
On a Parallel Lehmer-Euclid GCD Algorithm

Sidi Mohammed Sedjelmaci
LIPN CNRS UPRES-A 7030,

Université Paris-Nord 93430 Villetaneuse, France.
e-mail: sms@lipn.univ-paris13.fr

ABSTRACT
A new version of Euclid’s GCD algorithm is proposed. It
matches the best existing parallel integer GCD algorithms
since it can be achieved in Oε(n/ logn) time using at most
n1+ε processors on CRCW PRAM.

1. INTRODUCTION
The problem of the Greatest Common Divisor (or GCD)
of two integers is important for two major reasons. First
because it is widely included as a low operation in several
arithmetic packages. On the other hand, despite its amazing
simplicity, the complexity of the GCD problem in parallel is
still unknown. We do not know whether it belongs to the
NC class or if it is a P-complete problem.

The advent of practical parallel computers has caused the
re-examination of many existing algorithms with the hope
of discovering a parallel implementation. In 1987, Kan-
nan, Miller and Rudolph (KMR) [7] gave the first sublinear
time parallel integer GCD algorithm on a common CRCW
PRAM model. Their time bound was O(n log log n/ logn)
assuming there are n2(logn)2 processors working in paral-
lel, where n is the bit-length of the larger input. Since 1990,
Chor and Goldreich [3] have the fastest parallel GCD algo-
rithm; it is based on the systolic array GCD algorithm of
Brent and Kung. The time complexity of their algorithm is
Oε(n/ logn) using only n1+ε processors on a CRCW PRAM.
More recently (1994), Sorenson’s right- and left-shift k-ary
algorithms [13] match Chor and Goldreich’s performance.

Euclid’s algorithm is one of the simplest and most popu-
lar integer GCD algorithm. Its extended version called Ex-
tended Euclidean Algorithm or EEA for short [9] is tightly
linked with the continued fractions [4, 9] and is important
for its multiple applications (cryptology, modular inversion,
etc..). In [7], Kannan, Miller and Rudolph proposed a first
parallelization of EEA. Their algorithm was based on a re-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC 2001, UWO, Canada
c©2001 ACM 1-58113-218-2/ 00/ 0008 $5.00

duction step which uses a non trivial couple (a, b) of integers
|a| ≤ kv/u, |b| ≤ 2k, s.t. 0 ≤ au− bv ≤ u/k for a given pa-
rameter k > 0; therefore, at each step, the larger input u is
reduced by O(log k) bits.

However, one of the major drawbacks of their algorithm is
the expensive cost of the computation (a, b). As a matter of
fact, in order to reach an O(1) time computation for their re-
duction step, more than O(n2 log2 n) processors are needed
to compare in pairs the O(n) numbers au− bv of O(log2 n)
bits (see [7] for more details). The main results of the paper
are summarized below:

• We propose a new reduction step which is easily ob-
tained from the O(logn) first significant leading bits
of the inputs.

• Based on this reduction step, new sequential and par-
allel GCD algorithms are designed. The parallel algo-
rithm matches the best known GCD algorithms: its
time complexity is Oε(n/ logn) using only n1+ε pro-
cessors on a CRCW PRAM, for any constant ε > 0.

• Moreover, a compression method may be considered
to improve the complexity.

In Section 2, we recall the basic reduction step used in Kan-
nan, Miller and Rudolph’s algorithm [7]. In Section 3, we
define a new reduction which uses the same Lehmer idea [10].
Basically, with the O(logn) most significant bits of u and v,
we can easily find a couple (a, b) such that the associated re-
duction satisfies |au−bv| < 2v/k, with 1 ≤ a ≤ k, for a given
parameter k = O(n). A new parallel integer GCD algorithm
based on our reduction is designed in Section 4. Section 5 is
devoted to the complexity analysis. Comparisons with other
reductions as well as preliminary experiments are given in
Section 6. We conclude with some remarks in Section 7.

2. BASIC REDUCTION STEPS
2.1 Notation
Throughout this paper, we restrict ourselves to the set of
non-negative integers. Let u and v be two such (non-negative)
integers, u and v are respectively n− bits and p− bits num-
bers with u ≥ v. Let k be an integer parameter s.t. k = 2m

1

with m ≥ 2 and m = O(logn).

