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What is this talk about?

@ S,: set of permutations of n
ex: 4253716 € S7.
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@ Choose your favorite statistics on permutations X : | |,~; Sp = R:

ex: number of fixed points, number of cycles, number of
occurrences of a given (generalized) pattern, . ..

@ Consider the uniform measure of S,
— X can be seen as a sequence of random variables X, : S, — R.

@ Problem: Asymptotic behaviour of X,77
i.e. does X, (after suitable renormalization) converge in distribution?
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What is this talk about?

@ S,: set of permutations of n
ex: 4253716 € S;.

@ Choose your favorite statistics on permutations X : | |,~; Sp = R:

ex: number of fixed points, number of cycles, number of
occurrences of a given (generalized) pattern, . ..

@ Consider the uniform measure of S,
— X can be seen as a sequence of random variables X, : S, — R.

@ Problem: Asymptotic behaviour of X,77
i.e. does X, (after suitable renormalization) converge in distribution?

@ Goal of the talk: give a quite general method to answer this question.
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Outline of the talk

© Introduction
@ Intuition on an example
@ More general results

© Description of the method
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Inciticnionizniexampls
Example: number of fixed points

X(o) = {i:o(i) =i}
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Example: number of fixed points

X(o) =Hi:o(i) =i}
By inclusion-exclusion, the number of derangements (= permutations
without fixed points) of n is:

D(n) =Y (-1)’(’/7)(,1—,')!

0<i<n
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Introduction Intuition on an example

Example: number of fixed points

X(o) =Hi:o(i) =i}
By inclusion-exclusion, the number of derangements (= permutations
without fixed points) of n is:

ifn -
D(n)= > (-1) (I,)(n—/)!
0<i<n
whence the probability of having no fixed points:

P(X,=0) = Dbin) _ > Ly — oo €1

n! - il
0<i<n
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Introduction Intuition on an example

Example: number of fixed points

X(o) = {i:o(i) =i}

By inclusion-exclusion, the number of derangements (= permutations

without fixed points) of n is:
D) = Y (-1 (7)tn—
0<i<n
whence the probability of having no fixed points:
_q_ D(n) _ ( 1)’ -1
P(Xn—O)—T—Z H —n—o0o €
0<i<n

The probability of having k fixed points follows:

1/n 1 D(n— k) e !
P(X, = k Din—k)= "2, S
( )= <k> (=K==
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Introduction Intuition on an example

Example: number of fixed points

We have just proved:
Theorem

(Xn)n>1 converges in distribution towards a Poisson law of parameter 1. J

Remark. We could also have used generating series (see Analytic

combinatorics, example 1X.4).
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Introduction Intuition on an example

Example: number of fixed points

Theorem

(Xn)n>1 converges in distribution towards a Poisson law of parameter 1.

n
Remark. X, = >_ F;, where F; is a Bernouilli variable of parameter 1/n,
i=1 (F; takes value 1 if o(i) = ).
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Introduction Intuition on an example

Example: number of fixed points

Theorem

(Xn)n>1 converges in distribution towards a Poisson law of parameter 1. J

n

Remark. X, = >_ F;, where F; is a Bernouilli variable of parameter 1/n,
i=1 (F; takes value 1 if o(i) = ).

Reminder: law of small numbers

The sum of n independent Bernouilli variables of parameter 1/n converges
toward a Poisson law of parameter 1.
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Inciticnionizniexampls
Example: number of fixed points

Theorem J

(Xn)n>1 converges in distribution towards a Poisson law of parameter 1.

n

Remark. X, = >_ F;, where F; is a Bernouilli variable of parameter 1/n,
i=1 (F; takes value 1 if o(i) = ).

Reminder: law of small numbers

The sum of n independent Bernouilli variables of parameter 1/n converges
toward a Poisson law of parameter 1.

But the F; are not independent!
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Example: number of fixed points

Theorem
(Xn)n>1 converges in distribution towards a Poisson law of parameter 1. J

n

Remark. X, = >_ F;, where F; is a Bernouilli variable of parameter 1/n,
i=1 (F; takes value 1 if o(i) = ).

Reminder: law of small numbers

The sum of n independent Bernouilli variables of parameter 1/n converges
toward a Poisson law of parameter 1.

