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Lie algebras

Definition
Let R be a commutative ring with a unit.

A Lie algebra (g,[—, —]) is the data of a R-module g and a bilinear map
[—,—]: g x g — g, called the Lie bracket, such that

@ It is alternating: [x,x] = 0 for every x € g.

@ It satisfies the Jacobi identity

[X7 [y,z]] + [Y7 [Z,X]] + [27 [X,}/]] =0

for each x,y,z € g.

A Lie algebra is said to be commutative whenever its bracket is the zero
map.
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Universal enveloping algebra

Any (say unital and associative) algebra (A, -) may be turned into a Lie
algebra when equipped with the commutator bracket

x,y]=x-y—y-x.
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Universal enveloping algebra

Any (say unital and associative) algebra (A, -) may be turned into a Lie
algebra when equipped with the commutator bracket

x,y]=x-y—y-x.

Actually this defines a functor from the category Ass to the category Lie.

This functor admits a left adjoint namely the universal enveloping algebra
U(g) of a Lie algebra g.
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Poincaré-Birkhoff-Witt theorem

Let g be a Lie algebra (over R).
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Poincaré-Birkhoff-Witt theorem

Let g be a Lie algebra (over R).

Along with the algebra U(g), there is also a canonical Lie map
.j: g— (U(g), [_7 _])

If R is a field, then j is one-to-one.

PBW Theorem J

In other words, g canonically embeds into its universal enveloping algebra
as a sub-Lie algebra.
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Woronskian bracket functor

A similar phenomenon arises in differential algebra.
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A similar phenomenon arises in differential algebra.
Let us assume that (A, -, d) is a differential commutative algebra.

Of course, the commutator bracket is not very interesting here... but there
is another Lie bracket given by the Wronskian bracket

Wa(x,y) =x-d(y) —d(x) -y

which turns A into a (differential) Lie algebra, and this correspondence is
functorial.
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Woronskian bracket functor

A similar phenomenon arises in differential algebra.
Let us assume that (A, -, d) is a differential commutative algebra.

Of course, the commutator bracket is not very interesting here... but there
is another Lie bracket given by the Wronskian bracket

Wa(x,y) =x-d(y) —d(x) -y

which turns A into a (differential) Lie algebra, and this correspondence is
functorial.

By general abstract nonsense, this functor admits a left adjoint that makes
possible the definition of the Wronskian enveloping algebra of a Lie algebra.
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Wronskian enveloping algebra
Universal property
Let (g,[—, —]) be a Lie algebra (over a commutative ring R).

Its Wronskian enveloping algebra is a differential commutative algebra
(W, D) together with a homomorphism can of Lie algebras from (g, [—, —])
to (W, Wp) that satisfies the following universal property:
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Wronskian enveloping algebra
Universal property
Let (g,[—, —]) be a Lie algebra (over a commutative ring R).

Its Wronskian enveloping algebra is a differential commutative algebra
(W, D) together with a homomorphism can of Lie algebras from (g, [—, —])
to (W, Wp) that satisfies the following universal property:

Given another differential commutative algebra (A, d), and a
homomorphism of Lie algebras ¢: (g,[—, —]) — (A, Wy), there is a unique
homomorphism of differential algebras ¢: (W, D) — (A, d) such that

q@ocan:¢.

Remark

The Wronskian enveloping algebra of a Lie algebra is unique up to
isomorphism.
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Embedding problem

Under which conditions on the base ring R and the Lie algebra g, is the
canonical map can one-to-one?
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Remark

If there is any differential commutative algebra (A, d) and a one-to-one Lie
map ¢: g — (A, Wy), then can automatically is also one-to-one.
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Remark

If there is any differential commutative algebra (A, d) and a one-to-one Lie
map ¢: g — (A, Wy), then can automatically is also one-to-one.

Indeed, under these assumptions there is a unique differential algebra map
»: (W, D) — (A, d) such that ¢ o can = ¢, whence can is one-to-one.
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About this talk

There are no yet a definitive answer to the embedding problem even if the
base ring is a field!
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About this talk

There are no yet a definitive answer to the embedding problem even if the
base ring is a field!

Actually, differential commutative algebras are not just Lie algebras, with
help of their Wronskian bracket, but rather Lie-Rinehart algebras (the
algebraic counterpart of a Lie algebroid).

