Elsevier Editorial System(tm) for Discrete Applied Mathematics Manuscript Draft

Manuscript Number:

Title: The Mixed Binary Euclid Algorithm

Article Type: Special Issue: LAGOS 2009

Keywords: Greatest common divisor (GCD); Parallel Complexity; Algorithms.

Corresponding Author: Dr. Sidi Mohamed SEDJELMACI, Ph.D

Corresponding Author's Institution: LIPN, University of Paris 13

First Author: Sidi Mohamed SEDJELMACI, Ph.D

Order of Authors: Sidi Mohamed SEDJELMACI, Ph.D

Abstract: We present a new GCD algorithm for two integers that combines both the Euclidean and the binary gcd approaches. We give its worst case time analysis and we prove that its bit-time complexity is still $O(n^2)$ for two n^- bit integers in the worst case. Our experimental implementation shows a clear speedup for small integers. A parallel version matches the best presently known time complexity, namely $O(n/\log n)$ time with $O(n^{1+\log n})$ processors, for any constant $\operatorname{epsilon} 0$.

The Mixed Binary Euclid Algorithm

Sidi Mohamed Sedjelmaci

LIPN CNRS UMR 7030 Université Paris-Nord Av. J.-B. Clément, 93430, Villetaneuse, France Email: sms@lipn.univ-paris13.fr

Kenneth Weber

Department of Computer Science and Information Systems Mount Union College Alliance, OH 44601, USA Email: weberk@muc.edu

Abstract

We present a new GCD algorithm for two integers that combines both the Euclidean and the binary gcd approaches. We give its worst case time analysis and we prove that its bit-time complexity is still $O(n^2)$ for two *n*-bit integers in the worst case. Our experimental implementation shows a clear speedup for small integers. A parallel version matches the best presently known time complexity, namely $O(n/\log n)$ time with $O(n^{1+\epsilon})$ processors, for any constant $\epsilon > 0$.

Keywords: Greatest common divisor (GCD); Parallel Complexity; Algorithms.

1. Introduction

Given two integers a and b, the greatest common divisor (GCD) of a and b, denoted gcd(a, b), is the largest integer which divides both a and b. Applications for GCD algorithms include computer arithmetic, integer factoring, cryptology and symbolic computation.

Most GCD algorithms follow the same idea of reducing efficiently u and v to u' and v', so that gcd(u, v) = gcd(u', v') [14]. These transformations are applied several times till a pair (u', 0) is reached. Such transformations, also called *reductions*, are studied in a general framework in [14].

For very large integers, the fastest GCD algorithms [1, 13, 17, 18] are all based on a "half-gcd" procedure and compute the GCD in $O(n \log^2 n \log \log n)$ time, where n is the size of the larger input. All these algorithms are recursive in nature and switch over to some other GCD algorithm that is more efficient for small inputs when the parameters in the recursive call become small enough.

Preprint submitted to Elsevier

March 18, 2010

In this paper, we are interested in small and medium size integers. Usually, the euclidean and the binary GCD algorithms work very well in practice for this range of integers. In Section 2, we present a new algorithm that alternates euclidean and binary reductions, obtaining a faster overall reduction to gcd(u', 0) than would be obtained by using either reduction exclusively. We give its worst case time complexity and a multi-precision version is suggested in Section 3. A parallel version is also suggested in Section 4. It matches the best presently known time complexity, namely $O(\frac{n}{\log n})$ time with $n^{1+\epsilon}$ processors, $\epsilon > 0$ (see [3, 16, 15]). Section 5 describes single, double and multi-precision implementations of the sequential algorithm; timings of these implementations for pseudorandomly generated input pairs of various sizes are also provided, supporting our conclusion that the new algorithm is a good choice for small inputs in many circumstances.

2. The Sequential Algorithm

2.1. Motivation

Let us start with an illustrative example. Let (u, v) = (5437, 2149). After one euclidean step, we obtain the quotient q = 2 and the remainder r = 1139. On the other hand, we observe that, in the same time, $u - v = 3288 = 2^3 \times 411$ and the binary algorithm gives $\frac{u-v}{8}=411$ which is smaller and easy to compute (right-shift). The reverse is also true, Euclid algorithm step may perform much more than the binary algorithm with some other integers, especially when the quotients are large. So, the idea is that, instead of choosing one of them, one may take the most of both euclidean and binary steps and combine them in a same algorithm. Note that a similar idea was suggested by Harris (cited by Knuth [9]) with a different reduction step.

Lemma 1. Let u and v be two integers such that v odd, $u \ge v \ge 1$ and let $r = u \pmod{v}$. Then we have

- (i) min { v-r, r, $\frac{r}{2}$ or $\frac{v-r}{2}$ } $\leq \frac{v}{3}$ ii) $gcd(r, \frac{v-r}{2}) = gcd(u, v)$, if r is odd $gcd(\frac{r}{2}, v-r) = gcd(u, v)$, if r is even.

