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Abstract

We present a new GCD algorithm for two integers that combines both the
Euclidean and the binary gcd approaches. We give its worst case time analysis
and we prove that its bit-time complexity is still O(n2) for two n-bit integers
in the worst case. Our experimental implementation shows a clear speedup
for small integers. A parallel version matches the best presently known time
complexity, namely O(n/ log n) time with O(n1+ε) processors, for any constant
ε > 0.

Keywords: Greatest common divisor (GCD); Parallel Complexity;
Algorithms.

1. Introduction

Given two integers a and b, the greatest common divisor (GCD) of a and b,
denoted gcd(a, b), is the largest integer which divides both a and b. Applications
for GCD algorithms include computer arithmetic, integer factoring, cryptology
and symbolic computation.

Most GCD algorithms follow the same idea of reducing efficiently u and v
to u′ and v′, so that gcd(u, v) = gcd(u′, v′) [14]. These transformations are
applied several times till a pair (u′, 0) is reached. Such transformations, also
called reductions, are studied in a general framework in [14].

For very large integers, the fastest GCD algorithms [1, 13, 17, 18] are all
based on a “half-gcd” procedure and compute the GCD in O(n log2 n log log n)
time, where n is the size of the larger input. All these algorithms are recursive
in nature and switch over to some other GCD algorithm that is more efficient
for small inputs when the parameters in the recursive call become small enough.
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In this paper, we are interested in small and medium size integers. Usu-
ally, the euclidean and the binary GCD algorithms work very well in practice
for this range of integers. In Section 2, we present a new algorithm that al-
ternates euclidean and binary reductions, obtaining a faster overall reduction
to gcd(u′, 0) than would be obtained by using either reduction exclusively. We
give its worst case time complexity and a multi-precision version is suggested in
Section 3. A parallel version is also suggested in Section 4. It matches the best
presently known time complexity, namely O( n

logn ) time with n1+ε processors,
ε > 0 (see [3, 16, 15]). Section 5 describes single, double and multi-precision
implementations of the sequential algorithm; timings of these implementations
for pseudorandomly generated input pairs of various sizes are also provided,
supporting our conclusion that the new algorithm is a good choice for small
inputs in many circumstances.

2. The Sequential Algorithm

2.1. Motivation
Let us start with an illustrative example. Let (u, v) = (5437, 2149). After

one euclidean step, we obtain the quotient q = 2 and the remainder r = 1139.
On the other hand, we observe that, in the same time, u− v = 3288 = 23× 411
and the binary algorithm gives u−v

8 = 411 which is smaller and easy to compute
(right-shift). The reverse is also true, Euclid algorithm step may perform much
more than the binary algorithm with some other integers, especially when the
quotients are large. So, the idea is that, instead of choosing one of them, one
may take the most of both euclidean and binary steps and combine them in
a same algorithm. Note that a similar idea was suggested by Harris (cited by
Knuth [9]) with a different reduction step.

Lemma 1. Let u and v be two integers such that v odd, u ≥ v ≥ 1 and let
r = u (mod v). Then we have

i) min { v − r, r, r
2 or v−r

2 } ≤ v
3

ii) gcd(r, v−r2 ) = gcd(u, v), if r is odd
gcd( r2 , v − r) = gcd(u, v), if r is even.

Proof. Note that either r or v−r is even, so that either r
2 or v−r

2 is an integer.
The basic gcd property is ∀λ ≥ 0, gcd(u, v) = gcd(v, u− λv). Two cases arise:
Case 1: r is even then v − r is odd. If r ≤ 2v

3 then r
2 ≤

v
3 , otherwise r > 2v/3

and v − r < v
3 . Moreover, gcd( r2 , v − r) = gcd(r, v − r) = gcd(v, r) = gcd(u, v).

Case 2: r is odd then v − r is even. If v − r ≤ 2v
3 then v−r

2 ≤ v
3 , otherwise,

v − r > 2v/3 and r < v
3 . On the other hand, gcd( v−r2 , r) = gcd(r, v − r) =

gcd(v, r) = gcd(u, v).

We derive, from Lemma 1, the following algorithm.