Moreover, even the Lie-Rinehart structure on a differential commutative
algebra is just the consequence of a more abstract structure, namely that
of a Jacobi algebra.

In this talk | will focus on the functorial relations between differential
commutative algebras and these algebraic structures, and on constructions
of other “envelopes”.

But before, some examples.
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Example 1

The Lie algebra sl>(K), where K is a field of characteristic zero, embeds
into (K[x], %), hence it embeds into its Wronskian envelope.
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Example 2

Let (A, d) be a differential commutative R-algebra.
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Example 2

Let (A, d) be a differential commutative R-algebra.
Then d belongs to the Lie R-algebra Derg(A) of derivations of A.

Let A- d be the sub-A-module of Detg(A) generated by d. It is also a sub
Lie R-algebra of Derg(A).

It can be shown that this Lie algebra A - d of “vector fields on the line A"
embeds into its Wronskian envelope.
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Example 3

Let (M, €) be an augmented R-module, i.e., a R-module together with a
linear map e: M — R, called its augmentation map.
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linear map e: M — R, called its augmentation map.

It admits a Lie bracket [u, v]c := ¢(v)u — e(u)v. It can be shown that there
is a unique derivation d, on the symmetric algebra S(M) of M that extends
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Let u,v € M. Then,
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Example 3

Let (M, €) be an augmented R-module, i.e., a R-module together with a
linear map e: M — R, called its augmentation map.

It admits a Lie bracket [u, v]c := €(v)u — e¢(u)v. It can be shown that there
is a unique derivation d, on the symmetric algebra S(M) of M that extends
€.

Let u,v € M. Then,
Wy, (u, v) = ude(v) — de(u)v = ue(v) — e(u)v = [u, v]e. Hence the
canonical embedding M — S(M) is a Lie map.

Therefore, (M, [—, —]¢) embeds into its Wronskian envelope.
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Lie-Rinehart algebras

Let (A,-) be a (not necessarily associative) R-algebra. Let Derg(A,-) be
its Lie R-algebra of R-linear derivations (under the usual commutator
bracket). When (A, -) is commutative, Detg(A,-) becomes a A-module in

an obvious way.
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Lie-Rinehart algebras

Let (A,-) be a (not necessarily associative) R-algebra. Let Derg(A,-) be
its Lie R-algebra of R-linear derivations (under the usual commutator
bracket). When (A, -) is commutative, Detg(A,-) becomes a A-module in
an obvious way.

Definition
A Lie-Rinehart algebra over R is a triple (A, g,0), where
@ Ais a commutative R-algebra with a unit,
@ g is a Lie R-algebra which is also a left A-module (with A-action
denoted by a - x),
@ 0: g — Derg(A) is both a Lie R-algebra map, and a A-linear map
(d(a- x)(b) = a(d(x)(b))) which turns A into a g-module,
o [x,a-y]=a-[x,y]+0(x)(a)-y, a€ A, x,y €g.
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Lie-Rinehart algebras

Let (A,-) be a (not necessarily associative) R-algebra. Let Derg(A,-) be
its Lie R-algebra of R-linear derivations (under the usual commutator
bracket). When (A, -) is commutative, Detg(A,-) becomes a A-module in
an obvious way.

Definition
A Lie-Rinehart algebra over R is a triple (A, g,0), where
@ Ais a commutative R-algebra with a unit,

@ g is a Lie R-algebra which is also a left A-module (with A-action
denoted by a - x),
@ 0: g — Derg(A) is both a Lie R-algebra map, and a A-linear map
(d(a- x)(b) = a(d(x)(b))) which turns A into a g-module,
o [x,a-y]=a-[x,y]+0(x)(a)-y, a€ A, x,y €g.
By abuse, 0 is referred to as the anchor map of the Lie-Rinehart algebra
(A 9)-
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Remark and example

The structure of a Lie-Rinehart algebra is modeled on the properties of the
pair (C*°(M), X(M)), where M is a finite-dimensional smooth manifold,

C®(M) is the ring of smooth functions on M, and X(M) is the Lie algebra
of smooth vector fields on M.
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Remark and example

The structure of a Lie-Rinehart algebra is modeled on the properties of the
pair (C*°(M), X(M)), where M is a finite-dimensional smooth manifold,
C®(M) is the ring of smooth functions on M, and X(M) is the Lie algebra
of smooth vector fields on M.

