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Overview

Yesterday
1. Introduction

2. High Precision Approximations

— Fast multiplication, binary splitting, Newton iteration
3. Tools for Conjectures

— Hermite-Padé approximants, p-curvature
This Morning
4. Tools for Proofs

— Symbolic method, resultants, D-finiteness, creative telescoping

Tonight

— Exercises with Maple



TOOLS FOR PROOFS
1. Symbolic Method



Language

Context-free grammars (UNION, PROD, SEQUENCE), plus SET, CYCLE.
Origins: [Pdlya3d7, Joyal81,...]
Labelled and unlabelled universes.

Examples:

Binary trees B=Un~ion(Z,ProD(B,B))

Mappings M=SET(CYCLE(Tree)),
Tree=PROD(Z,SET(Tree))

Permutations P=SET(CYCLE(Z))

Children rounds R=SET(PROD(Z,CYCLE(Z)))

Integer partitions P=SET(SEQUENCE(Z))

Set partitions P=SET(SET(Z,card>0))

Irreducible polynomials mod p P=SET(Irred), P=SEQUENCE(Coeff).

Aim: a complete library for enumeration, random generation, generating

functions of structures “defined” like this (combstruct).



Generating Function Dictionary

Definition: Exponential and Ordinary Generating Functions of a class A:

Az) =Y An%, Az) = Anan,

n>0 n>0

where A,, (resp. A,,) is the number of labeled (resp. unlabeled) elements of

size n in A.

structure EGF OGF
UNION(A,B) A(zx) + B(x) A(z) + B(z)
PrOD(A,B) A(z) x B(x) A(w) X B(w)
1 1
SEQ(C) 1-C(x) 1-C(x)
k
CYC(C) log #@) Zk21 % log 1 1(:L’k)

C
SET(C) exp(C(z))  exp(C(z) + %C(gﬁ) + %é’(w3) o)




Proof. [Labeled product]
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Proof. [Unlabeled set]
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= exp(C(x) + 5C) +- ).



Binary trees

Mappings

Permutations

Children rounds

Integer partitions

Set partitions

Irreducible pols
mod p

Examples

B=Union(Z,Prod(B,B))
M=Set(Cycle(Tree))
Tree=Prod(Z,Set(Tree))
P=Set(Cycle(Z))
R=Set(Prod(Z,Cycle(Z)))
P=Set(Sequence(Z))
P=Set(Set(Z,card>0))
P=Set(Irred)
P=Sequence(Coeff)

B(z) = x + B?*(2)

M (x) = exp (log : %(x))
T(x) = zexp(T(x))

P(z) = exp(log =)

R(z) = (1—-=z)""

P(z) = exp(-L + £12 4 ..

P(x) = exp(e® — 1)

P(x) = exp(I(z) + 31(2*) +




Examples

Binary trees B=Union(Z,Prod(B,B)) B(z) =z + B*(x)
Mappings M=Set(Cycle(Tree)) M (x) = exp <log ﬁ)
Tree=Prod(Z,Set(Tree)) T(x) =xexp(T(x))

Permutations P=Set(Cycle(Z)) P(z) = exp(log )

Children rounds =~ R=Set(Prod(Z,Cycle(Z))) R(x)=(1—z)""

Integer partitions P=Set(Sequence(Z)) P(z) = exp(1% + ig + -

Set partitions P=Set(Set(Z,card>0)) P(x) = exp(e® — 1)

Irreducible pols P=Set(Irred) P(z) =exp(I(z) + £ 1(2?) +
mod p P=Sequence(Coeff) ::1;;x

> mappings:={M=Set (Cycle(Tree)) ,Tree=Prod(Z,Set(Tree)) }:
> combstruct[gfeqns] (mappings,labeled,x) ;

1
1 — Tree(x)’

(M (x) = Tree(x) = xexp(Tree(x))]



Constructible Classes [Flajolet-Sedgewick]

Definition. Well-founded system: Y = H(Z,)) such that Y,,;1 = H(x,Y,,)
with Yy = 0 converges to a (vector of) power series (with no 0 coordinate).



