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General presentation
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General presentation

What is this talk about?

Sn: set of permutations of n

ex: 4253716 ∈ S7.

Choose your favorite statistics on permutations X :
⊔

n≥1 Sn → R:

ex: number of fixed points, number of cycles, number of
occurrences of a given (generalized) pattern, . . .

Consider the uniform measure of Sn

→ X can be seen as a sequence of random variables Xn : Sn → R.

Problem: Asymptotic behaviour of Xn??
i.e. does Xn (after suitable renormalization) converge in distribution?

Goal of the talk: give a quite general method to answer this question.
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Introduction Intuition on an example

Example: number of fixed points

X (σ) = |{i : σ(i) = i}|

V. Féray (LaBRI, CNRS)Permutations aléatoires ALÉA, 2012–03 4 / 16



Introduction Intuition on an example

Example: number of fixed points

X (σ) = |{i : σ(i) = i}|
By inclusion-exclusion, the number of derangements (= permutations
without fixed points) of n is:

D(n) =
∑

0≤i≤n

(−1)i
(

n

i

)

(n − i)!
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By inclusion-exclusion, the number of derangements (= permutations
without fixed points) of n is:

D(n) =
∑

0≤i≤n

(−1)i
(

n

i

)

(n − i)!

whence the probability of having no fixed points:

P(Xn = 0) =
D(n)

n!
=

∑

0≤i≤n

(−1)i

i!
−→n→∞ e−1
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X (σ) = |{i : σ(i) = i}|
By inclusion-exclusion, the number of derangements (= permutations
without fixed points) of n is:

D(n) =
∑

0≤i≤n

(−1)i
(

n

i

)

(n − i)!

whence the probability of having no fixed points:

P(Xn = 0) =
D(n)

n!
=

∑

0≤i≤n

(−1)i

i!
−→n→∞ e−1

The probability of having k fixed points follows:

P(Xn = k) =
1
n!

(

n

k

)

D(n − k) =
1
k!

D(n − k)

(n − k)!
−→n→∞

e−1

k!
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Introduction Intuition on an example

Example: number of fixed points

We have just proved:

Theorem

(Xn)n≥1 converges in distribution towards a Poisson law of parameter 1.

Remark. We could also have used generating series (see Analytic

combinatorics, example IX.4).
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Theorem

(Xn)n≥1 converges in distribution towards a Poisson law of parameter 1.

Remark. Xn =
n
∑

i=1

Fi , where Fi is a Bernouilli variable of parameter 1/n,
(Fi takes value 1 if σ(i) = i).

V. Féray (LaBRI, CNRS)Permutations aléatoires ALÉA, 2012–03 5 / 16



Introduction Intuition on an example

Example: number of fixed points

Theorem

(Xn)n≥1 converges in distribution towards a Poisson law of parameter 1.

Remark. Xn =
n
∑

i=1

Fi , where Fi is a Bernouilli variable of parameter 1/n,
(Fi takes value 1 if σ(i) = i).

Reminder: law of small numbers

The sum of n independent Bernouilli variables of parameter 1/n converges
toward a Poisson law of parameter 1.

V. Féray (LaBRI, CNRS)Permutations aléatoires ALÉA, 2012–03 5 / 16



Introduction Intuition on an example

Example: number of fixed points

Theorem

(Xn)n≥1 converges in distribution towards a Poisson law of parameter 1.

Remark. Xn =
n
∑

i=1

Fi , where Fi is a Bernouilli variable of parameter 1/n,
(Fi takes value 1 if σ(i) = i).

Reminder: law of small numbers

The sum of n independent Bernouilli variables of parameter 1/n converges
toward a Poisson law of parameter 1.

But the Fi are not independent!

V. Féray (LaBRI, CNRS)Permutations aléatoires ALÉA, 2012–03 5 / 16



Introduction Intuition on an example

Example: number of fixed points

Theorem

(Xn)n≥1 converges in distribution towards a Poisson law of parameter 1.

Remark. Xn =
n
∑

i=1

Fi , where Fi is a Bernouilli variable of parameter 1/n,
(Fi takes value 1 if σ(i) = i).

Reminder: law of small numbers

The sum of n independent Bernouilli variables of parameter 1/n converges
toward a Poisson law of parameter 1.