PROOF. Note that either r or v - r is even, so that either $\frac{r}{2}$ or $\frac{v - r}{2}$ is an integer. The basic gcd property is $\forall \lambda \geq 0$, $\gcd(u, v) = \gcd(v, u - \lambda v)$. Two cases arise: **Case** 1: r is even then v - r is odd. If $r \leq \frac{2v}{3}$ then $\frac{r}{2} \leq \frac{v}{3}$, otherwise r > 2v/3and $v - r < \frac{v}{3}$. Moreover, $\gcd(\frac{r}{2}, v - r) = \gcd(r, v - r) = \gcd(v, r) = \gcd(u, v)$. **Case** 2: r is odd then v - r is even. If $v - r \leq \frac{2v}{3}$ then $\frac{v-r}{2} \leq \frac{v}{3}$, otherwise, v - r > 2v/3 and $r < \frac{v}{3}$. On the other hand, $\gcd(\frac{v-r}{2}, r) = \gcd(r, v - r) = \gcd(r, v - r) = \gcd(v, r) = \gcd(v, r) = \gcd(v, v)$. gcd(v, r) = gcd(u, v).

We derive, from Lemma 1, the following algorithm.

Algorithm MBE: Mixed Binary Euclid

```
Input: u>=v>=1, with v odd
Output: gcd(u,v)
    while (v>1)
        r=u mod v; s=v-r;
        while (r>0 and r mod 2 =0 ) r=r/2;
        while (s>0 and s mod 2 =0 ) s=s/2;
        if (s<r) {u=r; v=s; }
        else        {u=s; v=r; };
        endwhile
        if (v=1) return 1 else return u.
```

Example: With Fibonacci numbers $u = F_{17} = 1597$ and $v = F_{16} = 987$, we obtain:

q	r	reduction	
	1597	u	
	987	v	
1	610	r = u - qv	
	377	s = v - r	
	305	r/2	
1	72	r	
	233	v-r	
	9	r/8	
25	8	r	
	1	v-r	
	1	r/8	STOP

Note that Euclid algorithm gives the answer after 15 iterations, and its extended version gives: $-377 \ u + 610 \ v = 1 = \gcd(u, v)$, while MBE algorithm gives a modular relation $(-55 \ u + 89 \ v) = 8 = 2^3 \gcd(u, v)$, after 3 iterations. Moreover, we observe that the coefficients -55 and 89 are smaller than -377 and 610. We know that the cofactors of Bézout relation can be roughly as large as the size of the inputs (consider successive Fibonacci worst case inputs). So an interesting question is : What is the upper bound for the modular coefficients a and b in the relation $au + bv = 2^t \gcd(u, v)$?

2.2. Complexity analysis

First of all, thanks to Lemma 1, we have an upper bound for the number of iterations of the main loop. We have $(u, v) \to (u', v')$, such that $v' \leq v/3$, so after k iterations, we obtain $1 \leq v/3^k < 2^n/3^k$ or, $3^k < 2^n$, hence a first upper bound $k \leq \lfloor (\log_3 2) n \rfloor$. So the algorithm is quadratic in bit complexity as the binary or Euclidean algorithms. However, the following lemma proves that the worst case provides a smaller upper bound for the number of iterations.

Lemma 2. Let
$$k \ge 1$$
 and let us consider the sequence of vectors $\begin{pmatrix} r_k \\ s_k \end{pmatrix}$ defined
by $\forall k \ge 1$, $\begin{pmatrix} r_{k+1} \\ s_{k+1} \end{pmatrix} = \begin{pmatrix} 2r_k + 2s_k \\ 2r_k + s_k \end{pmatrix}$ and $\begin{pmatrix} r_1 \\ s_1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

Then the worst case of algorithm MBE occurs when the inputs (u, v) are equal to

$$\left(\begin{array}{c} u_k \\ v_k \end{array}\right) = \left(\begin{array}{c} 2r_k + s_k = s_{k+1} \\ r_k + s_k = r_{k+1}/2 \end{array}\right),$$

and the gcd is given after k iterations.

PROOF. Roughly speaking, the worst case is reached when, at each time, the quotient is 1 (the smallest), only one division by 2 occurs and the output is the smallest one. We can easily prove by induction that

$$\begin{cases} \forall k \ge 1, \ r_k \text{ is even, } s_k \text{ and } \frac{r_k}{2} \text{ are odd} \\ \forall k \ge 2, \ \frac{r_k}{2} < s_k < r_k \\ \forall k \ge 2, \ \lfloor \frac{u_k}{v_k} \rfloor = 1. \end{cases}$$

We call an *iteration*, each iteration of the (**while** v > 1) loop. We prove by induction that, at each iteration k, we have $q_k = 1$ and the triplets $(r_k, s_k, \frac{r_k}{2})$, for $k \ge 2$. After the first iteration with the inputs $(u_k = 2r_k + s_k, v_k = r_k + s_k)$, we obtain the triplet $(r_k, s_k, \frac{r_k}{2})$ since r_k is even and $\frac{r_k}{2}$ is odd. The relation $\frac{r_k}{2} < s_k < r_k$ yields and the next quotient q_{k-1} will be $q_{k-1} = \lfloor \frac{s_k}{r_k/2} \rfloor = 1$. We repeat the same process with the new triplet $(r_{k-1}, s_{k-1}, \frac{r_k}{2})$ until we reach the triplet $(r_1, s_1, \frac{r_1}{2}) = (2, 1, 1)$ which is the smallest output triplet possible.

