Jacobi algebras, in-between Poisson, differential, and Lie algebras

Laurent Poinsot

LIPN, University Paris XIII, Sorbonne Paris Cité¹ France

Monday, July 20, 2015

AADIOS

Algebraic and Algorithmic Differential and Integral Operator Session

ACA 2015

Kalamata, Greece, 20-23 July 2015

¹Second address: CReA, French Air Force Academy, France.

Table of contents

Motivations

2 Jacobi, Poisson and Lie-Rinehart algebras

3 Kirillov's local Lie algebras and Lie algebroids

Lie algebras Definition

Let R be a commutative ring with a unit.

A Lie algebra $(\mathfrak{g},[-,-])$ is the data of a R-module \mathfrak{g} and a bilinear map $[-,-]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}$, called the Lie bracket, such that

- It is alternating: [x, x] = 0 for every $x \in \mathfrak{g}$.
- It satisfies the Jacobi identity

$$[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$$

for each $x, y, z \in \mathfrak{g}$.

A Lie algebra is said to be commutative whenever its bracket is the zero map.

Universal enveloping algebra

Any (say unital and associative) algebra (A, \cdot) may be turned into a Lie algebra when equipped with the commutator bracket

$$[x,y] = x \cdot y - y \cdot x .$$

Universal enveloping algebra

Any (say unital and associative) algebra (A, \cdot) may be turned into a Lie algebra when equipped with the commutator bracket

$$[x,y] = x \cdot y - y \cdot x .$$

Actually this defines a functor from the category Ass to the category Lie.

This functor admits a left adjoint namely the universal enveloping algebra $\mathcal{U}(\mathfrak{g})$ of a Lie algebra \mathfrak{g} .

Poincaré-Birkhoff-Witt theorem

Let \mathfrak{g} be a Lie algebra (over R).

Poincaré-Birkhoff-Witt theorem

Let \mathfrak{g} be a Lie algebra (over R).

Along with the algebra $\mathcal{U}(\mathfrak{g})$, there is also a canonical Lie map $j \colon \mathfrak{g} \to (\mathcal{U}(\mathfrak{g}), [-, -])$.

Poincaré-Birkhoff-Witt theorem

Let \mathfrak{g} be a Lie algebra (over R).

Along with the algebra $\mathcal{U}(\mathfrak{g})$, there is also a canonical Lie map $j \colon \mathfrak{g} \to (\mathcal{U}(\mathfrak{g}), [-, -])$.

PBW Theorem

If R is a field, then j is one-to-one.

In other words, $\mathfrak g$ canonically embeds into its universal enveloping algebra as a sub-Lie algebra.

A similar phenomenon arises in differential algebra.

A similar phenomenon arises in differential algebra.

Let us assume that (A, \cdot, d) is a differential commutative algebra.

Of course, the commutator bracket is not very interesting here...

A similar phenomenon arises in differential algebra.

Let us assume that (A, \cdot, d) is a differential commutative algebra.

Of course, the commutator bracket is not very interesting here... but there is another Lie bracket given by the Wronskian bracket

$$W_d(x,y) = x \cdot d(y) - d(x) \cdot y$$

which turns A into a (differential) Lie algebra, and this correspondence is functorial.

A similar phenomenon arises in differential algebra.

Let us assume that (A, \cdot, d) is a differential commutative algebra.

Of course, the commutator bracket is not very interesting here... but there is another Lie bracket given by the Wronskian bracket

$$W_d(x,y) = x \cdot d(y) - d(x) \cdot y$$

which turns A into a (differential) Lie algebra, and this correspondence is functorial.

By general abstract nonsense, this functor admits a left adjoint that makes possible the definition of the Wronskian enveloping algebra of a Lie algebra.

Universal property

Let $(\mathfrak{g},[-,-])$ be a Lie algebra (over a commutative ring R).

Its Wronskian enveloping algebra is a differential commutative algebra (\mathcal{W},D) together with a homomorphism can of Lie algebras from $(\mathfrak{g},[-,-])$ to $(\mathcal{W},\mathcal{W}_D)$ that satisfies the following universal property:

Universal property

Let $(\mathfrak{g}, [-, -])$ be a Lie algebra (over a commutative ring R).

Its Wronskian enveloping algebra is a differential commutative algebra (\mathcal{W}, D) together with a homomorphism *can* of Lie algebras from $(\mathfrak{g}, [-, -])$ to $(\mathcal{W}, \mathcal{W}_D)$ that satisfies the following universal property:

Given another differential commutative algebra (A, d), and a homomorphism of Lie algebras $\phi \colon (\mathfrak{g}, [-, -]) \to (A, W_d)$,

Universal property

Let $(\mathfrak{g}, [-, -])$ be a Lie algebra (over a commutative ring R).