But the F; are not independent! We will show that they are almost
independent (in some sense!) and use it to reprove the theorem.
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Introduction More general results

The method is in fact much more general! (1/2)

Theorem

Let X be the number of occurrences of a given dashed pattern (or a linear
combination of those).

linear combination of occurrences dashed patterns include:

numbers of inversions, descents, double descents, peaks,
increasing runs or subsequences of a given length,. . .
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Introduction More general results

The method is in fact much more general! (1/2)

Theorem

Let X be the number of occurrences of a given dashed pattern (or a linear
combination of those).

We consider a permutation o, of size n distributed with Ewens measure.

Ewens measure: a one-parameter deformation of uniform distribution

P({cr}) o H#Cycles(cr)‘
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Introduction More general results

The method is in fact much more general! (1/2)

Theorem

Let X be the number of occurrences of a given dashed pattern (or a linear
combination of those).

We consider a permutation o, of size n distributed with Ewens measure.

Remark. The first-order asymptotic is easy: in probability,
X(op) ~ c1n®?,

with some constants ¢; and ¢, depending on X.
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Introduction More general results

The method is in fact much more general! (1/2)

Theorem

Let X be the number of occurrences of a given dashed pattern (or a linear
combination of those).

We consider a permutation o, of size n distributed with Ewens measure.

Then the fluctuations of order 1/y/n of X2 are asymptotically Gaussian.
nc2 y
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Morelensrallvesults
The method is in fact much more general! (2/2)

Fix p € [0;1].
Model of random graph G,, of size n:
° V(Gy) = [n];

@ E(G,) is chosen uniformly among all sets of pairs of size k = Lp(g)J
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Morelensrallvesults
The method is in fact much more general! (2/2)

Fix p € [0;1].
Model of random graph G,, of size n:
° V(Gy) = [n];

@ E(G,) is chosen uniformly among all sets of pairs of size k = Lp(g)J

Theorem

The fluctuations of the number of triangles in G, are asymptotically
Gaussian.
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Computingicumulants
Covariance of the F;

Back to fixed points and uniform measure:
Easy computation: if i # J,

Cov(Fi, Fj) = E(FiF;) — E(F)E(F))
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Description of the method Computing cumulants

Covariance of the F;

Back to fixed points and uniform measure:
Easy computation: if i # J,
Cou(Fi, ) = B(FiF;) ~ B(F)E(F)
1 1\ 1
~n(n—1) n)  n2(n—-1)

Remark. Cov(F;, Fj) < E(FiF;),E(F;)E(F;).
Confirms the intuition of almost independence.
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Description of the method Computing cumulants

Covariance of the F;

Back to fixed points and uniform measure:
Easy computation: if i # J,

Cov(Fi, Fj) = E(FiF;) — E(F)E(F))

1 1\ 1
T n(n—1) <;> - nm(n—1)
Remark. Cov(F;, Fj) < E(FiF;),E(F;)E(F;).

Confirms the intuition of almost independence.

Not very convincing: some dependent variables have null covariance.
— we will compute joint cumulants.
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Computingicumulants
What are joint cumulants?

k1(X) =E(X), k2(X,Y) = Cov(X,Y) =E(XY) — E(X)E(Y)
k3(X, Y, Z) = E(XYZ) — E(XY)E(Z) — E(XZ)E(Y)
— E(YZ)E(X) + 2E(X)E(Y)E(2).
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Computingicumulants
What are joint cumulants?

k1(X) = E(X), r2(X,Y)=Cov(X,Y)=E(XY)—-EX)E(Y)
k3(X,Y,Z) = E(XYZ) — E(XY)E(Z) — E(XZ)E(Y)
— E(YZ)E(X) + 2E(X)E(Y)E(2).
In general, k¢(X1,...,Xs) = E(X1---X¢) + homogeneous sum of products

of joint moments of smaller degree (explicit description in terms of set
partitions).
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Computingicumulants
What are joint cumulants?

k1(X) = E(X), r2(X,Y)=Cov(X,Y)=E(XY)—-EX)E(Y)
k3(X,Y,Z) = E(XYZ) — E(XY)E(Z) — E(XZ)E(Y)
—E(YZ)E(X) + 2E(X)E(Y)E(Z).
In general, k¢(X1,...,Xs) = E(X1---X¢) + homogeneous sum of products
of joint moments of smaller degree (explicit description in terms of set
partitions).
Nice behaviour with respect to independence*:
A B, C,... are independent <

all joint cumulants k¢(A,...,AB,...,B,C,...,C,...) vanish
(as soon as they involve at least two different variables).