But the Fi are not independent! We will show that they are almost
independent (in some sense!) and use it to reprove the theorem.
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Introduction More general results

The method is in fact much more general! (1/2)

Theorem

Let X be the number of occurrences of a given dashed pattern (or a linear
combination of those).

linear combination of occurrences dashed patterns include:

numbers of inversions, descents, double descents, peaks,
increasing runs or subsequences of a given length,. . .
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Introduction More general results

The method is in fact much more general! (1/2)

Theorem

Let X be the number of occurrences of a given dashed pattern (or a linear
combination of those).
We consider a permutation σn of size n distributed with Ewens measure.

Ewens measure: a one-parameter deformation of uniform distribution

P({σ}) ∝ θ#cycles(σ).
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Introduction More general results

The method is in fact much more general! (1/2)

Theorem

Let X be the number of occurrences of a given dashed pattern (or a linear
combination of those).
We consider a permutation σn of size n distributed with Ewens measure.

Remark. The first-order asymptotic is easy: in probability,

X (σn) ∼ c1n
c2 ,

with some constants c1 and c2 depending on X .
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Introduction More general results

The method is in fact much more general! (1/2)

Theorem

Let X be the number of occurrences of a given dashed pattern (or a linear
combination of those).
We consider a permutation σn of size n distributed with Ewens measure.

Then the fluctuations of order 1/
√

n of X (σn)
nc2 are asymptotically Gaussian.
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Introduction More general results

The method is in fact much more general! (2/2)

Fix p ∈ [0; 1].
Model of random graph Gn of size n:

V (Gn) = [n];

E (Gn) is chosen uniformly among all sets of pairs of size k = ⌊p
(

n
2

)

⌋.
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Introduction More general results

The method is in fact much more general! (2/2)

Fix p ∈ [0; 1].
Model of random graph Gn of size n:

V (Gn) = [n];

E (Gn) is chosen uniformly among all sets of pairs of size k = ⌊p
(

n
2

)

⌋.

Theorem

The fluctuations of the number of triangles in Gn are asymptotically
Gaussian.
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Description of the method Computing cumulants

Covariance of the Fi

Back to fixed points and uniform measure:

Easy computation: if i 6= j ,

Cov(Fi ,Fj ) = E(FiFj )− E(Fi )E(Fj )

=
1

n(n − 1)
−

(

1
n

)2

=
1

n2(n − 1)
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=
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−

(

1
n

)2

=
1

n2(n − 1)

Remark. Cov(Fi ,Fj ) ≪ E(FiFj ),E(Fi )E(Fj ).
Confirms the intuition of almost independence.

V. Féray (LaBRI, CNRS)Permutations aléatoires ALÉA, 2012–03 8 / 16



Description of the method Computing cumulants

Covariance of the Fi

Back to fixed points and uniform measure:

Easy computation: if i 6= j ,

Cov(Fi ,Fj ) = E(FiFj )− E(Fi )E(Fj )

=
1

n(n − 1)
−

(

1
n

)2

=
1

n2(n − 1)

Remark. Cov(Fi ,Fj ) ≪ E(FiFj ),E(Fi )E(Fj ).
Confirms the intuition of almost independence.

Not very convincing: some dependent variables have null covariance.
−→ we will compute joint cumulants.
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Description of the method Computing cumulants

What are joint cumulants?

κ1(X ) = E(X ), κ2(X ,Y ) = Cov(X ,Y ) = E(XY )− E(X )E(Y )

κ3(X ,Y ,Z ) = E(XYZ )− E(XY )E(Z )− E(XZ )E(Y )

− E(YZ )E(X ) + 2E(X )E(Y )E(Z ).
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κ1(X ) = E(X ), κ2(X ,Y ) = Cov(X ,Y ) = E(XY )− E(X )E(Y )

κ3(X ,Y ,Z ) = E(XYZ )− E(XY )E(Z )− E(XZ )E(Y )

− E(YZ )E(X ) + 2E(X )E(Y )E(Z ).

In general, κℓ(X1, . . . ,Xℓ) = E(X1 · · ·Xℓ) + homogeneous sum of products
of joint moments of smaller degree (explicit description in terms of set
partitions).
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Description of the method Computing cumulants

What are joint cumulants?

κ1(X ) = E(X ), κ2(X ,Y ) = Cov(X ,Y ) = E(XY )− E(X )E(Y )

κ3(X ,Y ,Z ) = E(XYZ )− E(XY )E(Z )− E(XZ )E(Y )

− E(YZ )E(X ) + 2E(X )E(Y )E(Z ).

In general, κℓ(X1, . . . ,Xℓ) = E(X1 · · ·Xℓ) + homogeneous sum of products
of joint moments of smaller degree (explicit description in terms of set
partitions).

