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“Combinatorial” monoids

• Finite decomposition monoid: For each x ∈ M, there are only finitely
many y , z ∈ M such that x = y ∗ z .

• Filtered monoid: A monoid together with a decreasing filtration
. . . ⊆ M2 ⊆ M1 ⊆ M0 ⊆ M such that xm ∗ xn ∈ Mm+n and 1 ∈ M0.

• Locally finite monoid: For each x ∈ M, there are only finitely many
x1, · · · , xn ∈ M \ { 1 } such that x = x1 ∗ · · · ∗ xn.
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Motivations
Large algebra

The class of finite decomposition monoids is the larger class for which
convolution of functions is possible.

Let R be a commutative ring with a unit. Let M be a finite decomposition
monoid. Then one can define the R-coalgebra R(M) (free module with
basis M)

∆(x) =
∑

x=y∗z
y ⊗ z

and
ε(x) = 1 .

It follows that one can consider its dual R-algebra R[[M]], called the large
algebra of M, of all functions from M to R . Its multiplication is given by
convolution

(f ∗ g)(x) =
∑

x=y∗z
f (y)g(z) .
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Motivations
Möbius inversion formula

When M is a locally finite monoid, then R[[M]] admits a structure of a
(complete) filtered algebra.

That makes it possible to consider a star operation. Given f ∈ R[[M]] such
that f (1) = 0, then one defines f ? =

∑
n≥0 f n .

It follows that { f ∈ R[[M]] : f (1) = 1 } is a subgroup of invertible elements
of R[[M]]. The inverse of f is given by (f − δ1)?.

Möbius inversion formula: let ζ =
∑

x∈M x (called the zêta function of M),
and let µ = ζ−1 (called the Möbius function of M). Then for all
f , g ∈ R[[M]],

g(x) =
∑

x=y∗z
f (y)⇔ f (x) =

∑
x=y∗z

g(y)µ(z) .
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Purpose of the talk

• Give a category-theoretic interpretation of these combinatorial monoids
as monoid objects in a monoidal category.

• Explain some known and new results using monoidal functors.
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Finite decomposition monoid

Let M be a monoid. It is said to be a finite decomposition monoid if its
product ∗ has finite fibers.

In details this means that for each x ∈ M, there are only finitely many
y , z ∈ M such that x = y ∗ z .
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Category-theoretic interpretation

Let us consider the category FinFibSet of all sets with finite-fiber maps. It
admits a structure of a symmetric monoidal category inherited from the
set-theoretic product.

The category of monoid objects in FinFibSet in then the category of finite
decomposition monoids (homomorphisms of monoids with finite fibers).
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Large algebra

A R-module is said to be a topologically free R-module whenever it is
isomorphic to a module of the form RX for some set X .

Each such module admits a linear topology whose basis of open
neighborhoods of zero is given by R(X\A) for finite subsets A ⊆ X .

Clearly lim←−A∈Pfin(X )
RX/R(X\A) ∼= lim←−A∈Pfin(X )

RA ∼= RX , hence RX is

complete in the inverse limit topology (where all RA are discrete), this
topology is equivalent to the product topology (with R discrete).

Let us denote by RTopFreeMod the category of all topologically free
modules with continuous linear maps.
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Completed tensor product

Let us provide to the algebraic tensor product RX ⊗R RY a linear topology
as follows.

For each A ∈ Pfin(X ) and B ∈ Pfin(Y ), let us consider the canonical map
RX ⊗R RY → RA ⊗R RB ∼= RA×B .

The kernels, say KA,B , of these maps form the basis of the topology.

And
RX×Y ∼= lim←−

A,B
RA×B ∼= lim←−

A,B
(RX ⊗R RY )/KA,B .
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Completed tensor product

One thus defines RX ⊗̂RRY = RX×Y (⊗̂ is a bifunctor), so that RX ⊗̂RRY

is the completion of RX ⊗R RY (in the linear topology).

There exists a continuous R-bilinear map can : RX × RY → RX ⊗̂RY .

Theorem (Universal property of ⊗̂)

Let φ : RX × RY → RZ be a continuous R-bilinear map. Then, there exists
a unique continuous R-linear map φ0 : RX ⊗̂RRY → RZ such that
φ0 ◦ can = φ.
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Monoidal category

RTopFreeMod with ⊗̂ becomes a symmetric monoidal category.

Let us define a functor R− : FinFibSet→ RTopFreeMod such that

X 7→ RX

and for φ : X → Y , let Rφ : RX → RY be given by

(Rφ)(f )(y) =
∑

x∈φ−1({ y })

f (x)

f ∈ RX , y ∈ Y .

R− is a monoidal functor, hence it lifts to a functor between categories of
monoid objects (it is a property of monoidal functors). One recovers
M 7→ R[[M]], where M is a finite decomposition monoid, and this corrects
the lack of functoriality of the large algebra as defined usually.
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Filtered sets

A (decreasing) filtration on a set X is a decreasing sequence (Xn)n of finite
subsets of X . (X , (Xn)n) is thus called a filtered set.

A morphism f : (X , (Xn)n)→ (Y , (Yn)n) is a set-theoretic map f : X → Y
such that for each n, f (Xn) ⊆ Yn. Such a map is said to be a
filtration-preserving map.

The category of all filtered sets admits a monoidal tensor
(X , (Xn)n)⊗ (Y , (Yn)n) = (X × Y , (T n(X ,Y ))n) with

T n(X ,Y ) =
n⋃

i=0

Xi × Yn−i .