Its Wronskian enveloping algebra is a differential commutative algebra (\mathcal{W},D) together with a homomorphism can of Lie algebras from $(\mathfrak{g},[-,-])$ to $(\mathcal{W},\mathcal{W}_D)$ that satisfies the following universal property:

Given another differential commutative algebra (A,d), and a homomorphism of Lie algebras $\phi\colon (\mathfrak{g},[-,-])\to (A,W_d)$, there is a unique homomorphism of differential algebras $\hat{\phi}\colon (\mathcal{W},D)\to (A,d)$ such that

$$\hat{\phi} \circ can = \phi.$$

Universal property

Let $(\mathfrak{g},[-,-])$ be a Lie algebra (over a commutative ring R).

Its Wronskian enveloping algebra is a differential commutative algebra (\mathcal{W},D) together with a homomorphism can of Lie algebras from $(\mathfrak{g},[-,-])$ to $(\mathcal{W},\mathcal{W}_D)$ that satisfies the following universal property:

Given another differential commutative algebra (A,d), and a homomorphism of Lie algebras $\phi\colon (\mathfrak{g},[-,-])\to (A,W_d)$, there is a unique homomorphism of differential algebras $\hat{\phi}\colon (\mathcal{W},D)\to (A,d)$ such that

$$\hat{\phi} \circ can = \phi$$
.

Remark

The Wronskian enveloping algebra of a Lie algebra is unique up to isomorphism.

Embedding problem

Under which conditions on the base ring R and the Lie algebra \mathfrak{g} , is the canonical map *can* one-to-one?

Remark

If there is any differential commutative algebra (A,d) and a one-to-one Lie map $\phi\colon \mathfrak{g}\to (A,W_d)$, then can automatically is also one-to-one.

Remark

If there is any differential commutative algebra (A, d) and a one-to-one Lie map $\phi \colon \mathfrak{g} \to (A, W_d)$, then *can* automatically is also one-to-one.

Indeed, under these assumptions there is a unique differential algebra map $\hat{\phi} \colon (\mathcal{W}, D) \to (A, d)$ such that $\hat{\phi} \circ can = \phi$, whence can is one-to-one.

There are no yet a definitive answer to the embedding problem even if the base ring is a field!

There are no yet a definitive answer to the embedding problem even if the base ring is a field!

Actually, differential commutative algebras are not just Lie algebras, with help of their Wronskian bracket, but rather Lie-Rinehart algebras (the algebraic counterpart of a Lie algebroid).

There are no yet a definitive answer to the embedding problem even if the base ring is a field!

Actually, differential commutative algebras are not just Lie algebras, with help of their Wronskian bracket, but rather Lie-Rinehart algebras (the algebraic counterpart of a Lie algebroid).

Moreover, even the Lie-Rinehart structure on a differential commutative algebra is just the consequence of a more abstract structure, namely that of a Jacobi algebra.

There are no yet a definitive answer to the embedding problem even if the base ring is a field!

Actually, differential commutative algebras are not just Lie algebras, with help of their Wronskian bracket, but rather Lie-Rinehart algebras (the algebraic counterpart of a Lie algebroid).

Moreover, even the Lie-Rinehart structure on a differential commutative algebra is just the consequence of a more abstract structure, namely that of a Jacobi algebra.

In this talk I will focus on the functorial relations between differential commutative algebras and these algebraic structures, and on constructions of other "envelopes".

There are no yet a definitive answer to the embedding problem even if the base ring is a field!

Actually, differential commutative algebras are not just Lie algebras, with help of their Wronskian bracket, but rather Lie-Rinehart algebras (the algebraic counterpart of a Lie algebroid).

Moreover, even the Lie-Rinehart structure on a differential commutative algebra is just the consequence of a more abstract structure, namely that of a Jacobi algebra.

In this talk I will focus on the functorial relations between differential commutative algebras and these algebraic structures, and on constructions of other "envelopes".

But before, some examples.

The Lie algebra $\mathfrak{sl}_2(\mathbb{K})$, where \mathbb{K} is a field of characteristic zero, embeds into $(\mathbb{K}[x], \frac{d}{dx})$, hence it embeds into its Wronskian envelope.

Let (A, d) be a differential commutative R-algebra.

Let (A, d) be a differential commutative R-algebra.

Then d belongs to the Lie R-algebra $\mathfrak{Der}_R(A)$ of derivations of A.

Let (A, d) be a differential commutative R-algebra.

Then d belongs to the Lie R-algebra $\mathfrak{Der}_R(A)$ of derivations of A.

Let $A \cdot d$ be the sub-A-module of $\mathfrak{Der}_R(A)$ generated by d.

Let (A, d) be a differential commutative R-algebra.

Then d belongs to the Lie R-algebra $\mathfrak{Det}_R(A)$ of derivations of A.

Let $A \cdot d$ be the sub-A-module of $\mathfrak{Der}_R(A)$ generated by d. It is also a sub Lie R-algebra of $\mathfrak{Der}_R(A)$.