EXAMPLE: For k = 7 we have $u_7 = 9805$ and $v_7 = 6279$. We obtain 7 iterations. Note that Euclid algorithm gives the answer after 12 iterations.

We give below the link between the maximum of iteration and the number of bits of the larger input integer.

Proposition 1. Let $u \ge v \ge 11$ be two integers, where u is an n-bit integer. If k is the number of iterations when algorithm MBE is applied then

$$k \leq \lceil \frac{n}{\log_2 \lambda} \rceil$$
, with $\lambda = \frac{3 + \sqrt{17}}{2}$.

PROOF. Let $u \ge v \ge 11$ be two integers, where u is an n-bit integer, so that

$$2^{n-1} \le u < 2^n$$
. Let us denote $A = \begin{pmatrix} 2 & 2\\ 2 & 1 \end{pmatrix}$, so, for each $k \ge 1$,
 $\begin{pmatrix} r_{k+1}\\ s_{k+1} \end{pmatrix} = A \begin{pmatrix} r_k\\ s_k \end{pmatrix}$.

Let $\lambda_1 = \frac{3+\sqrt{17}}{2}$ and $\lambda_2 = \frac{3-\sqrt{17}}{2}$ be the enginevalues of A. Then the worst case occurs after k iterations with $u \leq C$ $(\lambda_1)^k < 2^n$, where C is some positive constant. As a matter of fact we prove easily by induction or by diagonalization of matrix A, that $\forall k \geq 1$:

$$\begin{cases} r_k = \frac{2}{\sqrt{17}} \left(\lambda_1^k - \lambda_2^k\right) \\ s_k = \left(\frac{\sqrt{17} - 1}{2\sqrt{17}}\right) \lambda_1^k + \left(\frac{\sqrt{17} + 1}{2\sqrt{17}}\right) \lambda_2^k \end{cases}$$

Then, after a bit of calculation, we obtain

$$k = \lfloor \frac{n}{\log_2(\lambda_1)} \rfloor + 1.$$

REMARK: Note that $k \sim \left(\frac{\log 2}{\log \lambda}\right) n \sim 0,54 n$, while, when euclidean algorithm is applied to *n*-bit integers, the number of iterations is bounded by $k' \leq \left(\frac{\log 2}{\log \phi}\right) n \sim 1,44 n$, where $\phi = \frac{1+\sqrt{5}}{2}$ is the golden ratio. Indeed, a first experiment on 1000 pairs of 32-bit integers shows that our algorithm is about 3 time faster than Euclid algorithm. More careful experiments show a clear speed up for certain ranges of input size. These experiments are detailed in section 5.

3. The Multi-precision Algorithm

In order to avoid long divisions, we must consider some leading bits of the inputs (u, v) for computing the quotients and some other last significant bits to know if either $r = u \mod v$ or s = v - r is even. The algorithm is based on the following multi-precision reduction step (sketch) called MP-MBE. The integer m is a parameter choosen as in [14], it satisfies $m = O(\log n)$.

M = Id;

Step 1: Consider u_1 and v_1 the first 2m leading bits of respectively u and v. Similarly, u_2 and v_2 are the last 2m significant bits of respectively u and v.

Step 2: By Euclid algorithm, compute $q_1 = \lfloor u_1/v_1 \rfloor$. Compute $r_1 = |u_1 - q_1v_1|$ and $s_1 = v_1 - r_1$. Similarly, compute $r_2 = |u_2 - q_1v_2|$ and $s_2 = v_2 - r_2$ (see [14] for more details).

Step 3: Compute t_1 and p_1 such that $r_2/2^{t_1}$ and $s_2/2^{p_1}$ are both odd.

Step 4: Save the computations: $M \leftarrow M \times N$, where N is defined by: **Case 1:** r_2 is even. If $r_1/2^{t_1} \ge s_1$ then

$$N = \begin{pmatrix} 1/2^{t_1} & -q/2^{t_1} \\ -1 & q+1 \end{pmatrix}, \text{ otherwise } N = \begin{pmatrix} -1 & q+1 \\ 1/2^{t_1} & -q/2^{t_1} \end{pmatrix}.$$

Case 2: s_2 is even. If $s_1/2^{p_1} \ge r_1$ then

$$N = \begin{pmatrix} -1/2^{p_1} & (q+1)/2^{p_1} \\ 1 & -q \end{pmatrix}, \text{ otherwise } N = \begin{pmatrix} 1 & -q \\ -1/2^{p_1} & (q+1)/2^{p_1} \end{pmatrix}$$