EEA denotes the Extended Euclidean Algorithm. If many
processors are in write concurrency then the Concurrent
Read and Concurrent Write model “CRCW” of PRAM is
considered. There are many submodels of CRCW PRAM
for solving the write concurrency, however in order to allow
the priority to the processor with the larger index, we choose
the Priority sub-model [8].

Most of serial integer GCD algorithms use one or several
transformations (u, v) 7−→ (v,R(u, v)) which reduce the size
of current pairs (u, v), until a pair (u′, 0) is eventually reached.
The last value u′ = gcd(u, v) is the result we want to find.
These transformations will be called Reductions if they sat-
isfy the following two properties:

(P1) 0 ≤ R(u, v) < v.
(P2) gcd(v,R(u, v)) = α gcd(u, v), with α > 0.

With (P1) and (P2), we are guaranteed that algorithms ter-
minate and return the correct value gcd(u, v), up to a con-
stant factor α which can easily be removed afterwards [5,
16]. Examples of such basic reductions are given in Table 1.

Given a non-negative integer x ∈ N , `2(x) represents the
number of significant bits of an non-negative integer x, not
counting leading zeros:

`2(x) =


blog2(x)c+ 1 if x ≥ 1,
1 if x = 0.

So n = `2(u), p = `2(v) and p satisfies 2p−1 ≤ v < 2p.
We let ρ = ρ(u, v) = `2(u) − `2(v) + 1. Thus, we obtain
2ρ−2 < u/v < 2ρ. We assume that p > 2m+ 3.

As noticed by many authors the main difficulty in GCD al-
gorithms happens when the input data u and v are roughly
of the same size [7, 5, 16]. So we shall assume that when we
apply our reduction: n− p < m− 1 (or ρ < m). Otherwise,
we apply a more efficient reduction: the bmod, defined as:

bmod(u, v) = |u− (u/v mod 2ρ)v|/2ρ.

For any parameter λ s.t. 0 ≤ λ ≤ p we define u1 and v1 by:

u1 = bu/2p−λc and v1 = bv/2p−λc.

Let u2 = u mod 2p−λ and v2 = v mod 2p−λ, then u2, v2 <
2λ and

u = 2p−λu1 + u2 and v = 2p−λv1 + v2.

The numbers u1 and v1 are obtained with, respectively, the
λ+n− p and the λ most significant leading bits of u and v.

2.2 The Kannan, Miller and Rudolph Reduc-
tion

The Kannan, Miller and Rudolph (KMR for short) integer
GCD algorithm is based on the following lemma ([7], page
9):

Lemma 2.1. (KMR lemma)
For all positive integers u, v and k with u ≤ kv, there exists
a couple (a, b) 6= (0, 0) s.t. |a| ≤ kv/u and |b| ≤ 2k which
satisfies 0 ≤ au− bv ≤ u/k.

Remark: Since |au−bv| ≤ u/k ≤ v, then |au−bv| = (au)
(mod v) or v − au (mod v).

Thus any couple (a, b) found provides a reduction step called
a KMR’s reduction. Kannan, Miller and Rudolph proposed
to compute in parallel all the O(k2) numbers au − bv, and
select those for which 0 ≤ au − bv ≤ u/k. But this latter
relation implies |au− bv| ≤ u/k, thus the couple (a, b) must
be chosen from a set of O(k) numbers satisfying this rela-
tion. However, the pair (a, b) in [7] is not easily obtained.
Although O(log2 n)-bit numbers are considered at each step,
O(n) numbers au − bv must be compared in pairs. There-
fore, more than O(n2 log2 n) processors are needed in order
to compute their reduction in constant time.

3. THE IMPROVED LEHMER-EUCLID RE-
DUCTION

The main difficulty in EEA is the expensive cost of long divi-
sions when we deal with large size inputs. In 1938, Lehmer
[10] suggested another way to compute the couple (a, b).
Roughly speaking (see Knuth [9] for more details), work-
ing only with the leading bits of u and v, the author con-
siders two single-precision rationals which approximate the
quotient u/v, namely u′/v′ < u/v < u”/v”. Thus if we
carry out EEA simultaneously on the single-precision ratio-
nals u′/v′ and u”/v” until we get a different quotient, we
obtain the same sequence of quotients had we applied the
multi-precision numbers u and v.