Constructible Classes [Flajolet-Sedgewick]

Definition. Well-founded system: Y = H(Z,)) such that Y,,,1 = H(z,Y,)
with Yy = 0 converges to a (vector of) power series (with no 0 coordinate).

Definition. Constructible classes: Constructed from {1, Z,Y1,)s,... } (with
|Z] =1 and |Y;| = 0) by compositions with

e Union, Prod, Sequence, Set, Cycle (with cardinality restricted to intervals);

e the solution of well-founded systems )Y = H(Z,)) where the coordinates
of ‘H are constructible.



Constructible Classes [Flajolet-Sedgewick]

Definition. Well-founded system: )V = H(Z,)) such that Y,,,1 = H(z,Y,)
with Yy = 0 converges to a (vector of) power series (with no 0 coordinate).

Definition. Constructible classes: Constructed from {1, Z,)1,)s,...} (with
|Z] =1 and |Y;| = 0) by compositions with

e Union, Prod, Sequence, Set, Cycle (with cardinality restricted to intervals);

e the solution of well-founded systems )V = H(Z,)) where the coordinates
of ‘H are constructible.

Theorem [Pivoteau-S.-Soria] Enumeration of all constructible classes with
precision N in O(M(N)) coefficient operations.

ldea: Newton’s iteration (— yesterday’s slides).

Soon to be in combstruct [count]



Example: Mappings

mappings:={M=Set (Cycle(Tree)) ,Tree=Prod(Z,Set (Tree)) }:
combstruct [gfeqns] (mappings,labeled,x);

1

[M(z) = 1 — Tree(x)’

Tree(x) = wexp(Tree(x))]

countmappings:=SeriesNewtonIteration(mappings,labelled,x):
countmappings(10) ;
9 32 625 324
M:1+x+2$2+§$3+§$4+ﬂ$5+T$6
117649 131072 4782969
27+ 8 x9-+—C)(x10),

720 315 T 4480

3 8 125 H4
Tree = x + 22 4+ —a3 + -2+ —— %+ 204+

9 3 924 5

16807 , 16384 o 531441 .
O

50 % T35 % T aamp & TO )

Code Pivoteau-S-Soria, should end up in combstruct



Multivariate Generating Functions

Same translation rules:
> maps2:={M=Set(Cycle(Prod(U,Tree))) ,Tree=Prod(Z,Set(Tree)) ,U=Epsilon}:
> combstruct[gfsolve] (maps2,labeled,z, [[u,U]]);

{M(z,u) =17 uI}V(—z)’ Tree(z,u) = =W (—2),U(z,u) = u, Z(z,u) = z}

This computes
K2

M(z,u) = ch,ku —

n!’
n,k

cn k. = number of mappings with n points, k£ of which are in cycles.



Multivariate Generating Functions

Same translation rules:
> maps2:={M=Set (Cycle(Prod(U,Tree))) ,Tree=Prod(Z,Set(Tree)) ,U=Epsilon}:
> combstruct [gfsolve] (maps2,labeled,z, [[u,U]]);

1
{A4(%10:: 1+ uW(—2)

> gf:=subs(%,M(z,u)):

, Tree(z,u) = =W (—2),U(z,u) = u, Z(z,u) = z}

Some automatic asymptotics (avg number of points in cycles):

> map(simplify,equivalent(eval(gf,u=1),z,n));

\/in—l/Qen
1/2 + O (e”n_3/2)
VT

> map(simplify,equivalent(eval (diff (gf,u),u=1),z,n));

1/2e" + O (e”n_1/2)

> asympt (%/%%h,n) ;

1/2V2y/mn!2 + 0 (1)



Also In combstruct

gfeqns: generating function equations;
gfseries: generating function expansions;
count: number of objects of a given size;
draw: uniform random generation;

agfeqns, agfseries, agfmomentsolve: extensions to attribute grammars
(see [Delest-Fédou92, Delest-Duchon99, Mishna2003] and examples in
help pages).



