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1 Problem statement

The last mile problem in freight transportation and distribution in cities is a complex issue.

Each day, great amounts of merchandise are transported to and from the outside of the city

via long-haul vehicles, capable of carrying great quantities of freight but inappropriate for

retail pickup and delivery. Thus, transshipment is necessary to reach final customers. In

this paper, we deal with the problem of designing a 2-level transportation network, based

on publicly held Urban Distribution Centers (UDC ) to collect inbound and outbound

freight. Such a network allows bulk-breaking operations on the long-haul transport side,

and permits retail trips on the city side. Let U be a set of potential sites where to install

such centers, such that each site u ∈ U has an associated installation cost and capacity.

Let I be a set of clients, where each i ∈ I is characterized by a combination of delivery

and pickup demands. Moreover, let P be a set of gates in the outskirts of the city, which

represent the terminal points of the main roads freight can come from, or go to. Gates

are the sources of delivery demands and the destinations of pickup demands. A complete

graph AU (called the external network) is associated with set U , and all sites u ∈ U can be

reached by all gates p ∈ P via a further network AP . AP and AU form what we call the 1st

level network. Let us suppose that pickup and delivery duties must be serviced separately.

In order to minimize empty trips and thus achieve environmental purposes, retail trips

are allowed to be open. Furthermore, a self-service van hiring system is available and

its stations, a set K of self-service parking lots (SPL), can act as start or end points of

open service paths. UDCs and SPLs consequently share the same fleet of vans with low-

level environmental impact. The network that connects UDCs to clients, clients between

them, and clients to SPLs is called the 2nd level network. The aim is to determine a

subset of potential UDCs to open, a Hamiltonian circuit (ring) to connect them, the flows

between gates and UDCs, the flows on the constructed ring, and the assignment of final

customers to UDCs, in such a way as to minimize the sum of installation costs, 1st level



transportation costs and 2nd level routing costs. Goods are characterized only in terms of

quantity, disregarding the commodity type. Furthermore, we consider a time-independent

scenario. Despite the strategic level of this planning problem, we account for some more

operational aspects. We impose a classical capacity constraint on 2nd level vans, but also

a maximal trip length, as it is often the case when dealing with low-level environmental

impact vehicles. We also impose fleet rebalancing constraints on both SPLs and UDCs.

2 Related problems of the literature

This problem is close to the Two-Echelon Capacitated Vehicle Routing Problem (2E-

CVRP), which performs deliveries from a central depot to customers by means of a two-

level distribution network, i.e. via intermediate depots called satellites, and a set of

both 1st and 2nd level tours. As to 2E-CVRP, [1] presents a flow model and some valid

inequalities, while [2] provides an exact method. The proposed problem is also close to

the Capacitated Location-Routing Problem (CLRP): [3], [4] and more recently [5] delve

into this wide class of location problems. In the canonical two-level version, potential

facilities are opened, and clients are assigned to facilities, depending on routing aspects.

The problem presented in this paper is very close to some known variants: in [6], a Set

Partitioning formulation is proposed, which associates a variable to each possible delivery

trip, including open trips; in [7], the selected depots are connected via a TSP; in [8], a

third level of warehouses is introduced in the role of depots’ suppliers. Anyway, to the

best of our knowledge, there are no previous studies in the literature that encompass all

the characteristics we have briefly described.

3 Model elements

We model our problem as a MILP with a Set Partitioning-like formulation of 2nd level trips,

and arc-flow elements to describe 1st level goods transport. Due to space reasons, we only

give the model guidelines instead of the model itself. We use super/subscripts λ = 1 or 2 to

refer to delivery or pickup duties. The MILP model is based on mixed graph G = (V,A,E),

where the arcs in A = AP∪AU represent the 1st level, while the edges in E model the 2nd le-

vel. AP and AU are defined as AP = (P×U)∪(U×P ), AU = {(u, u′) ∈ U×U : u 6= u′}. To

describe the 2nd level, we define a demand as a triplet d = (id, pd, qd) (client, gate, quantity),

then the sets of demands Dλ, λ = 1, 2. We define a node vd for each demand d, so that each

i ∈ I results in as many nodes as the duties it is involved in to allow different demands of the

same client i and type λ to be serviced by different paths. Node sets VDλ = {vd : d ∈ Dλ},
along with P , U and K, complete the definition of V . We create two complete disjoint sub-

graphs Gλ = (VDλ , EDλ), where the cost ce of edge e ≡ (vd, vd′) ∈ EDλ is the euclidean di-

stance between clients id and id′ , so ce = 0 if id ≡ id′ . We outline source and terminal sets