EXAMPLE: Let u and v be two odd integers such that: u = 1617...309, and v = 1045...817. We obtain, in turn, $N_1 = \begin{pmatrix} -1 & 2 \\ 1/4 & -1/4 \end{pmatrix}$ and $N_2 = \begin{pmatrix} -1 & 5 \\ 1/4 & -1 \end{pmatrix}$. Then the two steps are saved in the matrix $M = N_2 \times N_1 = \begin{pmatrix} 9/4 & -13/4 \end{pmatrix}$

$$\begin{pmatrix} 9/4 & -13/4 \\ -1/2 & 3/4 \end{pmatrix}$$

4. The Parallel Algorithm:

A parallel GCD algorithm can be designed based on the following Par-MBE reduction:

 $\begin{array}{l} \textbf{Begin } (k \text{ is a parameter such that } k = 2^m = O(n)) \\ \textbf{Step 1: (in parallel)} \\ \textbf{For } i = 1 \textbf{ to } n \quad R[i] = v, \ S[i] = v; \ q_i = \lfloor (iu_1)/v_1 \rfloor; \ (\text{see Step 2 of MP-MBE}) \\ \textbf{For } i = 1 \textbf{ to } n \quad r_i = |iu - q_iv| \text{ and } s_i = v - r_i; \ (\text{see [15]}) \\ \textbf{Step 2:} \\ \textbf{While } (r_i > 0 \text{ and } r_i \text{ even}) \quad \textbf{Do } \quad r_i \leftarrow r_i/2; \\ \textbf{If } (r_i < 2v/k) \textbf{ then } R[i] = r_i, \quad \text{in parallel}. \\ \textbf{Step 3:} \\ \textbf{While } (s_i > 0 \text{ and } s_i \text{ even}) \quad \textbf{Do } \quad s_i \leftarrow s_i/2; \\ \textbf{If } (s_i < 2v/k) \textbf{ then } S[i] = s_i, \quad \text{in parallel}. \\ \textbf{Step 4:} \\ r = \min \ \{R[i]\}; \ s = \min \ \{S[i]\}; \ \text{in } O(1) \text{ parallel time}; \\ \textbf{If } r \geq s \ \textbf{Return } (r, s) \ \textbf{Else Return } (s, r). \\ \end{array}$

End.

4.1. Complexity Analysis

The complexity analysis of the parallel GCD algorithm based on Par-MBE reduction is similar to that of Par-ILE in [15]. We compute in turn q_i , $r_i = |iu - q_iv|$, $s_i = v - r_i$ and test if $r_i < 2v/k$ or $s_i = v - r_i < 2v/k$ to select the index *i*. Note that there is no write concurrency. Recall that $k = 2^m$ is a parameter. All these computations can be done in O(1) time with $O(n2^{2m}) + O(n \log \log n)$ processors. Indeed, precomputed table lookup can be used for multiplying two m-bit numbers in constant time with $O(n2^{2m})$ processors in CRCW PRAM model, providing that $m = O(\log n)$ (see [15, 16]).

Precomputed table lookup of size $O(m2^{2m})$ can be carried out in $O(\log m)$ time with $O(M(m)2^{2m})$ processors, where $M(m) = m \log m \log \log m$ (see [16] or [3] for more details). The computation of $r_i = |iu - q_iv|$ and $s_i = v - r_i$ require only two products iu and q_iv with the selected index i. Thus the reduction Par-MBE can be computed in parallel in O(1) time with:

$$O(n2^{2m}) + O(n\log\log n) = O(n2^{2m})$$
 processors.

Par-MBE reduces the size of the smallest input v by at least m-1 bits. Hence the GCD algorithm based on **Par-MBE** runs in O(n/m) iterations. For $m = 1/2 \epsilon \log n$, $(\epsilon > 0)$, this parallel GCD algorithm matches the best previous GCD algorithms in $O_{\epsilon}(n/\log n)$ time using only $n^{1+\epsilon}$ processors on a CRCW PRAM.

5. Experimental Sequential Implementation

The GNU MP Bignum Library (GMP) [4] is a highly optimized arbitrary precision integer arithmetic library, employing advanced algorithms for many

integer operations, including greatest common divisor. Since its source code is freely available under the GNU public license, it is a natural environment for the development of new implementations of integer algorithms. In order to assess the performance of the MBE algorithm we decided to modify some of the low-level mpn-layer functions of GMP 4.3.1 [4, sect. 8] to use the MBE algorithm rather than the algorithms currently used by GMP. Thus we could make a head-to-head comparison of the new algorithm to the ones chosen by the GMP developers, avoiding the need to take into account differences in ancillary design issues such as integer representation and memory allocation.

This section is divided into three subsections. The first describes the three implementations of the algorithm, the second describes the actual timings of the three implementations on pseudorandomly generated input values in the appropriate range for the implementation, and the third presents some observations concerning the results.

