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Lie algebras
Definition

Let R be a commutative ring with a unit.

A Lie algebra (g, [−,−]) is the data of a R-module g and a bilinear map
[−,−] : g× g→ g, called the Lie bracket, such that

It is alternating: [x , x ] = 0 for every x ∈ g.

It satisfies the Jacobi identity

[x , [y , z ]] + [y , [z , x ]] + [z , [x , y ]] = 0

for each x , y , z ∈ g.

A Lie algebra is said to be commutative whenever its bracket is the zero
map.
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Universal enveloping algebra

Any (say unital and associative) algebra (A, ·) may be turned into a Lie
algebra when equipped with the commutator bracket

[x , y ] = x · y − y · x .

Actually this defines a functor from the category Ass to the category Lie.

This functor admits a left adjoint namely the universal enveloping algebra
U(g) of a Lie algebra g.
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Poincaré-Birkhoff-Witt theorem

Let g be a Lie algebra (over R).

Along with the algebra U(g), there is also a canonical Lie map
j : g→ (U(g), [−,−]).

PBW Theorem
If R is a field, then j is one-to-one.

In other words, g canonically embeds into its universal enveloping algebra
as a sub-Lie algebra.
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Wronskian bracket functor

A similar phenomenon arises in differential algebra.

Let us assume that (A, ·, d) is a differential commutative algebra.

Of course, the commutator bracket is not very interesting here... but there
is another Lie bracket given by the Wronskian bracket

Wd (x , y) = x · d(y)− d(x) · y

which turns A into a (differential) Lie algebra, and this correspondence is
functorial.

By general abstract nonsense, this functor admits a left adjoint that makes
possible the definition of the Wronskian enveloping algebra of a Lie algebra.
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Wronskian enveloping algebra
Universal property

Let (g, [−,−]) be a Lie algebra (over a commutative ring R).

Its Wronskian enveloping algebra is a differential commutative algebra
(W,D) together with a homomorphism can of Lie algebras from (g, [−,−])
to (W,WD) that satisfies the following universal property:

Given another differential commutative algebra (A, d), and a
homomorphism of Lie algebras φ : (g, [−,−])→ (A,Wd ), there is a unique
homomorphism of differential algebras φ̂ : (W,D)→ (A, d) such that

φ̂ ◦ can = φ.

Remark
The Wronskian enveloping algebra of a Lie algebra is unique up to
isomorphism.
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Embedding problem

Under which conditions on the base ring R and the Lie algebra g, is the
canonical map can one-to-one?
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Remark

If there is any differential commutative algebra (A, d) and a one-to-one Lie
map φ : g→ (A,Wd ), then can automatically is also one-to-one.

Indeed, under these assumptions there is a unique differential algebra map
φ̂ : (W,D)→ (A, d) such that φ̂ ◦ can = φ, whence can is one-to-one.
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About this talk

There are no yet a definitive answer to the embedding problem even if the
base ring is a field!

Actually, differential commutative algebras are not just Lie algebras, with
help of their Wronskian bracket, but rather Lie-Rinehart algebras (the
algebraic counterpart of a Lie algebroid).

Moreover, even the Lie-Rinehart structure on a differential commutative
algebra is just the consequence of a more abstract structure, namely that
of a Jacobi algebra.

In this talk I will focus on the functorial relations between differential
commutative algebras and these algebraic structures, and on constructions
of other “envelopes”.

But before, some examples.
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Example 1

The Lie algebra sl2(K), where K is a field of characteristic zero, embeds
into (K[x ], d

dx ), hence it embeds into its Wronskian envelope.
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Example 2

Let (A, d) be a differential commutative R-algebra.

Then d belongs to the Lie R-algebra DerR(A) of derivations of A.

Let A · d be the sub-A-module of DerR(A) generated by d . It is also a sub
Lie R-algebra of DerR(A).

It can be shown that this Lie algebra A · d of “vector fields on the line A”
embeds into its Wronskian envelope.
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Example 3

Let (M, ε) be an augmented R-module, i.e., a R-module together with a
linear map ε : M → R , called its augmentation map.