V 1
s = V 2

t = U and V 2
s = V 1

t = U ∪ K, so as to define a feasible path r ∈ Rλ as a path

(vr0..vrnr), with vr0 ∈ V λ
s , vr1..vrnr−1 ∈ VDλ , vrnr ∈ V

λ
t , whose load q(r) and length c(r) do not

exceed 2nd level vehicles given bounds Q and C. E is then defined as E =
⋃
λ((V λ

s ×
VDλ)∪EDλ∪(VDλ×V λ

t )). We have three types of binary decision variables: location variables

yu, u ∈ U to model UDCs opening decisions; zu,u′ , u, u
′ ∈ U , which is equal to 1 if we decide

to bidirectionally connect u and u′ in the ring; and routing variables xr, r ∈ Rλ, xr = 1 if

r is in the solution. We also have real nonnegative 1st level flow variables: flows fpu and fup

from gate p to site u and viceversa; p-outflows f1pa and p-inflows f2pa which represent the

quantity of goods on a ∈ AU that come from, or go to gate p. Indexing flows by the source/sink

gate is needed to impose that each demand d is satisfied by flow coming from/going to the

proper gate pd, i.e. to correctly model flows on AU . We impose the following constraints:

(1) flow balance constraints on UDCs; (2) flow balance constraints for gates;

(3) demands assignment constraints; (4) capacity constraints on AU arcs;

(5) capacity constraints on UDCs; (6) upper bound on the number of UDCs to open;

(7) logic constraints linking the selection of UDC, AU arcs and paths;

(8) connection constraints to design a Hamiltonian circuit among UDCs;

(9) vehicles rebalancing constraints on both UDCs and SPLs.

Constraints (1) are defined for each u ∈ U and p ∈ P to balance fpu, p-outflows on AU arcs

and 2nd level shipments (same for pickup); in (4), the capacity of each a ∈ AU is shared

among outflows and inflows of all p ∈ P ; (5) are linearizations of quadratic constraints.

(1) and (2) outline the arc flow modeling of 1st level goods moves; (3) and (9), along with

definition of paths r ∈ R1 ∪ R2, outline the SP-like description of 2nd level; (4)-(8) are

the location constraints. The objective function accounts for routing costs c(r) of chosen

2nd level paths; costs bu of selected UDCs, and costs gu,u′ to connect them in the ring;

per-flow-unit costs ha on AU arcs; per-flow-unit costs mpu and mup on AP arcs.

4 A heuristic algorithm

The problem is NP-hard since it generalizes the classical CVRP, which we obtain in the spe-

cial case where |U | = 1, |K| = 0 and |D2| = 0. To find solutions to real world instances,

we have defined a heuristic algorithm that seeks for a solution. We use the following symbols:

• PS keeps track of how solution values and 2nd level arcs usage are related in solution setS;

• Mγ
ρ (PS) is a set of paths m ∈ R1 ∪ R2 s.t. c(m) ≤ βρC, β < 1; paths in Mγ

ρ (PS)

are randomly seeded and expanded via nearest neighbor and 2-opt techniques; generation

of Mγ
ρ (PS) considersPS and assures that each d ∈ D1∪D2 is visited by at least γ paths;

• Aρ is the MILP subproblem of opening a subset of UDCs, assign each piece of flow of a gate

p, and exactly one visiting m ∈Mγ
ρ(PS) =

⋃ρ
υ=0M

γ
υ (PS) for each d ∈

⋃
λD

λ, to a UDC,

so as to minimize opening and routing costs, while respecting capacity of chosen UDCs;



• F (U,RU ,ΦU ) is a multiflow on a ring with demands MILP, with RU ⊂ AU a directed

ring on node set U , and ΦU (u,w) the flow to be sent from u to w, u,w ∈ U .

SearchSolutions(I, β, τ , γ, δ): β < 1, τ < β, γ ≥ 1, δ > 1

0: S ← ∅; i← 0; reset(PS)

1: while1(i < I)

2: ρ← 0; a← 0; while2(β
ρ ≥ τ) {generate(Mγ

ρ (PS)); ρ += 1;}
3: if(solve(Aρ)) collect a ≤ δ diversified solutions else {i += 1; continue while1;}
4: for each αj collected solution of Aρ, j = 1. . . a

5: Uj ← selected UDC in αj ; ΦUj
(u,w)← flow from u to w according to αj ;

6: HUj
← solution of TSP on Uj and costs guw; RUj ← directed ring derived by HUj

;

7: Fj = F (Uj , RUj ,ΦUj
); if(solve(Fj)) {S = S ∪ {(αj , HUj

, opt(Fj))}; update(PS);}
8: i += 1;

9: return σ ∈ S: z (σ) = mins∈S z (s)

At row 3 we expressly collect diversified solutions of Aρ to avoid cases in which Aρ opti-

mality leads to multiflow infeasibility; at row 7 we update both solutions set S and PS .

We tested this algorithm on CLRP instances taken from the literature with up to 5 poten-

tial depots and 50 clients which we completed by adding gates and SPLs, 1st level network

features and pickup/delivery clients partition. Promising results have been obtained.
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