Nice behaviour with respect to independence⋆:

A,B ,C , . . . are independent ⇔
all joint cumulants κℓ(A, . . . ,A,B , . . . ,B ,C , . . . ,C , . . . ) vanish
(as soon as they involve at least two different variables).

⋆ if A, B, C , . . . have joint moments of all orders and the joint law is determined by its

joint moments (easy criterion on moments of marginal laws).
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Description of the method Computing cumulants

Cumulants of fixed points

Recall: Fi is the characteristic function of the event σ(i) = i .
If h, i and j are pairwise distinct,

κ3(Fh,Fi ,Fj ) =
1

n(n − 1)(n − 2)
− 3

1
n2(n − 1)

+ 2
1
n3
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Recall: Fi is the characteristic function of the event σ(i) = i .
If h, i and j are pairwise distinct,

κ3(Fh,Fi ,Fj ) =
1

n(n − 1)(n − 2)
− 3

1
n2(n − 1)

+ 2
1
n3

=
4

n3(n − 1)(n − 2)
= O(n−5)
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Description of the method Computing cumulants

Cumulants of fixed points

Recall: Fi is the characteristic function of the event σ(i) = i .
If h, i and j are pairwise distinct,

κ3(Fh,Fi ,Fj ) =
1

n(n − 1)(n − 2)
− 3

1
n2(n − 1)

+ 2
1
n3

=
4

n3(n − 1)(n − 2)
= O(n−5)

In general,
κℓ(Fi1 , . . . ,Fiℓ) = O(n−2t+1),

where t is the number of distinct values in the list i1, . . . , iℓ.

Remark. A priori, it is a rational function of degree −t. It is quite technical
to prove that it has in fact degree −2t + 1.
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Description of the method Concluding

Cumulants and convergence in distribution

Our goal: show that
∑

i Fi converges in distribution towards a Poisson law.
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Description of the method Concluding

Cumulants and convergence in distribution

Our goal: show that
∑

i Fi converges in distribution towards a Poisson law.

Cumulants are a good tool to prove convergence in distribution

Theorem

Let X be a random variable⋆ and (Xn)n≥1 a sequence of random variables
such that

for any ℓ ≥ 1, lim
n→∞

κℓ(Xn, . . . ,Xn) = κℓ(X , . . . ,X ),

then, in distribution,
Xn −→ X .

⋆ We assume that X has moments of all orders and that its law is determined by its

moments.
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Description of the method Concluding

Asymptotic analysis of cumulants

Recall Xn =
∑

1≤i≤n

Fi . By multilinearity,

κℓ(Xn, . . . ,Xn) =
∑

1≤i1,...,iℓ≤n

κℓ(Fi1 , . . . ,Fiℓ)
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Description of the method Concluding

Asymptotic analysis of cumulants

Recall Xn =
∑

1≤i≤n

Fi . By multilinearity,

κℓ(Xn, . . . ,Xn) =
∑

1≤i1,...,iℓ≤n

κℓ(Fi1 , . . . ,Fiℓ)

Fix some positive integer t ≤ ℓ.

There are S(ℓ, t)n(n − 1) . . . (n − t + 1) lists (i1, . . . , iℓ) with exactly t
distinct values.

Notation: S(ℓ, t) is the number of set partitions of [ℓ] with t parts.
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Description of the method Concluding

Asymptotic analysis of cumulants

Recall Xn =
∑

1≤i≤n

Fi . By multilinearity,

κℓ(Xn, . . . ,Xn) =
∑

1≤i1,...,iℓ≤n

κℓ(Fi1 , . . . ,Fiℓ)

Fix some positive integer t ≤ ℓ.

There are S(ℓ, t)n(n − 1) . . . (n − t + 1) lists (i1, . . . , iℓ) with exactly t
distinct values.

For each one of these sequences, κℓ(Fi1 , . . . ,Fiℓ) = O(n−2t+1).

See previous slide: moreover, the O is uniform (depends only on ℓ).
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Asymptotic analysis of cumulants

Recall Xn =
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Fix some positive integer t ≤ ℓ.

There are S(ℓ, t)n(n − 1) . . . (n − t + 1) lists (i1, . . . , iℓ) with exactly t
distinct values.

