
Journal of Computational and Applied Mathematics 162 (2004) 17–31
www.elsevier.com/locate/cam

A modular reduction for GCD computation
Sidi Mohammed Sedjelmaci

LIPN CNRS UMR 7030, Universit�e Paris-Nord, 99 Avenue J.B. Cl�ement, 93430, Villetaneuse, France

Received 30 November 2001; received in revised form 5 November 2002

Abstract

Most of integer GCD algorithms use one or several basic transformations which reduce at each step the size
of the inputs integers u and v. These transformations called reductions are studied in a general framework. Our
investigations lead to many applications such as a new integer division and a new reduction called Modular
Reduction or MR for short. This reduction is, at least theoretically, optimal on some subset of reductions, if
we consider the number of bits chopped by each reductions. Although its computation is rather di3cult, we
suggest, as a 4rst attempt, a weaker version which is more e3cient in time. Sequential and parallel integer
GCD algorithms are designed based on this new reduction and our experiments show that it performs as well
as the Weber’s version of the Sorenson’s k-ary reduction.
c© 2003 Elsevier B.V. All rights reserved.

1. Introduction

Given two integers u and v, the greatest common divisor, or GCD, of u and v is the largest
integer that divides both u and v.

1.1. Related works and results

The advent of practical parallel computers has caused the re-examination of many existing algo-
rithms with the hope of discovering a parallel implementation. One of the oldest and best known
algorithms for 4nding the GCD of two integers is Euclid’s algorithm, which uses the GCD preserving
transformations (u; v) �→ (v; umod v).

Although there have been results in the computation of the GCD of polynomials, the integer case
still appeared to be inherently serial. Indeed, in 1983 Brent and Kung [2] achieved a running time
of O(n) with n processors arranged in a systolic array, where n is the number of bits required to
represent the larger of the two input numbers. Although it is an improvement on the best known

E-mail address: sms@lipn.univ-paris13.fr (S.M. Sedjelmaci).

0377-0427/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2003.08.014

mailto:sms@lipn.univ-paris13.fr

18 S.M. Sedjelmaci / Journal of Computational and Applied Mathematics 162 (2004) 17–31

serial integer GCD algorithm O(n(log n)2log log n) of SchFonhage [1,10], their method still requires
n iterations; the parallelism only reduces the bit operations per iteration.

In 1987, Kannan, Miller and Rudolph (KMR) [6] gave the 4rst sublinear time parallel integer GCD
algorithm on a common CRCW PRAM model. Their time bound is O(n log log n=log n) assuming
there are n2(log n)2 processors working in parallel. Since 1990, Chor and Goldreich [3] currently
have the fastest parallel GCD algorithm; it is based on the systolic array GCD algorithm of Brent
and Kung. The time complexity of their algorithm achieves O�(n=log n) using only n1+� processors
on a CRCW PRAM. By varying the main parameter to the algorithm, they also obtain a polylog
time, subexponential processor algorithm.

More recently (1994), Sorenson’s right- and left-shift k-ary algorithms [13] take O�(n=log n) time
using at most n1+� processors on a CRCW PRAM, matching Chor and Goldreich’s. Although the
k-ary algorithms seem more involved than, say, the Euclidean and binary algorithms, a straightfor-
ward parallelization is su3cient to rival the best previous parallel integer GCD algorithms. Actually,
the k-ary algorithms are simpler than Chor and Goldreich’s algorithm and the usual sublinear time
parallel algorithms which usually “compress” multiple iterations (a “phase” [6]) of simpler algorithms
into one iteration (“Packing method” [3]).

1.2. Reduction techniques

Given two integers u and v, most serial integer GCD algorithms use one or several transformations
which reduce the size of current pairs (u; v), till a pair (u; 0) is eventually reached. The last value
u = gcd(u; v) is then the result we want to 4nd.

Throughout, we restrict ourselves to the set of nonnegative integers. Let u and v be two such
(nonnegative) integers and a function N ∗ ×N ∗ → N ∗ ×N ∗, such that (u; v) �→ (v; R(u; v)), where R
is a GCD “reducing transformation” de4ned within a domain D ⊆ N ∗ × N ∗.

The simplest and most popular transformation for integer GCD algorithms is the linear combination
of u and v; i.e., R(u; v) = au + bv, where a and b are assumed to be rational numbers.

Sorenson’s k-ary GCD algorithms and the like [4,11,13,16] are practical and e3cient; they use the
k-ary reduction technique. Given an integer parameter k ¿ 0 and two integers u¿v¿ 0 relatively
prime to k (i.e., (u; k) and (v; k) are coprime), pairs of integers (a; b) can be found that satisfy

au + bv ≡ 0 (mod k) with 0¡ |a|; |b|¡
√
k: (1)

The k-ary reduction performed by the transformation R(u; v) = |au + bv|=k ensures the following
inequality

R(u; v) = |au + bv|=k ¡ 2u=
√
k (2)

the size of u is also reduced by roughly 1
2 log(k) bits. Such algorithms run in O(n=log k) iterations.