Algorithm MBE: Mixed Binary Euclid

2
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Input: u>=v>=1, with v odd
Output: gcd(u,v)

while (v>1)
r=u mod v; s=v-r;
while (r>0 and r mod 2 =0 ) r=r/2;
while (s>0 and s mod 2 =0 ) s=s/2;
if (s<r) {u=r; v=s; }
else {u=s; v=r; };

endwhile
if (v=1) return 1 else return u.

Example: With Fibonacci numbers u = F17 = 1597 and v = F16 = 987, we
obtain:

q r reduction
1597 u
987 v

1 610 r = u− qv
377 s = v − r
305 r/2

1 72 r
233 v − r
9 r/8

25 8 r
1 v − r
1 r/8 STOP

Note that Euclid algorithm gives the answer after 15 iterations, and its extended
version gives: −377 u + 610 v = 1 = gcd(u, v), while MBE algorithm gives a
modular relation (−55 u+89 v) = 8 = 23 gcd(u, v), after 3 iterations. Moreover,
we observe that the coefficients −55 and 89 are smaller than −377 and 610. We
know that the cofactors of Bézout relation can be roughly as large as the size of
the inputs (consider successive Fibonacci worst case inputs). So an interesting
question is : What is the upper bound for the modular coefficients a and b in
the relation au+ bv = 2t gcd(u, v) ?

2.2. Complexity analysis
First of all, thanks to Lemma 1, we have an upper bound for the number of
iterations of the main loop. We have (u, v) → (u′, v′), such that v′ ≤ v/3, so
after k iterations, we obtain 1 ≤ v/3k < 2n/3k or, 3k < 2n, hence a first upper
bound k ≤ b(log3 2) nc. So the algorithm is quadratic in bit complexity as the
binary or Euclidean algorithms. However, the following lemma proves that the
worst case provides a smaller upper bound for the number of iterations.

Lemma 2. Let k ≥ 1 and let us consider the sequence of vectors
(
rk
sk

)
defined

by ∀k ≥ 1,
(
rk+1

sk+1

)
=
(

2rk + 2sk
2rk + sk

)
and

(
r1
s1

)
=
(

2
1

)
.

3



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Then the worst case of algorithm MBE occurs when the inputs (u, v) are equal to(
uk
vk

)
=
(

2rk + sk = sk+1

rk + sk = rk+1/2

)
,

and the gcd is given after k iterations.

Proof. Roughly speaking, the worst case is reached when, at each time, the
quotient is 1 (the smallest), only one division by 2 occurs and the output is the
smallest one. We can easily prove by induction that

∀k ≥ 1, rk is even, sk and rk

2 are odd
∀k ≥ 2, rk

2 < sk < rk
∀k ≥ 2, buk

vk
c = 1.

We call an iteration, each iteration of the (while v > 1) loop. We prove by
induction that, at each iteration k, we have qk = 1 and the triplets (rk, sk, rk

2 ),
for k ≥ 2. After the first iteration with the inputs (uk = 2rk + sk, vk = rk + sk),
we obtain the triplet (rk, sk, rk

2 ) since rk is even and rk

2 is odd. The relation
rk

2 < sk < rk yields and the next quotient qk−1 will be qk−1 = b sk

rk/2
c = 1. We

repeat the same process with the new triplet(rk−1, sk−1,
rk

2 ) until we reach the
triplet (r1, s1, r12 ) = (2, 1, 1) which is the smallest output triplet possible.

Example: For k = 7 we have u7 = 9805 and v7 = 6279. We obtain 7 iterations.
Note that Euclid algorithm gives the answer after 12 iterations.

We give below the link between the maximum of iteration and the number of
bits of the larger input integer.

Proposition 1. Let u ≥ v ≥ 11 be two integers, where u is an n-bit integer. If
k is the number of iterations when algorithm MBE is applied then

k ≤ d n

log2 λ
e, with λ =

3 +
√

17
2

.

Proof. Let u ≥ v ≥ 11 be two integers, where u is an n-bit integer, so that

2n−1 ≤ u < 2n. Let us denote A =
(

2 2
2 1

)
, so, for each k ≥ 1,(

rk+1

sk+1

)
= A

(
rk
sk

)
.