Let (a, b) be the last couple obtained by EEA. Then the
transformation R(u, v) = au+ bv is a reduction in the sense
of Section 2. However, for random inputs u and v, the se-
quence of same quotients seems to be equally random. Al-
though a first attempt was made by Sorenson [14] with a
slightly modified version of Lehmer’s algorithm, no a priori
estimation of this reduction is known. The author only gave
an asymptotic behavior of his reduction since he obtained
(with our notation) [14]:

R(u, v) = au+ bv = O(u/2m).

The reduction we propose in this paper is also based on
leading bits and continuants but, by contrast, our reduction
satisfies R(u, v) < 2v/k for any positive parameter k. We
first specify how to compute the couple (a, b) of the reduc-
tion then both a sequential and a parallel version of a GCD
algorithm are proposed.

2

Name Reduction Property
Euclid u− qv q = bu/vc
binary (u− v)/2 u and v odds
bmod |u− xv|/2ρ x = (u/v) (mod 2ρ)
Sorenson |au+ bv|/k au+ bv ≡ 0 (mod k)

Table 1: Examples of Reductions.

Lemma 3.1. For all positive integers u ≥ v, k = 2m and
p = `2(v) > 2m+ρ, there exists a couple of integers (a, b) 6=
(0, 0) s.t. 1 ≤ a ≤ k which satisfies 0 ≤ |au− bv| < 2v/k.

Moreover, the couple (a, b) is only obtained from the first
2m + 2ρ leading bits of u and the first 2m + ρ + 1 leading
bits of v respectively.

Proof. Let λ = 2m+ρ+ 1 and u1 and v1 as previously de-
fined in Section 2. Note that u1 and v1 exist since p−λ ≥ 0.
Applying Hardy and Wright’s theorem [4] (theorem 36, p.30)
to the rational v1/u1 with k′ = dku1/v1e, we obtain a couple
(a, b) of integers s.t.

1 ≤ a, b ≤ k′ − 1 and |v1/u1 − a/b| ≤ 1/k′b

hence

|au1 − bv1| ≤ u1/k
′ ≤ u1

dku1/v1e
≤ v1/k.

We let R = |au− bv|. We obtain

R = |au− bv| ≤ |au1 − bv1|2p−λ + |au2 − bv2|

R < 2p−λv1/2
m + 2p−λk′

R < v/2m + 2p−λ+m+ρ.

From λ = 2m+ ρ+ 1, we obtain

R < 2v/k.

Moreover we have |a− bv1/u1| ≤ 1/k′ so a ≤ bv1/u1 + 1/k′,
but b ≤ k′ − 1 < ku1/v1 so a < k + 1/k′ and

a ≤ bk + 1/k′c = k.

Remarks

• Note that b ≤ dku1/v1e − 1 < ku1/v1. The previous re-
duction satisfies R = |au − bv| = (au) (mod k) or v − au
(mod k) since R < 2v/k < v; m ≥ 2.

• The constant 2 in the inequality is less precise and our first
experiments show that, most of the time, we have R < v/k
(see Table 2).

Definition 3.1. Let (a, b) be one of the couples defined in
Lemma 3.1. The RILE transformation is defined by

RILE(u, v)
def
= |au− bv|.

Many such couples can be found and RILE depends on the
couple (a, b) considered, but for any one of them, RILE is a
reduction which satisfies RILE(u, v) = |au−bv| < 2v/k. We
propose in the next Section an easy way to compute one of
these couples (a, b) and the reduction RILE .

3.1 The Algorithms
We give below a sequential and a parallel algorithm for com-
puting our reduction RILE .

Input: u ≥ v and k = 2m s.t. ρ = n − p + 1 < m and
p > 2m+ ρ+ 1.
Output: RILE(u, v).

Step 1
p := l2(v);
λ := 2m+ ρ+ 1;
u1 := bu/2p−λc; v1 :=bv/2p−λc;
u2:= u (mod 2p−λ); v2:= v (mod 2p−λ);

Step 2 Run EEA with the couple (u1, v1) and compute suc-
cessive triplets (r, b, a), where r = au1 + bv1 until |a| > 2m.
Save the previous triplet (r, a, b). Note that ab < 0.

