Triangulated ternary disc packings that maximize the density

Daria Pchelina

supervised by

Thomas Fernique

September 29, 2020

Discs:

Packing P: (in R^2)

Discs:

Packing P: (in R^2)

$$\delta(P) = \limsup_{n \to \infty} \frac{\operatorname{area}([-n, n]^2 \cap P)}{\operatorname{area}([-n, n]^2)}$$

Discs:

Packing P: (in R^2)

$$\delta(P) = \limsup_{n \to \infty} \frac{\mathit{area}([-n, n]^2 \cap P)}{\mathit{area}([-n, n]^2)}$$

Discs:

Packing P: (in R^2)

$$\delta(P) = \limsup_{n \to \infty} \frac{\operatorname{area}([-n, n]^2 \cap P)}{\operatorname{area}([-n, n]^2)}$$

Discs:

Packing P: (in R^2)

$$\delta(P) = \limsup_{n \to \infty} \frac{\operatorname{area}([-n, n]^2 \cap P)}{\operatorname{area}([-n, n]^2)}$$

Discs:

Packing P: (in R^2)

$$\delta(P) = \limsup_{n \to \infty} \frac{\operatorname{area}([-n, n]^2 \cap P)}{\operatorname{area}([-n, n]^2)}$$

Discs:

Packing P: (in R^2)

$$\delta(P) = \limsup_{n \to \infty} \frac{\operatorname{area}([-n, n]^2 \cap P)}{\operatorname{area}([-n, n]^2)}$$

Packing P: (in R^2)

$$\delta(P) = \limsup_{n \to \infty} \frac{\operatorname{area}([-n, n]^2 \cap P)}{\operatorname{area}([-n, n]^2)}$$

Which packings maximize the density?

Discs:

Packing P: (in R^2)

Density:

$$\delta(P) = \limsup_{n \to \infty} \frac{\operatorname{area}([-n, n]^2 \cap P)}{\operatorname{area}([-n, n]^2)}$$

Which packings maximize the density?

Why do we study packings?

• To pack fruits

Why do we study packings?

• To pack fruits

• and vegetables

Why do we study packings?

• To pack fruits

and vegetables

 To make compact materials

Binary and ternary superlattices self-assembled from colloidal nanodisks and nanorods. Journal of the American Chemical Society, 137(20):6662–6669, 2015.

Context ond ond

2D hexagonal -packing:

$$\delta = \tfrac{\pi}{2\sqrt{3}}$$

Lagrange, 1772

Hexagonal packing maximize the density among lattice packings.

Thue, 1910 (Toth, 1940)

Hexagonal packing maximize the density.

Context 🔵 and 🧶

$$\delta = \frac{\pi}{2\sqrt{3}}$$

Lagrange, 1772

Thue, 1910 (Toth, 1940)

Hexagonal packing maximize the density.

3D hexagonal -packing:

Gauss, 1831

Hexagonal packing maximize the density among lattice packings.

Hales, Ferguson, 1998-2014

(Conjectured by Kepler, 1611)

Hexagonal packing maximize the density.

 $\delta = \frac{\pi}{3\sqrt{2}}$

Two discs of radii 1 and r:

Lower bound on the density: $\frac{\pi}{2\sqrt{3}}$ (hexagonal packing with only 1 disc used)

Two discs of radii 1 and r:

Lower bound on the density: $\frac{\pi}{2\sqrt{3}}$ (hexagonal packing with only 1 disc used)

Upper bound on the density:

Florian, 1960

The density of a packing never exceeds the density in the following triangle:

A packing is called **triangulated** if each "hole" is bounded by three tangent discs.

Kennedy, 2006

There are 9 values of r allowing triangulated packings.

A packing is called **triangulated** if each "hole" is bounded by three tangent discs.

Kennedy, 2006

There are 9 values of r allowing triangulated packings.

Heppes 2000,2003 Kennedy 2004 Bedaride, Fernique, 2019:

All these 9 packings maximize the density

Conjecture (Connelly, 2018)

If a finite set of discs allows a **saturated** triangulated packing then the density is maximized on a saturated triangulated packing.

True for o and o.

Conjecture (Connelly, 2018)

If a finite set of discs allows a **saturated** triangulated packing then the density is maximized on a saturated triangulated packing.

What happens with • • ?

Context • • •

- 164 (r,s) with triangulated packings: (Fernique, Hashemi, Sizova 2019)
- 15 non saturated
- Case 53 is proved (Fernique 2019)
- 14 more cases (the internship)

Context • • •

- 164 (r, s) with triangulated packings: (Fernique, Hashemi, Sizova 2019)
- 15 non saturated
- Case 53 is proved (Fernique 2019)
- 14 more cases (the internship)
- The others?

