PROBABILITÉS LIBRES ET MATRICES ALÉATOIRES

Philippe Biane

ALEA

Luminy, 05-06/03/2012

Rappels de l'épisode précédent

Definition (Voiculescu, 1983)

 $\{A_i; i \in I\}$ =famille de sous-algèbres (unifères) de A.

Les A_i sont libres dans (A, τ) ssi pour tous $a_1, \ldots, a_n \in A$ tels que

- i) $\tau(a_j) = 0$ pour tout j,
- ii) $a_j \in A_{i_j}$, $i_1 \neq i_2$, $i_2 \neq i_3$, ..., $i_{n-1} \neq i_n$,

on a

$$\tau(a_1\ldots a_n)=0$$

Cumulants libres

$$\tau(a_1 \ldots a_n) = \sum_{\pi \in NC(n)} R_{\pi}(a_1, \ldots, a_n)$$

Théorème (Speicher). Les $(A_i; i \in I)$ sont libres dans (A, τ) , si et seulement si, pour tous $a_1 \in A_{i_1}, \ldots, a_n \in A_{i_n}$, on a

$$R_n(a_1,\ldots,a_n)=0$$

s'il existe j, k tels que $i_j \neq i_k$.

Matrices aléatoires et liberté

$$X_i = U_i D_i U_i^*$$

 D_i sont réelles diagonales (fixées), et les U_i unitaires de Haar indépendantes.

Soient $a_1, \ldots, a_n \in (A, \tau)$ libres, telles que

$$\tau(a_i^r) = tr(X_i^r) = tr(D_i^r) \qquad r = 1, 2, \dots$$

alors, pour N grand, on a

$$tr(X_{i_1}\ldots X_{i_k})\sim \tau(a_{i_1}\ldots a_{i_k})$$

avec probabilité proche de 1.

Convolution libre

 $A = algèbre; \tau = \text{\'etat sur } A.$

Si x_1, x_2 sont libres dans A.

$$\tau(x_1^n) = \int_{\mathbb{R}} x^n \mu_1(dx); \qquad \tau(x_2^n) = \int_{\mathbb{R}} x^n \mu_2(dx)$$

Il existe une mesure de probabilités $\mu_1 \boxplus \mu_2$ telle que

$$\tau((x_1+x_2)^n)=\int_{\mathbb{R}}x^n\mu_1\boxplus\mu_2(dx)$$

⊞ est la convolution libre

Modèle matriciel

$$X_1 = U_1 D_1 U_1^* \quad X_2 = U_2 D_2 U_2^*$$

de valeurs propres $\{\lambda_k^{(1)}\},\{\lambda_k^{(2)}\}.$

$$\frac{1}{N} \sum_{k} \delta_{\lambda_{k}^{(i)}} \to \mu_{i}$$

 $X_1 + X_2$ a un spectre γ_k

$$\frac{1}{N}\sum_{k}\delta_{\gamma_{k}}\to\mu_{1}\boxplus\mu_{2}$$

On peut prédire le spectre de $X_1 + X_2$ connaissant seulement le spectre de X_1 et le spectre de X_2 .

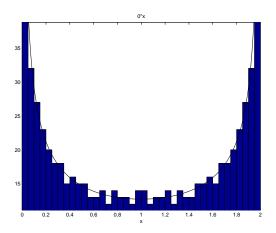
Exemple:

 Π_1 et Π_2 , matrices de taille $N \times N$ =Projections orthogonales sur des sous-espace de dimension N/2.

$$\Pi_i = U_i \begin{pmatrix} I_{N/2} & 0 \\ 0 & 0 \end{pmatrix} U_i^*$$

$$\mu_1 = \mu_2 = \frac{1}{2}\delta_0 + \frac{1}{2}\delta_1$$

$$\mu_1 \boxplus \mu_2 = \frac{dx}{\pi\sqrt{x(2-x)}}; \ x \in [-2, 2]$$



$$y = \frac{1}{\pi \sqrt{x(2-x)}}$$

Calcul de la convolution libre

$$G_{\mu}(z) = \int \frac{1}{z - x} \mu(dx) = \frac{1}{z} + \sum_{n=1}^{\infty} z^{-n-1} \int x^n \mu(dx)$$
 $K_{\mu}(G_{\mu}(z)) = G_{\mu}(K_{\mu}(z)) = z; \qquad K_{\mu}(z) = \frac{1}{z} + \sum_{n=0}^{\infty} R_n(\mu) z^n$
 $V_{\mu}(z) = K_{\mu}(z) - \frac{1}{z}$

Théorème (Voiculescu, 1986)

$$R_n(\mu_1 \boxplus \mu_2) = R_n(\mu_1) + R_n(\mu_2)$$

$$V_{\mu_1 \boxplus \mu_2}(z) = V_{\mu_1}(z) + V_{\mu_2}(z)$$

preuve du Théorème

Lemme 1 Si
$$\tau(a^k) = \int x^k d\mu(x)$$
; $k = 1, 2, ...$ on a (cf exercices) $R_n(\mu) = R_n(a, ..., a)$