TOOLS FOR PROOFS
2. Resultants



Definition

The Sylvester matrix of A = a, 2™ + -+ - + ag € K[z], (@, # 0), and of
B =bp,x™ + -+ by € Klz], (b, # 0), is the square matrix of size m + n

Am Am—1 ce ao
Am, Am—1 ao
Ay Ay — ce a
Syl(A, B) = ' ’
bn bn—l bO
bn bn—l bO
- bn bn—l b() 1

The resultant Res(A, B) of A and B is the determinant of Syl(A, B).

» Definition extends to polynomials with coefficients in a commutative ring R.



Basic observation

If A=a, 2™ +---+ay and B=b,z2" +---+ by, then

i Gry Gyl - ao ] i a" 1t A(a)
amtn-l
Ay 1 ... Qg A(a)
b, b,_q bo : o B a™ ' B(a)
1
I b bn_1 bo | _ - i B(a)

Corollary: If A(a) = B(a) = 0, then Res (A, B) = 0.




Example: the discriminant

The discriminant of A is the resultant of A and of its derivative A’.

E.g. for A = az® + bz +c,

Disc(A) = Res (A, A") = det

E.g. for A =az® + bz +c,

Disc(A) = Res (A, A") = det

b c
b = —a(b* — 4ac).
2 b |
b c ]
0 b c
b = a?(4b° + 2Tac?).
0 b
3a 0 b |

» The discriminant vanishes when A and A’ have a common root, that is

when A has a multiple root.



Main properties

Link with gcd  Res (A, B) = 0 if and only if gcd(A, B) is non-constant.

Elimination property
There exist U,V € K[z] not both zero, with deg(U) < n, deg(V) < m and
such that the following Bézout identity holds:

Res(A,B)=UA+ VB in Kn(4,B).

Poisson formula
fA=alzr—a1) - (r—am,) and B=blx—p1) - (x— 8,), then

Res(A,B) = a"b" | (s = B8;) = a" ][] Blow).

i.j 1<i<m

Bézout-Hadamard bound
If A, B € K|z, y|, then Res (A, B) is a polynomial in K|z| of degree

< deg,(A) deg, (B) + deg,(B) deg, (A).



Application: computation with algebraic numbers

Let A=][;(x — ;) and B =]],(z — 5;) be polynomials of K[z]. Then

Res . (A(z), B(t —z)) = H(t — (o + Bj))a

Res.(A(z), B(t+z)) = H(t — (B85 — ),
Res . (A(x), xdegBB(t/:L‘)) = H(t —a;f5),

Res,(A(z),t — B(z)) = | [(t — B(w)).

)

In particular, the set of algebraic numbers is a field.

Proof: Poisson’s formula. E.g., first one: H B(t —a;) = H(t —a; — ).

@]

» The same formulas apply mutatis mutandis to algebraic power series.



Two beautiful identities of Ramanujan’s

s 27 T 37
S111 e S111 - S111 I B \/7
- 237 . 2921 + - 2T 2VT.
S11 —7 S111 —7 S111 7

» Using sin(kn/7) = o (z¥ — 27%), where z = exp(in/7), left-hand sum is a
rational function N(z)/D(x), so it is a root of Res x (X7 + 1, t- D(X) — N(X))

> f:=sin(2*a)/sin(3*a) "2-sin(a)/sin(2*a) "2+sin(3*a)/sin(a) ~2:
> expand(convert (f,exp)):
> F:=normal (subs(exp(I*a)=x,%)):
> factor(resultant(x~7+1,numer(t-F),x)):
2 3
-1274 I (¢t - 28)

» A slightly more complicated one:

3COS2—7T—|— 36084—7T—|— 3(3088—7T— \ 5_3\3ﬁ
V 7 V 7 V 7 2 '




Rothstein-Trager resultant

Let A, B € K[z] with deg(A) < deg(B) and squarefree monic denominator B.
The rational function F' = A/B has simple poles only.

A(B;)
B'(B;)

If FF= Z %5 , then the residue v; of I at the pole [3; equals v, =
— L — Pj

Theorem. The residues ~; of F' are roots of the Rothstein-Trager resultant

R(t) = Res, (B(z), A(z) —t - B'(z)).