(See [11].)
The above reduction is useful whenever the bit-size diMerence between u and v is small enough.

Unfortunately, since the inequality R(u; v)¡v does not surely hold, the reduction proves inappropri-
ate in the case when their diMerence is too large. In order to cut oM this drawback, Weber [16] and
Jebelean [4] choose another preserving transformation called the “dmod reduction” (“digit modulus”)
which is very e3cient for large integers because it costs much less than the usual binary transforma-

S.M. Sedjelmaci / Journal of Computational and Applied Mathematics 162 (2004) 17–31 19

tion “modulo”. Thus, according to the size of u and v, Weber’s algorithm works by simultaneously
combining Sorenson’s k-ary reduction with the dmod reduction [16].

The aim of this paper is to try to show what can we expect of such reducing transformations R
in order to improve integer GCD algorithms. In the new reduction presented in the paper the size
of v is reduced by log(k) bits. This reduction we call the Modular Reduction (MR).

In Section 2, de4nitions and basic properties of the fast reduction MR are given, as well as the
main results of the paper: Theorems 6 and 10. Section 3 is devoted to an e3cient way to compute
MR. A parallel integer GCD based on our reduction is designed and analyzed in Section 4.

A comparison with other fundamental reductions with numerical experiments is presented in Sec-
tion 5. Finally, concluding remarks are given in Section 6.

2. The modular reduction MR

2.1. Notation

Throughout, the following notation is used. Let u¿ v¿ 2 be positive integers. Let k ¿ 0 be an
integer parameter. We assume that k is a power of 2, i.e., k=2m. Given a nonnegative integer x∈N ,
‘2(x) represents the number of its signi4cant bits, not counting leading zeros:

‘2(x) =

{
log2(x)� + 1 if x¿ 1;

1 if x = 0:

Usually we denote by �=�(u; v) the diMerence of signi4cant bits between u and v plus one, namely
�=�(u; v) = ‘2(u)− ‘2(v) + 1. Thus, we have 2�−2 ¡u=v¡ 2�. We let ‘2(u) = n, so 2n−16 u¡ 2n.
Let a, b and c be positive integers.

The integer x = amod b is the unique nonnegative integer x such that

06 x6 b− 1 and a− x ≡ 0 (mod b):

Note that this notation still holds when a¡ 0.
If b is relatively prime to k, then c = a=bmod k is the unique nonnegative integer c such that

06 c6 k − 1 and cb ≡ a (mod k):

Moreover if c = u=vmod 2� then |u− cv|=2� is a positive integer called the bmod, i.e.:

bmod (u; v) = |u− cv|=2�

2.2. De8nition and basic properties

De�nition 1. Let u¿ v¿ 0 be positive integers. We call a reduction any transformation R: N ∗ ×
N ∗ → N ∗ satisfying the following two properties:

(P1) 06R(u; v)¡v.
(P2) gcd (v; R(u; v)) = � gcd (u; v), with �¿ 0.

20 S.M. Sedjelmaci / Journal of Computational and Applied Mathematics 162 (2004) 17–31

With (P1) and (P2), we are guaranteed that algorithms terminate and return the correct value
gcd (u; v), up to a constant factor � which can easily be removed afterwards ([4,16]).

De�nition 2. Let a and b be two rational numbers s.t. ab
= 0. We call a linear reduction any
reduction of the form R(u; v) def= |au + bv|.

If a and b are integers then R is called integer linear reduction.

Example 3. The Euclid’s reduction: R(u; v) = umod v = u− qv, with q =
u=v�.

2.3. Integer reductions

Integer linear reductions are closely connected to the extended Euclidean algorithm (EEA). Propo-
sition 5 emphasizes the fact that gcd (u; v) expresses as a minimum of linear reductions of u and v.
We 4rst give a technical lemma:

Lemma 4. Let u¿ v¿ 0 and a; b¿ 0 be four integers such that |au− bv|¡v then

b =
au=v� or b = �au=v�:

Proof. From |au − bv|¡v we obtain −v¡bv − au¡v or au=v − 1¡b¡au=v + 1 hence the
result.

Let R be an integer linear reduction. Since R(u; v)¡v then we have the following:

(1) There exists a; b¿ 0, s.t. R writes R(u; v) = |au− bv|.
(2) R(u; v) = |au− bv| = (au) mod v or v− (au) mod v.
(3) gcd (v; |au− bv|) = � gcd (u; v), where 0¡� divides a.

Proposition 5. For all integers u¿ v¿ 0,

gcd (u; v) = min {|au− bv|¿ 0 with a; b integers ¿ 0}
= min {aumod v¿ 0; v− (au) mod v¿ 0 with 16 a¡v}:

Proof. Let m = min {|au − bv|¿ 0, with a; b integers ¿ 0} and d = gcd(u; v). If a and b are two
integers such that |au − bv|¿ 0, then there exists an integer �¿ 1 such that |au − bv| = �d hence
m¿d.

