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Monoidal categories

Roughly speaking a monoidal category is a usual category equipped with an
“associative” multiplication and a two-sided “identity”.

Examples include:

1 The category Set of sets with the cartesian product as multiplication
and any one-point set as unit (one will take 1 := { 0 }).

2 The category of vector spaces over a field K with the tensor product
⊗K as multiplication and K as unit.
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A convenient setting to deal with monoids

A key feature of monoidal categories is their ability to talk about monoids
in a quite general setting. Indeed, relative to any monoidal category one
can define algebraic structures that behave like usual monoids.

E.g., a monoid in the category of sets is a usual monoid, a monoid in the
category of K-vector spaces (with the tensor product) is a unital K-algebra,
while a monoid in the category of commutative K-algebras (again with the
tensor product) is a commutative bialgebra over K (hence an affine monoid
scheme or even an algebraic monoid if one restricts to finitely generated
algebras).
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Moreover using (monoidal) functors one can put in relations monoids from
different categories.

Another link: the set of isomorphism classes in a monoidal category inherits
a structure of monoid from the monoidal structure (called the classifying
monoid of the monoidal category under consideration).
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Purpose of the talk

• Give a category-theoretic interpretation of some “combinatorial” monoids
as monoids in monoidal categories.

• Use monoidal functors to explain functorially some properties of their
(completed) monoid algebras.

• Prove that some of these monoid algebras give rise to monoid and even
ring schemes (i.e., bialgebras and Hopf rings).
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Purpose of the talk

Let M be a category of “combinatorial” monoids, and let A be a category
of algebras.

Mon(C) ∼= M

U
��

F̃ //Mon(D) ∼= A

V
��

C
F

// D

where F̃ is the “(large) monoid algebra” functor.
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“Combinatorial” monoids

• Finite decomposition monoid: For each x ∈ M, there are only finitely
many y , z ∈ M such that x = y ∗ z .

• Filtered monoid: A monoid together with a decreasing filtration
. . . ⊆ M2 ⊆ M1 ⊆ M0 ⊆ M such that xm ∗ xn ∈ Mm+n and 1 ∈ M0.

• Locally finite monoid: For each x ∈ M, there are only finitely many
x1, · · · , xn ∈ M \ { 1 } such that x = x1 ∗ · · · ∗ xn.

• Clifford monoid: An inverse monoid in which every idempotent lies in the
center.
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Topics from algebraic combinatorics
Large algebra

The class of finite decomposition monoids is the larger class for which
convolution of functions is possible.

Let R be a commutative ring with a unit. Let M be a finite decomposition
monoid. Then one can define the R-coalgebra R(M) (free module with
basis M)

∆(x) =
∑

x=y∗z
y ⊗ z

and
ε(x) = 1 .

It follows that one can consider its dual R-algebra R[[M]], called the large
algebra of M, of all functions from M to R . Its multiplication is given by
convolution

(f ∗ g)(x) =
∑

x=y∗z
f (y)g(z) .
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Topics from algebraic combinatorics
Möbius inversion formula

When M is a locally finite monoid, then R[[M]] admits a structure of a
(complete) filtered algebra.

That makes it possible to consider a star operation. Given f ∈ R[[M]] such
that f (1) = 0, then one defines f ? =

∑
n≥0 f n .

It follows that { f ∈ R[[M]] : f (1) = 1 } is a subgroup of invertible elements
of R[[M]]. The inverse of f is given by (f − δ1)?.

Möbius inversion formula: let ζ =
∑

x∈M x (called the zêta function of M),
and let µ = ζ−1 (called the Möbius function of M). Then for all
f , g ∈ R[[M]],

g(x) =
∑

x=y∗z
f (y)⇔ f (x) =

∑
x=y∗z

g(y)µ(z) .
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Monoidal category
“Category with a multiplication”

A monoidal category is given as a 6-tuple C = (C,⊗, I , α, λ, ρ), where C is
a category, ⊗ : C× C→ C is a functor (called the (monoidal) tensor) and
I is a particular object of C (the unit) with natural isomorphisms

(Ass) (A⊗ B)⊗ C
αA,B,C−−−−→ A⊗ (B ⊗ C ),

(lUnit) I ⊗ C λC−−→ C ,

(rUnit) C ⊗ I
ρC−→ C .