Let (A, d) be a differential commutative R-algebra.

Then d belongs to the Lie R-algebra $\mathfrak{Det}_R(A)$ of derivations of A.

Let $A \cdot d$ be the sub-A-module of $\mathfrak{Der}_R(A)$ generated by d. It is also a sub Lie R-algebra of $\mathfrak{Der}_R(A)$.

It can be shown that this Lie algebra $A \cdot d$ of "vector fields on the line A" embeds into its Wronskian envelope.

Let (M, ϵ) be an augmented R-module, i.e., a R-module together with a linear map $\epsilon \colon M \to R$, called its augmentation map.

Let (M, ϵ) be an augmented R-module, i.e., a R-module together with a linear map $\epsilon \colon M \to R$, called its augmentation map.

It admits a Lie bracket $[u, v]_{\epsilon} := \epsilon(v)u - \epsilon(u)v$.

Let (M, ϵ) be an augmented R-module, i.e., a R-module together with a linear map $\epsilon \colon M \to R$, called its augmentation map.

It admits a Lie bracket $[u,v]_{\epsilon}:=\epsilon(v)u-\epsilon(u)v$. It can be shown that there is a unique derivation d_{ϵ} on the symmetric algebra S(M) of M that extends ϵ .

Let (M, ϵ) be an augmented R-module, i.e., a R-module together with a linear map $\epsilon \colon M \to R$, called its augmentation map.

It admits a Lie bracket $[u,v]_{\epsilon} := \epsilon(v)u - \epsilon(u)v$. It can be shown that there is a unique derivation d_{ϵ} on the symmetric algebra S(M) of M that extends ϵ .

Let
$$u, v \in M$$
. Then, $W_{d_{\epsilon}}(u, v) = ud_{\epsilon}(v) - d_{\epsilon}(u)v = u\epsilon(v) - \epsilon(u)v = [u, v]_{\epsilon}$.

Let (M, ϵ) be an augmented R-module, i.e., a R-module together with a linear map $\epsilon \colon M \to R$, called its augmentation map.

It admits a Lie bracket $[u,v]_{\epsilon} := \epsilon(v)u - \epsilon(u)v$. It can be shown that there is a unique derivation d_{ϵ} on the symmetric algebra S(M) of M that extends ϵ .

Let $u, v \in M$. Then, $W_{d_{\epsilon}}(u, v) = ud_{\epsilon}(v) - d_{\epsilon}(u)v = u\epsilon(v) - \epsilon(u)v = [u, v]_{\epsilon}$. Hence the canonical embedding $M \hookrightarrow \mathsf{S}(M)$ is a Lie map.

Let (M, ϵ) be an augmented R-module, i.e., a R-module together with a linear map $\epsilon \colon M \to R$, called its augmentation map.

It admits a Lie bracket $[u,v]_{\epsilon} := \epsilon(v)u - \epsilon(u)v$. It can be shown that there is a unique derivation d_{ϵ} on the symmetric algebra S(M) of M that extends ϵ .

Let $u, v \in M$. Then, $W_{d_{\epsilon}}(u, v) = ud_{\epsilon}(v) - d_{\epsilon}(u)v = u\epsilon(v) - \epsilon(u)v = [u, v]_{\epsilon}$. Hence the canonical embedding $M \hookrightarrow \mathsf{S}(M)$ is a Lie map.

Therefore, $(M, [-, -]_{\epsilon})$ embeds into its Wronskian envelope.

Table of contents

Motivations

2 Jacobi, Poisson and Lie-Rinehart algebras

3 Kirillov's local Lie algebras and Lie algebroids

Lie-Rinehart algebras

Let (A, \cdot) be a (not necessarily associative) R-algebra. Let $\mathfrak{Der}_R(A, \cdot)$ be its Lie R-algebra of R-linear derivations (under the usual commutator bracket). When (A, \cdot) is commutative, $\mathfrak{Der}_R(A, \cdot)$ becomes a A-module in an obvious way.

Lie-Rinehart algebras

Let (A, \cdot) be a (not necessarily associative) R-algebra. Let $\mathfrak{Der}_R(A, \cdot)$ be its Lie R-algebra of R-linear derivations (under the usual commutator bracket). When (A, \cdot) is commutative, $\mathfrak{Der}_R(A, \cdot)$ becomes a A-module in an obvious way.