It admits a Lie bracket [u, v ]ε := ε(v)u − ε(u)v . It can be shown that there
is a unique derivation dε on the symmetric algebra S(M) of M that extends
ε.

Let u, v ∈ M. Then,
Wdε(u, v) = udε(v)− dε(u)v = uε(v)− ε(u)v = [u, v ]ε. Hence the
canonical embedding M ↪→ S(M) is a Lie map.

Therefore, (M, [−,−]ε) embeds into its Wronskian envelope.
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Lie-Rinehart algebras
Let (A, ·) be a (not necessarily associative) R-algebra. Let DerR(A, ·) be
its Lie R-algebra of R-linear derivations (under the usual commutator
bracket). When (A, ·) is commutative, DerR(A, ·) becomes a A-module in
an obvious way.

Definition
A Lie-Rinehart algebra over R is a triple (A, g, d), where

A is a commutative R-algebra with a unit,
g is a Lie R-algebra which is also a left A-module (with A-action
denoted by a · x),
d : g→ DerR(A) is both a Lie R-algebra map, and a A-linear map
(d(a · x)(b) = a(d(x)(b))) which turns A into a g-module,
[x , a · y ] = a · [x , y ] + d(x)(a) · y , a ∈ A, x , y ∈ g.

By abuse, d is referred to as the anchor map of the Lie-Rinehart algebra
(A, g).
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Remark and example

The structure of a Lie-Rinehart algebra is modeled on the properties of the
pair (C∞(M),X(M)), where M is a finite-dimensional smooth manifold,
C∞(M) is the ring of smooth functions on M, and X(M) is the Lie algebra
of smooth vector fields on M.

Example
Let A be a commutative R-algebra with a unit. Then, (A,DerR(A)) is a
Lie-Rinehart algebra.

Given a Lie-Rinehart algebra (A, g), the Lie algebra g, together with the
anchor, is also referred to as a Lie (R,A)-pseudoalgebra.
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Some (forgetful) functors (and their adjoints)

LieRin

''zz

DiffComAss? _oo

Lie ComAss
� ?

OO
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LieRin

''zz

DiffComAss? _oo

Lie ComAss
� ?

OO

Any commutative differential R-algebra (A, d) may be turned into a Lie-
Rinehart algebra (A, (A,Wd )) with anchor map a 7→ d(a) := ad , and this is
functorial. This allows to view DiffComAss as a sub-category of LieRin.
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Some (forgetful) functors (and their adjoints)

LieRin

''zz

DiffComAss? _oo

Lie ComAss
� ?

OO

In particular, any commutative R-algebra A, viewed as a differential algebra
with the zero derivation, provides a Lie-Rinehart algebra (A, (A, 0)).
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Some (forgetful) functors (and their adjoints)

LieRin

''

DiffComAss

Lie ComAss

[[

A commutative R-algebra A also provides another Lie-Rinehart algebra,
namely (A, (0)), which is even the free Lie-Rinehart algebra generated by
A.

17 / 30



Some (forgetful) functors (and their adjoints)

LieRin

zz ''

DiffComAss? _oo

Lie ComAss
� ?

OO

There is also a forgetful functor LieRin → Lie, and it admits a left ad-
joint given on objects by g 7→ (R, g). (This may also be interpreted as an
embedding of Lie into the category of Lie (R,R)-pseudoalgebras.)
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Wronskian envelope of a Lie-Rinehart algebra (sketch)

DiffComAss is a reflective sub-category of LieRin, i.e., the inclusion functor
below admits a left adjoint.

LieRin

''zz

DiffComAss? _oo

Lie ComAss
� ?

OO
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Wronskian envelope of a Lie-Rinehart algebra (sketch)

DiffComAss is a reflective sub-category of LieRin.

Let (A, g) be a Lie-Rinehart algebra with anchor map d. Let D(A, g) be the
free commutative differential R-algebra generated by the set |A|t|g|. Hence
it is the commutative algebra of differential polynomials R{|A| t |g|} with
variables in |A| t |g|.
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DiffComAss is a reflective sub-category of LieRin.