A symmetric monoidal category C requires another natural isomorphism
σC ,D : C ⊗ D → D ⊗ C such that σD,C ◦ σC ,D = idC⊗D .

Moreover, certain technical conditions, called coherence conditions, have to
be satisfied in order that the multiplication be “well-behaved”.
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Coherence: Associativity, Mac Lane - Stasheff’s Pentagon
How to move brackets ?

((A⊗ B)⊗ C )⊗ D
αA,B,C⊗idD

tt

α(A⊗B),C ,D

**
(A⊗ (B ⊗ C ))⊗ D

αA,(B⊗C),D

��

(A⊗ B)⊗ (C ⊗ D)

αA,B,(C⊗D)

��
A⊗ ((B ⊗ C )⊗ D)

idA⊗αB,C ,D

// A⊗ (B ⊗ (C ⊗ D))

Commutativity of this diagram ensures that ⊗ is “associative” and that the
bracketing is irrelevant.
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Coherence: Left and right unit

(A⊗ I )⊗ B
αA,I ,B //

ρA⊗idB &&

A⊗ (I ⊗ B)

idA⊗λBxx
A⊗ B
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Coherence: Symmetry
Commutative multiplication

C ⊗ I
σC ,I //

ρC ""

I ⊗ C

λC||
C

and

(A⊗ B)⊗ C
σA,B⊗idC //

αA,B,C

��

(B ⊗ A)⊗ C

αB,A,C

��
A⊗ (B ⊗ C )

σA,B⊗C

��

B ⊗ (A⊗ C )

idB⊗σA,C
��

(B ⊗ C )⊗ A αB,C ,A
// B ⊗ (C ⊗ A)
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Examples

1 (Set,×, 1) where 1 is a one-point set.

2 (Ab,⊗Z,Z), (RMod,⊗R ,R), (RModR ,⊗R ,R), Ban1 (projective
tensor product), Hilb (Hilbertian tensor product).

3 Cop = (Cop,⊗, I ).

The monoidal category RModR of R-bimodules fails to be symmetric.
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Monoids

A monoid in C is a triple (C ,C ⊗ C m−→ C , I e−→ C ) such that the following
diagrams commute

(C ⊗ C )⊗ C

αC ,C ,C

��

m⊗idC // C ⊗ C

m
��

C

C ⊗ (C ⊗ C )
idC⊗m

// C ⊗ C

m

OO

I ⊗ C
e⊗idC //

λC
((

C ⊗ C

m
��

C ⊗ I
idC⊗eoo

ρC
vvC
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Morphisms

A morphism f : (C ,m, e)→ (C ′,m′, e ′) is a C-morphism f : C → C ′ such
that the following diagrams commute

C ⊗ C

f⊗f

��

m // C

f

��

C

f

��

I

e
??

e′ ��
C ′ ⊗ C ′

m′
// C ′ C ′

This defines a category Mon(C).

Comon(C) := (Mon(Cop))op is called the category of comonoids in C.
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Example: Mon(Set)

A monoid in (Set,×, 1) is given as a triple (C ,C × C m−→ C , 1 e−→ C ).

Clearly, e picks out an element of C namely e(0) (where 0 is the only
member of 1).

It is easily checked that (C ,m, e(0)) is a (usual) monoid.
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Example: Mon(Ab)

Let (C ,C ⊗Z C m−→ C ,Z e−→ C ) be a monoid in (Ab,⊗Z,Z).

Hence C is an abelian group, and, because Z is the free (abelian) group on
one generator, e is uniquely determined by the value e(1).

Moreover there is a unique bi-additive map m0 : C × C → C which factors
through the tensor product to provide m.

Finally (C ,m0, e(1)) is a just a ring.
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Examples

1 Mon(Mon) ∼= cMon.

2 Mon(RMod) ∼= RAlg (with R commutative).

3 Mon(RModR) ∼= RRing.

4 Mon(Ban1) ∼= BanAlg.

5 Comon(RMod) ∼= RCoalg.

6 Comon(Set) ∼= Set. Indeed, on each set X exists a unique comonoid

structure (X ,X ∆X−−→ X × X ,X !−→ 1). (But there might be several
cosemigroup structures!)
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Monoidal functors

A monoidal functor C→ C′ is a triple given by

a functor F : C→ C′,

a natural transformation ΦC ,D : F (C )⊗′ F (D)→ F (C ⊗ D),

a C′-morphism φ : I ′ → F (I )

subject to certain coherence conditions.
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Examples

1 The forgetful functor Ab
|−|−−→ Set is monoidal (with

|G | × |H| → |G ⊗ H| the canonical map and 1→ Z the map that
picks out 0 ∈ Z).