Lemme 2 Si a et b sont libres alors

$$R_n(a+b,\ldots,a+b)=R_n(a,\ldots,a)+R_n(b,\ldots,b)$$

Les $R_n(\mu)$ sont appelés les *cumulants libres* de μ . Comparez avec

$$\log \int e^{itx} \mu(dx) = \sum_{n} (it)^{n} C_{n}(\mu)/n!$$

où C_n sont les *cumulants* de μ .

$$C_n(\mu_1 * \mu_2) = C_n(\mu_1) + C_n(\mu_2).$$

Cas des mesures sans moments

$$G_{\mu}(z) = \int \frac{1}{z - x} \mu(dx)$$

est inversible dans un voisinage de ∞ dans le demi-plan complexe supérieur

$$K_{\mu}(G_{\mu}(z)) = G_{\mu}(K_{\mu}(z)) = z$$

$$V_{\mu}(z) = K_{\mu}(z) - \frac{1}{z}$$

$$V_{\mu_1 \boxplus \mu_2}(z) = V_{\mu_1}(z) + V_{\mu_2}(z)$$

Théorème de la limite centrale libre

 $X_1, \ldots, X_n \in (A, \tau)$ variables libres identiquement distribuées.

$$\tau(X_i) = 0 \qquad \tau(X_i^2) = \sigma^2$$

Théorème (Voiculescu, 1983)

$$\frac{X_1 + \ldots + X_n}{\sqrt{n}} \to_{n \to \infty}^{\text{(en loi)}} \frac{1}{\pi \sigma} \sqrt{4\sigma^2 - x^2} dx \qquad x \in [-2\sigma, 2\sigma]$$

Preuve du TCL libre

 μ =loi de X (centrée).

$$K_{\mu}(z) = \frac{1}{z} + z \int x^2 d\mu + R_3(\mu)z^2 + \dots$$

 $\nu_n = {\sf loi} \ {\sf de} \ \frac{{\it X}_1 + \ldots, {\it X}_n}{\sqrt{n}} \ {\sf on} \ {\sf a}$

$$R_k(\nu_n) = n^{-k/2}(nR_k(\mu))$$

d'où

$$K_{\nu_n}(z) = \frac{1}{z} + z \int x^2 d\mu + O(1/\sqrt{n})$$

La loi du demi-cercle de variance σ^2

$$w_{\sigma^2}(dx) = \frac{1}{2\pi\sigma^2}\sqrt{4\sigma^2 - x^2}dx; \quad x \in [-2\sigma, 2\sigma]$$

est caractérisée par

$$K_{w_{\sigma^2}}(z) = \frac{1}{z} + z\sigma^2$$

$$V_{w_{\sigma^2}}(z) = z\sigma^2$$

Remarque On a

$$w_s \boxplus w_t = w_{s+t}$$

$$w_s \boxplus w_t = w_{s+t}$$

La loi du demi-cercle, est "librement" indéfiniment divisible On peut complètement caractériser les lois indéfiniment divisibles au sens de la convolution libre.

Par exemple les lois de Cauchy forment un semi-groupe de convolution

$$C_t \boxplus C_s = C_{t+s}$$
 $C_t(dx) = \frac{tdx}{\pi(x^2 + t^2)}$

Il y a une bijection (Bercovici-Pata) entre lois indéfiniment divisibles libres et classiques.

Convolution multiplicative

Au lieu d'additionner les variables on peut les multiplier.

Si a et b sont libres, il existe une formule pour calculer les moments de ab en fonction de ceux de a et de b.

Attention: on ne peut pas prendre le log pour se ramener au cas de l'addition:

$$\log(ab) \neq \log(a) + \log(b)$$

car a et b ne commutent pas.

Le théorème de Wigner

M =matrice aléatoire hermitienne gaussienne (GUE) de covariance:

$$E[|Tr(MA)|^2] = Tr(A^2)$$

la loi empirique des valeurs propres de M converge vers la loi semi-circulaire $(N \to \infty)$.

$$\frac{1}{N}\sum_{i}\delta_{\lambda_{i}}\to w$$

On a

$$M = \frac{M_1 + M_2 + \ldots + M_n}{\sqrt{n}}$$

avec des matrices M_1, \ldots, M_n aléatoires iid.

$$\begin{array}{ccc} \frac{M_1 + M_2 + \dots + M_n}{\sqrt{n}} & \to_{N \to \infty} & \frac{X_1 + X_2 + \dots + X_n}{\sqrt{n}} \\ \downarrow_{n \to \infty} & & \downarrow_{n \to \infty} & \\ M & \to_{N \to \infty} & w \end{array}$$