Let λ1 = 3+
√

17
2 and λ2 = 3−

√
17

2 be the enginevalues of A. Then the worst
case occurs after k iterations with u ≤ C (λ1)k < 2n, where C is some positive
constant. As a matter of fact we prove easily by induction or by diagonalization
of matrix A, that ∀k ≥ 1 :{

rk = 2√
17

(λk1 − λk2)

sk = (
√

17−1
2
√

17
) λk1 + (

√
17+1

2
√

17
) λk2 .
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Then, after a bit of calculation, we obtain

k = b n

log2(λ1)
c+ 1.

Remark: Note that k ∼ ( log 2
log λ ) n ∼ 0, 54 n, while, when euclidean algorithm is

applied to n-bit integers, the number of iterations is bounded by k′ ≤ ( log 2
log φ ) n ∼

1, 44 n, where φ = 1+
√

5
2 is the golden ratio. Indeed, a first experiment on 1000

pairs of 32-bit integers shows that our algorithm is about 3 time faster than
Euclid algorithm. More careful experiments show a clear speed up for certain
ranges of input size. These experiments are detailed in section 5.

3. The Multi-precision Algorithm

In order to avoid long divisions, we must consider some leading bits of the
inputs (u, v) for computing the quotients and some other last significant bits to
know if either r = u mod v or s = v − r is even. The algorithm is based on the
following multi-precision reduction step (sketch) called MP-MBE. The integer m
is a parameter choosen as in [14], it satisfies m = O(log n).

M = Id;
Step 1: Consider u1 and v1 the first 2m leading bits of respectively u and v.
Similarly, u2 and v2 are the last 2m significant bits of respectively u and v.

Step 2: By Euclid algorithm, compute q1 = bu1/v1c. Compute r1 = |u1− q1v1|
and s1 = v1 − r1. Similarly, compute r2 = |u2 − q1v2| and s2 = v2 − r2 (see [14]
for more details).

Step 3: Compute t1 and p1 such that r2/2t1 and s2/2p1 are both odd.

Step 4: Save the computations: M ←M ×N , where N is defined by:
Case 1: r2 is even. If r1/2t1 ≥ s1 then

N =
(

1/2t1 −q/2t1
−1 q + 1

)
, otherwise N =

(
−1 q + 1
1/2t1 −q/2t1

)
.

Case 2: s2 is even. If s1/2p1 ≥ r1 then

N =
(
−1/2p1 (q + 1)/2p1

1 −q

)
, otherwiseN =

(
1 −q

−1/2p1 (q + 1)/2p1

)
.

Example: Let u and v be two odd integers such that: u = 1617 . . . 309,

and v = 1045 . . . 817. We obtain, in turn, N1 =
(
−1 2
1/4 −1/4

)
and N2 =(

−1 5
1/4 −1

)
. Then the two steps are saved in the matrix M = N2 × N1 =(

9/4 −13/4
−1/2 3/4

)
.

5
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4. The Parallel Algorithm:

A parallel GCD algorithm can be designed based on the following Par-MBE
reduction:

Begin (k is a parameter such that k = 2m = O(n))
Step 1 : (in parallel)

For i = 1 to n R[i] = v, S[i] = v; qi = b(iu1)/v1c; (see Step 2 of MP-MBE)
For i = 1 to n ri = |iu− qiv| and si = v − ri; (see [15])

Step 2 :
While (ri > 0 and ri even) Do ri ← ri/2;
If (ri < 2v/k) then R[i] = ri, in parallel.

Step 3 :
While (si > 0 and si even) Do si ← si/2;
If (si < 2v/k) then S[i] = si, in parallel.

Step 4 :
r = min {R[i]}; s = min {S[i]}; in O(1) parallel time;

If r ≥ s Return (r, s) Else Return (s, r).
End.