2 Let M be a monoid, and let us consider the category MLAct of left
M-actions (i.e., a set X equipped with a homomorphism of monoids
M → XX ) with equivariant maps as morphisms. Then, the forgetful
functor MLAct→ Set is monoidal.

3 The (covariant) powerset functor P : Set→ Set is monoidal (with
ΦC ,D : P(C )×P(D)→ P(C × D) given by (A,B) 7→ A× B , and
φ : 1→ P(1) defined as φ(0) = 1; recall that 1 = { 0 }).
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Monoidal functors transform monoids into monoids

The following folklore result is well-known from category theory.

Proposition
Let F := (F ,Φ, φ) : C→ C′ be a monoidal functor, and let (C ,m, e) be a
monoid in C.

Then, F̃(C ,m, e) := (F (C ),F (C )⊗ F (C )
ΦC ,C−−−→ F (C ⊗ C )

F (m)−−−→
F (C ), I ′

φ−→ F (I )
F (e)−−−→ F (C )) is a monoid in C′.

Let f : (C ,m, e)→ (C ′,m′, e ′) be a morphism of monoids, then with
F̃(f ) := F (f ), F̃ : Mon(C)→Mon(C′) defines a functor.
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Example: the monoid structure on the powerset of a monoid
Given a (set-theoretic) monoid (M, ∗, 1) (here 1 ∈ M is the identity), it is
well-known that P(M) admits a structure of monoid given by

A ∗ B = { a ∗ b : a ∈ A, b ∈ B }

for A,B ⊆ M, and with { 1 } as the identity.

This is just the consequence of the fact that P : Set→ Set is a monoidal
functor because the monoidal structure on P(M) is the image of (M, ∗, 1)
by P̃.

Remark
Actually P̃(M, ∗, 1) is a monoid with a zero (the empty set). This is so
because P may be shown to be a monoidal functor from Set to Set• the
category of pointed sets, base-point preserving maps and with the
smash-product as monoidal tensor. The monoids in Set• are precisely the
monoids with a zero.
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Cartesian monoidal categories

Let C be a category, and let C ,D be objects of C.

A product of C ,D is an object C × D together with two morphisms
πC : C × D → C and πD : C × D → D satisfying the following property.

For all morphisms f : A→ C and g : A→ D, there is a unique morphism
h : A→ C × D such that πC ◦ h = f , πD ◦ h = g .
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Group objects

The existence of such products for each ordered pair of objects (and also
what is called a terminal object) gives rise to a monoidal structure on C
which is referred to as a cartesian monoidal category. For instance the
category of sets with the cartesian product is a cartesian monoidal
category, so is the category of K-vector spaces with the direct product.

If C is such a monoidal category, then in addition to monoids one can
consider groups (or even any equational variety of algebras) in C.

E.g., groups in Set are the usual groups, groups in the category of
topological spaces, with the usual topological product, are topological
groups, groups in the category of cocommutative coalgebras are
(cocommutative) Hopf algebras.
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Coproduct

A coproduct in a category C is a product in the opposite category Cop.

In more details: let C ,D be objects of C. A coproduct of C ,D is an object
C
∐

D of C with two morphisms qC : C → C
∐

D and qD : D → C
∐

D
satisfying the following property.

For all morphisms f : C → A and g : D → A, there is a unique morphism
h : C

∐
D → A such that h ◦ qC = f , h ◦ qD = g .

Examples: the set-theoretic disjoint sum, the free product of monoids or
algebras, the tensor product over Z for commutative rings.
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Finite decomposition monoid

Let M be a monoid. It is said to be a finite decomposition monoid if its
product ∗ has finite fibers.

In details this means that for each x ∈ M, there are only finitely many
y , z ∈ M such that x = y ∗ z .
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Category-theoretic interpretation

Let us consider the category FinFibSet of all sets with finite-fiber maps.

It admits a structure of a symmetric monoidal category inherited from the
set-theoretic cartesian product.