Proof. Poisson formula again: R(t) = H (A(ﬁi) —t- B’(ﬁi))

)

» This special resultant is useful for symbolic integration of rational functions.



Application: diagonal Rook paths

Question: A chess Rook can move any number of squares horizontally or
vertically in one step. How many paths can a Rook take from the lower-left
corner square to the upper-right corner square of an N x N chessboard?

Assume that the Rook moves right or up at each step.

1, 2, 14, 106, 838, 6802, 56190, 470010, ...



Application: diagonal Rook paths

1, 2, 14, 106, 838, 6802, 56190, 470010, ...

207 S 1 — =2 —

Diag(F) = [s°| F(s,/s) = 5= § Flsw/s) . where F =

By the residue theorem, Diag(F’) is a sum of roots of the Rothstein-Trager
resultant

> F:=1/(1-s/(1-s8)-t/(1-t)):
> G:=normal (1/s*subs(t=x/s,F)):
> factor(resultant (denom(G) ,numer (G)-t*diff (denom(G),s),s));

2 2 2
x (-1+2¢t) x-1) (x+36t x+1-41t)

1 [ 1—
Answer: Generating series of diagonal Rook paths is 5 (1 -+ 1 gx > :
— Oz




Application: certified algebraic guessing
Guess + Bound = Proof

Theorem. Suppose A € K|[z]] is an algebraic series, and that it is a root of a
(unknown) polynomial in K[z, y] of degree at most d in = and at most n in y.

If ZQZ — O(z?™*1) and deg@Q; < d, then ZQZ ) = 0.

1=0



Application: certified algebraic guessing
Guess + Bound = Proof

Theorem. Suppose A € K|[z]] is an algebraic series, and that it is a root of a

(unknown) polynomial in K|z, y] of degree at most d in z and at most n in y

! ZQZ S 0[ ) and deQu < d, then Y Qi

1=0

) = 0.

Proof: Let P € K|z, y] be an irreducible polynomial such that

P(x, A(r)) =0, and deg,(P) <d, deg,(P) < n.



Application: certified algebraic guessing
Guess + Bound = Proof

Theorem. Suppose A € K|[z]] is an algebraic series, and that it is a root of a
(unknown) polynomial in K|z, y] of degree at most d in = and at most n in y

If Y Qi(x)A'(x) = O(2**") and degQ; < d, then Y Q;(x)A’(z)=0.
1=0 1=0

Proof: Let P € K|z, y] be an irreducible polynomial such that
P(x, A(r)) =0, and deg,(P) <d, deg,(P) < n.
e By Hadamard, R(z) = Res (P, Q) € K|x| has degree at most 2dn.
e By elimination, R(z) = UP +VQ for U,V € K[z, y| with deg, (V) < n.

e Evaluation at y = A(x) yields

R(zx) =U(x, A(x))f’(az, A(ZC)Z—FV(:L‘, A(:L'))Q(a:, A(x)l = O(z?4" 1),

0

O (x2dn+1)

e Thus R =0, that is gcd(P, Q) # 1, and thus P | @, and A is a root of Q.



Systems of two equations and two unknowns

Geometrically, roots of a polynomial f € Q[x]| correspond to points on a line.

Roots of polynomials A € Q[z,y] correspond to plane curves A = 0.

Let now A and B be in Q[z,y|. Then:
e cither the curves A = 0 and B = 0 have a common component,

e or they intersect in a finite number of points.



Application: Resultants compute projections

Theorem. Let A = a,,y™ + --- and B = b,y"™ 4 - -- be polynomials in Q|x]|y].
The roots of Res ,(A, B) € Q[z] are either the abscissas of points in the

intersection A = B = 0, or common roots of a,, and b,,.

Proof. Elimination property: Res (A, B) =UA+ VB, for U,V € Q[z,y].
Thus A(a, ) = B(a, ) =0 implies Res, (A4, B)(a) =0



Application: implicitization of parametric curves

Task: Given a rational parametrization of a curve

r=A(t), y= B(t), A, B € K(t),
compute a non-trivial polynomial in x and y vanishing on the curve.
Recipe: take the resultant in t of numerators of x — A(t) and y — B(?).