For each one of these sequences, κℓ(Fi1 , . . . ,Fiℓ) = O(n−2t+1).
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See previous slide: moreover, the O is uniform (depends only on ℓ).
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Description of the method Concluding

Asymptotic analysis of cumulants

Recall Xn =
∑

1≤i≤n

Fi . By multilinearity,

κℓ(Xn, . . . ,Xn) =
∑

1≤i1,...,iℓ≤n

κℓ(Fi1 , . . . ,Fiℓ)

Fix some positive integer t ≤ ℓ.

There are S(ℓ, t)n(n − 1) . . . (n − t + 1) lists (i1, . . . , iℓ) with exactly t
distinct values.

For each one of these sequences, κℓ(Fi1 , . . . ,Fiℓ) = O(n−2t+1).

Hence, the total contribution of these lists is O(n−t+1).

Finally, we get:

κℓ(Xn, . . . ,Xn) =
∑

1≤i≤n

κℓ(Fi , . . . ,Fi ) + O(N−1).
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Description of the method Concluding

End of the proof

We proved

κℓ(Xn, . . . ,Xn) =
∑

1≤i≤n

κℓ(Fi , . . . ,Fi ) + O(N−1).
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Description of the method Concluding

End of the proof

We proved

κℓ(Xn, . . . ,Xn) =
∑

1≤i≤n

κℓ(Fi , . . . ,Fi ) + O(N−1).

that is: Xn has asymptotically the same cumulant than a sum of n
independent Bernouilli variables of parameter 1/n.
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Description of the method Concluding

End of the proof

We proved

κℓ(Xn, . . . ,Xn) =
∑

1≤i≤n

κℓ(Fi , . . . ,Fi ) + O(N−1).

that is: Xn has asymptotically the same cumulant than a sum of n
independent Bernouilli variables of parameter 1/n.

=⇒ it converges in distribution towards a Poisson law of parameter 1 (law
of small numbers).
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Description of the method Ideas for other statistics

Main steps of the proof for dashed patterns

Notation: Bi ,s(σ) =

{

1 if σ(i) = s;

0 else.

Note: the number of occurrences of any dashed pattern writes as a sum of
products of such variables.
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0 else.
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{

1 if σ(i) = s;

0 else.

Note: the number of occurrences of any dashed pattern writes as a sum of
products of such variables.

Hence, its cumulants are huge sums of cumulants of product of Bi ,s .

We need a bound for joint cumulants of products of Bi ,s (next slide).
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Description of the method Ideas for other statistics

Main steps of the proof for dashed patterns

Notation: Bi ,s(σ) =

{

1 if σ(i) = s;

0 else.

Note: the number of occurrences of any dashed pattern writes as a sum of
products of such variables.

Hence, its cumulants are huge sums of cumulants of product of Bi ,s .

We need a bound for joint cumulants of products of Bi ,s (next slide).

Then, one has to determine which summands have the biggest contribution
to cumulants (not easy!). . .
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Description of the method Ideas for other statistics

The general bound for cumulants

Consider κ(B1,3B2,7,B2,5,B1,3B4,9,B6,8).
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Description of the method Ideas for other statistics

The general bound for cumulants

Consider κ(B1,3B2,7,B2,5,B1,3B4,9,B6,8).

Denote:

t the number of different couples (i , s), here 5.
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Description of the method Ideas for other statistics

The general bound for cumulants

Consider κ(B1,3B2,7,B2,5,B1,3B4,9,B6,8).

Denote:

t the number of different couples (i , s), here 5.

m the number of connected components of the following graph

•
B1,3B2,7

•
B2,5

•
B1,3B4,9

•
B6,8
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The general bound for cumulants

Consider κ(B1,3B2,7,B2,5,B1,3B4,9,B6,8).

Denote:

t the number of different couples (i , s), here 5.

m the number of connected components of the following graph (here,
m = 2)

•
B1,3B2,7

•
B2,5

•
B1,3B4,9

•
B6,8
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Description of the method Ideas for other statistics

The general bound for cumulants

Consider κ(B1,3B2,7,B2,5,B1,3B4,9,B6,8).

Denote:

t the number of different couples (i , s), here 5.

m the number of connected components of the following graph (here,
m = 2)

•
B1,3B2,7

•
B2,5

•
B1,3B4,9

•
B6,8

Then κ(B1,3B2,7,B2,5,B1,3B4,9,B6,8) = O(n−t−m+1) = O(n−5).
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Conclusion

Future work

More statistics: Generalized patterns (with some adjacencies in places
and values) or even more general setting (where we can add
equalities/inequalities between some places and values).

More objects: random graphs, . . .

More precise results: speed of convergence, local limit laws, large
deviation. . .
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