5.1. Implementation description

A GMP limb [4, sect. 3.2] is a block of bits from the base 2 representation of a nonnegative integer and is usually the same size as the architecture's word—32 bits or 64 bits. Three mpn-level functions were modified to create three separate implementations of the MBE algorithm, based on the size of the operands:

mpn_lehmer_gcd for multi-precision operands (more than two limbs)

 gcd_2^1 for double-precision operands (two limbs)

mpn_gcd_1 for single-precision operands (one limb)

The algorithms used by GMP in these functions are described in [4, sect. 16.3]. The binary algorithm is used for single and double-precision. Euclidean algorithm versions of mpn_gcd_1 and gcd_2 were also created, so that the MBE algorithm could be compared to both the binary and Euclidean algorithm in the single and double-precision ranges.

A variant of Lehmer's algorithm [8] is used at the low end the multi-precision range, which is similar in structure to the multi-precision MBE algorithm sketched above: the function mpn_lehmer_gcd calls on mpn_hgcd2 to build a 2×2 matrix M of single-precision integers until the quotient is too large to be incorporated into the matrix, at which time the main loop of mpn_lehmer_gcd uses M to transform the old values of u and v to the new ones, using multi-precision integer operations. Above a certain threshold², a sublinear algorithm [10] is used. For multiprecision input, the MBE algorithm is compared to GMP's Lehmer-variant; the subquadratic algorithm is not included in the comparisons.

¹gcd_2 is actually accessed via the mpn_lehmer_gcd entry point.

²Denoted GCD_DC_THRESHOLD in GMP 4.3.1. On the machines used for experimentation, this value is 381 limbs for i386, 361 limbs for ppc, 691 limbs for x86_64 and 242 limbs for ppc64.

5.2. Timing results

The comparisons were performed on two different computer architecture families, each comprising 32-bit and 64-bit versions: the Intel architectures i386 and x86_64, and the PowerPC architectures ppc and ppc64. Timings for the Intel architectures were done on a Mac Pro with 2 GiB of 800 MHz memory, 12 MiB of L2 cache, 1.6 GHz bus speed, and one 2.8 GHz Quad-Core Intel Xeon processor, under OS X 10.5.8. Timings for the PowerPC architectures were done on a Power Mac G5 with 2 GiB of PC3200U-30330 memory, 512 KiB L2 cache, 600 MHz bus speed, and a 1.8 GHz PowerPC G5 (3.0) processor, under OS X 10.4.11.

One important difference between these two processors is that the Enhanced Core 2 microarchitecture of the Xeon processor directly supports integer remainder [6] while the PowerPC architecture has an integer division instruction that returns only the quotient, so that the remainder must be computed using a division, multiplication, and subtraction [12, sect. 3.3.8]. Latency for division on the Xeon processor, which computes quotient and remainder, is 12-22 clock cycles and throughput is 5-14 clock cycles [6, Appendix C.3.1], varying with the number of significant bits in the quotient, while latency and throughput for both subtraction and right shift (fundamental operations in the binary algorithm) are 1 and 0.33 cycles, respectively. According to Noble and Papadopoulos [11], it takes 6 cycles for an 64-bit integer multiplication and roughly 60 cycles for a 64 bit integer divide on a PowerMac G5 processor, giving roughly 65 cycles for the remainder operation, assuming a subtraction costs at least one cycle. Thus the remainder operation on the Xeon processor is much closer in cost to subtraction and shifting than it is on the G5.

The compiler used was the Apple, Inc. implementation of gcc version 4.0.1. GMP 4.3.1 for these machines was obtained by using MacPorts to build gmp @4.3.1_1+universal, including object code for all four architectures. Modules from this library were statically linked into the comparison programs.

The BSD Unix system call getrusage [2] was used to query the operating system for time spent so far by the process executing user (i.e., non-privileged) instructions. Times reported below are computed by taking the difference in calls to getrusage before and after execution of a batch of one thousand calls to the particular function being timed. Any memory allocation required by GMP is performed before the start time is recorded. This system call appears to have an accuracy on the order of magnitude of one microsecond, under the operating systems used on the two machines.

For single and double-precision tests, each data point for a given bit size represents average times, in nanoseconds, for one million pseudorandomly selected input pairs (grouped into 1,000 batches of 1,000 pairs). Only odd integers were selected for double-precision tests; single precision tests include even integers. The single and double-precision results are given in Figures 1 through 4.

For multiple-precision tests, each data point for a given size represents average times, in microseconds, for one batch of 1,000 pseudorandomly selected pairs. Only odd integers were selected for multi-precision tests. The multiprecision results are given in Figures 5 and 6. The columns in the table labeled

					PP-							P P		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(bits)	MBE	Euclid	Binary	MBE	Euclid	Binary	size	MBE	Euclid	Binary	MBE	Euclid	Binary
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	44	53	74	116	182	145	22	88	105	164	232	353	289
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	48	57	81	119	186	149	23	92	110	172	242	367	302
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	52	61	89	130	202	161	24	95	114	179	252	382	315
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	55	66	97	140	218	174	25	99	118	186	262	396	328
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	59	70	104	150	233	187	26	102	122	194	272	411	341
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	63	75	112	160	249	200	27	106	127	201	282	425	353
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	66	80	119	171	264	213	28	109	131	209	293	440	366
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17	70	84	127	181	279	225	29	113	135	216	303	454	379
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	74	88	134	191	294	238	30	117	139	223	313	469	392
20 81 97 149 211 323 264 32 124 148 238 333 498 417 21 85 101 157 222 338 276 276	19	77	93	142	201	309	251	31	120	143	231	323	483	404
21 85 101 157 222 338 276	20	81	97	149	211	323	264	32	124	148	238	333	498	417
	21	85	101	157	222	338	276							

