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Classical random graphs Random connected graphs Random biconnected graphs Results Further directions

The structure of random graphs

Erd®s and Rényi proved that around pcr = 1
n
a change in the

structure of G (n, p) occurs:

if p < 1−ε
n

, then all components of Gn,p contain O(log n) vertices;

if p > 1+ε
n

, then there exists a unique component with Θ(n)
vertices, whereas every other component has O(log n) vertices.
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Classical random graphs Random connected graphs Random biconnected graphs Results Further directions

Random planar graphs

Let Pn be the set of labeled all planar graphs on n vertices and let
Pn denote a graph taken at random from Pn with probability
1/|Pn|.

How many edges does Pn typically have?

Giménez and Noy (2009) showed that

e(Pn)− κn√
2πλn

d→ N(0, 1),

where κ ≈ 2.21326 and λ ≈ 0.43034 are constants.
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Random planar graphs

What is the typical component structure of Pn?

Giménez and Noy (2009) proved that the number of connected
components of Pn is asymptotically distributed as

1 + X ,

where X
L
= Po(ν), and ν ≈ 0.037439.

Typical structure of a random planar graph

There is a unique giant component containing n − OC (1) vertices,
whereas the remaining components are �small".
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The structure of
random connected graphs

A connected graph consists of its biconnected components:
the maximal subgraphs of connectivity at least 2.

A connected graph
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The structure of
random connected graphs

Assume that we sample a connected graph uniformly from the
family of graphs whose biconnected components belong to the
family B.
Let B(x) be the enumerating generating function of B:

B(x) =
∞∑
n=1

|Bn|
n!

xn,

and let ρB be its radius of convergence.
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Random connected graphs

It turns out that what determines the structure of a random
connected graph sampled from this family is

ρBB
′′(ρB)
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Random connected graphs

Theorem [Panagiotou and Steger (2009)]

Let Cn be a random graph sampled uniformly from the family of
connected graphs on n vertices with biconnected components in B.
With probability 1− o(1)

if ρBB
′′(ρB) > 1, then all biconnected components have size

O(log n);

if ρBB
′′(ρB) < 1, then there exists a unique biconnected

component of order Θ(n), but every other component has o(n)
vertices.
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Random biconnected graphs

Question

If Cn is a random graph on n vertices sampled from a certain class of
biconnected graphs, what is the typical distribution of its
3-connected buildings blocks?

What is a building block of a 2-connected graph?

Fountoulakis, Panagiotou The structure of random 2-connected graphs 9



Classical random graphs Random connected graphs Random biconnected graphs Results Further directions

Networks (Trakhtenbrot�Tutte)

De�nition - Networks

A network is a graph with two distinguished vertices which we call
poles, so that if we add an edge between them, then the resulting
(multi)graph belongs to the certain class of biconnected graphs.
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Network decomposition

A network is:

an edge;

a series network (type S);

a parallel network (type P);

a core network (type H).
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Series networks

A series network is:
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Series networks

A series network is:

A series network

P + H + e N+
-
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Parallel networks

A parallel network is:
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Parallel networks

A parallel network is:

e

N

N

N

+− −+

The two types of parallel networks
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Core networks

A core network is:

+
-

The underlying 3-connected graph is called a core.
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N

N
N

N
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Generating functions

Let

- N(x , y) be the enumerating generating function of the class of
networks;

- T (x , y) be the e.g.f. of the class of 3-connected graphs from
which we choose the cores.
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Generating functions

These functions satisfy:

Φ(x , y ,N(x , y)) = 0,

where

Φ(x , y , z) = T (x , z)− log

(
1 + z

1 + y

)
+

xz2

1 + xz
.
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Random networks

Aim

We study random networks on n vertices, where the cores are
sampled from a given class of 3-connected graphs.
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Random networks

A certain correspondence between networks and the resulting class of
biconnected graphs yields the following:

Rough equivalence

If a property holds a.a.s. for such a class of networks, then it also
holds a.a.s. for the corresponding class of biconnected graphs.
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Random networks

What determines the typical structure of a random network on n

vertices is

the sign of Φz(ρN(1), 1,N(ρN(1), 1)),

where ρN(1) is the radius of convergence of N(x , 1).
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Random networks

Theorem [F. and Panagiotou]

Let Nn be a random network on n vertices. If
Φz(ρN(1), 1,N(ρN(1), 1)) > 0, then

all cores of Nn have OC (log n) vertices.