*if A, B, C, ...have joint moments of all orders and the joint law is determined by its

joint moments (easy criterion on moments of marginal laws).
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Computingicumulants
Cumulants of fixed points

Recall: F; is the characteristic function of the event o(i) = i.
If h, i and j are pairwise distinct,

1 1 1

Fo Fi, i) = 3 2
w3(Fi, Fi Fj) n(n—1)(n—2) n2(n—1)+ n3




Computingicumulants
Cumulants of fixed points

Recall: F; is the characteristic function of the event o(i) = i.
If h, i and j are pairwise distinct,

1 1 1
wslbn P F) = =) SR =1 2w
— s = O )

m(n—1)(n-2)
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Computingicumulants
Cumulants of fixed points

Recall: F; is the characteristic function of the event o(i) = i.
If h, i and j are pairwise distinct,

1 1 1
Fp, Fi, F) = —3 2=
w3(Fns Fis ) n(n—1)(n—-2) “n?(n-1) e
4
= = 0O(n°
Y e R G
In general,
H@(F;l, RN Fiz) = O(n_2t+1),
where t is the number of distinct values in the list i, ..., /.

Remark. A priori, it is a rational function of degree —t. It is quite technical
to prove that it has in fact degree —2t + 1.
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Description of the method Concluding

Cumulants and convergence in distribution

Our goal: show that ) F; converges in distribution towards a Poisson law.
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Description of the method Concluding

Cumulants and convergence in distribution

Our goal: show that ) F; converges in distribution towards a Poisson law.

Cumulants are a good tool to prove convergence in distribution

Theorem

Let X be a random variable* and (X,),>1 a sequence of random variables
such that

for any £ > 1, |i)m Ke(Xny ooy Xn) = ke(X, ..., X),

then, in distribution,
X, — X.

* We assume that X has moments of all orders and that its law is determined by its

moments.
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Concluding
Asymptotic analysis of cumulants

Recall X, = >  F;. By multilinearity,

1<i<n

ke(Xny oo Xn) = > ke(Fiy, .o Fiy)

1<iy,....ip<n
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Concluding
Asymptotic analysis of cumulants

Recall X, = >  F;. By multilinearity,
1<i<n

ke(Xny oo Xn) = > ke(Fiy, .o Fiy)

1<iy,....ie<n

Fix some positive integer t < /.
@ There are S(¢, t)n(n—1)...(n—t+1) lists (i1, ..., i) with exactly t
distinct values.

Notation: S(¢, t) is the number of set partitions of [¢] with t parts.
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Concluding
Asymptotic analysis of cumulants

Recall X, = >  F;. By multilinearity,
1<i<n

ke(Xny oo Xn) = > ke(Fiy, .o Fiy)

1<iy,....ie<n

Fix some positive integer t < /.
@ There are S(¢, t)n(n—1)...(n—t+1) lists (i1, ..., i) with exactly t
distinct values.

@ For each one of these sequences, r¢(Fj, ..., F;,) = O(n=2t*1).

See previous slide: moreover, the O is uniform (depends only on ).
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Concluding
Asymptotic analysis of cumulants

Recall X, = >  F;. By multilinearity,
1<i<n

ke(Xny oo Xn) = > ke(Fiy, .o Fiy)
1<it,enyip<n
Fix some positive integer t < /.
@ There are S(¢, t)n(n—1)...(n—t+1) lists (i1, ..., i) with exactly t
distinct values.
@ For each one of these sequences, r¢(Fj, ..., F;,) = O(n=2t*1).
@ Hence, the total contribution of these lists is O(n~t*1).

See previous slide: moreover, the O is uniform (depends only on ).
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Concluding
Asymptotic analysis of cumulants

Recall X, = >  F;. By multilinearity,
1<i<n

Iig(Xn,...,Xn) = Z /ig(F,'l,...,F,'l)
1<it,enyip<n

Fix some positive integer t < /.