The unit is the one-point set ∗ with filtration ∗n = ∅ for all n > 0 and
∗0 = ∗.
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Sub-monoidal categories

A filtered set (X , (Xn)n) is

• Exhausted if X = X0;

• Separated if
⋂

n≥0 Xn = ∅;

• Connected if it is both separated and exhausted, and X0 \ X1 = ∗.

A set X with an exhausted and separated filtration is equivalent to a set X
with a length function ` : X → N. (Xn := { x ∈ X : `(x) ≥ n } and
`(x) := sup{ n ∈ N : x ∈ Xn }.)

A filtered set is connected if, and only if, there is a unique element of
length zero.
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Locally finite monoid

A monoid M is said to be a locally finite monoid if for each x ∈ M, there
are only finitely many x1, · · · , xn ∈ M \ { 1 } such that x = x1 ∗ · · · ∗ xn.

Such a monoid is necessarily a finite decomposition monoid.

It may be equipped with a length function
`(x) = sup{ n ∈ N : ∃(x1, · · · , xn) ∈ M \ { 1 }, x = x1 ∗ · · · ∗ xn } that
satisfies `(x ∗ y) ≥ `(x) + `(y) and `(x) = 0 if, and only if, x = 1. It is
called the canonical length function.

Hence a locally finite monoid is also a monoid object in the monoidal
category of connected filtered sets.
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Monoid objects

One now considers the category cSet of all connected filtered sets with
finite-fiber and filtration-preserving maps. It is a monoidal category.

Theorem
A monoid object in cSet is precisely a locally finite monoid.

Proof: A monoid object in cSet is thus a usual monoid M with a
connected filtration (Mn)n of (two-sided) ideals of M. Let ` be its
associated length function. It thus satisfies `(x ∗ y) ≥ `(x) + `(y). Since it
is connected, `−1({ 0 }) = { 1 }. Let us assume that there exists some
x ∈ M with arbitrary long non-trivial decompositions. Then, for every n,
`(x) ≥ n (since x = x1 ∗ · · · ∗ xm, m ≥ n, xi 6= 1) which is impossible since
the filtration is separated.
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Filtered modules

Filtered module: A R-module M endowed with a (decreasing) filtration Mk
of submodules.

Filtered maps: Linear maps that respect the filtrations.

Complete filtered module: M ∼= lim←−n
M/Mk . Any filtered module M admits

a completion, namely M̂ = lim←−n
M/Mk . Let M̂n be the kernel of the

projection M̂ → M/Mn. Then M̂ is filtered (with (M̂n)n) and
M̂ ∼= lim←−n

M̂/M̂n.

Filtered tensor product: The algebraic tensor product M ⊗R N together
with the filtration

∑
i+j=n Mi ⊗R Nj .

Completed tensor product: M⊗̂N = M̂ ⊗R N.

Monoid objects: Filtered (complete) R-algebras.
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Large algebra

Let M be a locally finite monoid. Then, its canonical filtration induces
(functorially) a structure of an exhausted and separated filtered algebra on
R[[M]].

It is given by In = { f ∈ RM : ∀x(`(x) < n⇒ f (x) = 0) }.

The associated (linear) topology is always stronger than the product
topology (i.e., the canonical projections are continuous), and can be even
strictly stronger.

R[[M]] is complete in this topology but is not necessarily the completion of
R[M] with the induced topology.
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Remark

Of course R− is again a monoidal functor from the category of connected
filtered sets (with finite-fiber and filtration-preserving maps) to that of
complete filtered modules.

Hence it lifts to a functor R[[−]] from the category of locally finite monoids
to that of complete filtered algebras.

Remark
R[[M]] is an augmented algebra with augmentation ideal I1 (this is due to
the fact that M is connected as a filtered set).
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From large algebra to representable functor

Let M be a finite decomposition monoid.

Let us define a functor (−)M : cAlgR → Set by A 7→ AM .

It is representable with coordinate ring R[xa : a ∈ M] (polynomial ring in
the indeterminates xa, a ∈ M).
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Ring scheme (or Hopf ring)

Actually the multiplicative and additive structures of A[[M]] are natural in
the commutative algebra A. Hence A 7→ A[[M]] forms a ring object in the
category of representable functors.

By Yoneda lemma it induces a structure of a Hopf ring on R[xa : a ∈ M]
(i.e., a ring object in the category of cocommutative coalgebras or a
monoid object in the category of “abelian” Hopf algebras).

The additive part defines the abelian Hopf algebra structure with coalgebra
structure maps ∆prim(xa) = xa ⊗ 1 + 1⊗ xa, εprim(xa) = 0 and
Sprim(xa) = −xa, a ∈ M.

The multiplicative part induces a bialgebra with ∆(xa) =
∑

b∗c=a xb ⊗ xc
and ε(xa) = 1.

Of course both structures are related so that ring axioms hold.
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Reconstruction theorem

Theorem
The large algebra R[[M]] is isomorphic to the ring of R-rational points of
the ring scheme (−)[[M]].

Proof: This comes from cAlgR(R[xa : a ∈ M],R) ∼= R[[M]] (of course as
sets but also as rings).
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Locally finite monoids to Hopf algebras

Let M be a locally finite monoid.

Let A be a commutative R-algebra with a unit. Let us define
1 + I1(A) = { f : M → A : f (1) = 1 }. It is a subgroup of the group of
invertible elements of A[[M]].

It defines a group scheme A 7→ 1 + I1(A) with representing (or coordinate)
Hopf algebra R[xa : a ∈ M \ { 1 }].

The antipode S is given by S(xa) = µ(a) for each a ∈ M \ { 1 }, where µ is
the Möbius function of M.
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