Example

Let A be a commutative R-algebra with a unit. Then, (A, Derg(A)) is a
Lie-Rinehart algebra.

Given a Lie-Rinehart algebra (A, g), the Lie algebra g, together with the
anchor, is also referred to as a Lie (R, A)-pseudoalgebra.
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Some (forgetful) functors (and their adjoints)

LieRin <——DiffComAss

S

ComAss
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Some (forgetful) functors (and their adjoints)

LieRin <——DiffComAss

S

ComAss

Any commutative differential R-algebra (A, d) may be turned into a Lie-
Rinehart algebra (A, (A, Wy)) with anchor map a — 9(a) := ad, and this is
functorial. This allows to view DiffComAss as a sub-category of LieRin.
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Some (forgetful) functors (and their adjoints)

LieRin <——DiffComAss

S

ComAss

In particular, any commutative R-algebra A, viewed as a differential algebra
with the zero derivation, provides a Lie-Rinehart algebra (A, (A, 0)).
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Some (forgetful) functors (and their adjoints)

LieRin DiffComAss
Lie \ ComAss

A commutative R-algebra A also provides another Lie-Rinehart algebra,
namely (A, (0)), which is even the free Lie-Rinehart algebra generated by
A.
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Some (forgetful) functors (and their adjoints)

LieRin <——DiffComAss

A

ComAss

There is also a forgetful functor LieRin — Lie, and it admits a left ad-
joint given on objects by g — (R, g). (This may also be interpreted as an
embedding of Lie into the category of Lie (R, R)-pseudoalgebras.)
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Wronskian envelope of a Lie-Rinehart algebra (sketch)

DiffComAss is a reflective sub-category of LieRin, i.e., the inclusion functor
below admits a left adjoint.

LieRin <——DiffComAss

S

Lie ComAss
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Wronskian envelope of a Lie-Rinehart algebra (sketch)
DiffComAss is a reflective sub-category of LieRin.

Let (A, g) be a Lie-Rinehart algebra with anchor map d. Let D(A, g) be the
free commutative differential R-algebra generated by the set |A|LI|g|. Hence
it is the commutative algebra of differential polynomials R{|A| L |g|} with
variables in |A| Ll |g|.
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Wronskian envelope of a Lie-Rinehart algebra (sketch)
DiffComAss is a reflective sub-category of LieRin.

Let (A, g) be a Lie-Rinehart algebra with anchor map d. Let D(A, g) be the
free commutative differential R-algebra generated by the set |A|LI|g|. Hence
it is the commutative algebra of differential polynomials R{|A| L |g|} with
variables in |A| Ll |g|.

Then, let /(A, g) be the differential ideal of D(A, g) generated by the relations
that turn the canonical map (A, g) — (D(A, g),(D(A,g), W)) into a Lie-
Rinehart map. Then, D(A,g)/I(A,g) is the free commutative differential
algebra generated by (A, g).
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Jacobi algebra

A Jacobi algebra is a commutative R-algebra A with a unit, together with a
Lie bracket (called a Jacobi bracket) over R which satisfies Jacobi-Leibniz
rule:

[ab, c] = a[b, c] + b|a, c] — ab[1a, c]

a,b,ceA
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Jacobi algebra

A Jacobi algebra is a commutative R-algebra A with a unit, together with a
Lie bracket (called a Jacobi bracket) over R which satisfies Jacobi-Leibniz
rule:

[ab, c] = a[b, c] + b|a, c] — ab[1a, c]
a,b,ceA

It follows that adi, = [14a,:]: A — A'is a R-derivation of the associative
algebra A, and that [—, —] — WadlA is an alternating biderivation.
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Poisson and differential commutative algebras

Remark
Actually each triple (A, D, d) where A is a commutative algebra, D is an
alternating biderivation, and d is a derivation such that D + W, is a Lie

bracket provides a Jacobi algebra (A, D + Wy).
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A commutative Poisson algebra thus is a Jacobi algebra whose associated
derivation adi , is zero.
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Poisson and differential commutative algebras

Remark

Actually each triple (A, D, d) where A is a commutative algebra, D is an
alternating biderivation, and d is a derivation such that D + W, is a Lie
bracket provides a Jacobi algebra (A, D + Wy).

A commutative Poisson algebra thus is a Jacobi algebra whose associated
derivation adi , is zero.