The category of monoids in FinFibSet is then (isomorphic to) the category
of finite decomposition monoids (homomorphisms of monoids with finite
fibers).
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Topologically free module
Large algebra

A R-module is said to be a topologically free R-module whenever it is
isomorphic to a module of the form RX for some set X .

Each such module admits a linear topology whose basis of open
neighborhoods of zero is given by R(X\A) for finite subsets A ⊆ X .

Clearly lim←−A∈Pfin(X )
RX/R(X\A) ∼= lim←−A∈Pfin(X )

RA ∼= RX , hence RX is

complete in the inverse limit topology (where all RA are discrete), this
topology is equivalent to the product topology (with R discrete).

Let us denote by RTopFreeMod the category of all topologically free
modules with continuous linear maps.
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Completed tensor product

Let us provide to the algebraic tensor product RX ⊗R RY a linear topology
as follows.

For each A ∈ Pfin(X ) and B ∈ Pfin(Y ), let us consider the canonical map
RX ⊗R RY → RA ⊗R RB ∼= RA×B (induced by the projections).

The kernels, say KA,B , of these maps form the basis of the topology.

And
RX×Y ∼= lim←−

A,B
RA×B ∼= lim←−

A,B
(RX ⊗R RY )/KA,B .
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Completed tensor product

One thus defines RX ⊗̂RRY := RX×Y (⊗̂ is a bifunctor), so that RX ⊗̂RRY

is the completion of RX ⊗R RY (in the linear topology).

There exists a continuous R-bilinear map can : RX × RY → RX ⊗̂RY .

Theorem (Universal property of ⊗̂)

Let φ : RX × RY → RZ be a continuous R-bilinear map. Then, there exists
a unique continuous R-linear map φ0 : RX ⊗̂RRY → RZ such that
φ0 ◦ can = φ.
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Monoidal category
RTopFreeMod with ⊗̂ becomes a symmetric monoidal category
RTopFreeMod, and Mon(RTopFreeMod) consists in complete R-algebras.

Let us define a functor R− : FinFibSet→ RTopFreeMod such that

X 7→ RX

and for φ : X → Y , let Rφ : RX → RY be given by

(Rφ)(f )(y) =
∑

x∈φ−1({ y })

f (x)

f ∈ RX , y ∈ Y .

R− is a monoidal functor, hence it lifts to a functor between categories of
monoids. One recovers M 7→ R[[M]], where M is a finite decomposition
monoid, and this corrects the lack of functoriality of the large algebra as
defined usually.
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Filtered sets

A (decreasing) filtration on a set X is a decreasing sequence (Xn)n of finite
subsets of X . (X , (Xn)n) is thus called a filtered set.

A morphism f : (X , (Xn)n)→ (Y , (Yn)n) is a set-theoretic map f : X → Y
such that for each n, f (Xn) ⊆ Yn. Such a map is said to be a
filtration-preserving map.

The category of all filtered sets admits a monoidal tensor
(X , (Xn)n)⊗ (Y , (Yn)n) = (X × Y , (T n(X ,Y ))n) with

T n(X ,Y ) =
n⋃

i=0

Xi × Yn−i .

The unit is the one-point set 1 with filtration 1n = ∅ for all n > 0 and
10 = 1.
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monoidal sub-categories

A filtered set (X , (Xn)n) is

• exhausted if X = X0,

• separated if
⋂

n≥0 Xn = ∅,

• connected if it is both separated and exhausted, and X0 \ X1 = 1.

A set X with an exhausted and separated filtration is equivalent to a set X
with a length function ` : X → N. (Xn := { x ∈ X : `(x) ≥ n } and
`(x) := sup{ n ∈ N : x ∈ Xn }.)

A filtered set is connected if, and only if, there is a unique element of
length zero.
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Locally finite monoid

A monoid M is said to be a locally finite monoid if for each x ∈ M, there
are only finitely many x1, · · · , xn ∈ M \ { 1 } such that x = x1 ∗ · · · ∗ xn.

Such a monoid is necessarily a finite decomposition monoid.

It may be equipped with a length function
`(x) = sup{ n ∈ N : ∃(x1, · · · , xn) ∈ M \ { 1 }, x = x1 ∗ · · · ∗ xn } that
satisfies `(x ∗ y) ≥ `(x) + `(y) and `(x) = 0 if, and only if, x = 1. It is
called the canonical length function.