4.1. Complexity Analysis
The complexity analysis of the parallel GCD algorithm based on Par-MBE reduc-
tion is similar to that of Par-ILE in [15]. We compute in turn qi, ri = |iu−qiv|,
si = v−ri and test if ri < 2v/k or si = v−ri < 2v/k to select the index i. Note
that there is no write concurrency. Recall that k = 2m is a parameter. All these
computations can be done in O(1) time with O(n22m) + O(n log log n) proces-
sors. Indeed, precomputed table lookup can be used for multiplying two m-bit
numbers in constant time with O(n22m) processors in CRCW PRAM model,
providing that m = O(log n) (see [15, 16]).
Precomputed table lookup of size O(m22m) can be carried out in O(logm) time
with O(M(m)22m) processors, where M(m) = m logm log logm (see [16] or [3]
for more details). The computation of ri = |iu−qiv| and si = v−ri require only
two products iu and qiv with the selected index i. Thus the reduction Par-MBE
can be computed in parallel in O(1) time with:

O(n22m) +O(n log log n) = O(n22m) processors.

Par-MBE reduces the size of the smallest input v by at least m − 1 bits.
Hence the GCD algorithm based on Par-MBE runs in O(n/m) iterations. For m
= 1/2 ε log n, (ε > 0), this parallel GCD algorithm matches the best previous
GCD algorithms in Oε(n/ log n) time using only n1+ε processors on a CRCW
PRAM.

5. Experimental Sequential Implementation

The GNU MP Bignum Library (GMP) [4] is a highly optimized arbitrary
precision integer arithmetic library, employing advanced algorithms for many

6
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integer operations, including greatest common divisor. Since its source code
is freely available under the GNU public license, it is a natural environment
for the development of new implementations of integer algorithms. In order
to assess the performance of the MBE algorithm we decided to modify some
of the low-level mpn-layer functions of GMP 4.3.1 [4, sect. 8] to use the MBE
algorithm rather than the algorithms currently used by GMP. Thus we could
make a head-to-head comparison of the new algorithm to the ones chosen by the
GMP developers, avoiding the need to take into account differences in ancillary
design issues such as integer representation and memory allocation.

This section is divided into three subsections. The first describes the three
implementations of the algorithm, the second describes the actual timings of the
three implementations on pseudorandomly generated input values in the appro-
priate range for the implementation, and the third presents some observations
concerning the results.

5.1. Implementation description
A GMP limb [4, sect. 3.2] is a block of bits from the base 2 representation of

a nonnegative integer and is usually the same size as the architecture’s word—32
bits or 64 bits. Three mpn-level functions were modified to create three separate
implementations of the MBE algorithm, based on the size of the operands:

mpn_lehmer_gcd for multi-precision operands (more than two limbs)

gcd_21 for double-precision operands (two limbs)

mpn_gcd_1 for single-precision operands (one limb)

The algorithms used by GMP in these functions are described in [4, sect. 16.3].
The binary algorithm is used for single and double-precision. Euclidean algo-
rithm versions of mpn_gcd_1 and gcd_2 were also created, so that the MBE
algorithm could be compared to both the binary and Euclidean algorithm in
the single and double-precision ranges.

A variant of Lehmer’s algorithm [8] is used at the low end the multi-precision
range, which is similar in structure to the multi-precision MBE algorithm sketched
above: the function mpn_lehmer_gcd calls on mpn_hgcd2 to build a 2×2 matrix
M of single-precision integers until the quotient is too large to be incorporated
into the matrix, at which time the main loop of mpn_lehmer_gcd uses M to
transform the old values of u and v to the new ones, using multi-precision inte-
ger operations. Above a certain threshold2, a sublinear algorithm [10] is used.
For multiprecision input, the MBE algorithm is compared to GMP’s Lehmer-
variant; the subquadratic algorithm is not included in the comparisons.

1gcd 2 is actually accessed via the mpn lehmer gcd entry point.
2Denoted GCD DC THRESHOLD in GMP 4.3.1. On the machines used for experimentation, this

value is 381 limbs for i386, 361 limbs for ppc, 691 limbs for x86 64 and 242 limbs for ppc64.

7
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5.2. Timing results
The comparisons were performed on two different computer architecture

families, each comprising 32-bit and 64-bit versions: the Intel architectures i386
and x86_64, and the PowerPC architectures ppc and ppc64. Timings for the
Intel architectures were done on a Mac Pro with 2 GiB of 800 MHz memory, 12
MiB of L2 cache, 1.6 GHz bus speed, and one 2.8 GHz Quad-Core Intel Xeon
processor, under OS X 10.5.8. Timings for the PowerPC architectures were
done on a Power Mac G5 with 2 GiB of PC3200U-30330 memory, 512 KiB L2
cache, 600 MHz bus speed, and a 1.8 GHz PowerPC G5 (3.0) processor, under
OS X 10.4.11.