Step 3 Compute RILE = |au+ bv| = |r2p−λ + au2 + bv2|;

Return RILE .

Fig. 1 The Sequential Algorithm for computing RILE .

All the triplets (r, a, b) computed in EEA satisfy b = bau1c
or b = bau1c+1. Therefore r expresses as r = au1 mod v1 or
r = v1 − (au1 mod v1) and the previous algorithm is easily
parallelized as follows.

Input: u ≥ v and k = 2m s.t. ρ = n − p + 1 < m and
p > 2m+ 3.
Output: RILE(u, v).

Step 1
Compute p, λ, u1, u2, v1 and v2 as in Figure 1.

Step 2 For i = 1, 2, .., 2m Do in parallel
qi := biu1/v1c; ri := iu1 − qiv1;
if ri < v1/k then r:=ri; a := i; b := qi;
if v1−ri < v1/k then r:=v−ri; a := i; b := qi+1;

End Do

3

Step 3 Compute in parallel RILE = |au − bv| = |r2p−λ +
au2 − bv2|;

Return RILE .

Fig. 2 The Parallel Algorithm for computing RILE .

If many processors are in write concurrency in Step 2 then
we use the Priority sub-model of CRCW-PRAM. With this
sub-model, we obtain the largest a s.t. 1 ≤ a ≤ k and the
smallest reduction RILE .

Remark: Let m = O(logn). Even when u and v are very
large numbers in size (up to 65, 536-bits, n, p ≤ 216) the
computations in Step 1 and 2 can be performed in constant
time with a single precision since logn ≤ 16 (see Section 5).

3.2 An Example
Let u = 1, 759, 291 and v = 1, 349, 639. Their binary repre-
sentations are respectively:

11010110 1100000111011 = 1, 759, 291
10100100 1100000000111 = 1, 349, 639

We obtain n = p = 21 so that ρ = 1. If we take m = 3, we
obtain λ = 2m + 2 = 8, u1 = 214 and v1 = 164 (the bits
representing u1 and v1 are in bold). Applying the EEA to
u1 and v1 yields the first successive integers q, r, b and a
(r = au+ bv).

q r b a
214 0 1
164 1 0

1 50 −1 1
3 14 4 −3
3 8 −13 +10

In our example we obtain a = −3, b = 4, r = 14 < v1/k =
164/8 = 20.50 and

RILE = | − 3u+ 4v| = 120, 683.

Note that RILE < v/k = 168, 704.88. On the other hand
the computation of the bmod reduction and that of Sorenson
RS yield: (see Section 6.2 for the computation of RS)

bmod(u, v) = |u− v|/2 = 204, 826 and
RS = |7u+ 5v|/64 = 297, 863, with k = 64,
RS = |u+ 3v|/16 = 363, 013, with k = 16.

4. ILE-GCD: THE IMPROVED LEHMER-
EUCLID GCD ALGORITHM

Given integers u ≥ v > k > 0 s.t. gcd(v, k) = 1, we assume
that when the algorithm starts, u is n bits large. Recall that

the parameter m is such that m = O(logn) for RILE thus
this value yields at most O(n/ logn) iterations.

As to the stop test in the routine, we use v ≥ 8k2 (RILE
is undefined when v < 8k2). We find it easier to take m
as a “threshold” (the borderline choice between RILE and
the bmod reductions); likewise, we might choose a varying
threshold, depending upon v and experimental data [5, 16].

4.1 High Level Description
Step 1: Let us note d = gcd(u, v). Find d1, s.t. d1 equals

the product of all common divisors of u and v which
are less than k.

Step 2: Perform reductions until v < 8k2: if ρ < m, then
perform RILE ’s; else, perform the bmod reduction.

Compute d = gcd(u, v) with Euclid’s (or bmod) algo-
rithm, where (u, v) is the last pair satisfying v < 8k2.

Step 3: Remove all divisors < k from d.

Step 4: Return d× d1.

Fig. 3 The Parallel ILE-GCD Algorithm.

Step 1, 3 and 4 are similar to the phases in KMR algorithm.
Step 2 is designed in Figure 2.