On the other hand the EEA computes, at each step i, integer coe3cients ai and bi such that:
aibi ¡ 0 and aiu+ biv= ri, where (ri)i is the sequence of the remainders in EEA. At the end of the
algorithm we obtain a′ and b′ such that d = gcd (u; v) = a′u + b′v = |"u − #v|, with a′b′¡ 0, and
" = |a′|, # = |b′|. Hence m6d and 4nally m = d.

Moreover if d¡v then m = d¡v and by Lemma 4

m = min {0¡ |au− bv|¡v} = min {0¡aumod v; v− aumod v}:
The case d = v is obvious since for all a¿ 0, aumod v = 0 and v− (au) mod v = v so m = v.

S.M. Sedjelmaci / Journal of Computational and Applied Mathematics 162 (2004) 17–31 21

Table 1
Examples of rational reductions

Name Reduction Property

Binary (u− v)=2 u and v odds
bmod |u− xv|=2� x = (u=v) (mod 2�)
Sorenson |au + bv|=k au + bv ≡ 0 (mod k)

However, for multiprecision inputs, EEA is not the best choice to compute the coe3cients a
and b in practice. In order to avoid expensive long divisions, Lehmer suggested [9] to extract the
leading digits u1 and v1 of u and v, and run EEA on these single precision approximations of the
inputs. KMR proposed [6] to compute the integer linear reduction R(u; v) = aumod v, in parallel for
a= 1; 2; : : : ; n with n=‘2(u). Some improvements of Lehmer’s approach [14,12] have been proposed
later to compute more e3cient integer reductions.

2.4. Rational reductions

It is easy to see that all the rational linear reductions are based on a modular relation

au + bu = 0 (mod k)

and the associated reduction are then de4ned by R(u; v)= |au+bv|=k (see Table 1). Let c denotes the
modular quotient of u by v modulo k, i.e.: c=(u=v) mod k. There are several couples (a; b) satisfying
the previous modular relation, namely those for which b=a ≡ −c (mod k), or b ≡ −ac (mod k).
However, it is interesting to choose a couple (a; b) which minimizes the value of |au + bv|. We
investigate this point in this section and de4ne a new rational reduction for which the couple (a; b) not
only satis4es au+bv ≡ 0 (mod k) but also |au+bv|¡v, so that |au+bv| is itself a reduction (integer
reduction). Thus, unlike the other reductions, the value of b satis4es b = −
au=v� or b = −�au=v�
and therefore, we take also into account the order of magnitude of u=v. This reduction will be, in
the remainder of the paper, called the Modular Reduction MR.

Theorem 6. For all positive integers u¿ v¿k¿ 2 s.t. gcd (v; k) = 1, there exists a couple (a; b)
s.t. 16 a6 k − 1 and b =
au=v� or b = �au=v�, which satis8es

(a) au− bv ≡ 0 (mod k).
(b) |au− bv|¡v.

Proof. Consider the two sequences (ri) and (di),

ri
def= (iu) mod v; (06 i¡ k) and rk = v;

di
def=ri mod k; for i = 0; 1; : : : ; k:

For each i = 0; 1; : : : ; k, (di) takes only k possible distinct values, whereas there is a total of k + 1
dis. Therefore, there obviously exist two distinct values i and j s.t. 06 j¡ i6 k and di = dj. Set
% = ri − rj. Then, % ≡ 0 (mod k) and (a) holds.

22 S.M. Sedjelmaci / Journal of Computational and Applied Mathematics 162 (2004) 17–31

Table 2
Computation of the couple (a; b)

|%| = |ri − rj| (a; b)

06 j¡ i �= k ri−j (i − j; �(i − j)u=v�)
or v− ri−j (i − j; �(i − j)u=v� + 1)

16 j¡ i = k v− rj (j; �ju=v� + 1)

It is easy to prove that |%| = |ri − rj| = ri−j or v − ri−j, hence the result (b). Note that the case
i=k and j=0 is impossible since it implies that %=v ≡ 0 (mod k) which contradicts the assumption
gcd (v; k) = 1.

Table 2 summarizes this discussion.

De�nition 7. Let (a; b) be one of the couples found in Theorem 6. The associated MR transformation
is de4ned by MR(u; v) def= |au− bv|=k.

Note that, for a given k ¿ 2, many such couples (a; b) could be found with 16 a¡k and for
any one of them, we have (see Section 2.1)

MR(u; v) = |au− bv|=k ¡v=k ¡
u

k2�−2 :

Corollary 8. For all positive integers u¿ v¿k ¿ 2 s.t. gcd (v; k) = 1, there exists a parameter a
s.t. 16 a6 k − 1 which satis8es

aumod v ≡ 0 (mod k) or

aumod v ≡ v (mod k):

We show in the following proposition that the smallest rational reduction is an MR reduction.