Example: for the four-leaved clover (a.k.a. quadrifolium) given by

A1 —t?)? 8t (1 —t?)
T At T AT e)p

Res ((1+t%)%z —4t(1—2)2, (14+¢)3y —8t3(1—1t?)) = 224 ((2? + y*)® — 42?y?) .



TOOLS FOR PROOFS

3. D-Finiteness



D-finite Series & Sequences

Definition: A power series f(x) € K||z]] is D-finite over K when its derivatives

generate a finite-dimensional vector space over K(x).

A sequence u,, is D-finite (or P-recursive) over K when its shifts (u,, upi1,...)

generate a finite-dimensional vector space over K(n).

equation + init conditions = data structure

About 25% of Sloane's encyclopedia, 60% of Abramowitz & Stegun

THE Examples: exp. log. sin, cos, sinh, cosh
ENCYCLOPEDIA P P, 108, S, ’ ’ ’

INTEGER
SEQUENCES arctanh, arccot, arccoth, arccsc, arccsch, HANDBOOK

MATHEMATICAL F

arccos, arccosh, arcsin, arcsinh, arctan,

arcsec, arcsech, , F, (includes Bessel J, Y, I
A som and K, Airy Ai and Bi and polylogarithms),
Struve, Weber and Anger functions, the

EMIC PRESS

large class of algebraic functions,. ..



Important classes of power series

Algebraic: S(x) € K[[x]] root of a polynomial P € K|z, y].

D-finite: S(z) € K[[x]] satisfying a linear differential equation with polynomial
(or rational function) coefficients ¢, ()5S (z) + - - - + co(x)S(x) = 0.

Hypergeometric: S(z) =}, sna™ such that ==+ € K(n). E.g.

a b
2 I
C

‘””’) =2 (ainf:)” L (@a=ala+1)-(a+n—1).

c n!’

n=0



Link D-finite < P-recursive

Theorem: A power series f € K[[z]] is D-finite if and only if the sequence f,, of
its coefficients is P-recursive

Proof (idea): 0 ++ n and 2~ ! <+ S,, give a ring isomorphism between
Klz,z~',0] and K[S,,S. ! n].
Snobbish way of saying that the equality f = ano frnx™ implies

(2" zf' () = nfn, and [2"]z7'f(2) = foi1.

» Both conversions implemented in gfun: diffeqtorec and rectodiffeq

» Differential operators of order r and degree d give rise to recurrences of
order d 4+ r and coefficients of degree r



Closure properties

Th. D-finite series in K[[x]|] form a K-algebra closed under Hadamard product.

P-recursive sequences over K form an algebra closed under Cauchy product.

Proof: Linear algebra:

f(ﬁ) ~ VeCtK(x) (f, f/’ N f(T—l)) : g(e) c VeCtK(x) (g’ g/7 o ’g(S—l)) :

so that  (f + ) € Vecty(y) (f, floo f g, 4 79(8_1)) 7

and (fg)“) € Vectg(y) (f(@g(j), 1<, ] < s) :

Thus f + g satisfies LDE of order < (r + s) and fg satisfies LDE of order < (rs).
Corollary: D-finite series can be multiplied mod =V in linear time O(N).

» Implemented in gfun: diffeq+diffeq, diffeq*diffeq, hadamardproduct, rec+rec,
rec*rec, cauchyproduct



Proof of lIdentities

> series(sin(x) "2+cos(x)~2,x,4);
4
1+ 0( x)
Why is this a proof?
1) sin and cos satisfy a 2nd order LDE: v + y = 0;

2) their squares (and their sum) satisfy a 3rd order LDE;

4) = sin® 4 cos? —1 satisfies a LDE of order at most 4;

5!

(1)

(2)

(3) the constant 1 satisfies a 1st order LDE: y’ = 0;

(4)

(5) Since it is not singular at 0, Cauchy’s theorem concludes.