A commutative differential algebra, with its Wronskian bracket, is a Jacobi
algebra whose associated biderivation [—, —] — WadlA is zero.
This provides two embedding functors

PoissCom — Jac + DiffComAss.

Moreover, there is also a forgetful functor Jac — DiffComAss,
(Av [_7 _]) = (A7 [1A7 _])
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Various envelopes

PoissCom is reflective in Jac.
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Various envelopes

PoissCom is reflective in Jac: given a Jacobi algebra (A,[—,—]), let us
consider its Jacobi ideal ,oiss generated by [14,x], x € A, then A/lyqiss is
the free commutative Poisson algebra generated by (A, [—, —]).
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Various envelopes

DiffComAss is reflective in Jac, since the embedding functor is an algebraic
functor between (equational) varieties (Bill Lawvere).
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Various envelopes

There is also a notion of a Jacobi envelope of a differential commutative
algebra since the functor Jac — DiffComAss is an algebraic functor. One
observes that any differential commutative algebra embeds into its Jacobi
envelope.
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Various envelopes

One finally mentions the composite forgetful functor Jac — DiffComAss —
LieRin, (A,[—, —]) = (A, (A, Waq, ), which makes it possible to consider
the Jacobi envelope of a Lie-Rinehart algebra as the Jacobi envelope of the
free commutative differential algebra generated by a Lie-Rinehart algebra.
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The Lie side

There is also an obvious forgetful functor Jac — Lie, forgetting the
multiplicative structure. By a general category-theoretic principle, it admits
a left adjoint.
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Given a Lie algebra g, one considers the free Jacobi algebra Jac(|g|)

generated by the carrier set of g. (This object exists for the same general
principle as above.)
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The Lie side

There is also an obvious forgetful functor Jac — Lie, forgetting the
multiplicative structure. By a general category-theoretic principle, it admits
a left adjoint.

Given a Lie algebra g, one considers the free Jacobi algebra Jac(|g|)
generated by the carrier set of g. (This object exists for the same general

principle as above.)

Let J be its Jacobi ideal generated by the relations that make the canonical
image of g in Jac(|g|) a Lie algebra.

Then, Jac(|g|)/J is the universal Jacobi envelope of g.
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Relations between some envelopes

Jac<— ODiffComAss
Lie

The above diagram of forgetful functors commutes.
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Relations between some envelopes

Jac<— ODiffComAss

\Lie/

Hence the Wronskian envelope of a Lie algebra g may be described as the
free differential commutative algebra generated by the Jacobi envelope of g
as illustrated below.

Jac DiffComAss

N,

Lie
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Relations between some envelopes

Moreover the following diagram of functors also commutes.

LieRin DiffComAss

N

Lie
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Relations between some envelopes

This implies that the Wronskian envelope of a Lie algebra g is also the
differential envelope of the Lie-Rinehart algebra (R, g).

DiffComAss

/

Lie

LieRin
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Local Lie algebras

Let M be a finite-dimensional smooth manifold. Let E be a line bundle
over M, i.e., a vector bundle over M each fibre of which is one-dimensional.
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over M, i.e., a vector bundle over M each fibre of which is one-dimensional.

Let Sec(E) its space of global sections. E is said to be trivial whenever
E = M x R in which case C®°(M) = Sec(E).

Following A. A. Kirillov (1976), a local Lie algebra is a structure of a Lie
algebra on Sec(E) which is local, i.e., the support of [s1, s2] is contained in
the intersection of the supports of s; and s, (recall that the support of a
section is the closure of the set of points at which the section does not
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algebra on Sec(E) which is local, i.e., the support of [s1, s2] is contained in
the intersection of the supports of s; and s, (recall that the support of a
section is the closure of the set of points at which the section does not
vanish).

When E is a trivial line bundle, then the local Lie bracket is of the form
[51, 52] = /\(dsl, ng) + Slr(SQ) — F(51)52

where A is a bivector field, and I is a vector field.
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Local Lie algebras

Let M be a finite-dimensional smooth manifold. Let E be a line bundle
over M, i.e., a vector bundle over M each fibre of which is one-dimensional.

Let Sec(E) its space of global sections. E is said to be trivial whenever
E = M x R in which case C®°(M) = Sec(E).