Proposition 9. For all positive integers u¿ v¿k ¿ 2 s.t. gcd (v; k)=1, there exists a couple (a; b),
16 a6 k − 1 and b =
au=v� or b = �au=v�, and an associated reduction MR such that

MR(u; v) = |au− bv|=k = min
16p¡k

{|pu + qv|=k; s:t : pu + qv ≡ 0 (mod k)}:

Proof. As noticed before, for a given k ¿ 2, many MR reductions can be found corresponding to
several couples (a; b), 16 a¡k. Let MR∗ denotes the smallest of them, namely:

MR∗(u; v) = |"u− #v|=k = min
16a¡k

{MR(u; v)};

and let

m = min
16p¡k

{|pu + qv|=k; s:t : pu + qv ≡ 0 (mod k)}:

S.M. Sedjelmaci / Journal of Computational and Applied Mathematics 162 (2004) 17–31 23

Then from the previous theorem, we obtain:

m= min
16p¡k

{|pu + qv|=k; s:t : pu + qv ≡ 0 (mod k) and |pu + qv|¡v}

= min
16p¡k

{MR(u; v)} = MR∗(u; v) = |"u− #v|=k:

Theorem 10. For all positive integers u¿ v¿k ¿ 2 s.t. gcd (v; k) = 1.
(i) Any MR transformation is a reduction (in the sense of De8nition 1).

(ii) MR(u; v) = 0 ⇔ gcd (u; v) = (v=a) gcd (a; b)¿v=k.

Proof. (i) MR(u; v)¡v=k ¡v. Now, since gcd (v; k) = 1, gcd (v;MR(u; v)) = gcd (v; kMR(u; v)) and
hence,

gcd (v;MR(u; v)) = gcd (v; |au− bv|) = gcd (v; au) = �gcd (u; v) with 16 � | a:
(ii) (⇒) If MR(u; v) = 0, then au = bv. Now, let d′ = gcd (a; b) and d = gcd (u; v). Then we have
a = d′a1, b = d′b1, u = du1 and v = dv1 with gcd (a1; b1) = gcd (u1; v1) = 1.

Then, a1u1 = b1v1 and thus, v1 = a1 and u1 = b1. By substituting the values,

d = v=v1 =
v

a=d′
¿ v=a¿v=k;

which yields the su3cient condition.
(⇐) If d¿v=k, then from (i) we have gcd (u; v) = d |MR(u; v). Let then MR(u; v) = td, with

t¿ 0. If t¿ 1, v=k ¡d6MR(u; v)¡v=k, which is impossible. Hence, t=0 and so is MR(u; v).

Property (ii) checks a situation when the reduction is too big. The condition MR(u; v) = 0 may be
used as a stopping test for GCD algorithms since gcd (a; b)6 a¡k. The division v=(a=d′) is then
easily performed because it is exact (it is known in advance that the remainder is zero [5]).

3. The Computation of MR

Now we have to specify how to compute the couple (a; b) in MR. For this purpose, two approx-
imations of the quotient qi =
iu=v� are proposed. We 4rst de4ne a new integer reduction which
is similar to Euclid’s reduction. A parallelized version is proposed in order to perform an e3cient
computation of MR. We let ‘2(u) = n and ‘2(v) = p; n¿p.

Proposition 11. Let u¿ v¿ 0 and q=
u=v�. We consider a parameter � s.t. 06 �6p. We de8ne
u1 and v1 by: u1 =
u=2p−�� and v1 =
v=2p−��. We let q′ =
u1=v1�, then:

(�¿ n− p + 2) ⇒ (q′ = q or q + 1):

Proof. Let u2 = umod 2p−� and v2 = vmod 2p−�, so that

u = 2p−�u1 + u2 and v = 2p−�v1 + v2:

24 S.M. Sedjelmaci / Journal of Computational and Applied Mathematics 162 (2004) 17–31

We have q′v12p−� + u26 u12p−� + u26 ((q′ + 1)v1 − 1)2p−� + u2. So q′(v − v2)6 u¡ (q′ + 1)v
since u2 ¡ 2p−�. Let A = q′v2=v, then A¡ 2n−p−�+2 and

q′ − 2n−p−�+2 ¡q′ − A6 u=v¡q′ + 1;

hence the result for �¿ � + 1 = n− p + 2.

Remark 12. Note that it is very easy to compute u1 and v1: u1 is the number obtained by the
(n− p + �) 4rst signi4cant leading bits of u while v1 is the number obtained by the � 4rst leading
bits of v.

This result generalizes and improves a previous lemma of KMR in [6, p. 9]. They took �= n−p
and obtain |q′i − qi|6 3.

3.1. The �-Euclid reduction

Applying the previous result to the smallest �, i.e.: �= �+ 1 = n−p+ 2, we obtain a new linear
integer reduction.

De�nition 13. With the notation described in Proposition 11, if u and v are such that 2p¿ n + 2
and � = n− p + 2, the �-Euclid transformation is de4ned by

R�(u; v) def= |u− q′v|:

Proposition 14. The transformation �-Euclid is a reduction.

