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“Combinatorial’ monoids

e Finite decomposition monoid: For each x € M, there are only finitely
many y,z € M such that x = y * z.

e Filtered monoid: A monoid together with a decreasing filtration
...C My, C My C My C M such that x,, * x, € Mmin and 1 € My.

e Locally finite monoid: For each x € M, there are only finitely many
X1, 0, Xnp € M\ {1} such that x = xy % - -+ % x),.
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Motivations
Large algebra
The class of finite decomposition monoids is the larger class for which
convolution of functions is possible.

Let R be a commutative ring with a unit. Let M be a finite decomposition
monoid. Then one can define the R-coalgebra R(M) (free module with
basis M)

and

It follows that one can consider its dual R-algebra R[[M]], called the large
algebra of M, of all functions from M to R. Its multiplication is given by

convolution
(f =« g)( Z f(y

X=y*z
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Motivations

Mabius inversion formula

When M is a locally finite monoid, then R[[M]] admits a structure of a
(complete) filtered algebra.

That makes it possible to consider a star operation. Given f € R[[M]] such
that f(1) = 0, then one defines f* =3 ., f".

It follows that { f € R[[M]]: f(1) = 1} is a subgroup of invertible elements
of R[[M]]. The inverse of f is given by (f — 01)*.

M&bius inversion formula: let ¢ =, x (called the zéta function of M),

and let p = ¢~ (called the M&bius function of M). Then for all
f,g € R[M]],

gx)= ) feflx)= ) sn@).

X=y*z X=y*z
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e Give a category-theoretic interpretation of these combinatorial monoids
as monoid objects in a monoidal category.
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Purpose of the talk

e Give a category-theoretic interpretation of these combinatorial monoids
as monoid objects in a monoidal category.

e Explain some known and new results using monoidal functors.
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Finite decomposition monoid

Let M be a monoid. It is said to be a finite decomposition monoid if its
product x has finite fibers.
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Finite decomposition monoid

Let M be a monoid. It is said to be a finite decomposition monoid if its
product x has finite fibers.

In details this means that for each x € M, there are only finitely many
¥,z € M such that x = y % z.
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Category-theoretic interpretation

Let us consider the category FinFibSet of all sets with finite-fiber maps. It
admits a structure of a symmetric monoidal category inherited from the
set-theoretic product.
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Category-theoretic interpretation

Let us consider the category FinFibSet of all sets with finite-fiber maps. It
admits a structure of a symmetric monoidal category inherited from the
set-theoretic product.

The category of monoid objects in FinFibSet in then the category of finite
decomposition monoids (homomorphisms of monoids with finite fibers).
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A R-module is said to be a topologically free R-module whenever it is
isomorphic to a module of the form RX for some set X.

Each such module admits a linear topology whose basis of open
neighborhoods of zero is given by R(X\A) for finite subsets A C X.

; X X\A) o~ | A~ pX X
Clearly MAG‘BHH(X) RX | RX\A) =~ MAG‘Bﬁn(X) R” = R”, hence R” is

complete in the inverse limit topology (where all R are discrete), this
topology is equivalent to the product topology (with R discrete).

Let us denote by R TopFreeMod the category of all topologically free
modules with continuous linear maps.
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Completed tensor product

Let us provide to the algebraic tensor product RX @z RY a linear topology
as follows.

For each A € P, (X) and B € Pin(Y), let us consider the canonical map
RX @r RY — RA®r RE = RAXEB,

The kernels, say K4 g, of these maps form the basis of the topology.

And
RXXY o |<,_ RAXB o~ LiLn(RX ®r R")/Kap -
A,B AB
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Completed tensor product

One thus defines RX&pRY = RX*Y (& is a bifunctor), so that RX&rRY
is the completion of RX ®g RY (in the linear topology).
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Completed tensor product

One thus defines RX&pRY = RX*Y (& is a bifunctor), so that RX&rRY
is the completion of RX ®g RY (in the linear topology).