Let (A, g) be a Lie-Rinehart algebra with anchor map d. Let D(A, g) be the
free commutative differential R-algebra generated by the set |A|t|g|. Hence
it is the commutative algebra of differential polynomials R{|A| t |g|} with
variables in |A| t |g|.

Then, let I (A, g) be the differential ideal ofD(A, g) generated by the relations
that turn the canonical map (A, g) → (D(A, g), (D(A, g),W )) into a Lie-
Rinehart map. Then, D(A, g)/I (A, g) is the free commutative differential
algebra generated by (A, g).
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Jacobi algebra

A Jacobi algebra is a commutative R-algebra A with a unit, together with a
Lie bracket (called a Jacobi bracket) over R which satisfies Jacobi-Leibniz
rule:

[ab, c] = a[b, c] + b[a, c]− ab[1A, c]

a, b, c ∈ A.

It follows that ad1A = [1A, ·] : A→ A is a R-derivation of the associative
algebra A, and that [−,−]−Wad1A

is an alternating biderivation.
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Poisson and differential commutative algebras
Remark
Actually each triple (A,D, d) where A is a commutative algebra, D is an
alternating biderivation, and d is a derivation such that D + Wd is a Lie
bracket provides a Jacobi algebra (A,D + Wd ).

A commutative Poisson algebra thus is a Jacobi algebra whose associated
derivation ad1A is zero.

A commutative differential algebra, with its Wronskian bracket, is a Jacobi
algebra whose associated biderivation [−,−]−Wad1A

is zero.

This provides two embedding functors

PoissCom ↪→ Jac←↩ DiffComAss.

Moreover, there is also a forgetful functor Jac→ DiffComAss,
(A, [−,−]) 7→ (A, [1A,−]).
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A commutative differential algebra, with its Wronskian bracket, is a Jacobi
algebra whose associated biderivation [−,−]−Wad1A

is zero.

This provides two embedding functors

PoissCom ↪→ Jac←↩ DiffComAss.

Moreover, there is also a forgetful functor Jac→ DiffComAss,
(A, [−,−]) 7→ (A, [1A,−]).
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Various envelopes

PoissCom is reflective in Jac.
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Various envelopes

PoissCom is reflective in Jac: given a Jacobi algebra (A, [−,−]), let us
consider its Jacobi ideal Ipoiss generated by [1A, x ], x ∈ A, then A/Ipoiss is
the free commutative Poisson algebra generated by (A, [−,−]).
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Various envelopes

DiffComAss is reflective in Jac, since the embedding functor is an algebraic
functor between (equational) varieties (Bill Lawvere).
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Various envelopes

There is also a notion of a Jacobi envelope of a differential commutative
algebra since the functor Jac → DiffComAss is an algebraic functor. One
observes that any differential commutative algebra embeds into its Jacobi
envelope.
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Various envelopes

One finally mentions the composite forgetful functor Jac→ DiffComAss→
LieRin, (A, [−,−]) 7→ (A, (A,Wad1A

)), which makes it possible to consider
the Jacobi envelope of a Lie-Rinehart algebra as the Jacobi envelope of the
free commutative differential algebra generated by a Lie-Rinehart algebra.
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The Lie side

There is also an obvious forgetful functor Jac→ Lie, forgetting the
multiplicative structure. By a general category-theoretic principle, it admits
a left adjoint.

Given a Lie algebra g, one considers the free Jacobi algebra Jac(|g|)
generated by the carrier set of g. (This object exists for the same general
principle as above.)

Let J be its Jacobi ideal generated by the relations that make the canonical
image of g in Jac(|g|) a Lie algebra.

Then, Jac(|g|)/J is the universal Jacobi envelope of g.
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Relations between some envelopes

Jac

""

DiffComAss? _oo

xx
Lie

The above diagram of forgetful functors commutes.
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Relations between some envelopes

Jac

""

DiffComAss? _oo

xx
Lie

Hence the Wronskian envelope of a Lie algebra g may be described as the
free differential commutative algebra generated by the Jacobi envelope of g
as illustrated below.