Hence a locally finite monoid is also a monoid in the monoidal category of
connected filtered sets.
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Monoids

One now considers the monoidal category cSet of all connected filtered
sets with finite-fiber and filtration-preserving maps.

Theorem
A monoid in cSet is precisely a locally finite monoid.

Proof: A monoid object in cSet is a usual monoid M with a connected
filtration (Mn)n of (two-sided) ideals of M. Let ` be its associated length
function. It thus satisfies `(x ∗ y) ≥ `(x) + `(y). Since it is connected,
`−1({ 0 }) = { 1 }. Let us assume that there exists some x ∈ M with
arbitrary long non-trivial decompositions. Then, for every n, `(x) ≥ n
(since x = x1 ∗ · · · ∗ xm, m ≥ n, xi 6= 1) which is impossible since the
filtration is separated.
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Filtered modules

Filtered module: A R-module M endowed with a (decreasing) filtration Mn
of submodules.

Filtered maps: Linear maps that respect the filtrations.

Complete filtered module: M ∼= lim←−n
M/Mn. Any filtered module M admits

a completion, namely M̂ = lim←−n
M/Mn. Let M̂n be the kernel of the

projection M̂ → M/Mn. Then M̂ is filtered (with (M̂n)n) and
M̂ ∼= lim←−n

M̂/M̂n.

Filtered tensor product: The algebraic tensor product M ⊗R N together
with the filtration

∑
i+j=n Mi ⊗R Nj .

Completed tensor product: M⊗̂N = M̂ ⊗R N.

Monoid: Filtered (complete) R-algebras.
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Large algebra

Let M be a locally finite monoid. Then, its canonical filtration induces
(functorially) a structure of an exhausted and separated filtered algebra on
R[[M]].

It is given by In = { f ∈ RM : ∀x(`(x) < n⇒ f (x) = 0) }.

The associated (linear) topology is always stronger than the product
topology (i.e., the canonical projections are continuous), and can be even
strictly stronger.

R[[M]] is complete in this topology but is not necessarily the completion of
R[M] with the induced topology.
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Remark

Of course R− is again a monoidal functor from the category of connected
filtered sets (with finite-fiber and filtration-preserving maps) to that of
complete filtered modules.

Hence it lifts to a functor R[[−]] from the category of locally finite monoids
to that of complete filtered algebras.

Remark
R[[M]] is an augmented algebra with augmentation ideal I1 (this is due to
the fact that M is connected as a filtered set).
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Representable functors

Let C be a category and let C be an object of C.

One can define the (covariant) hom functor C(C ,−) : C→ Set. It acts on
a morphism f : C1 → C2 as the set-theoretic map
g ∈ C(C ,C1) 7→ f ◦ g ∈ C(C ,C2).

A functor F : C→ Set is said to be representable if it is (naturally)
isomorphic to some hom functor C(C ,−). The object C is said to be the
representing object of F (it is unique up to isomorphism).
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Yoneda’s lemma

Yoneda’s lemma
Let F : C→ Set be a functor, and let C be an object of C. The set of all
natural transformations from C(C ,−) to F is in a bijective correspondence
with the set F (C ).

In particular if F itself is representable with representing object D, then the
set of all natural transformations from C(C ,−) to F is in bijection with the
set C(D,C ).
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Monoid and group scheme

Let F : cAlgR →Mon be a functor which is representable as a functor
cAlgR →Mon→ Set with representing (or coordinate) algebra O(F ).
Then F is said to be a monoid scheme (i.e., a monoid in the category of
representable functors).

One observes that for any functor F : cAlgR →Mon the binary law
∗A : F (A)× F (A)→ F (A) and the identity eA : 1A → F (A) of the monoid
F (A) are natural transformations.

Replacing Mon by Grp, one gets a group scheme (the inversion map is a
natural transformation).
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Bialgebra and Hopf algebra

Let us assume that F : cAlgR →Mon is a monoid scheme.

Since F (−)× F (−) : cAlgR →Mon (product of monoids) is representable
with representing algebra O(F )⊗R O(F ) and 1 : cAlgR →Mon, given by
1A = 1 (one-point set, hence the trivial monoid), also is representable with
representing algebra R , by Yoneda’s lemma, the natural transformations ∗−
and e− give rise to algebra maps ∆: O(F )→ O(F )⊗O(F ) (the
coproduct) and ε : O(F )→ R (the counit).