There exists a continuous R-bilinear map can: RX x RY — RX&RY.

Theorem (Universal property of ®)

Let ¢: RX x RY — RZ be a continuous R-bilinear map. Then, there exists
a unique continuous R-linear map ¢o: RX&rRY — RZ such that

¢p © can = ¢.
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Monoidal category
rTopFreeMod with & becomes a symmetric monoidal category.
Let us define a functor R~ : FinFibSet — g TopFreeMod such that
X+ RX

and for ¢: X — Y, let R?: RX — RY be given by
RO = > fx)
x€p1({y})

feRX yey.

R~ is a monoidal functor, hence it lifts to a functor between categories of
monoid objects (it is a property of monoidal functors). One recovers

M — R[[M]], where M is a finite decomposition monoid, and this corrects
the lack of functoriality of the large algebra as defined usually.
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A (decreasing) filtration on a set X is a decreasing sequence (X,), of finite
subsets of X. (X, (Xp)n) is thus called a filtered set.
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Filtered sets

A (decreasing) filtration on a set X is a decreasing sequence (X,), of finite
subsets of X. (X, (Xp)n) is thus called a filtered set.

A morphism f: (X, (Xn)n) = (Y, (Yn)n) is a set-theoretic map f: X — Y
such that for each n, f(X,) C Y. Such a map is said to be a

filtration-preserving map.

The category of all filtered sets admits a monoidal tensor
(X, (Xn)n) @ (Y, (Ya)n) = (X x Y, (T"(X,Y))n) with

(X, Y) = Xix Yoi.
i=0

The unit is the one-point set * with filtration *, = () for all n > 0 and
X0 = *.
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Sub-monoidal categories

A filtered set (X, (Xp)n) is
e Exhausted if X = X;
e Separated if ﬂnZO X, = 0;

e Connected if it is both separated and exhausted, and Xp \ X = *.
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Sub-monoidal categories

A filtered set (X, (Xp)n) is

e Exhausted if X = X;

o Separated if (50 Xn = 0;

e Connected if it is both separated and exhausted, and Xp \ X = *.

A set X with an exhausted and separated filtration is equivalent to a set X
with a length function £: X — N. (X, :={x € X: {(x) > n} and
Ux):=sup{neN:xe X,}.)

A filtered set is connected if, and only if, there is a unique element of
length zero.
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A monoid M is said to be a locally finite monoid if for each x € M, there
are only finitely many xi,--- ,x, € M\ {1} such that x = xj * - - - * x,,.
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Such a monoid is necessarily a finite decomposition monoid.
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called the canonical length function.
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Locally finite monoid

A monoid M is said to be a locally finite monoid if for each x € M, there
are only finitely many x1,--- ,x, € M\ {1} such that x = x3 * - - % x.

Such a monoid is necessarily a finite decomposition monoid.

It may be equipped with a length function

Ux)=sup{neN:3I(x1, - ,xp) € M\ {1}, x=x1%---%xp } that
satisfies £(x * y) > {(x) + £(y) and £(x) = 0 if, and only if, x = 1. It is

called the canonical length function.

Hence a locally finite monoid is also a monoid object in the monoidal
category of connected filtered sets.
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Monoid objects

One now considers the category cSet of all connected filtered sets with
finite-fiber and filtration-preserving maps. It is a monoidal category.
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Monoid objects

One now considers the category cSet of all connected filtered sets with
finite-fiber and filtration-preserving maps. It is a monoidal category.

Theorem J

A monoid object in cSet is precisely a locally finite monoid.

Proof: A monoid object in cSet is thus a usual monoid M with a
connected filtration (M,), of (two-sided) ideals of M. Let ¢ be its
associated length function. It thus satisfies /(x x y) > ¢(x) + ¢(y). Since it
is connected, /~1({0}) = {1}. Let us assume that there exists some

x € M with arbitrary long non-trivial decompositions. Then, for every n,
U(x) > n (since x = xq % -+ % X;m, m > n, x; # 1) which is impossible since
the filtration is separated. O
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Filtered module: A R-module M endowed with a (decreasing) filtration M
of submodules.
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Filtered modules

Filtered module: A R-module M endowed with a (decreasing) filtration M
of submodules.