A Delaunay triangulation of a packing: no points inside a circumscribed circle

$$\delta^* = \delta_{\Delta^*} = \frac{\pi}{2\sqrt{3}}$$

$$\forall \ \Delta, \ \delta_\Delta \leq \delta_{\Delta^*} = \delta^*$$

A Delaunay triangulation of a packing: no points inside a circumscribed circle

$$\delta^* = \delta_{\Delta^*} = \frac{\pi}{2\sqrt{3}}$$

$$\forall \ \triangle, \ \delta_{\triangle} \le \delta_{\triangle^*} = \delta^*$$

A Delaunay triangulation of a packing: no points inside a circumscribed circle

$$\forall \ \triangle, \ \delta_{\triangle} \leq \delta_{\triangle^*} = \delta^*$$

• The largest angle of any \triangle is between $\frac{\pi}{3}$ and $\frac{2\pi}{3}$

$$R = \frac{|AC|}{2\sin\hat{B}} \ge \frac{1}{\sin\hat{B}}$$

A Delaunay triangulation of a packing: no points inside a circumscribed circle

$$\forall \ \triangle, \ \delta_{\triangle} \leq \delta_{\triangle^*} = \delta^*$$

• The largest angle of any \triangle is between $\frac{\pi}{3}$ and $\frac{2\pi}{3}$

$$R = \frac{|AC|}{2\sin\hat{B}} \ge \frac{1}{\sin\hat{B}}$$

• The density of a triangle \triangle : $\delta_{\triangle} = \frac{\pi/2}{3 \operatorname{reg}(\triangle)}$

A Delaunay triangulation of a packing: no points inside a circumscribed circle

• The largest angle of any \triangle is between $\frac{\pi}{3}$ and $\frac{2\pi}{3}$

$$R = \frac{|AC|}{2\sin\hat{B}} \ge \frac{1}{\sin\hat{B}}$$

- The density of a triangle \triangle : $\delta_{\triangle} = \frac{\pi/2}{area(\triangle)}$
- The area of a triangle ABC with the largest angle \hat{B} is $\frac{1}{2}|AB|\cdot|BC|\cdot\sin\hat{B}$ which is at least $\frac{1}{2}\cdot2\cdot2\cdot\frac{\sqrt{3}}{2}=\sqrt{3}$

Idea of the proof for \bigcirc

A Delaunay triangulation of a packing: no points inside a circumscribed circle

• The largest angle of any \triangle is between $\frac{\pi}{3}$ and $\frac{2\pi}{3}$

$$R = \frac{|AC|}{2\sin\hat{B}} \ge \frac{1}{\sin\hat{B}}$$

- The density of a triangle \triangle : $\delta_{\triangle} = \frac{\pi/2}{2rea(\triangle)}$
- The area of a triangle ABC with the largest angle \hat{B} is $\frac{1}{2}|AB|\cdot|BC|\cdot\sin\hat{B}$ which is at least $\frac{1}{2} \cdot 2 \cdot 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3}$
- Thus the density of ABC is less or equal to $\frac{\pi/2}{\sqrt{2}}$

Delaunay triangulation → weighted by the disc radii

Triangles have different densities:

What to do?

Idea of the proof for 🕒 • °

Delaunay triangulation → weighted by the disc radii

Triangles have different densities:

What to do?

Redistribution of the densities:

Triangles have different densities:

What to do?

Redistribution of the densities:

Some triangles "share their density" with neighbors

Delaunay triangulation → weighted by the disc radii

Triangles have different densities:

What to do?

Redistribution of the densities:

Some triangles "share their density" with neighbors

Triangles have different densities:

What to do?

Redistribution of the densities:

Some triangles "share their density" with neighbors

 \mathcal{T}^* – saturated triangulated packing of density δ

 $\ensuremath{\mathcal{T}}$ – any other saturated packing with the same discs

 \mathcal{T}^* – saturated triangulated packing of density δ

The sparsity of a triangle $\triangle \in \mathcal{T}$: $S(\triangle) = \delta \times area(\triangle) - cov(\triangle)$ $S(\triangle) > 0$ iff the density of covering of \triangle is less than δ $S(\triangle) < 0$ iff the density of covering of \triangle is greater than δ

To prove that $\mathcal T$ is no denser than $\mathcal T^*$, we show that $\sum_{\mathcal T} \mathcal S(\vartriangle) \geq 0$

 \mathcal{T}^* – saturated triangulated packing of density δ

 ${\cal T}$ – any other saturated packing with the same discs

The sparsity of a triangle $\triangle \in \mathcal{T}$: $S(\triangle) = \delta \times area(\triangle) - cov(\triangle)$ $S(\triangle) > 0$ iff the density of covering of \triangle is less than δ $S(\triangle) < 0$ iff the density of covering of \triangle is greater than δ