Definition

A Lie-Rinehart algebra over R is a triple $(A, \mathfrak{g}, \mathfrak{d})$, where

- A is a commutative R-algebra with a unit,
- \mathfrak{g} is a Lie R-algebra which is also a left A-module (with A-action denoted by $a \cdot x$),
- $\mathfrak{d}: \mathfrak{g} \to \mathfrak{Der}_R(A)$ is both a Lie *R*-algebra map, and a *A*-linear map $(\mathfrak{d}(a \cdot x)(b) = a(\mathfrak{d}(x)(b)))$ which turns *A* into a \mathfrak{g} -module,
- $\bullet [x, a \cdot y] = a \cdot [x, y] + \mathfrak{d}(x)(a) \cdot y, \ a \in A, \ x, y \in \mathfrak{g}.$

Lie-Rinehart algebras

Let (A, \cdot) be a (not necessarily associative) R-algebra. Let $\mathfrak{Der}_R(A, \cdot)$ be its Lie R-algebra of R-linear derivations (under the usual commutator bracket). When (A, \cdot) is commutative, $\mathfrak{Der}_R(A, \cdot)$ becomes a A-module in an obvious way.

Definition

A Lie-Rinehart algebra over R is a triple $(A, \mathfrak{g}, \mathfrak{d})$, where

- A is a commutative R-algebra with a unit,
- \mathfrak{g} is a Lie R-algebra which is also a left A-module (with A-action denoted by $a \cdot x$),
- $\mathfrak{d}: \mathfrak{g} \to \mathfrak{Der}_R(A)$ is both a Lie *R*-algebra map, and a *A*-linear map $(\mathfrak{d}(a \cdot x)(b) = a(\mathfrak{d}(x)(b)))$ which turns *A* into a \mathfrak{g} -module,
- $\bullet [x, a \cdot y] = a \cdot [x, y] + \mathfrak{d}(x)(a) \cdot y, \ a \in A, \ x, y \in \mathfrak{g}.$

By abuse, $\mathfrak d$ is referred to as the anchor map of the Lie-Rinehart algebra $(A,\mathfrak g).$

Remark and example

The structure of a Lie-Rinehart algebra is modeled on the properties of the pair $(C^{\infty}(M), \mathfrak{X}(M))$, where M is a finite-dimensional smooth manifold, $C^{\infty}(M)$ is the ring of smooth functions on M, and $\mathfrak{X}(M)$ is the Lie algebra of smooth vector fields on M.

Remark and example

The structure of a Lie-Rinehart algebra is modeled on the properties of the pair $(C^{\infty}(M), \mathfrak{X}(M))$, where M is a finite-dimensional smooth manifold, $C^{\infty}(M)$ is the ring of smooth functions on M, and $\mathfrak{X}(M)$ is the Lie algebra of smooth vector fields on M.

Example

Let A be a commutative R-algebra with a unit. Then, $(A, \mathfrak{Der}_R(A))$ is a Lie-Rinehart algebra.

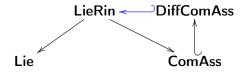
Remark and example

The structure of a Lie-Rinehart algebra is modeled on the properties of the pair $(C^{\infty}(M), \mathfrak{X}(M))$, where M is a finite-dimensional smooth manifold, $C^{\infty}(M)$ is the ring of smooth functions on M, and $\mathfrak{X}(M)$ is the Lie algebra of smooth vector fields on M.

Example

Let A be a commutative R-algebra with a unit. Then, $(A, \mathfrak{Der}_R(A))$ is a Lie-Rinehart algebra.

Given a Lie-Rinehart algebra (A, \mathfrak{g}) , the Lie algebra \mathfrak{g} , together with the anchor, is also referred to as a Lie (R, A)-pseudoalgebra.



Any commutative differential R-algebra (A,d) may be turned into a Lie-Rinehart algebra $(A,(A,W_d))$ with anchor map $a\mapsto \mathfrak{d}(a):=ad$, and this is functorial. This allows to view **DiffComAss** as a sub-category of **LieRin**.

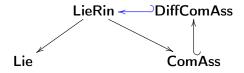
In particular, any commutative R-algebra A, viewed as a differential algebra with the zero derivation, provides a Lie-Rinehart algebra (A, (A, 0)).

A commutative R-algebra A also provides another Lie-Rinehart algebra, namely (A,(0)), which is even the free Lie-Rinehart algebra generated by A.

There is also a forgetful functor **LieRin** \to **Lie**, and it admits a left adjoint given on objects by $\mathfrak{g} \mapsto (R,\mathfrak{g})$. (This may also be interpreted as an embedding of **Lie** into the category of Lie (R,R)-pseudoalgebras.)

Wronskian envelope of a Lie-Rinehart algebra (sketch)

DiffComAss is a reflective sub-category of **LieRin**, i.e., the inclusion functor below admits a left adjoint.



Wronskian envelope of a Lie-Rinehart algebra (sketch)

DiffComAss is a reflective sub-category of LieRin.

Let (A,\mathfrak{g}) be a Lie-Rinehart algebra with anchor map \mathfrak{d} . Let $\mathcal{D}(A,\mathfrak{g})$ be the free commutative differential R-algebra generated by the set $|A| \sqcup |\mathfrak{g}|$. Hence it is the commutative algebra of differential polynomials $R\{|A| \sqcup |\mathfrak{g}|\}$ with variables in $|A| \sqcup |\mathfrak{g}|$.