Filtered maps: Linear maps that respect the filtrations.

Complete filtered module: M = an M /M. Any filtered module M admits
a completion, namely M = Iim I\/I/I\/lk Let M, be the kernel of the

projection M — M/M,. Then M is filtered (with (M,),) and
W = tim 1/,

Filtered tensor product: The algebraic tensor product M ®g N together
with the filtration Zi+j:n M; ®r N;.
Completed tensor product: MON = /\/l/@;N.

Monoid objects: Filtered (complete) R-algebras.

19/26



Large algebra

Let M be a locally finite monoid. Then, its canonical filtration induces
(functorially) a structure of an exhausted and separated filtered algebra on
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Large algebra

Let M be a locally finite monoid. Then, its canonical filtration induces
(functorially) a structure of an exhausted and separated filtered algebra on
RIIM]].

It is given by J, = { f € RM: Wx({(x) < n= f(x) =0)}.

The associated (linear) topology is always stronger than the product
topology (i.e., the canonical projections are continuous), and can be even
strictly stronger.

R[[M]] is complete in this topology but is not necessarily the completion of
R[M] with the induced topology.
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Remark

Of course R~ is again a monoidal functor from the category of connected
filtered sets (with finite-fiber and filtration-preserving maps) to that of
complete filtered modules.

Hence it lifts to a functor R[[—]] from the category of locally finite monoids
to that of complete filtered algebras.

Remark

R[[M]] is an augmented algebra with augmentation ideal J; (this is due to
the fact that M is connected as a filtered set).
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From large algebra to representable functor

Let M be a finite decomposition monoid.
Let us define a functor (—)V: (Algp — Set by A+ AM.

It is representable with coordinate ring R[x,: a € M| (polynomial ring in
the indeterminates x,, a € M).
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Ring scheme (or Hopf ring)
Actually the multiplicative and additive structures of A[[M]] are natural in

the commutative algebra A. Hence A — A[[M]] forms a ring object in the
category of representable functors.
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Ring scheme (or Hopf ring)

Actually the multiplicative and additive structures of A[[M]] are natural in
the commutative algebra A. Hence A — A[[M]] forms a ring object in the
category of representable functors.

By Yoneda lemma it induces a structure of a Hopf ring on R[x,: a € M|
(i.e., a ring object in the category of cocommutative coalgebras or a
monoid object in the category of “abelian” Hopf algebras).

The additive part defines the abelian Hopf algebra structure with coalgebra
structure maps Aprim(X2) = X2 ® 1 + 1 ® Xa, €prim(xa) = 0 and
Sprim(Xa) = —X;, a€e M.

The multiplicative part induces a bialgebra with A(xs) = > .., Xp ® Xc
and €(x;) = 1.

Of course both structures are related so that ring axioms hold.
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Reconstruction theorem

Theorem

The large algebra R[[M]] is isomorphic to the ring of R-rational points of
the ring scheme (—)[[M]].
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Reconstruction theorem

Theorem

The large algebra R[[M]] is isomorphic to the ring of R-rational points of
the ring scheme (—)[[M]].

Proof: This comes from (Alggr(R[xa: a € M],R) = R[[M]] (of course as
sets but also as rings). O
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Locally finite monoids to Hopf algebras

Let M be a locally finite monoid.

Let A be a commutative R-algebra with a unit. Let us define

1+ 3:1(A)={f: M— A: f(1) =1}. Itis a subgroup of the group of
invertible elements of A[[M]].

It defines a group scheme A — 1+ J1(A) with representing (or coordinate)
Hopf algebra R[x,: a€ M\ {1}].

The antipode S is given by S(x,) = u(a) for each a € M\ {1}, where p1 is
the Mobius function of M.
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