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Main result (B. Coecke et al., arXived in 2008, published in 2013)

Every commutative †-Frobenius monoid in FdHilb determines an
orthogonal basis (consisting of its group-like elements) and every
orthogonal basis determines a commutative †-Frobenius monoid in
FdHilb. These correspondences are inverse to each other.

What about the infinite-dimensional situation? In a joint paper
(arXived 2010, published 2012), S. Abramsky and C. Heunen
explore the notion of commutative †-Frobenius semigroups in Hilb
to “provide a categorical way to speak about orthonormal bases
and quantum observables in arbitrary dimension”.
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Objective of the talk

To provide a suitable extension of Coecke et al.’s main result for
arbitrary dimensions.

⇐ Conditions under which a commutative †-Frobenius semigroup
in Hilb is semisimple.

⇐ Structure Theorem for Hilbertian Frobenius algebras.
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Semisimple commutative Banach algebras

A (not necessarily unital) commutative algebra A is

1. semisimple when J(A) = (0),

2. radical when A = J(A).

Jacobson radical J(A)
= intersection of all maximal modular ideals of A,
= intersection of the kernels of the characters onto C (A Banach),
= kernel of the Gelfand representation.

Gelfand representation G : A→ C0(Â), G (a)(χ) := χ(a)
with Â = set of all non-trivial characters of A.
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Hilbertian algebras
= (commutative) semigroups in Hilb

Hilbertian algebras

are (commutative) semigroups in Hilb,

“are” Banach algebras (forgetful functor),

aren’t Hilbert algebras (no involutions).
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Hilbertian algebras
Group-like elements

By Riesz Representation Theorem,

Â ' G (A)

where G (A) = set of non-zero group-like elements of A = (H, µ),

that is, those 0 6= x ∈ H s.t. µ†(x) = x ⊗ x .

Consequently,
J(A) = G (A)⊥

and

H = J(A)⊕2 J(A)⊥ = G (A)⊥ ⊕2 〈G (A)〉 (qua Hilbert spaces).
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Hilbertian algebras
Semisimplicity

A = (H, µ) is

1. semisimple when H = 〈G (A)〉 = J(A)⊥,

2. radical when G (A) = ∅.
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Hilbertian Frobenius algebras
a.k.a. commutative †-Frobenius algebras

A commutative semigroup H⊗2H
µ−→ H in Hilb s.t.

H⊗2H

µ

''

µ†⊗2 id

��

id⊗2µ
†
// H⊗2(H⊗2H)

(H⊗2H)⊗2H H

µ†
''

(H⊗2H)⊗2H

µ⊗2 id

��
H⊗2(H⊗2H)

id⊗2µ
// H⊗2H

(1)

Call it special when furthermore µ is a coisometry, that is, µ ◦ µ† = id .
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Structure Theorem for Hilbertian Frobenius Algebras
The main result

Theorem

Let A = (H, µ) be a Hilbertian Frobenius algebra.

Then, H = J(A)⊕2 J(A)⊥, where J(A) and J(A)⊥ are both ideals
(J(A) is the annihilator of A) and subcoalgebras. J(A) and J(A)⊥

are Frobenius, radical and semisimple respectively.
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〈G (A)〉 = J(A)⊥ is a closed subalgebra and subcoalgebra of A

for a Hilbertian Frobenius algebra A = (H, µ)

Proof:

Is 〈G (A)〉 a subcoalgebra?

By general properties of the Hilbert adjoint, for a Hilbertian
algebra A = (H, µ),

I closed ideal of A ⇔ I⊥ is a subcoalgebra of (H, µ†).
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〈G (A)〉 = J(A)⊥ is a closed subalgebra and subcoalgebra of A

for a Hilbertian Frobenius algebra A = (H, µ)

Is 〈G (A)〉 a subalgebra?

Let x , y ∈ G (A), x 6= y . It is essentially due to the Frobenius
conditions, that xy ∈ J(A).

But then x
‖x‖2

y
‖y‖2 is an idempotent element that belongs to J(A)

so it is equal to 0, and xy = 0 too.

It remains to check that x2 ∈ J(A)⊥. Let u ∈ J(A). Then,
0 = 〈x ⊗ x2, u ⊗ x〉 = 〈µ†(x2), u ⊗ x〉 = 〈x2 ⊗ x , u ⊗ x〉 =
‖x‖2〈x2, u〉 ⇒ x2 ∈ J(A)⊥.
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Quasi-nilpotent elements

Let A be a (not necessarily commutative) Banach algebra and let
u ∈ A.

u is quasi-nilpotent when its spectral radius is equal to zero, that

is, ‖un‖
1
n → 0.