One important difference between these two processors is that the Enhanced
Core 2 microarchitecture of the Xeon processor directly supports integer remain-
der [6] while the PowerPC architecture has an integer division instruction that
returns only the quotient, so that the remainder must be computed using a
division, multiplication, and subtraction [12, sect. 3.3.8]. Latency for division
on the Xeon processor, which computes quotient and remainder, is 12-22 clock
cycles and throughput is 5-14 clock cycles [6, Appendix C.3.1], varying with the
number of significant bits in the quotient, while latency and throughput for both
subtraction and right shift (fundamental operations in the binary algorithm) are
1 and 0.33 cycles, respectively. According to Noble and Papadopoulos [11], it
takes 6 cycles for an 64-bit integer multiplication and roughly 60 cycles for a 64
bit integer divide on a PowerMac G5 processor, giving roughly 65 cycles for the
remainder operation, assuming a subtraction costs at least one cycle. Thus the
remainder operation on the Xeon processor is much closer in cost to subtraction
and shifting than it is on the G5.

The compiler used was the Apple, Inc. implementation of gcc version
4.0.1. GMP 4.3.1 for these machines was obtained by using MacPorts to
build gmp @4.3.1_1+universal, including object code for all four architectures.
Modules from this library were statically linked into the comparison programs.

The BSD Unix system call getrusage [2] was used to query the operating
system for time spent so far by the process executing user (i.e., non-privileged)
instructions. Times reported below are computed by taking the difference in
calls to getrusage before and after execution of a batch of one thousand calls to
the particular function being timed. Any memory allocation required by GMP
is performed before the start time is recorded. This system call appears to have
an accuracy on the order of magnitude of one microsecond, under the operating
systems used on the two machines.

For single and double-precision tests, each data point for a given bit size rep-
resents average times, in nanoseconds, for one million pseudorandomly selected
input pairs (grouped into 1,000 batches of 1,000 pairs). Only odd integers were
selected for double-precision tests; single precision tests include even integers.
The single and double-precision results are given in Figures 1 through 4.

For multiple-precision tests, each data point for a given size represents av-
erage times, in microseconds, for one batch of 1,000 pseudorandomly selected
pairs. Only odd integers were selected for multi-precision tests. The multi-
precision results are given in Figures 5 and 6. The columns in the table labeled

8
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Input size

10 15 20 25 30

T
im

e

0

100

200

300

400

500

600

MBE i386

Euclid i386

Binary i386

MBE ppc

Euclid ppc

Binary ppc

Input size i386 architecture ppc architecture Input i386 architecture ppc architecture
(bits) MBE Euclid Binary MBE Euclid Binary size MBE Euclid Binary MBE Euclid Binary

10 44 53 74 116 182 145 22 88 105 164 232 353 289
11 48 57 81 119 186 149 23 92 110 172 242 367 302
12 52 61 89 130 202 161 24 95 114 179 252 382 315
13 55 66 97 140 218 174 25 99 118 186 262 396 328
14 59 70 104 150 233 187 26 102 122 194 272 411 341
15 63 75 112 160 249 200 27 106 127 201 282 425 353
16 66 80 119 171 264 213 28 109 131 209 293 440 366
17 70 84 127 181 279 225 29 113 135 216 303 454 379
18 74 88 134 191 294 238 30 117 139 223 313 469 392
19 77 93 142 201 309 251 31 120 143 231 323 483 404
20 81 97 149 211 323 264 32 124 148 238 333 498 417
21 85 101 157 222 338 276

Figure 1: Times (ns) for 32-bit implementation—single precision range
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Input size x86 64 architecture ppc64 architecture Input x86 64 architecture ppc64 architecture
(bits) MBE Euclid Binary MBE Euclid Binary size MBE Euclid Binary MBE Euclid Binary