Figure 1: Times (ns) for 32-bit implementation—single precision range

_

Input size	x86_6	64 archi	tecture	ppc6	4 archit	ecture	Input	x86_6	64 archi	tecture	ppc6	4 archit	tecture
(bits)	MBE	Euclid	Binary	MBE	Euclid	Binary	size	MBE	Euclid	Binary	MBE	Euclid	Binary
10	55	79	71	151	273	142	38	192	279	277	572	998	521
11	60	86	78	166	300	155	39	197	286	284	587	1,024	534
12	65	93	86	181	326	169	40	202	293	292	602	1,050	548
13	70	100	93	197	352	182	41	206	300	299	617	1,076	562
14	75	108	101	212	378	196	42	211	307	306	632	1,102	575
15	80	115	108	227	404	209	43	216	314	313	647	1,128	589
16	85	122	116	242	430	223	44	221	321	321	661	1,154	602
17	90	130	123	258	455	236	45	226	328	328	676	1,180	616
18	95	137	130	273	481	250	46	230	335	335	692	1,206	629
19	100	144	138	288	507	263	47	235	342	343	706	1,232	643
20	104	151	145	303	533	277	48	240	349	350	721	1,258	657
21	109	158	153	318	559	291	49	245	356	357	736	1,284	670
22	114	165	160	333	585	304	50	249	363	364	751	1,310	683
23	119	172	167	348	611	318	51	254	370	372	766	1,336	697
24	124	179	175	363	636	331	52	259	377	379	781	1,362	711
25	129	186	182	378	662	345	53	264	384	386	796	1,388	724
26	134	193	189	393	687	358	54	269	391	394	811	1,414	738
27	139	201	197	408	713	372	55	273	398	401	826	1,440	751
28	144	208	204	422	739	385	56	278	405	408	841	1,466	765
29	148	215	211	438	765	399	57	283	412	415	856	1,492	778
30	153	222	219	452	790	412	58	288	419	423	871	1,518	792
31	158	229	226	467	816	426	59	293	426	430	886	1,544	806
32	163	236	233	482	842	440	60	297	433	437	901	1,570	819
33	168	243	240	497	868	453	61	302	440	445	916	1,596	833
34	173	250	248	512	894	467	62	307	447	452	931	1,622	846
35	177	257	255	527	920	480	63	312	454	459	945	1,647	860
36	182	265	262	542	946	494	64	317	461	467	960	1,673	873
37	187	272	270	557	972	507							

Figure 2: Times (ns) for 64-bit implementation—single precision range

Input size	i386 architecture			ppc architecture			Input i386 architecture			ppc architecture			
(bits)	MBE	Euclid	Binary	MBE	Euclid	Binary	sıze	MBE	Euclid	Binary	MBE	Euclid	Binary
33	278	267	247	513	502	453	49	398	421	361	840	994	729
34	292	289	262	545	553	480	50	404	428	367	841	992	732
35	301	306	271	568	607	496	51	410	436	373	864	1,000	732
36	309	318	278	582	626	511	52	416	443	379	863	991	733
37	318	327	285	600	664	521	53	422	451	385	895	1,036	768
38	325	336	292	606	665	526	54	427	458	391	885	1,040	764
39	333	344	298	618	682	530	55	433	466	397	920	1,074	785
40	340	352	304	640	710	543	56	439	473	403	893	1,046	765
41	347	360	310	649	729	551	57	445	481	409	938	1,101	810
42	354	367	316	657	732	549	58	451	489	415	938	1,104	796
43	361	375	323	671	758	563	59	456	496	421	956	1,133	810
44	368	383	329	693	789	578	60	461	503	427	959	1,129	818
45	374	390	336	697	787	578	61	467	511	433	983	1,143	837
46	380	398	342	711	811	591	62	473	518	439	996	1,190	845
47	386	405	348	723	821	604	63	478	525	445	989	1,187	848
48	392	413	354	739	850	614	64	484	533	451	1,004	1,182	851