Jac // DiffComAss

Lie

bb 88
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Relations between some envelopes

Moreover the following diagram of functors also commutes.

LieRin

$$

DiffComAssoo

xx
Lie
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Relations between some envelopes

This implies that the Wronskian envelope of a Lie algebra g is also the
differential envelope of the Lie-Rinehart algebra (R, g).

LieRin // DiffComAss

Lie

dd 88
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Local Lie algebras
Let M be a finite-dimensional smooth manifold. Let E be a line bundle
over M, i.e., a vector bundle over M each fibre of which is one-dimensional.

Let Sec(E ) its space of global sections. E is said to be trivial whenever
E = M × R in which case C∞(M) = Sec(E ).

Following A. A. Kirillov (1976), a local Lie algebra is a structure of a Lie
algebra on Sec(E ) which is local, i.e., the support of [s1, s2] is contained in
the intersection of the supports of s1 and s2 (recall that the support of a
section is the closure of the set of points at which the section does not
vanish).

When E is a trivial line bundle, then the local Lie bracket is of the form

[s1, s2] = Λ(ds1, ds2) + s1Γ(s2)− Γ(s1)s2

where Λ is a bivector field, and Γ is a vector field.

This implies that such a local Lie algebra (C∞(M), [−,−]) is precisely a
Jacobi algebra.
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Lie algebroids (1/2)
A Lie algebroid on a vector bundle E over a finite-dimensional smooth
manifold M is a (R,C∞(M))-Lie pseudoalgebra on the C∞(M)-module
Sec(E ).

The anchor map of the corresponding Lie-Rinehart algebra
(C∞(M), Sec(E )) is described by a vector bundle morphism d : E → TM
which induces the Lie map from (Sec(E ), [−,−]) to the Lie algebra
(X(M), [−,−]vf ) of vector fields on M.

Lie algebroids, studied by J.C. Herz (1954) and by J. Pradines (1967), are
the infinitesimal parts of differentiable groupoids.

Example
1 A Lie algebroid on the tangent bundle TM is given by the canonical

bracket [−,−]vf on X(M) = Sec(TM).
2 Every Lie algebra is a Lie algebroid over the one point manifold.
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Lie algebroids (2/2)

Lie algebroids on the trivial line bundle, hence Lie algebroid brackets on
C∞(M), are particular local Lie algebras of the form

[f , g ] = f Γ(g)− Γ(f )g

for a certain vector field Γ on M.

It follows that the underlying Lie algebra of the Lie pseudoalgebra
(C∞(M), [−,−]) embeds into its Wronskian envelope since its bracket is
precisely given by a Wronskian.

Remark
Other examples of embedding of a Lie pseudoalgebra into its Wronskian
envelope are given by Lie algebras of vector fields tangent to a given
foliation with one-dimensional leaves.
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Conclusion

The embedding problem of a (differential) Lie algebra into its Wronskian
enveloping algebra seems to be difficult, and related to Lie algebras of
(one-dimensional) vector fields. But Lie algebras of vector fields satisfy
some non-trivial identities.

It might be useful to tackle this problem by dividing it into two parts: first
the embedding problem of a Lie algebra into its Jacobi envelope, and
secondly the embedding problem of a Jacobi algebra into its differential
envelope.
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Open problems

1 Is there an explicit description of the free Jacobi algebra on a set? of
the differential envelope of a Jacobi algebra?

2 Does the Wronskian envelope of a differential Lie algebra admit a
structure of a (commutative) Hopf (differential) algebra? The
terminal map (g, d)→ (0) lifts to a differential algebra morphism
ε : W(g)→W(0) ' R , hence W(g) is an augmented (differential)
algebra. The diagonal δ : g→ g× g provides a differential algebra map
∆: W(g)→W(g× g). Is W a comonoidal functor?
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The mark (∗) on arrows means functors with both left and right adjoints, while (]) means “non-algebraic functors”.
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