10 55 79 71 151 273 142 38 192 279 277 572 998 521
11 60 86 78 166 300 155 39 197 286 284 587 1,024 534
12 65 93 86 181 326 169 40 202 293 292 602 1,050 548
13 70 100 93 197 352 182 41 206 300 299 617 1,076 562
14 75 108 101 212 378 196 42 211 307 306 632 1,102 575
15 80 115 108 227 404 209 43 216 314 313 647 1,128 589
16 85 122 116 242 430 223 44 221 321 321 661 1,154 602
17 90 130 123 258 455 236 45 226 328 328 676 1,180 616
18 95 137 130 273 481 250 46 230 335 335 692 1,206 629
19 100 144 138 288 507 263 47 235 342 343 706 1,232 643
20 104 151 145 303 533 277 48 240 349 350 721 1,258 657
21 109 158 153 318 559 291 49 245 356 357 736 1,284 670
22 114 165 160 333 585 304 50 249 363 364 751 1,310 683
23 119 172 167 348 611 318 51 254 370 372 766 1,336 697
24 124 179 175 363 636 331 52 259 377 379 781 1,362 711
25 129 186 182 378 662 345 53 264 384 386 796 1,388 724
26 134 193 189 393 687 358 54 269 391 394 811 1,414 738
27 139 201 197 408 713 372 55 273 398 401 826 1,440 751
28 144 208 204 422 739 385 56 278 405 408 841 1,466 765
29 148 215 211 438 765 399 57 283 412 415 856 1,492 778
30 153 222 219 452 790 412 58 288 419 423 871 1,518 792
31 158 229 226 467 816 426 59 293 426 430 886 1,544 806
32 163 236 233 482 842 440 60 297 433 437 901 1,570 819
33 168 243 240 497 868 453 61 302 440 445 916 1,596 833
34 173 250 248 512 894 467 62 307 447 452 931 1,622 846
35 177 257 255 527 920 480 63 312 454 459 945 1,647 860
36 182 265 262 542 946 494 64 317 461 467 960 1,673 873
37 187 272 270 557 972 507

Figure 2: Times (ns) for 64-bit implementation—single precision range
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(bits) MBE Euclid Binary MBE Euclid Binary size MBE Euclid Binary MBE Euclid Binary

33 278 267 247 513 502 453 49 398 421 361 840 994 729
34 292 289 262 545 553 480 50 404 428 367 841 992 732
35 301 306 271 568 607 496 51 410 436 373 864 1,000 732
36 309 318 278 582 626 511 52 416 443 379 863 991 733
37 318 327 285 600 664 521 53 422 451 385 895 1,036 768
38 325 336 292 606 665 526 54 427 458 391 885 1,040 764
39 333 344 298 618 682 530 55 433 466 397 920 1,074 785
40 340 352 304 640 710 543 56 439 473 403 893 1,046 765
41 347 360 310 649 729 551 57 445 481 409 938 1,101 810
42 354 367 316 657 732 549 58 451 489 415 938 1,104 796
43 361 375 323 671 758 563 59 456 496 421 956 1,133 810
44 368 383 329 693 789 578 60 461 503 427 959 1,129 818
45 374 390 336 697 787 578 61 467 511 433 983 1,143 837
46 380 398 342 711 811 591 62 473 518 439 996 1,190 845
47 386 405 348 723 821 604 63 478 525 445 989 1,187 848
48 392 413 354 739 850 614 64 484 533 451 1,004 1,182 851

Figure 3: Times (ns) for 32-bit implementation—double precision range
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(bits) MBE Euclid Binary MBE Euclid Binary size MBE Euclid Binary MBE Euclid Binary