Wronskian envelope of a Lie-Rinehart algebra (sketch)

DiffComAss is a reflective sub-category of LieRin.

Let (A,\mathfrak{g}) be a Lie-Rinehart algebra with anchor map \mathfrak{d} . Let $\mathcal{D}(A,\mathfrak{g})$ be the free commutative differential R-algebra generated by the set $|A| \sqcup |\mathfrak{g}|$. Hence it is the commutative algebra of differential polynomials $R\{|A| \sqcup |\mathfrak{g}|\}$ with variables in $|A| \sqcup |\mathfrak{g}|$.

Then, let $I(A,\mathfrak{g})$ be the differential ideal of $\mathcal{D}(A,\mathfrak{g})$ generated by the relations that turn the canonical map $(A,\mathfrak{g}) \to (\mathcal{D}(A,\mathfrak{g}),(\mathcal{D}(A,\mathfrak{g}),W))$ into a Lie-Rinehart map. Then, $\mathcal{D}(A,\mathfrak{g})/I(A,\mathfrak{g})$ is the free commutative differential algebra generated by (A,\mathfrak{g}) .

Jacobi algebra

A Jacobi algebra is a commutative R-algebra A with a unit, together with a Lie bracket (called a Jacobi bracket) over R which satisfies Jacobi-Leibniz rule:

$$[ab, c] = a[b, c] + b[a, c] - ab[1_A, c]$$

 $a, b, c \in A$.

Jacobi algebra

A Jacobi algebra is a commutative R-algebra A with a unit, together with a Lie bracket (called a Jacobi bracket) over R which satisfies Jacobi-Leibniz rule:

$$[ab, c] = a[b, c] + b[a, c] - ab[1_A, c]$$

 $a, b, c \in A$.

It follows that $ad_{1_A}=[1_A,\cdot]\colon A\to A$ is a R-derivation of the associative algebra A, and that $[-,-]-W_{ad_{1_A}}$ is an alternating biderivation.

Remark

Actually each triple (A, D, d) where A is a commutative algebra, D is an alternating biderivation, and d is a derivation such that $D + W_d$ is a Lie bracket provides a Jacobi algebra $(A, D + W_d)$.

Remark

Actually each triple (A, D, d) where A is a commutative algebra, D is an alternating biderivation, and d is a derivation such that $D + W_d$ is a Lie bracket provides a Jacobi algebra $(A, D + W_d)$.

A commutative Poisson algebra thus is a Jacobi algebra whose associated derivation ad_{1_A} is zero.

Remark

Actually each triple (A, D, d) where A is a commutative algebra, D is an alternating biderivation, and d is a derivation such that $D + W_d$ is a Lie bracket provides a Jacobi algebra $(A, D + W_d)$.

A commutative Poisson algebra thus is a Jacobi algebra whose associated derivation ad_{1_A} is zero.

A commutative differential algebra, with its Wronskian bracket, is a Jacobi algebra whose associated biderivation $[-,-]-W_{ad_{1_A}}$ is zero.

Remark

Actually each triple (A, D, d) where A is a commutative algebra, D is an alternating biderivation, and d is a derivation such that $D + W_d$ is a Lie bracket provides a Jacobi algebra $(A, D + W_d)$.

A commutative Poisson algebra thus is a Jacobi algebra whose associated derivation ad_{1_A} is zero.

A commutative differential algebra, with its Wronskian bracket, is a Jacobi algebra whose associated biderivation $[-,-]-W_{ad_{1_A}}$ is zero.

This provides two embedding functors

 $\mathsf{PoissCom} \hookrightarrow \mathsf{Jac} \hookleftarrow \mathsf{DiffComAss}.$

Remark

Actually each triple (A, D, d) where A is a commutative algebra, D is an alternating biderivation, and d is a derivation such that $D + W_d$ is a Lie bracket provides a Jacobi algebra $(A, D + W_d)$.

A commutative Poisson algebra thus is a Jacobi algebra whose associated derivation ad_{1_A} is zero.

A commutative differential algebra, with its Wronskian bracket, is a Jacobi algebra whose associated biderivation $[-,-]-W_{ad_{1_A}}$ is zero.

This provides two embedding functors

 $\mathsf{PoissCom} \hookrightarrow \mathsf{Jac} \hookleftarrow \mathsf{DiffComAss}.$

Moreover, there is also a forgetful functor $Jac \rightarrow DiffComAss$, $(A, [-, -]) \mapsto (A, [1_A, -])$.

PoissCom is reflective in Jac.

PoissCom is reflective in **Jac**: given a Jacobi algebra (A, [-, -]), let us consider its Jacobi ideal I_{poiss} generated by $[1_A, x]$, $x \in A$, then A/I_{poiss} is the free commutative Poisson algebra generated by (A, [-, -]).

DiffComAss is reflective in **Jac**, since the embedding functor is an algebraic functor between (equational) varieties (Bill Lawvere).