When A is commutative, J(A) coincides with the set of all
quasi-nilpotent elements of A.

For a Hilbert space H, call quasi-nilpotent operator a bounded

linear map H
f−→ H quasi-nilpotent as a member of B(H).
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Frobenius ⇒ multiplication operators are normal
The statement

Let A = (H, µ) be a Hilbertian algebra. For u ∈ H, define
Mu : H → H, Mu(v) := uv .

Proposition

Let us assume that A = (H, µ) is Frobenius. Then, for each

u ∈ H, Mu is normal, that is, Mu ◦M†u = M†u ◦Mu.

Consequently, J(A) is equal to the annihilator of A.
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Frobenius ⇒ multiplication operators are normal
The proof

In any Hilbertian algebra A = (H, µ), u ∈ J(A)⇒ Mu is a
quasi-nilpotent operator.

If furthermore Mu is normal, then u belongs to the annihilator of
A, that is, Mu(v) = 0 for all v , because the spectral radius of a
normal operator coincides with its operator norm.

As the annihilator is contained into J(A), the second assertion of
the proposition is proved.

The first assertion is obtained by direct inspection (using the
Frobenius conditions).
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Structure Theorem for Hilbertian Frobenius Algebras

Main result

Let A = (H, µ) be a Hilbertian Frobenius algebra.

Then, H = J(A)⊕2 J(A)⊥, where J(A) and J(A)⊥ are both ideals
(J(A) is the annihilator of A) and subcoalgebras and subcoalgebras.
J(A) and J(A)⊥ are Frobenius, radical and semisimple respectively.

Proof:

That J(A)⊥ is an ideal follows from the facts that J(A)⊥ is a
subalgebra and J(A) is the annihilator of A. Consequently,
J(A)⊥⊥ = J(A) is a subcoalgebra.
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The conditions for semisimplicity
In arbitrary dimension

Corollary

Let A = (H, µ) be a Hilbertian Frobenius algebra. The following
assertions are equivalent.

1 A is semisimple.

2 µ has a dense range.

3 µ† is one-to-one.

4 µ ◦ µ† is one-to-one.

In particular, if A is special, then A is semisimple.
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Remark: Commutativity is necessary

Let X be a non void set and x0 ∈ X .

Then, (`2(X ), µx0) is a non commutative (whenever |X | > 1)
special Hilbertian Frobenius algebra, with µx0(u ⊗ v) := v(x0)u.

However it is not (Jacobson) semisimple. E.g., { δx0 }⊥ consists
entirely of nilpotent elements! Its Jacobson radical is precisely
{ δx0 }⊥, while its annihilator is (0). (The left annihilator is (0) and
the right annihilator is { δx0 }⊥.)
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The conditions for semisimplicity
In finite dimension

Corollary

Let A = (H, µ) be a finite-dimensional Hilbertian Frobenius
algebra. The following assertions are equivalent.

1 A has a unit.

2 µ is onto.

3 µ† is one-to-one.

4 A is semisimple.

In particular, if A is special, then A is unital.
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In the finite-dimensional situation, structures of (resp. special)
Frobenius algebras on H correspond one-one to orthogonal (resp.
orthonormal) bases of H.
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This is almost the same when is dropped the finite-dimensional
requirement.

Call bounded above (resp. bounded below) a set X of a Hilbert
space such that there exists C > 0 with ‖x‖ ≤ C (resp. C ≤ ‖x‖)
for each x ∈ X .

Bounded below or bounded above: a matter of taste!

x 7→ x
‖x‖2 transforms bijectively a bounded above orthogonal set into a

bounded below orthogonal set (and vice versa). Moreover it is a bijection

between the sets of all bounded below orthogonal sets and of all bounded

above orthogonal sets.
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Relations with Hilbertian bases

Theorem

Let H be a Hilbert space. There are (among others) one-one
correspondences between

1 Bounded above orthogonal bases of H and bounded linear
maps µ : H ⊗2 H → H with a dense range such that (H, µ) is
a Frobenius algebra.