65 511 507 485 1,265 1,159 1,258 97 757 894 665 2,038 2,385 1,658
66 526 531 497 1,317 1,235 1,206 98 764 905 671 2,071 2,417 1,665
67 537 551 503 1,355 1,290 1,225 99 770 916 676 2,081 2,444 1,673
68 546 566 510 1,378 1,336 1,251 100 777 927 681 2,096 2,473 1,688
69 555 579 516 1,400 1,354 1,285 101 784 939 686 2,100 2,491 1,694
70 564 592 522 1,428 1,397 1,290 102 790 950 691 2,125 2,520 1,696
71 573 604 528 1,445 1,412 1,314 103 797 961 696 2,146 2,550 1,704
72 581 616 533 1,492 1,469 1,326 104 804 972 701 2,166 2,583 1,727
73 589 627 538 1,492 1,498 1,341 105 810 983 707 2,190 2,613 1,749
74 597 639 544 1,537 1,526 1,363 106 817 994 712 2,192 2,628 1,724
75 605 650 549 1,535 1,549 1,346 107 824 1,005 717 2,223 2,664 1,754
76 613 661 555 1,537 1,573 1,353 108 831 1,016 722 2,218 2,685 1,756
77 620 672 560 1,571 1,603 1,373 109 837 1,027 727 2,259 2,723 1,776
78 627 683 566 1,600 1,657 1,389 110 844 1,038 732 2,267 2,747 1,778
79 635 695 571 1,596 1,655 1,387 111 851 1,049 737 2,285 2,773 1,802
80 642 706 576 1,624 1,701 1,408 112 857 1,060 742 2,295 2,800 1,794
81 649 717 582 1,662 1,729 1,436 113 864 1,071 747 2,304 2,831 1,817
82 655 728 587 1,662 1,772 1,442 114 871 1,082 753 2,315 2,855 1,823
83 662 739 592 1,670 1,779 1,435 115 877 1,093 758 2,328 2,870 1,826
84 669 750 597 1,712 1,810 1,468 116 884 1,104 763 2,358 2,907 1,833
85 676 761 603 1,701 1,816 1,442 117 891 1,116 768 2,369 2,937 1,860
86 683 772 608 1,735 1,850 1,467 118 897 1,126 773 2,383 2,951 1,869
87 689 783 613 1,750 1,886 1,485 119 904 1,138 778 2,409 2,990 1,875
88 696 794 618 1,755 1,906 1,483 120 911 1,149 783 2,428 3,017 1,903
89 703 805 623 1,771 1,933 1,496 121 918 1,160 789 2,429 3,039 1,894
90 709 816 629 1,808 1,971 1,518 122 924 1,171 794 2,461 3,080 1,919
91 716 827 634 1,821 2,002 1,522 123 931 1,182 799 2,491 3,124 1,954
92 723 838 639 1,864 2,047 1,577 124 938 1,193 804 2,486 3,135 1,942
93 729 849 644 1,847 2,063 1,546 125 944 1,204 809 2,502 3,160 1,948
94 736 860 649 1,856 2,077 1,537 126 951 1,215 814 2,517 3,186 1,959
95 743 871 654 1,876 2,111 1,555 127 958 1,226 819 2,536 3,214 1,958
96 749 882 659 1,931 2,159 1,603 128 964 1,237 824 2,560 3,249 1,978

Figure 4: Times (ns) for 64-bit implementation—double precision range
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Hgcd iterations refer to the average number of iterations required by the func-
tion mpn_hgcd2 and the columns labeled Main iterations refer to the average
number of iterations required by the main loop of mpn_lehmer_gcd. The graph
displays the ratios of times and iteration counts for the MBE algorithm to times
and iteration counts for the Lehmer variant.
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Input size i386 times ppc times Main iterations Hgcd iterations
(bits) MBE Lehmer Ratio MBE Lehmer Ratio MBE Lehmer Ratio MBE Lehmer Ratio

128 1.904 1.858 1.025 2.968 2.847 1.043 4 3 1.333 26 54 0.481
256 4.324 4.090 1.057 6.743 6.510 1.036 8 7 1.143 61 125 0.488
512 9.822 9.190 1.069 15.339 14.539 1.055 17 16 1.063 140 286 0.490

1,024 22.117 20.777 1.064 35.534 33.913 1.048 35 34 1.029 297 604 0.492
2,048 52.148 49.241 1.059 89.185 84.059 1.061 72 70 1.029 608 1,236 0.492
4,096 132.203 126.267 1.047 248.031 232.654 1.066 144 141 1.021 1,233 2,506 0.492
8,192 377.072 363.095 1.038 773.362 722.300 1.071 289 284 1.018 2,480 5,041 0.492

16,384 1,206 1,167 1.034 2,657 2,473 1.074 578 570 1.014 4,976 10,109 0.492
32,768 4,226 4,082 1.035 9,760 9,061 1.077 1,158 1,142 1.014 9,966 20,254 0.492
65,536 15,846 15,131 1.047 37,316 34,577 1.079 2,316 2,285 1.014 19,950 40,552 0.492