@ There are S(¢,t)n(n —1)...(n—t+1) lists (i1,..., i) with exactly t

distinct values.

@ For each one of these sequences, r(Fj, ..., F;,) = O(n=2t*1).

@ Hence, the total contribution of these lists is O(n~t*1).
Finally, we get:

K‘Z(Xn) cee )Xn) = Z K‘K(Fiv SRR FI) + O(N_l)

1<i<n
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Concluding
End of the proof

We proved

Iig(Xn,...,Xn = Z Iig(F,' ...,Fi)+O(N_1).
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Description of the method Concluding

End of the proof

We proved

Iig(Xn, R ,Xn) = Z Iig(F,', ceey F,‘) + O(N_l).

1<i<n

that is: X, has asymptotically the same cumulant than a sum of n
independent Bernouilli variables of parameter 1/n.
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Concluding
End of the proof

We proved

Iig(Xn, R ,Xn) = Z Iig(F,', ceey F,‘) + O(N_l).

1<i<n

that is: X, has asymptotically the same cumulant than a sum of n
independent Bernouilli variables of parameter 1/n.

— it converges in distribution towards a Poisson law of parameter 1 (law
of small numbers).
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Description of the method Ideas for other statistics

Main steps of the proof for dashed patterns

1 ifo(i) =s;
Notation: B;s(c) = {0 lla(l) s;
else.

Note: the number of occurrences of any dashed pattern writes as a sum of
products of such variables.
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Description of the method Ideas for other statistics

Main steps of the proof for dashed patterns

) 1 fo(i)=s;
Notation: B;s(c) = (7)
0 else.
Note: the number of occurrences of any dashed pattern writes as a sum of
products of such variables.

Hence, its cumulants are huge sums of cumulants of product of B ;.
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Description of the method Ideas for other statistics

Main steps of the proof for dashed patterns

1 ifo(i)=s;

Notation: B;s(c) = {O |
else.

Note: the number of occurrences of any dashed pattern writes as a sum of
products of such variables.

Hence, its cumulants are huge sums of cumulants of product of B ;.

We need a bound for joint cumulants of products of B; s (next slide).
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Main steps of the proof for dashed patterns

1 ifo(i)=s;

Notation: B;s(c) = {O |
else.

Note: the number of occurrences of any dashed pattern writes as a sum of
products of such variables.

Hence, its cumulants are huge sums of cumulants of product of B ;.
We need a bound for joint cumulants of products of B; s (next slide).

Then, one has to determine which summands have the biggest contribution
to cumulants (not easy!). ..
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Ideasiforfotheristatistics
The general bound for cumulants

Consider H(Bl738277, 8275, 81738479, B6,8)-
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Ideasiforfotheristatistics
The general bound for cumulants

Consider H(Bl738277, 8275, 81738479, B6,8)-

Denote:

@ t the number of different couples (i, s), here 5.
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The general bound for cumulants

Consider H(Bl738277, 8275, 81738479, B6,8)-

Denote:
@ t the number of different couples (i, s), here 5.

@ m the number of connected components of the following graph

B> s Bs g

[ ]
B13B> 7 B13Bag

) )
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The general bound for cumulants

Consider H(Bl738277, 8275, 81738479, B6,8)-

Denote:
@ t the number of different couples (i, s), here 5.

@ m the number of connected components of the following graph (here,
m = 2)
B> Bs s

Bi3B>7 B13Bag
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The general bound for cumulants

Consider H(Bl738277, 8275, 817384797 B6,8)-

Denote:
@ t the number of different couples (i, s), here 5.

@ m the number of connected components of the following graph (here,
m = 2)
Bas Bs s

B13B>7 B13Bag

Then H(Bl738277, 8275, 817384797 B6,8) = O(n_t_’"H) = O(n_5).

Permutations aléatoires ALEA, 2012-03 15 / 16



Future work

@ More statistics: Generalized patterns (with some adjacencies in places
and values) or even more general setting (where we can add
equalities/inequalities between some places and values).

@ More objects: random graphs, ...

@ More precise results: speed of convergence, local limit laws, large
deviation. ..
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