5. COMPLEXITY ANALYSIS
We give below the complexity analysis of the parallel ILE-
GCD Algorithm. First note that the computation of `2(u)
and `2(v) can be computed in O(1) time in parallel with
O(n) processors in CRCW (Priority). Observe that u1 and
v1 can be found by extraction; 2p−λ is not needed, nor is
the multiprecision division.

We compute ri = iu1−qiv1 and test if ri < v1/k or v1−ri <
v1/k to select the index i. Then iu2− qiv2 can be computed
in parallel as well as RILE = |2p−λr+ iu2 − qiv2|. All these
computations can be done in O(1) time with O(n22m) +
O(n log log n) processors. Indeed, precomputed table lookup
can be used for multiplying two m-bit numbers in constant
time with O(n22m) processors in CRCW PRAM model, pro-
viding that m = O(logn) (see [13]).

Precomputed table lookup of size O(m22m) can be carried
out in O(logm) time with O(M(m)22m) processors, where

M(m) = m logm log logm

(see [13] or [3] for more details).

The computation of RILE = |iu − qiv| requires (see Figure
2) only two products iu and qiv with the selected index i.
Thus RILE can be computed in parallel in O(1) time with:
(ρ < m)

O(n22m) +O(n log log n) = O(n22m) processors.

4

RILE reduces the size of the smallest input v by at least
m−1 bits. Hence the ILE−GCD algorithm runs in O(n/m)
iterations. For m = 1/2 ε logn, (ε > 0) the parallel ILE −
GCD algorithm matches the best previous GCD algorithms
in Oε(n/ logn) time using only n1+ε processors on a CRCW
PRAM.

6. COMPARISON TO OTHER REDUCTIONS
6.1 Sorenson’s Reduction
Sorenson’s reduction RS is based on the modular relation

au+ bv ≡ 0 (mod k) with 0 < |a|, |b| <
√
k (1)

and RS is defined by RS(u, v) = |au + bv|/k. However the
inequality |au+bv|/k < v does not always hold with RS and
this somehow restrict the domain of use of RS . We prove
the following.

Lemma 6.1. Sorenson’s k-ary transformation is a reduction
if k > 22ρ+2.

Proof. It is easily seen that Sorenson’s transformation sat-
isfies R(u, v) < 2u/

√
k < 2ρ+1v/

√
k. A sufficient condition

for R(u, v) to be a reduction is then 2ρ+1v/
√
k < v, that is

k > 22(ρ+1) or ρ < m/2− 1/2.

Indeed Weber [16] and Jebelean [5] use Sorenson’s reduction
only when k > 24ρ−2 or ρ < m/4 + 1/2, while RILE can be
used for ρ < m.

Actually one of the major drawbacks of RS is that the value
of |au+ bv| might be large, especially when a and b are both
positive (See the example given in Section 3.2).

6.2 The Weber’s Algorithm

Sorenson suggested in [13] table lookup to find a couple of in-
tegers (a, b) satisfying relation (1). By contrast, Jebelean [5]
and Weber [16] both propose an easy algorithm which finds
such couple (a, b). These couples (a, b) are obtained by run-
ning EEA (with one column added instead of two) until
b < k. We give below this algorithm.

Input: x, y > 0, k > 1, and gcd(k, x) = gcd(k, y) = 1.

Output: (n, d) s.t. 0 < n, |d| <
√
k, and ny ≡ dx (mod k).

c := x/y mod k ; /* initialization */
f1 = (n1, d1) := (k, 0) ;
f2 = (n2, d2) := (c, 1)

while n2 ≥
√
k do

f1 := f1 − bn1/n2c f2
swap (f1, f2)

endwhile
return f2

Fig. 4 The Weber’s Algorithm for computing the couples
(a, b) of RS.

Reduction RS RILE
Average Time 0.05 0.05
Average Ratio R/v .079343 .058005

Table 2: First Results.

The reductions RILE and RS are theoretically quite similar.
However the key problem for reductions is the computation
cost of the couples (a, b). It is worth noting that the compu-
tation of RILE is easier than that of RS proposed by Weber.
As a matter of fact, if we compare the algorithms for com-
puting both RS and RILE , we can observe (see Fig. 3 and
4) that the computation of RS proposed by Weber needs
an extra amount of time spent for computing the modular
quotient c = x/y mod k.

6.3 First Experiments
Due to the similarity between the GCD algorithms based on
RS and RILE [16], it is sufficient to compare the reductions
RS and RILE with each other rather than with all the GCD
algorithms.