Proof. First we note that R� = u mod v or v − (u mod v). So we have just to prove that the case
R�=v never occurs. This is derived by contradiction. Suppose R�=v, then q′=q+1 and u mod v=0.
By de4nitions of u1 and v1 we have

u1=v1 − 1¿
u1=v1� − 1 = q′ − 1 = q = u=v¿
2p−�u1

2p−�(v1 + 1)
=

u1

v1 + 1
:

Thus u1=v1 − 1¿u1=(v1 + 1) or u1=v1 ¿v1 + 1. But u1=v1 ¡ 2n−p+1 and v1¿ 2n−p+1 so we obtain
2n−p+1 + 16 v1 + 1¡u1=v1 ¡ 2n−p+1, which is impossible.

Remark 15. A new integer GCD algorithm similar to Euclid’s one can be designed with R�. However
this algorithm avoids many long divisions. Moreover, we obtain another extended GCD algorithm,
i.e.: we 4nd a couple of integers (a; b) s.t.: au+ bv= gcd(u; v) and this couple may diMer from that
of EEA. Note that a similar algorithm is proposed in [8, p. 376, exercise 30].

Example 16. Let u = 26; 977 and v = 8737, we have
1101 00101100001 = 26; 977
100 01000100001 = 8737.
We obtain � = n−p+ 2 = 3, u1 = 13 and v1 = 4 (the bits of u1 and v1 are written in bold). Thus

q′ =
u1=v1� = 3 and R� = |u− 3v| = 766.

S.M. Sedjelmaci / Journal of Computational and Applied Mathematics 162 (2004) 17–31 25

3.2. A 8rst approximation of qi

For the sake of simplicity (shifting, computing “modulo”, maintaining gcd (v; k) = 1, etc.), it is
usually easier to let k = 2m, where the parameter m will be such that m = O(log n).

In order to compute MR we shall apply the previous proposition to the couple (iu; v) for each i,
0¡i¡k = 2m. Computing in parallel R�(iu; v), for each i with � = �(iu; v) = ‘2(iu) − ‘2(v) + 1,
implies diMerent sizes for u1 depending on the diMerent values of i = 1; 2; : : : ; k − 1. However, it is
easier to choose a common value � such that �¿ �i + 1, for all i, namely � = 2m. On the other
hand, this choice of � allows a uniform framework needed in parallel computation processing. More
precisely we prove the following.

Proposition 17. Let u¿ v¿k = 2m ¿ 2 such that n − p + 26m6p=2. Let 16 i6 2m − 1 and
qi =
iu=v�. We de8ne (iu)1 =
(iu)=2p−2m�, v1 =
(v)=2p−2m� and q′i =
(iu)1=v1�. If �¡m and
� = 2m then:

q′i = qi or qi + 1:

Proof. Just use Proposition 11 with u′ = iu instead of u and n′ = ‘2(iu) instead of n = ‘2(u). We
obtain ‘2(iu) ≤ ‘2(i) + n6m + n and since �¡m:

2m¿m + n− p + 2¿ ‘2(iu) − p + 2:

Recall that there exists (see Section 2, Corollary 8) an index i; 0¡i¡k = 2m such that

iu− qiv ≡ 0 or v (mod 2m) (Test 1)

and

MR = |iu− qiv|=2m or |iu− (qi + 1)v|=2m; where qi =
iu=v�:
It is worth noticing that we do not need to know exactly the value of qi for computing MR. As

a matter of fact, we can substitute qi by q′i =
(iu)1=v1� and use the following test:

|iu− q′iv| ≡ 0 or v (mod 2m) (Test 2);

because

iu− qiv ≡ 0 or v (mod 2m) ⇔ |iu− q′iv| ≡ 0 or v (mod 2m):

Now the computation MR is performed as follows:
In order to obtain the actual index i, more information is considered. The index i has to be such

that: q′i − 1 or q′i or q′i + 1 ≡ iu=v (mod 2m). When this latter relation holds, it causes to proceed to
the computation of a new reduction MR1 as follows:

MR1(u; v) =




|iu− (q′i − 1)v|=2m if q′i − 1 ≡ iu=v (mod 2m);

|iu− q′iv|=2m if q′i ≡ iu=v (mod 2m);

|iu− (q′i + 1)v|=2m if q′i + 1 ≡ iu=v (mod 2m):

26 S.M. Sedjelmaci / Journal of Computational and Applied Mathematics 162 (2004) 17–31

where i is one of the indices satisfying

q′i − 1 or q′i or q′i + 1 ≡ iu=v (mod 2m) (Test 3):

It easy to check that MR1(u; v)¡ 2v=k. Moreover, we suggest to use Priority CRCW PRAM model
in order to solve the write concurrency for such index i: In this CRCW PRAM model, the processor
with the smallest index is allowed to write (see [7]). Otherwise, if Test 3 is false the calculation is
stopped. Moreover, only the �i − 1 + � 4rst leading bits of iu and the � 4rst leading bits of v are
needed for computing the value of q′i. Taking �¡m yields �i = �(iu; v)6m + �6 2m − 1. Thus,
for computing MR1 with Test 3, we need for each processor i; (16 i6 2m − 1):

• Only the 4m− 2 4rst bits of iu and the 2m 4rst bits of v to compute q′i.
• The m least signi4cant bits of u and v to compute iu=v (mod 2m).