There is also a notion of a Jacobi envelope of a differential commutative algebra since the functor $Jac \rightarrow DiffComAss$ is an algebraic functor. One observes that any differential commutative algebra embeds into its Jacobi envelope.

One finally mentions the composite forgetful functor $Jac \to DiffComAss \to LieRin$, $(A, [-, -]) \mapsto (A, (A, W_{ad_{1_A}}))$, which makes it possible to consider the Jacobi envelope of a Lie-Rinehart algebra as the Jacobi envelope of the free commutative differential algebra generated by a Lie-Rinehart algebra.

Table of contents

Motivations

2 Jacobi, Poisson and Lie-Rinehart algebras

3 Kirillov's local Lie algebras and Lie algebroids

There is also an obvious forgetful functor $Jac \to Lie$, forgetting the multiplicative structure. By a general category-theoretic principle, it admits a left adjoint.

There is also an obvious forgetful functor $Jac \to Lie$, forgetting the multiplicative structure. By a general category-theoretic principle, it admits a left adjoint.

Given a Lie algebra \mathfrak{g} , one considers the free Jacobi algebra $Jac(|\mathfrak{g}|)$ generated by the carrier set of \mathfrak{g} . (This object exists for the same general principle as above.)

There is also an obvious forgetful functor $Jac \to Lie$, forgetting the multiplicative structure. By a general category-theoretic principle, it admits a left adjoint.

Given a Lie algebra \mathfrak{g} , one considers the free Jacobi algebra $Jac(|\mathfrak{g}|)$ generated by the carrier set of \mathfrak{g} . (This object exists for the same general principle as above.)

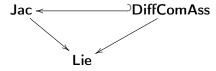
Let J be its Jacobi ideal generated by the relations that make the canonical image of $\mathfrak g$ in $Jac(|\mathfrak g|)$ a Lie algebra.

There is also an obvious forgetful functor $Jac \to Lie$, forgetting the multiplicative structure. By a general category-theoretic principle, it admits a left adjoint.

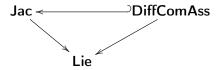
Given a Lie algebra \mathfrak{g} , one considers the free Jacobi algebra $Jac(|\mathfrak{g}|)$ generated by the carrier set of \mathfrak{g} . (This object exists for the same general principle as above.)

Let J be its Jacobi ideal generated by the relations that make the canonical image of $\mathfrak g$ in $Jac(|\mathfrak g|)$ a Lie algebra.

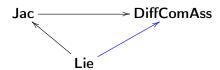
Then, $Jac(|\mathfrak{g}|)/J$ is the universal Jacobi envelope of \mathfrak{g} .



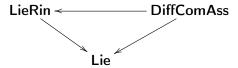
The above diagram of forgetful functors commutes.



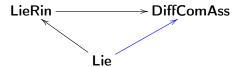
Hence the Wronskian envelope of a Lie algebra $\mathfrak g$ may be described as the free differential commutative algebra generated by the Jacobi envelope of $\mathfrak g$ as illustrated below.



Moreover the following diagram of functors also commutes.



This implies that the Wronskian envelope of a Lie algebra $\mathfrak g$ is also the differential envelope of the Lie-Rinehart algebra $(R,\mathfrak g)$.



Let M be a finite-dimensional smooth manifold. Let E be a line bundle over M, i.e., a vector bundle over M each fibre of which is one-dimensional.

Let M be a finite-dimensional smooth manifold. Let E be a line bundle over M, i.e., a vector bundle over M each fibre of which is one-dimensional.

Let Sec(E) its space of global sections. E is said to be trivial whenever $E = M \times \mathbb{R}$ in which case $C^{\infty}(M) = Sec(E)$.

Let M be a finite-dimensional smooth manifold. Let E be a line bundle over M, i.e., a vector bundle over M each fibre of which is one-dimensional.

Let Sec(E) its space of global sections. E is said to be trivial whenever $E = M \times \mathbb{R}$ in which case $C^{\infty}(M) = Sec(E)$.

Following A. A. Kirillov (1976), a local Lie algebra is a structure of a Lie algebra on Sec(E) which is local, i.e., the support of $[s_1, s_2]$ is contained in the intersection of the supports of s_1 and s_2 (recall that the support of a section is the closure of the set of points at which the section does not vanish).

Let M be a finite-dimensional smooth manifold. Let E be a line bundle over M, i.e., a vector bundle over M each fibre of which is one-dimensional.

Let Sec(E) its space of global sections. E is said to be trivial whenever $E = M \times \mathbb{R}$ in which case $C^{\infty}(M) = Sec(E)$.

Following A. A. Kirillov (1976), a local Lie algebra is a structure of a Lie algebra on Sec(E) which is local, i.e., the support of $[s_1, s_2]$ is contained in the intersection of the supports of s_1 and s_2 (recall that the support of a section is the closure of the set of points at which the section does not vanish).