131,072 60,500 58,089 1.042 145,947 135,124 1.080 4,632 4,572 1.013 39,917 81,116 0.492
262,144 236,105 227,700 1.037 577,589 534,433 1.081 9,266 9,147 1.013 79,848 162,248 0.492

Figure 5: Times (µs) and iterations for 32-bit implementation—multiple precision range

5.3. Observations
The MBE algorithm is a clear winner for single precision on three of the

four architectures; only on the ppc64 architecture does it come in a close second
to the binary algorithm. For double precision, it is better than the Euclidean
algorithm but not as good as the binary algorithm on all four architectures. It
seems that the level of support in hardware for integer remainder determines
whether MBE or the binary algorithm is better, since the MBE algorithm clearly
does a better job on the Xeon processor.
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Input size x86 64 times ppc64 times Main iterations Hgcd iterations
(bits) MBE Lehmer Ratio MBE Lehmer Ratio MBE Lehmer Ratio MBE Lehmer Ratio

256 2.900 3.109 0.933 5.675 6.206 0.914 4 3 1.333 51 110 0.464
512 6.336 6.761 0.937 12.212 13.082 0.933 8 7 1.143 118 256 0.461

1,024 13.511 14.366 0.940 25.891 27.723 0.934 16 15 1.067 255 548 0.465
2,048 29.709 31.409 0.946 59.592 61.909 0.946 33 32 1.031 543 1,166 0.466
4,096 67.071 70.413 0.953 140.367 145.298 0.966 67 66 1.015 1,118 2,405 0.465
8,192 162.770 168.054 0.969 369.651 374.014 0.988 135 133 1.015 2,263 4,861 0.466

16,384 437.674 441.462 0.991 1,095 1,083 1.011 271 268 1.011 4,556 9,780 0.466
32,768 1,344 1,296 1.037 3,615 3,503 1.032 543 539 1.007 9,140 19,623 0.466
65,536 4,627 4,242 1.091 12,995 12,367 1.051 1,086 1,079 1.006 18,306 39,318 0.466

131,072 16,810 15,342 1.096 48,934 46,305 1.057 2,174 2,159 1.007 36,644 78,675 0.466
262,144 64,172 57,511 1.116 189,389 178,917 1.059 4,348 4,320 1.006 73,309 157,395 0.466
524,288 249,806 226,234 1.104 746,704 704,828 1.059 8,696 8,642 1.006 146,651 314,855 0.466

Figure 6: Times (µs) and iterations for 64-bit implementations—multiple precision range
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For multiprecision input the MBE algorithm doesn’t perform as well as the
Lehmer variant on the 32-bit architectures, but is marginally better than Lehmer
on the 64-bit architectures, up to 16,384 bits on the x86 64 machine and up to
8,192 bits on the ppc64. It is clear from the graph that MBE requires less than
half of the iterations needed by the Lehmer variant in the Hgcd step.

Both GMP’s version of mpn_hgcd2 and the modified version used in the ex-
perimental implementation of MBE require several double-precision arithmetic
operations per iteration to compute the M matrix, so the advantage MBE has
here is significant, but the cost of the multi-precision steps in the main loop of
mpn_lehmer_gcd dominates the overall cost, and since MBE uses slightly more
of these than Lehmer, MBE becomes more expensive for larger inputs. The
experimental implementation could quite probably be improved so that more
double-precision Hgcd steps could be combined into fewer main loop steps, but
it is doubtful that MBE will be significantly faster than the Lehmer variant
currently in use in GMP 4.3.1.

6. Conclusion

The Mixed Binary-Euclid algorithm has a sequential time complexity of
O(n2), so it is not competitive asymptotically. However, a parallel version of
the algorithm matches the best presently known time complexity. In addition,
we provided experimental evidence that it has superior performance for single
precision inputs when there is good hardware support for integer division. There
is also some chance that the multiprecision version would be competitive, and we
have identified some ideas to improve it. One of these ideas is the use of pseudo-
quotients, called ρ-Euclid ([15], Section 5.1), to improve the computation of the
Hgcd step.
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