Figure 3: Times (ns) for 32-bit implementation—double precision range

Input size	x86_6	64 archi	tecture	ppc6	4 archit	ecture	Input	x86_6	64 archi	tecture	ppc6	4 archit	ecture
(bits)	MBE	Euclid	Binary	MBE	Euclid	Binary	size	MBE	Euclid	Binary	MBE	Euclid	Binary
65	511	507	485	1,265	1,159	1,258	97	757	894	665	2,038	2,385	1,658
66	526	531	497	1,317	1,235	1,206	98	764	905	671	2,071	2,417	1,665
67	537	551	503	1,355	1,290	1,225	99	770	916	676	2,081	2,444	1,673
68	546	566	510	1,378	1,336	1,251	100	777	927	681	2,096	2,473	1,688
69	555	579	516	1,400	1,354	1,285	101	784	939	686	2,100	2,491	1,694
70	564	592	522	1,428	1,397	1,290	102	790	950	691	2,125	2,520	1,696
71	573	604	528	1,445	1,412	1,314	103	797	961	696	2,146	2,550	1,704
72	581	616	533	1,492	1,469	1,326	104	804	972	701	2,166	2,583	1,727
73	589	627	538	1,492	1,498	1,341	105	810	983	707	2,190	2,613	1,749
74	597	639	544	1,537	1,526	1,363	106	817	994	712	2,192	2,628	1,724
75	605	650	549	1,535	1,549	1,346	107	824	1,005	717	2,223	2,664	1,754
76	613	661	555	1,537	1,573	1,353	108	831	1,016	722	2,218	2,685	1,756
77	620	672	560	1,571	1,603	1,373	109	837	1,027	727	2,259	2,723	1,776
78	627	683	566	1,600	1,657	1,389	110	844	1,038	732	2,267	2,747	1,778
79	635	695	571	1,596	1,655	1,387	111	851	1,049	737	2,285	2,773	1,802
80	642	706	576	1,624	1,701	1,408	112	857	1,060	742	2,295	2,800	1,794
81	649	717	582	1,662	1,729	1,436	113	864	1,071	747	2,304	2,831	1,817
82	655	728	587	1,662	1,772	1,442	114	871	1,082	753	2,315	2,855	1,823
83	662	739	592	1,670	1,779	1,435	115	877	1,093	758	2,328	2,870	1,826
84	669	750	597	1,712	1,810	1,468	116	884	1,104	763	2,358	2,907	1,833
85	676	761	603	1,701	1,816	1,442	117	891	1,116	768	2,369	2,937	1,860
86	683	772	608	1,735	1,850	1,467	118	897	1,126	773	2,383	2,951	1,869
87	689	783	613	1,750	1,886	1,485	119	904	1,138	778	2,409	2,990	1,875
88	696	794	618	1,755	1,906	1,483	120	911	1,149	783	2,428	3,017	1,903
89	703	805	623	1,771	1,933	1,496	121	918	1,160	789	2,429	3,039	1,894
90	709	816	629	1,808	1,971	1,518	122	924	1,171	794	2,461	3,080	1,919
91	716	827	634	1,821	2,002	1,522	123	931	1,182	799	2,491	3,124	1,954
92	723	838	639	1,864	2,047	1,577	124	938	1,193	804	2,486	3,135	1,942
93	729	849	644	1,847	2,063	1,546	125	944	1,204	809	2,502	3,160	1,948
94	736	860	649	1,856	2,077	1,537	126	951	1,215	814	2,517	3,186	1,959
95	743	871	654	1,876	2,111	1,555	127	958	1,226	819	2,536	3,214	1,958
96	749	882	659	1,931	2,159	1,603	128	964	1,237	824	2,560	3,249	1,978

Figure 4: Times (ns) for 64-bit implementation—double precision range

Hgcd iterations refer to the average number of iterations required by the function mpn_hgcd2 and the columns labeled *Main iterations* refer to the average number of iterations required by the main loop of mpn_lehmer_gcd. The graph displays the ratios of times and iteration counts for the MBE algorithm to times and iteration counts for the Lehmer variant.

Input size	i3	86 times		р	pc times		Ma	in iterati	ions	Hgcd iterations		
(bits)	MBE	Lehmer	Ratio	MBE	Lehmer	Ratio	MBE	Lehmer	Ratio	MBE	Lehmer	Ratio
128	1 904	1 858	1.025	2 968	2 847	1.043	4	3	1 333	26	54	0.481
256	4.324	4.090	1.057	6.743	6.510	1.036	8	7	1.143	61	125	0.488
512	9.822	9.190	1.069	15.339	14.539	1.055	17	16	1.063	140	286	0.490
1,024	22.117	20.777	1.064	35.534	33.913	1.048	35	34	1.029	297	604	0.492
2,048	52.148	49.241	1.059	89.185	84.059	1.061	72	70	1.029	608	1,236	0.492
4,096 1	132.203	126.267	1.047	248.031	232.654	1.066	144	141	1.021	1,233	2,506	0.492
8,192 3	377.072	363.095	1.038	773.362	722.300	1.071	289	284	1.018	2,480	5,041	0.492
16,384	1,206	1,167	1.034	2,657	2,473	1.074	578	570	1.014	4,976	10,109	0.492
32,768	4,226	4,082	1.035	9,760	9,061	1.077	1,158	1,142	1.014	9,966	20,254	0.492
65,536	15,846	15,131	1.047	37,316	34,577	1.079	2,316	2,285	1.014	19,950	40,552	0.492
131,072	60,500	58,089	1.042	145,947	135, 124	1.080	4,632	4,572	1.013	39,917	81,116	0.492
262,144 2	236,105	227,700	1.037	577,589	534,433	1.081	9,266	9,147	1.013	79,848	162,248	0.492

Figure 5: Times (μ s) and iterations for 32-bit implementation—multiple precision range

5.3. Observations

The MBE algorithm is a clear winner for single precision on three of the four architectures; only on the ppc64 architecture does it come in a close second to the binary algorithm. For double precision, it is better than the Euclidean algorithm but not as good as the binary algorithm on all four architectures. It seems that the level of support in hardware for integer remainder determines whether MBE or the binary algorithm is better, since the MBE algorithm clearly does a better job on the Xeon processor.