To prove that $\mathcal T$ is no denser than $\mathcal T^*$, we show that $\sum_{\mathcal T} S(\vartriangle) \geq 0$

1: Introduce a **potential** U such that for any triangle $\triangle \in \mathcal{T}$,

$$S(\triangle) \ge U(\triangle)$$
 (\triangle)

and

$$\sum_{\Delta \in \mathcal{T}} U(\Delta) \ge 0 \tag{U}$$

2: Instead of proving a global inequality

$$\sum_{\Delta \in \mathcal{T}} U(\Delta) \ge 0 \tag{U}$$

we define the vertex potential: for a triangle \triangle with vertices A, B and C,

$$U(\triangle) = \dot{U}^A_\triangle + \dot{U}^B_\triangle + \dot{U}^C_\triangle$$

and prove a **local** inequality for each vertex $v \in \mathcal{T}$:

$$\sum_{\Delta \in \mathcal{T}|_{V} \in \Delta} \dot{U}_{\Delta}^{V} \ge 0 \tag{\bullet}$$

2: Instead of proving a global inequality

$$\sum_{\Delta \in \mathcal{T}} U(\Delta) \ge 0 \tag{U}$$

we define the vertex potential: for a triangle \triangle with vertices A, B and C,

$$U(\triangle) = \dot{U}^A_{\triangle} + \dot{U}^B_{\triangle} + \dot{U}^C_{\triangle}$$

and prove a **local** inequality for each vertex $v \in \mathcal{T}$:

$$4\dot{U}^{\nu}_{\Delta_{1}} + 2\dot{U}^{\nu}_{\Delta_{2}} + \dot{U}^{\nu}_{\Delta_{3}} = 0$$

$$\sum_{\Delta \in \mathcal{T} \mid \mathbf{v} \in \Delta} \dot{\mathcal{U}}_{\Delta}^{\mathbf{v}} \ge 0 \tag{\bullet}$$

$$\dot{U}_{\Delta_{1}^{\prime}}^{v^{\prime}} + \dot{U}_{\Delta_{2}^{\prime}}^{v^{\prime}} + \dot{U}_{\Delta_{3}^{\prime}}^{v^{\prime}} + \dot{U}_{\Delta_{4}^{\prime}}^{v^{\prime}} > 0$$

Delaunay triangulation properties o finite number of cases o verification by computer

Proving an inequality with interval arithmetic

To store and perform computations on transcendental numbers (like π), we use intervals.

A representation of a number x is an interval I whose endpoints are exact values representable in a computer memory and such that $x \in I$.

Proving an inequality with interval arithmetic

To store and perform computations on transcendental numbers (like π), we use intervals.

A representation of a number x is an interval I whose endpoints are exact values representable in a computer memory and such that $x \in I$.

```
sage: x = RIF(0,1)
                                                       # Interval [0,1]
sage: (x+x).endpoints()
                                                          # [0.1]+[0.1]
(0.0, 2.0)
sage: x < 2
                                                       # \forall t \in [0,1], t < 2
True
sage: Ipi = RIF(pi)
                                                      # Interval for \pi
(3.14159265358979, 3.14159265358980)
sage: sin(Ipi).endpoints()
                                                  # Interval for sin(\pi)
(-3.21624529935328e-16, 1.22464679914736e-16)
sage: sin(Ipi) >= 0
                                     # Interval for sin(\pi) contains 0
False
```

Proving a continuum of inequalities with interval arithmetic

Defining U, we try to make it as small as possible keeping it locally positive around any vertrex (\bullet) .

3: How to check

$$S(\Delta) \ge U(\Delta)$$
 (Δ)

on each triangle \triangle ? (There is a continuum of them).

Proving a continuum of inequalities with interval arithmetic

Defining U, we try to make it as small as possible keeping it locally positive around any vertrex (\bullet) .

3: How to check

$$S(\triangle) \ge U(\triangle)$$
 (\triangle)

on each triangle \triangle ? (There is a continuum of them).

Interval arithmetic!

Delaunay triangulation properties \rightarrow uniform bound on edge length:

Verify
$$S(\Delta_{e_1,e_2,e_3}) \ge U(\Delta_{e_1,e_2,e_3})$$
 where $e_1 = [r_a + r_b, r_a + r_b + 2s]$ $e_2 = [r_c + r_b, r_c + r_b + 2s]$ $e_3 = [r_a + r_c, r_a + r_c + 2s]$

Not precise enough → dichotomy

Conclusion

What was done and what will be done...

• 14 cases proved

various techniques: computer-assisted proofs, interval arithmetic, optimisation, combinatorics, discrete geometry

 133 cases to prove (Connelly's conjecture)

for this: good comprehension of the density redistribution, more optimisation

 maximal density for other disc sizes (which do not allow triangulated packings)

deformations of triangulated packings keep the density high \rightarrow good lower bound on the maximal density