If Φz(ρN(1), 1,N(ρN(1), 1)) < 0, then for some γC > 0

there is a unique core with γCn + op(n) vertices, but every other core
has op(n) vertices.
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Random networks

We have calculated

- asymptotic counts for the number of small cores;

- the order of the �giant" core;

- asymptotic distribution for the number of edges of Nn as n→∞.
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Example - Biconnected Random
Planar Graphs

If we sample the cores from the class of 3-connected planar
graphs, the resulting network corresponds to random biconnected
planar graphs;
It turns out that this class of networks falls into the second
�category":

Theorem

A random biconnected planar graph on n vertices has a unique core
of order cpn + o(n), where cp = 0.765..., whereas every other core
has O(n2/3) vertices, with probability 1− o(1).

This was also shown recently by Giménez, Noy and Rué, with the
use of analytic methods.
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Example - Biconnected Random
Planar Graphs

For every 4 ≤ ` = O

((
n

log n

)2/5)
the number of cores with `

vertices is for any ε > 0

c`n(1± ε),

with probability 1− o(1), where c` is determined by the generating
function of the class of 3-connected planar graphs.
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Proof techniques

- We analyse the output of Boltzmann samplers which are
randomised algorithms that generate networks;

- In our case, these are a collection of randomized algorithms that
call each other recursively, re�ecting the recursive construction of a
network.

Fountoulakis, Panagiotou The structure of random 2-connected graphs 24
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Proof techniques

Example: Boltzmann sampler for Networks

ΓN(x , y): ΓN ← e w.p. y
N(x ,y) ;

ΓN ← ΓS(x , y) w.p.
S(x ,y)
N(x ,y) ;

ΓN ← ΓP(x , y) w.p.
P(x ,y)
N(x ,y) ;

ΓN ← ΓH(x , y) w.p.
H(x ,y)
N(x ,y) ;
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Proof techniques

Example: Boltzmann sampler for Core Networks

ΓH(x , y) : T ← ΓT (x ,N(x , y))

for each edge e of T
γe ← ΓN(x , y)

replace every e in T by γe
Return T , relabeling randomly its vertices.
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Proof techniques

- We are able to show the concentration of the number of calls of
each routine;

- Let

- ANet be the number of calls of the network routine;

- ASer be the number of calls of the series networks routine;

- APar be the number of calls of the parallel networks routine;

- VT and ET denote the total number of vertices and edges in cores.
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Proof Techniques

We show that for each Z ∈ {ANet,ASer,APar,VT ,ET } we have

P (|Z − zn| < εn) > 1− e−Cε
2n,

where z ∈ {aNet, aSer, aPar, vT , eT } and the vector
a := [aNet, aSer, aPar, vT , eT ]T is the solution of the system Ma = r ,
where

M =



1
N(x ,y)

ρNN(x ,y)
S(x ,y)

N(x ,y)−1
2P(x ,y) 0 0

0 1 0 1 0
S(x ,y)
N(x ,y) −1 S(x ,y)N(x ,y)

P(x ,y) 0 0
P(x ,y)
N(x ,y)

ρNP(x ,y)N(x ,y)
S(x ,y) −1 0 0

−1 1 0 0 1

 , r =


µ
1
0
0
0


(1)

and µ = −ρ′
N
(1)

ρN(1) .
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- In particular, if AH is the number of calls of the Core Networks
routine, then

AH = αHn + op(n),

where
αH = 2µH(x , y).
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Proof techniques

- We treat ΓH(x , y) as a deterministic algorithm that reads its
inputs from a list

(T1,T2, . . .),

where the {Ti}i≥1 are independent samples from the class of
cores, distributed according to the Boltzmann distribution.

- If Ck(n) is the number of cores of size k in a network with n

vertices, we are able to bound it by looking inside

(T1, . . . ,TdαHn+εne)

and use Cherno� bounds.
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Outlook

Use these results for algorithmic applications;

determine the asymptotic distribution of the order and the size of
the giant core;

higher connectivities???
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Thank you!

Fountoulakis, Panagiotou The structure of random 2-connected graphs 32


	Classical random graphs
	Random connected graphs
	Random biconnected graphs
	Results
	Further directions

