = B(B(x) -y +x- B(y)) .

By considering algebras (M, -) of V with a Rota-Baxter operator R and
homomorphisms commuting with the Rota-Baxter operators, one obtains a
variety RBV of Rota-Baxter algebras. In what follows we are interested in
the cases where V = Ass and V = Lie.

The variety V embeds into the variety RBV since any algebra in V may be
seen as a Rota-Baxter algebra with the trivial Rota-Baxter operator.
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Rota-Baxter (associative) algebras

Let us consider a Rota-Baxter (associative) algebra (of weight zero)
(A,-,B).
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Let us consider a Rota-Baxter (associative) algebra (of weight zero)
(A,-,B).

Let us define the double product
xxgy:=B(x)-y+x-B(y) .

This bilinear product is associative, so that (A, xg) is an (associative)
algebra.

Moreover, B becomes an algebra map from (A, xg) to (A,-).
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The double Rota-Baxter algebra

(A, xg, B) is again a Rota-Baxter algebra.
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(A, xg, B) is again a Rota-Baxter algebra.

Indeed,
B(x) *g B(y) = B*(x) - B(y) + B(x) - B*(y) = B(B(x) *g y + x *5 B(y)).

Moreover, given a Rota-Baxter map ¢: (A1, -, B1) — (A2, -, B2), then ¢ is
also a Rota-Baxter map from (A, *g,, B1) to (A2, *g,, B2). Indeed,

P(x *g, y) = ¢(Bi(x)) - ¢(y) + ¢(x) - ¢(Bi(y)) =

Ba(¢(x)) - d(y) + ¢(x) - Ba(¢(y)) = &(x) *8, &(y)-
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The double Rota-Baxter algebra

(A, xg, B) is again a Rota-Baxter algebra.

Indeed,
B(x) *g B(y) = B*(x) - B(y) + B(x) - B*(y) = B(B(x) *g y + x *5 B(y)).

Moreover, given a Rota-Baxter map ¢: (A1, -, B1) — (A2, -, B2), then ¢ is
also a Rota-Baxter map from (A, *g,, B1) to (A2, *g,, B2). Indeed,

¢(x B, ¥) = ¢(Bi(x)) - (y) + ¢(x) - ¢(Bui(y)) =
Ba(¢(x)) - 8(y) + &(x) - Ba(6(y)) = ¢(x) 8, &(y).

Hence one gets a functor Db/: RBAss — RBAss.
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Rota-Baxter Lie algebras

The same phenomenon occurs in the case of Rota-Baxter Lie algebras.
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Rota-Baxter Lie algebras

The same phenomenon occurs in the case of Rota-Baxter Lie algebras.
A Rota-Baxter Lie algebra is given as a 3-tuple (g, [—, —], B) where

(g,[—,—]) is a Lie algebra and B: g — g is a linear map satisfying the
Rota-Baxter identity

[B(x), By)] = [[B(x), ¥] + [x; B)]] -
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Rota-Baxter Lie algebras

The same phenomenon occurs in the case of Rota-Baxter Lie algebras.
A Rota-Baxter Lie algebra is given as a 3-tuple (g, [—, —], B) where

(g,[—,—]) is a Lie algebra and B: g — g is a linear map satisfying the
Rota-Baxter identity

[B(x), By)] = [[B(x), ¥] + [x; B)]] -

Let us once again define the double bracket

[x,ylg := [B(x),y] + [x, B(y)] -

36 /40



Double bracket

The double bracket is of course alternating (since [—, —] is so).
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It satisfies Jacobi identity. Indeed,
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[B(x), [B(y),z] + Iy, B(2)ll + [x, B([B(y), 2] + [y, B(z)])] =
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[[x,¥]8,2]8 = [B(Ix, ¥]8), 2] + [[x, y]8, B(2)] =
[B([B(x), ¥] + [x, B(y)]), 2] + [[B(x), y] + [x, B(y)], B(2)] =
[[B(x), B()], 2] + + [x; B(y)l, B(2)].

[ya [X’Z]B]B = [B(y)7 [XvZ]B] + [y7 B([Xv Z]B)] -
[B(y).[B(x), 2] + [x, B(2)]] + [y, B([B(x), 2] + [x, B(z)])] =
[B(y).[B(x),z]l + [B(y). [x, B(z)]] + -

Hence (g,[—, —]B) is again a Lie algebra
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The double Rota-Baxter Lie algebra

Moreover B([x,y]|g) = B([B(x),y] + [x, B(y)]) = [B(x), B(y)] hence B is
a Lie map from (g,[—, —]g) to (g, [—, —])
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The double Rota-Baxter Lie algebra

Moreover B([x,y]|g) = B([B(x),y] + [x, B(y)]) = [B(x), B(y)] hence B is
a Lie map from (g,[—, —]g) to (g,[—, —])-

It follows that
[B(x), B(y)]s = [B*(x), B(y)] + [B(x), B*(y)]
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The double Rota-Baxter Lie algebra

Moreover B([x,y]|g) = B([B(x),y] + [x, B(y)]) = [B(x), B(y)] hence B is
a Lie map from (g,[—, —]g) to (g,[—, —])-

It follows that

[B(x), B(y)ls = [B?(x), B(y)] + [B(x), B(y)] = B([B(x).y] + [x, B(x)])
= B([x, y]g), hence (g,[—, —]B, B) is a Rota-Baxter Lie algebra.
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The double Rota-Baxter Lie algebra

Moreover B([x,y]|g) = B([B(x),y] + [x, B(y)]) = [B(x), B(y)] hence B is
a Lie map from (g,[—, —]g) to (g,[—, —])-

It follows that
[B(x), B(y)ls = [B?(x), B(y)] + [B(x), B(y)] = B([B(x).y] + [x, B(x)])
= B([x, y]g), hence (g,[—, —]B, B) is a Rota-Baxter Lie algebra.

Therefore one gets a functor Dbl;.: RBLie — RBLie.
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Commutator

Let (A, -, B) be a Rota-Baxter algebra.
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Let (A, -, B) be a Rota-Baxter algebra. Then, (A,[—,—],B) is a
Rota-Baxter Lie algebra (where [—, —] is the commutator bracket).

Indeed,
[B(x). B(y)] = B(x)B(y) — B(y)B(x)
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Commutator

Let (A, -, B) be a Rota-Baxter algebra. Then, (A,[—,—],B) is a
Rota-Baxter Lie algebra (where [—, —] is the commutator bracket).

Indeed,
[B(x), B(y)] = B(x)B(y) — B(y)B(x) = B(B(x)y + xB(y) — B(y)x —
yB(x)) = B(B(x)y — yB(x) + xB(y) — B(y)x) = B([B(x), y] + [x, B(y)])

Therefore, one gets a functor RBAss — RBLie.
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Commutative diagram of “forgetful” functors

Ass Comm. bracket Lie

forgets RB op.T Tforgets RB op.

RBAss ————— RBLie
Comm. bracket
DbIT TDbIL;e

RBAss ————— RBLie

Comm. bracket

Each of these functors is algebraic, hence admits a left adjoint.
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Ass Comm. bracket Lie

forgets RB op.T Tforgets RB op.

RBAss ————— RBLie
Comm. bracket
DbIT TDbIL;e

RBAss ————— RBLie

Comm. bracket

Each of these functors is algebraic, hence admits a left adjoint. In
particular, one can form the universal enveloping Rota-Baxter algebra on a

Rota-Baxter Lie algebra.
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