These maps equip the algebra O(F ) with a structure of a (commutative)
R-bialgebra.

If one assumes that F is a group scheme, then one gets in addition another
algebra map S : O(F )→ O(F ) (the antipode) corresponding to the
inversion in F , and the structure (O(F ),∆, ε, S) is called a (commutative)
Hopf algebra.
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From large algebra to representable functor

Let M be a finite decomposition monoid.

Let us define a functor (−)M : cAlgR → Set by A 7→ AM .

It is representable with coordinate ring R[xa : a ∈ M] (polynomial ring in
the indeterminates xa, a ∈ M).

Indeed, cAlgR(R[xa : a ∈ M],A) ∼= AM .
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Ring scheme (or Hopf ring)

Both the multiplicative and additive structures of A[[M]] are natural in the
commutative algebra A. Hence (−)[[M]] : A 7→ A[[M]] forms a ring in the
category of representable functors.

By Yoneda’s lemma it induces a structure of a Hopf ring on R[xa : a ∈ M]
(i.e., a ring in the category of cocommutative coalgebras or a monoid in
the category of “abelian” Hopf algebras).

The additive part defines the abelian Hopf algebra structure with coalgebra
structure maps ∆prim(xa) = xa ⊗ 1 + 1⊗ xa, εprim(xa) = 0 and
Sprim(xa) = −xa, a ∈ M.

The multiplicative part induces a bialgebra with ∆(xa) =
∑

b∗c=a xb ⊗ xc
and ε(xa) = 1.

Of course both structures are related so that ring axioms hold.
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Remark
The correspondence M 7→ (−)[[M]] again comes from the lifting of a
monoidal functor from FinFibSet to the category of abelian group
schemes, which is equivalent to the opposite category of abelian Hopf
algebras.
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Reconstruction theorem

Given a representable functor F : cAlgR → Set, its set of R-rational points
is F (R) ∼= cAlgR(O(F ),R).

Theorem
The large algebra R[[M]] is isomorphic to the ring of R-rational points of
the ring scheme (−)[[M]].

Proof: This comes from cAlgR(R[xa : a ∈ M],R) ∼= R[[M]] (of course as
sets but also as rings).
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Locally finite monoids to Hopf algebras

Let M be a locally finite monoid.

Let A be a commutative R-algebra with a unit. Let us define
1 + I1(A) = { f : M → A : f (1) = 1 }. It is a subgroup of the group of
invertible elements of A[[M]].

It defines a group scheme A 7→ 1 + I1(A) with representing (or coordinate)
Hopf algebra R[xa : a ∈ M \ { 1 }].

The antipode S is given by S(xa) = µ(a) for each a ∈ M \ { 1 }, where µ is
the Möbius function of M.
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Presheaf of monoids
Let C be a category.

A presheaf of monoids over C is a functor F : Cop →Mon (or equivalently
a monoid in the category SetC

op
).

Any poset (P,≤) may be seen as a category with set of objects P and an
arrow between x and y if, and only if, x ≤ y .

Hence one can consider a presheaf of monoids F : (P,≤)op →Mon. This
means that F (x) is a monoid for each x ∈ P , and for each x ≤ y , one has
a homomorphism of monoids Fy ,x : F (y)→ F (x) such that Fx ,x = idF (x)

and for x ≤ y ≤ z , Fz,x = Fy ,x ◦ Fz,y .

Remark
In case (P,≤) is a meet semi-lattice, and F takes its values in Grp (rather
than Mon), one gets a presheaf of groups, and by a “glueing” construction
one obtains a Clifford semigroup as a strong semi-lattice of groups.
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A structure theorem for finite decomposition monoids
Some preliminaries - 1

For each monoid M let us denote by M× its group of units.

If M is a finite decomposition monoid, then M \M× is a two-sided ideal of
M.

Let M be a finite decomposition monoid. One recursively defines a
sequence of semigroups as follows: I0 := M \M× and In+1 := In \ I×n if In
admits an identity, and In+1 = In otherwise.
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A structure theorem for finite decomposition monoids
Some preliminaries - 2

Let o(M) = inf{ n ∈ N ∪ {∞} : In has no identity }.

If o(M) =∞, then one defines M0 := M× and Mn+1 = I×n . It can be
shown that M =

⋃
n≥0 Mn and Mm ∩Mn = ∅ for all m 6= n.