3.3. A second approximation of qi

In this section we suggest a way to avoid the multiprecision calculation of the product iu,
16 i¡ 2m and substitute (iu)1 by iu1. Only the n − p + 2m 4rst leading bits u are considered
to obtain another approximation of qi.

Proposition 18. With the notations of Proposition 17 (� = 2m), we let q′′i =
iu1=v1�, then there
exists an index i, 16 i6 2m − 1 such that

q′′i = qi − 1 or qi or qi + 1; and

q′′i − 1 or q′′i or q′′i + 1 or q′′i + 2 ≡ iu=v (mod 2m) (Test 4):

Proof. The proof proceeds from the same arguments as for Proposition 11 and the previous Section
3.2.

3.4. Discussion and algorithms

We have proposed two approximations q′i and q′′i of the actual quotient qi =
iu=v�. Although less
accurate than q′i, the approximation q′′i seems to be more appropriate for computing MR because of
its simplicity. We suggest another version of MR with q′′i called MR2 de4ned by

MR2(u; v) =




|iu− (q′′i − 1)v|=2m if q′′i − 1 ≡ iu=v (mod 2m);

|iu− q′′i v|=2m if q′′i ≡ iu=v (mod 2m);

|iu− (q′′i + 1)v|=2m if q′′i + 1 ≡ iu=v (mod 2m);

|iu− (q′′i + 2)v|=2m if q′′i + 2 ≡ iu=v (mod 2m):

We can easily prove that MR2 is also a reduction that satis4es: MR2(u; v)¡ 3v=k = 3v=2m. We
assume u¿ v¿k2=2=22m−1 with gcd(v; k)=1 and n−p+26m6p=2. We give below a sequential
and a parallel algorithm for computing MR2 (Fig. 1).

S.M. Sedjelmaci / Journal of Computational and Applied Mathematics 162 (2004) 17–31 27

Fig. 1. The sequential algorithm for computing MR2.

Remark 19. The computation of i, q, and t are done in single precision. c and q can be performed
simultaneously in parallel within the loop because c deals with the m least signi4cant bits of u and
v, while q deals with the n − p + 2m 4rst signi4cant leading bits of u and the 2m 4rst signi4cant
leading bits of v. Thus, no read concurrency could occur.

3.5. An example

Let u = 56; 149 and v = 34; 195, we obtain � = 1. We take m = 3, thus � = 2m = 6, u1 = 54 and
v1 = 33. Applying the previous sequential algorithm yields:

i c q t

1 7 0 7

2 6 2 4

3 5 3 2

Finally for i = 3, we obtain

MR2(u; v) = |3u− 5v|=8 = 316:

Note that the computation of the Sorenson’s reduction RS yields for k = 26:

RS = |7u− v|=64 = 5607:

4. The MR-GCD algorithm

Given integers u¿ v¿k ¿ 2 s.t. gcd (v; k) = 1, we assume that when the algorithm starts, u is
n bits large. We 4nd it easier to take m as a “threshold” (the borderline choice between MR and
the dmod reductions); but likewise, we might choose a varying threshold, depending upon v and
experimental data [4,16].

4.1. High level description of a GCD algorithm

Step 1: Find d1, s.t. d1 equals the product of all common divisors to u and v which are less
than k.

28 S.M. Sedjelmaci / Journal of Computational and Applied Mathematics 162 (2004) 17–31

Step 2: Perform reductions until v¡k2=2 = 22m−1: if �¡m, then perform MRs; else, perform the
bmod reduction.

Compute d = gcd (u; v) with Euclid’s algorithm, where (u; v) is the last pair satisfying v¡k2=2.
Step 3: Remove all divisors ¡k from d.
Step 4: Perform the product d× d1.
Step 1, 3 and 4 are similar to the phases in KMR’s algorithm. Step 2 is designed below:

repeat R := |au− bv|=k; /* in parallel by either MR1 or MR2 */
R := R=2t; (u; v) := (v; R) = ∗ t is s.t. R is made odd */

until v¡k

if v = 0 then d’:= gcd (a; b); d := d′v=a
else d := gcd (u; v) /* perform bmods (v¡k2=2) */

return d

Remark 20. It may be the case that computing the reduction MR yields R(u; v)¿k, though succes-
sive halvings yield 2−t R(u; v)¡k.

Thanks to the choice of k (k = 2m) and the instruction R := R=2t , our routine reduces the size of
v faster than Kannan’s algorithm and is also much alike Brent and Kung’s binary algorithm.