2 Orthonormal bases of H and bounded linear coisometries
µ : H ⊗2 H → H such that (H, µ) is a Frobenius algebra.
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Relations with Hilbertian bases
Elements of the proof

Let X be a bounded above orthogonal basis of H. Define
µX (u ⊗ v) :=

∑
x∈X

1
‖x‖〈u, x〉〈v , x〉

x
‖x‖ . Then, (H, µX ) is a

semisimple Hilbertian algebra.

Let (H, µ) be a semisimple Frobenius algebra. Then, G (H, µ) is a
bounded above orthogonal basis of H (because for each
x ∈ G (H, µ), ‖x‖ ≤ ‖µ‖op).

The operations are invertible and inverse one from the other.
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The main theorem as an equivalence of categories

Frob (resp. semisimpleFrob) = full subcategory of cSem(Hilb)
spanned by the (resp. semisimple) Frobenius algebras.

Proposition

The categories Frob and semisimpleFrob × Hilb are equivalent.

Proof: By the main theorem, each radical Frobenius algebra is
trivial, that is, it has the zero multiplication. Consequently it is
essentially a Hilbert space.

There is a functor Frob × Frob → Frob,
((H, µ), (K , γ)) 7→ (H ⊕2 K , ρ), where ρ acts like µ on H ⊗2 H, like
γ on K ⊗2 K , and is zero everywhere else (here is used additivity
of ⊗2). Moreover J(H ⊕2 K , ρ) = J(H, µ)⊕2 J(K , γ).
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Weighted pointed sets

A weighted pointed set is a triple (X , x0, α), where (X , x0) is a
pointed set and α : X \ { x0 } → [C ,+∞[ is a map, where C > 0.

A morphism (X , x0, α)
f−→ (Y , y0, β) is a base-point preserving map

(X , x0)
f−→ (Y , y0) such that

1 for each y 6= y0, |f −1({ y })| < +∞,

2 there exists a real number Mf ≥ 0 such that for all y 6= y0,∑
x∈f −1({ y }) α(x) ≤ Mf β(y).

This provides the category WSet•.
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The `2
•-functor

Let (X , x0, α) be a weighted pointed set.

Define the following subspace of `2(X )
`2
•(X , x0, α) := { f ∈ CX : f (x0) = 0,

∑
x∈X\{ x0 } α(x)|f (x)|2 < +∞}.

Under pointwise product of maps, it is a semisimple Frobenius
algebra.

This construction extends to a functor `2
• : WSetop• → Frob.
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The set of minimal ideals functor

Let A = (H, µ) be a Frobenius algebra. Each minimal ideal of A is
a one-dimensional space generated by a unique group-like element.

Let Min(A) := {Cx : x ∈ G (A) } and wA : Min(A)→ [C ,+∞[,
wA(I ) := 1

‖gI ‖2 , where gI is the group-like generator of I .

(Min•(A), 0,wA), with Min•(A) = Min(A) ∪ { 0 }, is a weighted
pointed set, and this construction extends to a functor
Min• : Frob →WSetop• .
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An adjunction and its restricted equivalence

One has an adjunction Min• a `2
• : Frob →WSetop•

which restricts to an equivalence of categories

semisimpleFrob 'WSetop• .

Consequently, Frob 'WSetop• × Hilb (equivalence).
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Some derived equivalences

From Frob 'WSetop• × Hilb, by restriction:

FdFrob ' FinSetop• × FdHilb

1FdFrob ' FdFrobproper ' FinSetop × FdHilb.

A morphism (H, µ)
f−→ (K , γ) of Hilbertian algebras is called proper when

ran(f ) is included in no maximal modular ideals of (K , γ). Alternatively, for

each group-like element y of (K , γ), there exists u ∈ H such that 〈f (u), y〉 6= 0.

27/27



Section 1: Basic definitions
Section 2: The main result

Section 3: Some direct consequences
Section 4: Category-theoretic observations

Some derived equivalences

From Frob 'WSetop• × Hilb, by restriction:

FdFrob ' FinSetop• × FdHilb

and

1FdFrob ' FdFrobproper ' FinSetop × FdHilb.

A morphism (H, µ)
f−→ (K , γ) of Hilbertian algebras is called proper when

ran(f ) is included in no maximal modular ideals of (K , γ). Alternatively, for

each group-like element y of (K , γ), there exists u ∈ H such that 〈f (u), y〉 6= 0.

27/27


	Section 1: Basic definitions
	Section 2: The main result
	Section 3: Some direct consequences
	Section 4: Category-theoretic observations