» Cassini's identity (same idea): F? — F, F,,_; = (—1)"*!

> for n to 5 do

> fibonacci(n) “2-fibonacci(n+1)*fibonacci(n-1)+(-1)"

> od;

n



Algebraic series are D-finite

Theorem [Abel 1827, Cockle 1860, Harley 1862] Any algebraic series is D-finite.
Proof: Let f(x) € K[[x]] such that P(x, f(x)) = 0, with P € K]z, y] irreducible.

Differentiate w.r.t. x:

Pu(e, f) + f/@)Py(e, f) =0 = == i)

Yy

Bézout relation: ged(P,P,))=1 = UP+VP, =1, for UV € K(z)[y]

— = —(va mod P) (z, f) € Vectg(y) (Lf, F2 .’fdegy(P)_l) :

By induction, ) € Vectg(, (1, f, f2, ..., f4)=1) for all 4. ]

» Implemented in gfun: algeqtodiffeq

» Generalization: g D-finite, f algebraic — g o f D-finite algebraicsubs



An Olympiad Problem

Question: Let (a,) be the sequence with ag = a; = 1 satisfying the recurrence
(n+3)ans1 = (2n+ 3)a, + 3na, 1.

Show that all a,, is an integer for all n.

Computer-aided solution: Let’s compute the first 10 terms of the sequence:

> rec:=(n+3)*a(n+1)-(2*n+3)*a(n)-3*n*a(n-1): ini:=a(0)=1,a(l)=1:
> pro:=gfun:-rectoproc({rec,ini}t, a(n), list);
> pro(10);

(1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188]
gfun’s seriestoalgeq command allows to guess that GF is algebraic:
> pol:=gfun:-listtoalgeq(%,y(x)) [1];

2 2
1+ -1 y&x) +x yk)



Thus it is very likely that y = ano a,x" verifies 1 + (z — 1)y + 2%y = 0.

By coefficient extraction, (a, ) conjecturally verifies the non-linear recurrence

n

(nto = Gny1 + > Qg G (1)
k=0

Clearly (1) implies a,, € N. To prove (1), we proceed the other way around:
we start with P(z,y) = 1+ (z — 1)y + 2%y?, and show that it admits a power

series solution whose coefficients satisfy the same linear recurrence as (a,):

> deq:=gfun:-algeqtodiffeq(pol,y(x)):
> recb:=gfun:-diffeqtorec(deq,y(x),b(n));

recb := {(83+ 3 n) b(n) + 2n+5) bn+1) + (-4 - n) b(n + 2),
b(0) =1, b(1) = 1}

» In fact, a,, is equal to

fin = ;”% (2?2) (2:) B é (272) <k2f1>

(which clearly implies a,, € Z), but how to find algorithmically such a formula?



Gessel's walks are algebraic

Let’s prove that the series counting Gessel walks of prescribed length

1 —1/12 1/4 4x(4 1)? 1
G(1,1,x):%.2F1( /12 1/ ‘_633( ai+4)>__.
2/3 (4 — 1) 2x

is algebraic.

Proof principle: Guess a polynomial P(x,y) in Q|x,y|, then prove that P

admits the power series G(1,1,z) =Y >~ gnz™ as a root.

1

>
>
>

2

>

. Such a P can be guessed from the first 100 terms of G(1,1,x).

G:=(hypergeom([-1/12,1/4]1,[2/3],-64*x*x(4*x+1) "2/ (4*xx-1)"4)-1)/x/2:
seriestoalgeq(series(G,x,100),y(x)):
P:=subs(y(x)=y,%[1]):

. Implicit function theorem: 3! root r(z) € Ql[[z]] of P.

map (eval, [P,diff(P,y)], {x=0,y=1});
[0, 1]



3. D-finiteness: r(z)=>_"", r,a" being algebraic, it is D-finite, and so is (r,,):

> deqP:=algeqtodiffeq(P,y(x)): recP:=diffeqtorec(deqP,y(x),r(n));
2 2
recP:= {(256 + 448 n + 192 n ) r(n) - (240 + 208 n + 48 n ) r(n+l) -
2 2
(100+68n+12n ) r(n+2) + (44+23n+3n ) r(n+3), r(0)=1, r(1)=2, r(2)=7}