4.2. Complexity analysis of the algorithm

With MR1:
MR1 is performed by using k − 1 = O(2m) processors working in parallel, where each processor

computes the expression iu − q′iv, for i = 1; : : : ; k − 1, as described in Section 3.2. Each iu can
be achieved in constant time with O(n22m) + O(n log log n) processors. Indeed, precomputed table
lookup can be used for multiplying two m-bit numbers and computation modulo 2m in constant time
with O(n22m) processors in CRCW PRAM model, providing that m = O(log n) (see [13]).

Precomputed table lookup of size O(m22m) can be achieved in O(logm) time with O(M (m)22m),
where M (m) = m logm log logm (see [13] or [3] for more details).

For each i, only the 4rst 4m − 2 and the last m bits are needed to determine q′i =
(iu)1=v1� in
O(1) time within the same number of processors. Test 3 is applied to determine an index i and
MR1, and, 4nally, the computation of MR1 takes O(1) time with: (�¡m and k = 2m)

O(n23m) + O(k n log log n) = O(n23m) processors:

With MR2:
The computation of MR2 is easier because we do not need to compute all the products iu; :

i = 1; : : : ; k − 1. Only the 4rst O(m) leading and the O(m) least signi4cants bits of u and v are
required for computing q′′i =
(iu1=v1� in O(1) time within the same number of processors. Test 4 is
applied to determine an index i; t and MR2. The computation of MR2 = |iu− (q + t)v|=2m requires
(see Fig. 2) only one product iu with the selected index i. Thus MR2 can be achieved in parallel
in O(1) time with: (�¡m)

O(n22m) + O(n log log n) = O(n22m) processors:

S.M. Sedjelmaci / Journal of Computational and Applied Mathematics 162 (2004) 17–31 29

Fig. 2. The parallel algorithm for computing MR2.

MR (either MR1 or MR2) reduces the size of the largest input u by at least m− 2 bits. Hence the
MR-GCD algorithm runs in O(n=m) iterations. For m= 1=2� log n, (�¿ 0) the parallel MR-GCD al-
gorithm matches the best previous GCD algorithms with O�(n=log n) time using only n1+� processors
on a CRCW PRAM.

5. Comparison to other reductions

5.1. Sorenson’s reduction

As previously noticed, both MR and Sorenson’s reduction RS are based on the same modular
relation au + bv ≡ 0 (mod k), and use the same modular quotient c = u=v (mod k). However, with
RS , we are not always sure that the inequality |au + bv|=k ¡v holds and this restrict somehow the
domain of use of RS . We prove the following.

Lemma 21. Sorenson’s k-ary transformation is a reduction if k ¿ 22�+2.

Proof. It is easily seen that Sorenson’s transformation satis4es R(u; v)¡ 2u=
√
k ¡ 2�+1v=

√
k. A

su3cient condition for R(u; v) to be a reduction is then 2�+1v=
√
k ¡v, that is k ¿ 22(�+1) or

�¡m=2 − 1=2.

Indeed Weber [16] and Jebelean [4] use Sorenson’s reduction only when k ¿ 24�−2 or �¡m=4 +
1=2, while MR can be used for �¡m.

Actually one of the major drawbacks of RS is that the value of |au + bv| may be large especially
when a and b are both positive (see the example in Section 3.5). Note that this case (ab¿ 0) never
occurs with MR.

5.2. Experiments

The implementation is written in C with GNU C Compiler gcc, version 2.7 (Stallman, 1991 [15])
on a Pentium III 667 MHz PC running Unix System 5. We have compared sequential algorithms
computing the Weber’s reduction WEB in version [16], MR2 version of MR, bmod and Rho. The
variable * = l(v) − l(R) represents the average number of bits chopped after each reduction. The
average times are in milliseconds. The experiments were done on N = 10; 000 random numbers u
and v of size 50 and 60 bits respectively.

30 S.M. Sedjelmaci / Journal of Computational and Applied Mathematics 162 (2004) 17–31

Table 3
Results for 50-bits random integers, m = 4 for MR, m = 8 for WEB

Reduction WEB MR bmod Rho

Average time 72:6 63:7 32:2 55:6
* = l(v) − l(R) 4:272471 4:604829 2:814400 2:233300

Table 4
Results for 50-bits random integers, m = 5 for MR, m = 10 for WEB

Reduction WEB MR bmod Rho

Average time 74:0 65:6 32:2 55:6
* = l(v) − l(R) 5:216611 5:588013 2:814400 2:233300

Table 5
Results for 60-bits random integers, m = 4 for MR, m = 8 for WEB

Reduction WEB MR bmod Rho

Average time 73:3 65:0 34:2 64:5
* = l(v) − l(R) 4:228190 4:625653 2:766600 2:221800

Table 6
Results for 60-bits random integers, m = 5 for MR, m = 10 for WEB

Reduction WEB MR bmod Rho

Average time 75:4 66:0 34:2 64:5
* = l(v) − l(R) 5:254600 5:622900 2:766600 2:221800

In order to compare MR2 and WEB we must ensure the same size for the couples (a; b), s.t.:
|a|; |b|¡k. Thus, the parameters were m = 4 and 5 for MR2 and, m = 8 and m = 10 for WEB
respectively.