When E is a trivial line bundle, then the local Lie bracket is of the form

$$[s_1, s_2] = \Lambda(ds_1, ds_2) + s_1\Gamma(s_2) - \Gamma(s_1)s_2$$

where Λ is a bivector field, and Γ is a vector field.

Let M be a finite-dimensional smooth manifold. Let E be a line bundle over M, i.e., a vector bundle over M each fibre of which is one-dimensional.

Let Sec(E) its space of global sections. E is said to be trivial whenever $E = M \times \mathbb{R}$ in which case $C^{\infty}(M) = Sec(E)$.

Following A. A. Kirillov (1976), a local Lie algebra is a structure of a Lie algebra on Sec(E) which is local, i.e., the support of $[s_1, s_2]$ is contained in the intersection of the supports of s_1 and s_2 (recall that the support of a section is the closure of the set of points at which the section does not vanish).

When E is a trivial line bundle, then the local Lie bracket is of the form

$$[s_1, s_2] = \Lambda(ds_1, ds_2) + s_1\Gamma(s_2) - \Gamma(s_1)s_2$$

where Λ is a bivector field, and Γ is a vector field.

This implies that such a local Lie algebra $(C^{\infty}(M), [-, -])$ is precisely a Jacobi algebra.

A Lie algebroid on a vector bundle E over a finite-dimensional smooth manifold M is a $(\mathbb{R}, C^{\infty}(M))$ -Lie pseudoalgebra on the $C^{\infty}(M)$ -module Sec(E).

A Lie algebroid on a vector bundle E over a finite-dimensional smooth manifold M is a $(\mathbb{R}, C^{\infty}(M))$ -Lie pseudoalgebra on the $C^{\infty}(M)$ -module Sec(E).

The anchor map of the corresponding Lie-Rinehart algebra $(C^{\infty}(M), Sec(E))$ is described by a vector bundle morphism $d: E \to TM$ which induces the Lie map from (Sec(E), [-, -]) to the Lie algebra $(\mathfrak{X}(M), [-, -]_{vf})$ of vector fields on M.

A Lie algebroid on a vector bundle E over a finite-dimensional smooth manifold M is a $(\mathbb{R}, C^{\infty}(M))$ -Lie pseudoalgebra on the $C^{\infty}(M)$ -module Sec(E).

The anchor map of the corresponding Lie-Rinehart algebra $(C^{\infty}(M), Sec(E))$ is described by a vector bundle morphism $d: E \to TM$ which induces the Lie map from (Sec(E), [-, -]) to the Lie algebra $(\mathfrak{X}(M), [-, -]_{vf})$ of vector fields on M.

Lie algebroids, studied by J.C. Herz (1954) and by J. Pradines (1967), are the infinitesimal parts of differentiable groupoids.

A Lie algebroid on a vector bundle E over a finite-dimensional smooth manifold M is a $(\mathbb{R}, C^{\infty}(M))$ -Lie pseudoalgebra on the $C^{\infty}(M)$ -module Sec(E).

The anchor map of the corresponding Lie-Rinehart algebra $(C^{\infty}(M), Sec(E))$ is described by a vector bundle morphism $d: E \to TM$ which induces the Lie map from (Sec(E), [-, -]) to the Lie algebra $(\mathfrak{X}(M), [-, -]_{vf})$ of vector fields on M.

Lie algebroids, studied by J.C. Herz (1954) and by J. Pradines (1967), are the infinitesimal parts of differentiable groupoids.

Example

• A Lie algebroid on the tangent bundle TM is given by the canonical bracket $[-,-]_{vf}$ on $\mathfrak{X}(M)=Sec(TM)$.

A Lie algebroid on a vector bundle E over a finite-dimensional smooth manifold M is a $(\mathbb{R}, C^{\infty}(M))$ -Lie pseudoalgebra on the $C^{\infty}(M)$ -module Sec(E).

The anchor map of the corresponding Lie-Rinehart algebra $(C^{\infty}(M), Sec(E))$ is described by a vector bundle morphism $d: E \to TM$ which induces the Lie map from (Sec(E), [-, -]) to the Lie algebra $(\mathfrak{X}(M), [-, -]_{vf})$ of vector fields on M.

Lie algebroids, studied by J.C. Herz (1954) and by J. Pradines (1967), are the infinitesimal parts of differentiable groupoids.

Example

- **1** A Lie algebroid on the tangent bundle TM is given by the canonical bracket $[-,-]_{vf}$ on $\mathfrak{X}(M)=Sec(TM)$.
- 2 Every Lie algebra is a Lie algebroid over the one point manifold.

Lie algebroids on the trivial line bundle, hence Lie algebroid brackets on $C^{\infty}(M)$, are particular local Lie algebras of the form

$$[f,g] = f\Gamma(g) - \Gamma(f)g$$

for a certain vector field Γ on M.