Vecteur propres de la somme de deux matrices

 x_1, x_2 deux variables libres,

$$au(x_i^n) = \int x^n \mu_i(dx); \quad G_{\mu_i}(z) = \int \frac{1}{z-x} \mu_i(dx)$$

Il existe un noyau de probabilités p(x, dy) tel que

$$\tau(Q(x_1+x_2)P(x_1))=\int \left(\int Q(y)p(x,dy)\right)P(x))\mu_1(dx)$$

formellement:

$$\tau(Q(x_1+x_2)|x_1) = \int Q(y)p(x_1,dy)$$

Le noyau p est caractérisé par une fonction analytique

$$F: \mathbf{C}^+ \to \mathbf{C}^+$$
$$\int \frac{1}{z - y} p(x, dy) = \frac{1}{F(z) - x}$$

$$G_{\mu_1}(F(z)) = G_{\mu_1 \boxplus \mu_2}(z)$$

$$G_{\mu_1 \boxplus \mu_2}(z) = \tau(\frac{1}{z - (x_1 + x_2)})$$

$$= \tau(\tau(\frac{1}{z - (x_1 + x_2)}|x_1))$$

$$= \tau(\frac{1}{F(z) - x_1})$$

$$= G_{\mu_1}(F(z))$$

$$F = K_{\mu_1} \circ G_{\mu_1 \boxplus \mu_2}$$

Interprètation matricielle

 X_1 et X_2 , matrices hermitiennes,

 λ_i =spectre de X_1 , ω_i =vecteurs propres de X_1 ; μ_i =spectre de X_1+X_2 , η_i =vecteurs propres de X_1+X_2 ;

$$tr(Q(X_1 + X_2)P(X_1)) = \frac{1}{N} \sum_{i,j} Q(\lambda_i)P(\mu_j)|\langle \omega_i, \eta_j \rangle|^2$$

Lorsque $N \to \infty$ le noyau $p(\lambda_i, \mu_j) = |\langle \omega_i, \eta_j \rangle|^2$ converge vers p(x, dy)

Exemple

$$\mu_1=\mu_2=\frac{1}{2}\delta_0+\frac{1}{2}\delta_1$$

Le noyau vaut:

$$p(0, dx) = \frac{1}{\pi} \sqrt{\frac{2-x}{x}} dx; \quad p(1, dx) = \frac{1}{\pi} \sqrt{\frac{x}{2-x}} dx$$

On a bien

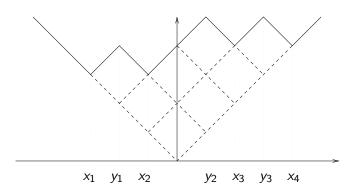
$$\frac{1}{2}p(0,dx) + \frac{1}{2}p(1,dx) = \frac{1}{\pi\sqrt{x(2-x)}}dx$$

Probabilités libres et groupe symétrique

Partition:

$$\lambda_1 \ge \lambda_2 \ge \ldots \ge 0$$
$$n = \sum \lambda_i$$

Les représentations irréductibles de S_n sont paramétrées par les partitions de n.



Mesure de transition

Il existe une unique probabilité m_{λ} telle que

$$G_{m_{\lambda}}(z) = \frac{\prod_{i=1}^{n-1}(z-y_k)}{\prod_{i=1}^{n}(z-x_k)}$$

$$m_{\lambda} = \sum_{k=1}^{n} \mu_{k} \delta_{x_{k}}$$
 $\mu_{k} = \frac{\prod_{i=1}^{n-1} (x_{k} - y_{i})}{\prod_{i \neq k} (x_{k} - x_{i})}$

$$K_{\lambda} = G_{\lambda}^{\langle -1 \rangle}$$

$$K_{\lambda}(z) = \frac{1}{z} + \sum_{n=1}^{\infty} R_n(\lambda) z^{n-1}$$

Les R_n sont les cumulants libres de la partition.

Asymptotique des caractères

 λ partition de q (grand)

On suppose que le nombre de lignes et de colonnes de λ est $=O(\sqrt{q}).$

 $\chi_{\lambda}=$ caractère de la représentation associée à $\lambda.$

 σ_k = cycle d'ordre k, pour q grand:

$$\chi_{\lambda}(\sigma_k) \sim R_{k+1}(\lambda)$$

Plus généralement, il existe une formule exacte:

$$\chi_{\lambda}(\sigma_k) = R_{k+1}(\lambda) + Pol(R_j(\lambda))$$

Les polynômes ont des coefficients indépendants de q: formule universelle pour les caractères.

Les coefficients sont des entiers positifs, (conjecture de Kerov, prouvée par V. Féray 2009).

RÉFÉRENCES

- P. Biane Free probability for probabilists
- A. Nica, R. Speicher, Combinatorics of free probability.
- G. Anderson, A. Guionnet, O. Zeitouni, Random Matrices, 2009