We have compared sequential algorithms for computing RS
and RILE reductions. The implementation is written in C
with GNU C Compiler gcc (Stallman, 1991 [15]) on Unix
system. The average times are in seconds. The source files
were not optimized and RS is used as a benchmark.

The experiments were done on N random numbers u and v
of size 30 to 32 bits, 20 ≤ N ≤ 50. The parameters were
m = 3, λ = 10, thus only the reductions RS and RILE are
considered since ρ ≤ 3.

Our preliminary results are described in Table 2. It seems
that for the same average time, the average ratio R/v is
slightly better when RILE is used.

7. CONCLUSION
This last decade, no major improvement has been made
for parallel complexity of integer GCD computation and a
performance of Oε(n/ logn) time with n1+ε processors on a
CRCW PRAM seems to be a ”limit” not easily surpassed.

Reduction methods are widely used as a tool in most integer
GCD algorithms. We propose a new reduction called RILE
where both theoretical and practical aspects are considered.
RILE reduction presented in this paper may be used as a
basic transformation for the best current GCD algorithms,
as in [13, 16] for example. We have designed an integer GCD
algorithm based on this reduction which matches the best
existing algorithms.

Although its complexity remains the same, a compression
method may be suggested [7, 3]. It is worth noting that,
as far as RILE reduction is considered, all the decisions are
made only from the first O(m) leading bits of the current

5

couple (u, v) at each step. Thus our algorithm adapts for
such compression methods. We are currently investigating
this idea with the hope of improving the performance of
parallel integer GCD algorithms.

8. REFERENCES
[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman. The

Design and Analysis of Computer Algorithms,
Addison Wesley, 1974.

[2] R.P. Brent and H.T. Kung. Systolic VLSI arrays
for linear-time GCD computation, in VLSI’83,
Anceau and Aas eds., 1983, 145-154.

[3] B. Chor and O. Goldreich. An improved parallel
algorithm for integer GCD, Algorithmica, 5, 1990,
1-10.

[4] G.H. Hardy and E.V. Wright. An Introduction To
The Theory Of Numbers, Oxford University Press.,
London, 1979.

[5] T. Jebelean. A Generalization of the Binary GCD
Algorithm, in Proc. of the International Symposium
on Symbolic and Algebraic Computation (ISSAC’93),
1993, 111-116.

[6] T. Jebelean. An Algorithm for Exact Division, J. of
Symbolic Computation, 15, 1993, 169-180.

[7] R. Kannan, G. Miller and L. Rudolph. Sublinear
Parallel Algorithm for Computing the Greatest
Common Divisor of Two Integers, SIAM J. on
Computing, Vol. 16, No 1, 1987, 7-16.

[8] R. Karp, V. Rammachandran. Parallel
Algorithms for Shared-memory Machines, In J.Van
Leeuwen, Editor, Algorithms and Complexity, Elsvier
and MIT Press, 1990, Handbook of Theoretical
Computer Science, Vol. A.

[9] D.E. Knuth. The Art of Computer Programming,
Vol. 1-2, 2nd ed., Addison Wesley, 1981-1982.

[10] D.H. Lehmer. Euclid’s algorithm for large numbers,
American Math. Monthly, 45, 1938, 227-233.

[11] A. Schönhage. Schnelle Berechnung von
Kettenbruchentwicklugen, Acta Informatica, 1, 1971,
139-144.

[12] M.S. Sedjelmaci and C. Lavault. Improvements
on the accelerated integer GCD algorithm,
Information Processing Letters, 61, 1997, 31-36.

[13] J. Sorenson. Two Fast GCD Algorithms, J. of
Algorithms, 16, 1994, 110-144.

[14] J. Sorenson. An Analysis of Lehmer’s Euclidean
Algorithm, in Proc. of the International Symposium
on Symbolic and Algebraic Computation (ISSAC’95),
1995, 254-258.

[15] R.M. Stallman. Using and Porting GCC, Free
Software Foundation, 1991.

[16] K. Weber. Parallel implementation of the
accelerated integer GCD algorithm, J. of symbolic
Computation (Special Issue on Parallel Symbolic
Computation), 21, 1996, 457-466.

6