The results described in Tables 3–6 show that our reduction MR (MR2 version) performs at least,
as well as Weber’s reduction WEB and it could therefore be used successfully in gcd computations.

Moreover, it is worth to note for larger size integers u and v, say 1000 to 10; 000 bits (recall
that m= O(log n), so 96m6 13), the situation should be the same. As a matter of fact, the single
precision computation of a and b deals only with the few most and the few least signi4cant bits
of u and v, the other bits are absolutely disregarded. Thus, since we consider random integers, the
behaviour of the computation of a and b for each reduction is roughly the same for large integers.

S.M. Sedjelmaci / Journal of Computational and Applied Mathematics 162 (2004) 17–31 31

6. Conclusion

Reductions techniques are widely used in most of integer gcd computations. These reductions are
studied in a general framework. We have proposed a new reduction called MR which is optimal on
a subset of rational reductions. Both sequential and parallel algorithms are proposed to compute this
reduction and an integer gcd algorithm is designed. Our parallel integer gcd algorithm matches the
best parallel performance of O�(n=log n) time with n1+� processors on a CRCW PRAM.

Although the parallel complexity is still the same, our experiments are encouraging for this 4rst
attempt in the sequential version and we think that our algorithm can be improved. For example, it
will be very interesting to provide a method with complexity o(k) to 4nd a “good” pair (a; b). This
is our next direction of research.

References

[1] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading,
MA, 1974.

[2] R.P. Brent, H.T. Kung, Systolic VLSI arrays for linear-time GCD computation, in: F. Anceau, E.J. Aas (Eds.),
Proceedings of VLSI’83, 1983, pp. 145–154.

[3] B. Chor, O. Goldreich, An improved parallel algorithm for integer GCD, Algorithmica 5 (1990) 1–10.
[4] T. Jebelean, A generalization of the binary GCD algorithm, in: Proceedings of the International Symposium on

Symbolic and Algebraic Computation ISSAC’93, 1993, pp. 111–116.
[5] T. Jebelean, An algorithm for exact division, J. Symbolic Comput. 15 (1993) 169–180.
[6] R. Kannan, G. Miller, L. Rudolph, Sublinear parallel algorithm for computing the greatest common divisor of two

integers, SIAM J. Comput. 16 (1) (1987) 7–16.
[7] R. Karp, V. Rammachandran, Parallel algorithms for shared-memory machines in: J. Van Leeuwen (Ed.), Algorithms

and Complexity, Handbook of Theoretical Computer Science, Vol. A, MIT Press, Cambridge, MA, Elsevier,
Amsterdam, 1990.

[8] D.E. Knuth, The Art of Computer Programming, 3rd Edition, Vol. 2, Addison-Wesley, Reading, MA, 1998.
[9] D.H. Lehmer, Euclid’s algorithm for large numbers, Amer. Math. Monthly 45 (1938) 227–233.

[10] A. SchFonhage, Schnelle Berechnung von kettenbruchentwicklungen, Acta Inform. 1 (1971) 139–144.
[11] M.S. Sedjelmaci, On a parallel Lehmer-Euclid GCD algorithm, Proceedings of the International Symposium on

Symbolic and Algebraic Computation ISSAC’2001, 2001, pp. 303–308.
[12] M.S. Sedjelmaci, C. Lavault, Improvements on the accelerated integer GCD algorithm, Inform. Process. Lett. 61

(1997) 31–36.
[13] J. Sorenson, Two fast GCD algorithms, J. Algorithms 16 (1994) 110–144.
[14] J. Sorenson, An analysis of Lehmer’s Euclidean GCD algorithm, Proceedings of the International Symposium on

Symbolic and Algebraic Computation ISSAC’95, 1995, pp. 254–258.
[15] R.M. Stallman, Using and porting GCC, Free Software Foundation, Boston, 1991.
[16] K. Weber, Parallel implementation of the accelerated integer GCD algorithm, J. Symbolic Comput. (Special Issue

on Parallel Symbolic Comput.) 21 (1996) 457–466.

	A modular reduction for GCD computation
	Introduction
	Related works and results
	Reduction techniques

	The modular reduction MR
	Notation
	Definition and basic properties
	Integer reductions
	Rational reductions

	The Computation of MR
	The rho-Euclid reduction
	A first approximation of qi
	A second approximation of qi
	Discussion and algorithms
	An example

	The MR-GCD algorithm
	High level description of a GCD algorithm
	Complexity analysis of the algorithm

	Comparison to other reductions
	Sorenson's reduction
	Experiments

	Conclusion
	References