Following A. A. Kirillov (1976), a local Lie algebra is a structure of a Lie
algebra on Sec(E) which is local, i.e., the support of [s1, s2] is contained in
the intersection of the supports of s; and s, (recall that the support of a
section is the closure of the set of points at which the section does not
vanish).

When E is a trivial line bundle, then the local Lie bracket is of the form
[51, 52] = /\(dsl, ng) + Slr(SQ) — F(51)52
where A is a bivector field, and T is a vector field.

This implies that such a local Lie algebra (C*°(M),[—, —]) is precisely a

Jacobi algebra.
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Lie algebroids (1/2)
A Lie algebroid on a vector bundle E over a finite-dimensional smooth
manifold M is a (R, C°°(M))-Lie pseudoalgebra on the C*°(M)-module
Sec(E).
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Lie algebroids (1/2)
A Lie algebroid on a vector bundle E over a finite-dimensional smooth

manifold M is a (R, C°°(M))-Lie pseudoalgebra on the C*°(M)-module
Sec(E).

The anchor map of the corresponding Lie-Rinehart algebra

(C>°(M), Sec(E)) is described by a vector bundle morphism d: E — TM
which induces the Lie map from (Sec(E), [—, —]) to the Lie algebra
(X(M), [—, —]vr) of vector fields on M.
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manifold M is a (R, C°°(M))-Lie pseudoalgebra on the C*°(M)-module
Sec(E).

The anchor map of the corresponding Lie-Rinehart algebra

(C>°(M), Sec(E)) is described by a vector bundle morphism d: E — TM
which induces the Lie map from (Sec(E), [—, —]) to the Lie algebra
(X(M), [—, —]vr) of vector fields on M.

Lie algebroids, studied by J.C. Herz (1954) and by J. Pradines (1967), are
the infinitesimal parts of differentiable groupoids.

Example

© A Lie algebroid on the tangent bundle TM is given by the canonical
bracket [—, —],s on X(M) = Sec(TM).

@ Every Lie algebra is a Lie algebroid over the one point manifold.
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Lie algebroids (2/2)

Lie algebroids on the trivial line bundle, hence Lie algebroid brackets on
C*>°(M), are particular local Lie algebras of the form

[f.g]l =fT(g) - T(f)g

for a certain vector field I on M.
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Lie algebroids (2/2)

Lie algebroids on the trivial line bundle, hence Lie algebroid brackets on
C*>°(M), are particular local Lie algebras of the form

[f.g]l =fT(g) - T(f)g
for a certain vector field I on M.

It follows that the underlying Lie algebra of the Lie pseudoalgebra
(C*(M), [—, —]) embeds into its Wronskian envelope since its bracket is
precisely given by a Wronskian.

Remark

Other examples of embedding of a Lie pseudoalgebra into its Wronskian
envelope are given by Lie algebras of vector fields tangent to a given
foliation with one-dimensional leaves.
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Conclusion

The embedding problem of a (differential) Lie algebra into its Wronskian
enveloping algebra seems to be difficult, and related to Lie algebras of
(one-dimensional) vector fields. But Lie algebras of vector fields satisfy
some non-trivial identities.
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Conclusion

The embedding problem of a (differential) Lie algebra into its Wronskian
enveloping algebra seems to be difficult, and related to Lie algebras of
(one-dimensional) vector fields. But Lie algebras of vector fields satisfy
some non-trivial identities.

It might be useful to tackle this problem by dividing it into two parts: first
the embedding problem of a Lie algebra into its Jacobi envelope, and
secondly the embedding problem of a Jacobi algebra into its differential
envelope.
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Open problems

@ s there an explicit description of the free Jacobi algebra on a set? of
the differential envelope of a Jacobi algebra?
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@ s there an explicit description of the free Jacobi algebra on a set? of
the differential envelope of a Jacobi algebra?

@ Does the Wronskian envelope of a differential Lie algebra admit a
structure of a (commutative) Hopf (differential) algebra? The
terminal map (g, d) — (0) lifts to a differential algebra morphism
e: W(g) = W(0) ~ R, hence W(g) is an augmented (differential)
algebra. The diagonal 6: g — g x g provides a differential algebra map
A:W(g) = W(g x g). Is W a comonoidal functor?
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PoissCom( Jac )DiffComAss

- id
DiffLie #fComAss
* (#)
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\\\\\\i)) Mod
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The mark (+) on arrows means functors with both left and right adjoints, while (1) means “nen-algebraic functors’.
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