4. D-finiteness: G(1,1,z) being the composition of a D-finite by an algebraic,
it is D-finite, and so is (g ):

> deqG:=holexprtodiffeq(G,y(x)): recG:=diffeqtorec(deqG,y(x),g(n));
2 2
recG:= {(256 + 448 n + 192 n ) g(n) - (240 + 208 n + 48 n ) g(n+l) -
2 2
(100+68n+12n ) g(n+2) + (44+23n+3n ) g(n+3), g(0)=1, g(1)=2, g(2)=T7}

5. Conclusion: (r,) and (g,) are equal, since they satisfy the same recurrence
and the same initial values. Thus G(1,1,x) coincides with the algebraic series

r(x), so it is algebraic. ]



TOOLS FOR PROOFS

4. Creative Telescoping



Examples |: hypergeometric summation

X0 () (D) (k) =

kez

n 2 2
k
o A, = E (Z) (n N ) satisfies the recurrence |[Apéry78]:

(n+1)°A,41 = (34n° + 51n* +2Tn + 5)A,, — n° A, _1.

(Neither Cohen nor I had been able to prove this in the intervening two

months [Van der Poorten]).

2 G () -5 O)5E) e

J



Examples Il: Integrals

cos(zu) ¢ sin(zu) 7T
du = —Jy(2);
\/1 — u2 1 vu? —1 2
In(1 — a*) .
° gj]l(ax)[l(agj)yo(x)Ko(x) dr = — S |Glasser-Montaldi94];
0 T

4552 2
o 1 (14 20y + 4y7) exp <1+4??jz) dy — H,(x)

271 yn (1 + 4y?)2 v [n/2]!

[Doetsch30].



Examples Ill: Diagonals

Definition If f(x1,...,2%) = Z Cirooin Xy - mt € K[[w1, ..., 2x]], then

01,02, ip >0

its diagonal is Diag(f) = Z Cn...nx" € K[[x]].
n>0



Examples Ill: Diagonals

Definition If f(z1,...,2k) ik € K[z, ..., o5]], then

.....

I

®)
&
)—l

its diagonal is Diag(f) = Z Cn...nx" € K|[z]].

.....

e Diagonal £-D rook paths: Diag ] o T

1—%1 1—CUk;

e Hadamard product: F(z) ® G(z) =)  fagnz™ = Diag(F(z)G(y));
e Algebraic series [Furstenberg67]: if P(x, S(z)) =0 and P,(0,0) # 0 then

2%@%w>
P(zy,y) )

S(z) = Diag (y

o Apéry’s sequence |Dwork80]:

1
g;AZ =P T (= 22) (1~ 23)(1 — ) (1 — 25) — @10203)



Examples Ill: Diagonals

Definition If f(x1,...,2x) = Z Ciro i@ 2t € K[[21,...,2x]], then

.....

its diagonal is Diag(f) = Z Cn....nx" € K|[z]].

e Diagonal k-D rook paths: Diag ] o T

1—%1 1_$kz

e Hadamard product: F(z) ® G(z) =) fagnz™ = Diag(F(z)G(y));
e Algebraic series [Furstenberg67]: if P(x, S(z)) =0 and P,(0,0) # 0 then

2 Py(xya y))
P(zy,y) )

S(z) = Diag (y

e Apéry’s sequence [Dwork80]:

1
ZA"Z = Diag (1 —21) (1 —22)(1 —x3)(1 — 24)(1 — x5) — x12223)

Theorem [Lipshitz88] The diagonal of a rational (or algebraic, or even
D-finite) series is D-finite.



Summation by Creative Telescoping

IF one knows Pascal’s triangle:

n+1\ (n n n _ 5 n n n _(n
k - \k k—1) “\k k—1 k)’
then summing over k gives

In_|_1 — QIn

The initial condition Iy = 1 concludes the proof.