If o(M) <∞, then there two cases:
I either o(M) = 0, so that I0 has no identity, and then one defines

M0 := M,
I or o(M) > 0, so that Io(M) has no identity, and then one defines

M0 := M, Mk = I×k−1 for 1 ≤ k < o(M), and Mo(M) := Io(M)−1.

In any case (Mn)0≤n is a (finite or not) sequence of pairwise disjoint
monoids, M =

⋃
n Mn and Mn is finite for each n < o(M).

Let en be the identity element of Mn (hence e0 is the identity of M). For
each m ≤ n, and x ∈ Mm, then xen ∈ Mn, hence for each m ≤ n, one can
define Fm,n : x ∈ Mm 7→ xen ∈ Mn. Actually, F is a presheaf of monoids
over { n ∈ N : n ≤ o(M) } (with the opposite order).
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A structure theorem for finite decomposition monoids

Theorem (Deneufchâtel, Duchamp, 2013)
Let M be a finite decomposition monoid.

Then, M is (isomorphic to) the strong semi-lattice of monoids determined
by the presheaf F .

In more details, M ∼=
⋃

n Mn × { n }, where the right hand-side is a monoid
with identity (e0, 0) and multiplication
(x ,m)⊗ (y , n) := (Fm,max{m,n }(x) ∗max{m,n } Fn,max{m,n }(y),max{m, n })
(where ∗n stands for the product in Mn).

Corollary
If o(M) =∞, then M is a Clifford monoid.
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The strong semi-lattice construction is induced by a
monoidal functor

One already knows that a monoid in the category of presheaves of sets is
just a presheaf of monoids.

Let (L,≤) be a meet semi-lattice with a top element, and let C be a
category with infinite coproducts.

Then, one can define a functor E : C(L,≤)op → C by E (F ) :=
∐

x∈L F (x).

Proposition
Let us assume that C is a monoidal category with infinite coproducts and
that the monoidal tensor preserves all these coproducts in each of its
variables.

Then, E is a monoidal functor.

Therefore E lifts to the category of monoids, and one recovers the strong
semi-lattice construction when C = Set with the cartesian product.
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Monoid algebra

The previous proposition also applies in the case where C is the category of
R-modules (with the usual tensor product).

Hence given a presheaf F : (L,≤)op → RAlg (i.e., a monoid in
RMod(L,≤)op), then one can consider the strong semi-lattice construction
E (F ) =

⊕
x∈L F (x) which becomes an algebra (i.e., a monoid in RMod).

Let F : (L,≤)op →Mon be a presheaf of monoids. Let
R[F ] : (L,≤)op → RAlg be the presheaf of algebras given by
R[F ](x) := R[F (x)].

Then,
⊕

x∈L R[F (x)] ∼= R[E (F )] (as algebras).
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Isomorphism

Let C be a category and let f : C → D be a C-morphism.

It is said to be an isomorphism if f admits a two-sided inverse, i.e., there
exists g : D → C such that g ◦ f = idC and f ◦ g = idD .

If a two-sided inverse exists, then it is unique.
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Opposite category

Let C be a category. Then, Cop is the opposite category of C.

It has the same objects and morphisms as C but with the reverse
composition.

Hence f ◦ g in Cop corresponds to g ◦ f in C.

Of course, C = (Cop)op.
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Functors

Let C and D be categories.

A functor F : C→ D maps objects of C to objects of D, morphisms of C
to morphisms of D and

F (idC ) = idF (C),
F (g ◦ f ) = F (g) ◦ F (f ) whenever (g , f ) is a pair of composable
morphisms.

A functor F : Cop → D is referred to as a contravariant functor (usual
functors are also said to be covariant functors).

Some examples: P : Set→ Set, C0 : Topop → RAlg, GLn : Ring→ Grp,
etc.
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Natural transformations

Let F ,G : C→ D be two functors.

A natural transformation τ : F ⇒ G is a family (τC )C of D-morphisms
indexed by the objects of C such that for each C-morphism f : C → C ′ the
following diagram commutes.

F (C )

F (f )
��

τC // G (C )

G(f )
��

F (C ′) τC ′
// G (C ′)

If τC is an isomorphism for each object C , then τ is said to be a natural
isomorphism.

Some examples: jM : M → (M?)? where M is a R-module (R is a
commutative ring with a unit), det : GLn ⇒ (−)×, etc.
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