Figure 6: Times (μ s) and iterations for 64-bit implementations—multiple precision range

4.320

8,642

1.006 1.006

73,309146,651

16,810

1.116

1.104

189.389

746,704

64,172249,806

262.144

524,288

For multiprecision input the MBE algorithm doesn't perform as well as the Lehmer variant on the 32-bit architectures, but is marginally better than Lehmer on the 64-bit architectures, up to 16,384 bits on the $x86_64$ machine and up to 8,192 bits on the ppc64. It is clear from the graph that MBE requires less than half of the iterations needed by the Lehmer variant in the Hgcd step.

Both GMP's version of mpn_hgcd2 and the modified version used in the experimental implementation of MBE require several double-precision arithmetic operations per iteration to compute the M matrix, so the advantage MBE has here is significant, but the cost of the multi-precision steps in the main loop of mpn_lehmer_gcd dominates the overall cost, and since MBE uses slightly more of these than Lehmer, MBE becomes more expensive for larger inputs. The experimental implementation could quite probably be improved so that more double-precision Hgcd steps could be combined into fewer main loop steps, but it is doubtful that MBE will be significantly faster than the Lehmer variant currently in use in GMP 4.3.1.

6. Conclusion

The Mixed Binary-Euclid algorithm has a sequential time complexity of $O(n^2)$, so it is not competitive asymptotically. However, a parallel version of the algorithm matches the best presently known time complexity. In addition, we provided experimental evidence that it has superior performance for single precision inputs when there is good hardware support for integer division. There is also some chance that the multiprecision version would be competitive, and we have identified some ideas to improve it. One of these ideas is the use of pseudo-quotients, called ρ -Euclid ([15], Section 5.1), to improve the computation of the Hgcd step.

References

- A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer Algorithms, Addison Wesley, 1974
- [2] BSD System Calls Manual, 4th Berkeley Distribution, June 4, 1993
- [3] B. Chor and O. Goldreich, An improved parallel algorithm for integer GCD, Algorithmica, 5, 1990, 1-10
- [4] The GMP Developers, GNU MP: The GNU Multiple Precision Arithmetic Library, Edition 4.3.0, Free Software Foundation, 14 April 2009
- [5] IBM PowerPC 970FX RISC Microprocessor Users Manual, IBM Corp., Version 1.7, March 14, 2008
- [6] Intel 64 and IA-32 Architectures Optimization Reference Manual, Order Number 248966-020, Intel Corporation, November 2009

- [7] T. Jebelean, A Generalization of the Binary GCD Algorithmin Proc. of the International Symposium on Symbolic and Algebraic Computation (ISSAC'93), 1993, 111-116
- [8] T. Jebelean, A Double-Digit Lehmer-Euclid Algorithm for Finding the GCD of Long Integers, J. Symbolic Computation, 19, 1995, 145-157
- [9] D.E. Knuth, The Art of Computer Programming, Vol. 2, 3rd ed., Addison Wesley,
- [10] N. Möller, On Schönhage's algorithm and subquadratic integer GCD computation, Mathematics of Computation, 77, 2008, 589-607
- [11] S. Noble and J. Papadopoulos, Special applications of 64-bit arithmetic: Acceleration on the Apple G5, available through the Advanced Computation Group of Apple, Inc., 26 May 2006
- [12] PowerPC User Instruction Set Architecture, IBM Corp., Book I, Version 2.02, January 28, 2005
- [13] A. Schönhage, Schnelle Berechnung von Kettenbruchentwicklugen, Acta Informatica, 1, 1971, 139-144
- [14] S.M. Sedjelmaci, A Modular Reduction for GCD Computation, Journal of Computational and Applied Mathematics, Vol. 162-I, 2004, 17-31
- [15] S.M. Sedjelmaci, A Parallel Extended GCD Algorithm, Journal of Discrete Algorithms, 6, 2008, 526-538
- [16] J. Sorenson, Two Fast GCD Algorithms, J. of Algorithms, 16, 1994, 110-144
- [17] D. Stehlé, and P. Zimmermann, A Binary Recursive Gcd Algorithm, in Proc. of ANTS VI, University of Vermont, USA, June 13-18, 2004, 411-425
- [18] J. von zur Gathen, and J. Gerhard, Modern Computer Algebra, 1st ed. Cambridge University Press, 1999