Creative Telescoping for Sums

Fn = Zun,k =7
k

I'F one knows A(n,S,) and B(n,k, S,,Sk) s.t.
(A(n, Sn) + AkB(n, k, Sy, Sk)) cUp k= 0

(where Ay, is the difference operator, Ag - vy k = Vn k+1 — Un k),

then the sum “telescopes”, leading to

A(n,S,) - F, =0.



Zeilberger's Algorithm [1990]

Input: a hypergeometric term wy, g, i.e., Upt1,k/Un k and Up gy1/Un i rational

functions in n and k;

Output:
e a linear recurrence (A) satisfied by F,, = >, un

e a certificate (B), s.t. checking the result is easy from
A(n, Sn) " Un k — AkB " Un k-



Example: SIAM flea

1/4

1/4-¢ 1/4+¢€

1/4

o (20 (2K (20 - 2k 1+’“1 o
mE ok )\ k )\ n—k J\a2T°) \17°) 2w

> SumTools [Hypergeometric] [Zeilberger] (U,n,k,Sn);

[(4n2 + 16 n + 16) Sn* + (—4n2 +32¢°n° +96¢°n — 12n 4+ 72¢° — 9) Sn
+128c¢*n + 64 ¢*n” + 48 ¢*, ...(BIG certificate)...



Creative Telescoping for Integrals

I(z) = /Qu(:c,y) dy =7
IF one knows A(x,d,) and B(x,y, 0., d,) s.t.
(A(,0,) + 9, B(.y,0,,9,)) - ulw,y) = 0,
then the integral “telescopes”, leading to

A(x,0;) - I(x) = 0.



Special Case: Diagonals

Analytically,

Ding(F(z.)) = 5 § F (fy) I

YY) Y i

On power series,

(A(x,05) + 0y B) - éF (g, y) = 0= A(z,0,) - Diag F' = 0.

7

-~

U



Special Case: Diagonals

Analytically,

Ding(F(z.)) = 5 § F (fy) I

YY) Y i

On power series,

(A(x,05) + 0y B) - éF (g, y) = 0= A(z,0,) - Diag F' = 0.

7

-~

U

Proof:

1. [y~U = Diag(f);
2.0=[y ' JA-U+ [y '9,B-U=A-[y U.



Special Case: Diagonals

Analytically,
1 x dy
Diag(F =— 9@ F |- —.
iag(F(z,y)) 2m.7{ (yy>
On power series,

X

1
(A(x,05) + 0, B) - &F (—, y) =0 = A(z,0,) - Diag F' = 0.

7

Y

~"

U

Proof:
1. [y~']U = Diag(f);
2. [y NA- U+ [y Y9,B-U=A- [y 'U.

Extends to more variables: Diag F(z, vy, 2) obtained from [y~1271]U,
U=LF (g ﬁz) if one finds

(A(x,05) + 0, B(z,y, 2,04, 0y,0,) + 0.C(x,y, 2,04,0,,0;)) - U = 0.

Provided by Chyzak’s algorithm



Example: 3D rook paths [B-Chyzak-Hoeij-Pech 2011]

Proof of a recurrence conjectured by [Erickson et alii 2010]

> F:=subs(y=y/z,x=x/y,1/(1-x/(1-x)-y/(1-y)-z/(1-2))) /y/z:
> A,B,C:=op(op(Mgfun:-creative_telescoping(F,x::diff, [y::diff,z::diff]))):
> A;

d
(2304 2° — 3204 2° — 432 2 + 296) — —F (z)
X

d2
+ (4608 z* — 63722 + 8132 4 5ldx — 1) 5 -F ()
X

d3
+ (11522° — 1746 2* 4+ 4752° 4+ 121 2° — 2 1) - F (2)
X



More and more general creative telescoping

e Multivariate D-finite series wrt mixed differential, shift,
g-shift,. .. [Chyzak-S 1998, Chyzak 2000]

e Symmetric functions [Chyzak-Mishna-S 2005]
e Beyond D-finiteness [Chyzak-Kauers-S 2009]

(Some) implementations available in Mgfun



THE END

(Except for the exercises!)



