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What is a packing?

Discs:

Packing P:
(in R2)

Density:

1 r s

δ(P) = lim sup
n→∞

area([−n, n]2 ∩ P)

area([−n, n]2)

Which packings maximize the density?
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Why do we study packings?

To pack fruits

and vegetables

To make
compact
materials

Binary and ternary superlattices self-assembled from colloidal nanodisks and nanorods.

Journal of the American Chemical Society, 137(20):6662–6669, 2015.
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Context and

2D hexagonal -packing: δ = π
2
√

3

Lagrange, 1772

Hexagonal packing maximize the density among lattice packings.

Thue, 1910 (Toth, 1940)

Hexagonal packing maximize the density.

3D hexagonal -packing: δ = π
3
√

2

Gauss, 1831

Hexagonal packing maximize the density among lattice packings.

Hales, Ferguson, 1998–2014 (Conjectured by Kepler, 1611)

Hexagonal packing maximize the density.
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Context

Two discs of radii 1 and r :

Lower bound on the density: π
2
√

3
(hexagonal packing with only 1 disc used)

Upper bound on the density:

Florian, 1960

The density of a packing never exceeds the density in the following triangle:
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Context

A packing is called triangulated if each “hole” is bounded by three tangent discs.

Kennedy, 2006

There are 9 values of r allowing triangulated packings.

Heppes 2000,2003
Kennedy 2004
Bedaride, Fernique, 2019:

All these 9 packings
maximize the density

1
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Context

Conjecture (Connelly, 2018)

If a finite set of discs allows a saturated triangulated packing then the density is
maximized on a saturated triangulated packing.

True for and .

What happens with ?
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Context

3 discs
1 r s

164 (r , s) with
triangulated
packings:
(Fernique, Hashemi,

Sizova 2019)

15 non saturated

Case 53 is proved
(Fernique 2019)

14 more cases
(the internship)

The others?

r

s
r-
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Idea of the proof for
A Delaunay triangulation of a packing: no points inside a circumscribed circle

δ∗ = δM∗ = π
2
√

3 ∀ M, δM ≤ δM∗ = δ∗

A

B

C
>
3
_2π

The largest angle of any M is between π
3 and 2π

3 R = |AC |
2 sin B̂

≥ 1
sin B̂

The density of a triangle M: δM = π/2
area(M)

The area of a triangle ABC with the largest angle B̂ is 1
2 |AB|·|BC |· sin B̂

which is at least 1
2 ·2·2·

√
3

2 =
√

3

Thus the density of ABC is less or equal to π/2√
3
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Idea of the proof for

Delaunay triangulation → weighted by the disc radii

Triangles have different densities:

δ( ) 6= δ( )

What to do?

Redistribution of the densities:

Some triangles “share their density” with neighbors
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Proof for

T ∗ – saturated triangulated packing of density δ

T – any other saturated packing with the same discs

The sparsity of a triangle M∈ T : S(M) = δ × area(M)− cov(M)

S(M) > 0 iff the density of covering of M is less than δ
S(M) < 0 iff the density of covering of M is greater than δ

To prove that T is no denser than T ∗, we show that
∑
T S(M) ≥ 0

1: Introduce a potential U such that for any triangle M∈ T ,

S(M) ≥ U(M) (M)

and ∑
M∈T

U(M) ≥ 0 (U)
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Proof for

2: Instead of proving a global inequality∑
M∈T

U(M) ≥ 0 (U)

we define the vertex potential: for a triangle M with vertices A,B and C ,

U(M) = U̇A
M + U̇B

M + U̇C
M

and prove a local inequality for each vertex v ∈ T :∑
M∈T |v∈M

U̇v
M ≥ 0 (•)

Δ
ΔΔ1

2

3

4U̇v
M1

+ 2U̇v
M2

+ U̇v
M3

= 0

Δ2

Δ3

Δ4

Δ1

'
'

'

'

U̇v ′

M′1
+ U̇v ′

M′2
+ U̇v ′

M′3
+ U̇v ′

M′4
> 0

Delaunay triangulation properties → finite number of cases → verification by computer
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Proving an inequality with interval arithmetic

To store and perform computations on transcendental numbers (like π), we use
intervals.

A representation of a number x is an interval I whose endpoints are exact values
representable in a computer memory and such that x ∈ I .

sage: x = RIF(0,1) # Interval [0,1]

sage: (x+x).endpoints()

(0.0, 2.0) # [0,1]+[0,1]

sage: x < 2

True # ∀t ∈ [0, 1], t < 2

sage: Ipi = RIF(pi) # Interval for π
(3.14159265358979, 3.14159265358980)

sage: sin(Ipi).endpoints() # Interval for sin(π)
(-3.21624529935328e-16, 1.22464679914736e-16)

sage: sin(Ipi) >= 0

False # Interval for sin(π) contains 0
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Proving a continuum of inequalities with interval arithmetic

Defining U, we try to make it as small as possible keeping it locally positive
around any vertrex (•).

3: How to check
S(M) ≥ U(M) (M)

on each triangle M? (There is a continuum of them).

Interval arithmetic!

Delaunay triangulation properties → uniform bound on edge length:

Verify S(Me1,e2,e3 ) ≥ U(Me1,e2,e3 ) where

e1 = [ra+rb, ra+rb+2s] e2 = [rc+rb, rc+rb+2s] e3 = [ra+rc , ra+rc+2s]

Not precise enough → dichotomy
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Conclusion

What was done and what will be done...

14 cases proved

133 cases to prove
(Connelly’s conjecture)

maximal density for other
disc sizes
(which do not allow triangulated

packings)

various techniques: computer-assisted proofs,
interval arithmetic, optimisation, combinatorics,
discrete geometry

for this: good comprehension of the density
redistribution, more optimisation

deformations of triangulated packings keep the
density high → good lower bound on the
maximal density
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