Lie algebroids on the trivial line bundle, hence Lie algebroid brackets on $C^{\infty}(M)$, are particular local Lie algebras of the form

$$[f,g] = f\Gamma(g) - \Gamma(f)g$$

for a certain vector field Γ on M.

It follows that the underlying Lie algebra of the Lie pseudoalgebra $(C^{\infty}(M), [-, -])$ embeds into its Wronskian envelope since its bracket is precisely given by a Wronskian.

Lie algebroids on the trivial line bundle, hence Lie algebroid brackets on $C^{\infty}(M)$, are particular local Lie algebras of the form

$$[f,g] = f\Gamma(g) - \Gamma(f)g$$

for a certain vector field Γ on M.

It follows that the underlying Lie algebra of the Lie pseudoalgebra $(C^{\infty}(M), [-, -])$ embeds into its Wronskian envelope since its bracket is precisely given by a Wronskian.

Remark

Other examples of embedding of a Lie pseudoalgebra into its Wronskian envelope are given by Lie algebras of vector fields tangent to a given foliation with one-dimensional leaves.

Conclusion

The embedding problem of a (differential) Lie algebra into its Wronskian enveloping algebra seems to be difficult, and related to Lie algebras of (one-dimensional) vector fields. But Lie algebras of vector fields satisfy some non-trivial identities.

Conclusion

The embedding problem of a (differential) Lie algebra into its Wronskian enveloping algebra seems to be difficult, and related to Lie algebras of (one-dimensional) vector fields. But Lie algebras of vector fields satisfy some non-trivial identities.

It might be useful to tackle this problem by dividing it into two parts: first the embedding problem of a Lie algebra into its Jacobi envelope, and secondly the embedding problem of a Jacobi algebra into its differential envelope.

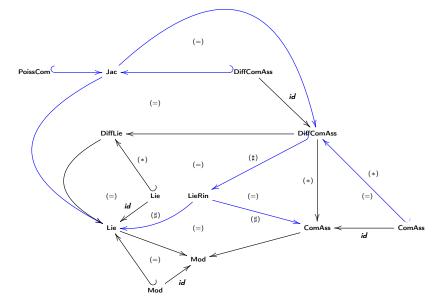
• Is there an explicit description of the free Jacobi algebra on a set? of the differential envelope of a Jacobi algebra?

- Is there an explicit description of the free Jacobi algebra on a set? of the differential envelope of a Jacobi algebra?
- ② Does the Wronskian envelope of a differential Lie algebra admit a structure of a (commutative) Hopf (differential) algebra?

- Is there an explicit description of the free Jacobi algebra on a set? of the differential envelope of a Jacobi algebra?
- ② Does the Wronskian envelope of a differential Lie algebra admit a structure of a (commutative) Hopf (differential) algebra? The terminal map $(\mathfrak{g},d) \to (0)$ lifts to a differential algebra morphism $\epsilon \colon \mathcal{W}(\mathfrak{g}) \to \mathcal{W}(0) \simeq R$, hence $\mathcal{W}(\mathfrak{g})$ is an augmented (differential) algebra.

- Is there an explicit description of the free Jacobi algebra on a set? of the differential envelope of a Jacobi algebra?
- ② Does the Wronskian envelope of a differential Lie algebra admit a structure of a (commutative) Hopf (differential) algebra? The terminal map $(\mathfrak{g},d) \to (0)$ lifts to a differential algebra morphism $\epsilon \colon \mathcal{W}(\mathfrak{g}) \to \mathcal{W}(0) \simeq R$, hence $\mathcal{W}(\mathfrak{g})$ is an augmented (differential) algebra. The diagonal $\delta \colon \mathfrak{g} \to \mathfrak{g} \times \mathfrak{g}$ provides a differential algebra map $\Delta \colon \mathcal{W}(\mathfrak{g}) \to \mathcal{W}(\mathfrak{g} \times \mathfrak{g})$.

- Is there an explicit description of the free Jacobi algebra on a set? of the differential envelope of a Jacobi algebra?
- ② Does the Wronskian envelope of a differential Lie algebra admit a structure of a (commutative) Hopf (differential) algebra? The terminal map $(\mathfrak{g},d) \to (0)$ lifts to a differential algebra morphism $\epsilon \colon \mathcal{W}(\mathfrak{g}) \to \mathcal{W}(0) \simeq R$, hence $\mathcal{W}(\mathfrak{g})$ is an augmented (differential) algebra. The diagonal $\delta \colon \mathfrak{g} \to \mathfrak{g} \times \mathfrak{g}$ provides a differential algebra map $\Delta \colon \mathcal{W}(\mathfrak{g}) \to \mathcal{W}(\mathfrak{g} \times \mathfrak{g})$. Is \mathcal{W} a comonoidal functor?



The mark (*) on arrows means functors with both left and right adjoints, while (#) means "non-algebraic functors".