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Résumé : L'Apprentissage Relationnel (AR) a suscité un grand ittén Fouille
de Données récemment, étant vu comme un moyen de comblesdé émtre
des algorithmes d’apprentissage attribut-valeur effisairavaillant sur une seule
table ou relation, et un nombre croissant d’applicatiomsirisequement relation-
nelles, dont les données sont stockées dans les bases d=dsmalationnelles.
Cependant, les systemes d’AR actuels utilisent des sa\gemériques qui ne
leurs permettent pas de passer a I'échelle. Cette appreti@eopposer aux pro-
gés réalisés depuis une dizaine d’années dans les comrésragrita combina-
toire, telles que SAT ou CSP, ou I'étude de problemes aléstailans le cadre de
la transition de phase, a permis d’évaluer et de dévelopgealdorihmes spécia-
lisés trés performants. Dans cet article, nous argumerngoad’import d’'un tel
outil est nécessaire au développement de I'’AR. Un certaimane de travaux ré-
cents se sont penchés sur I'analyse de la transition de phassous-probleme
de I'AR, le test de subsomption NP-complet, qui a été utilardaire le lien
entre ce phénomeéne de transition de phase et les plateaaxrelehlerche heu-
ristique. Cependant, ce n'est qu'une facette de la comglebd I'AR car celle-ci
est tres dépendante de la stratégie de recherche. Sa cidphrinseque doit
étre globalement analysée pour développer des algoritleffieaces. LAR est
plus difficile que I'apprentissage attribut-valeur, ce guété formellement mon-
tré par Gottlob et al. qui ont démontré que le probléme dibjgnme de cohérence
borné simple est, — complet. Certains auteurs ont prédit que la transition de
phase pouvait étre exhibée au-dela de NP, dans toute lxhi€naolynomiale,
et nous montrons que c’est le cas en AR. Nous proposons umagéneéd’ins-
tances de problemes aléatoire pour I'AR, ou le nombre d'@tesnpositifs et
négatifs sont les parameétres d’ordre de la transition degaidous montrons que
le coOt d’apprentissage exhibe bien le profile “easy-haslfeéavec un algorithm
d’'apprentissage de type lgg.
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1 Introduction

Even though the expressiveness of (supervised) Relati@aahing (RL), also known
as Inductive Logic Programming (ILP), is attractive for rganodern applicatioris
such as life sciences, environmental sciences, engimger@tural language processing
or arts (see also (Domingos, 2003)), RL has to face the wallak trade-off between
expressivity and efficiency.

From the efficiency perspective, one of the major obstaslegarch efficiency, and
several authors have acknowledged that a step forward viomuid the design of novel
search techniques (e.g. (Page & Srinivasan, 2003; Domjrfif}3)). RL, as a sub-
domain of symbolic learning, has been cast more than 25 yearsas search into a
state space (Mitchell, 1982) : given a hypothesis spaceatkfinpriori, identified by
its representation language, find a hypothesis consistiémthe learning data. This se-
minal paper, relating symbolic learning to search in a sigate, has enabled machine
learning to integrate techniques from problem solving,rapienal research and com-
binatorics : greedy search in FOIL, beam search in ICL, bireéicst search in Aleph,
‘A search in PROGOL, IDA (lterative-Deepening A) searchNHO to name a few
system3. Besides very few exceptions, all systems are rooted in émegte-and-test
paradigm (Newell & Simon, 1972) and therefore rely on gehpuapose search strate-
gies.

This approach has to be contrasted with the important pssgreade during the past
few years, in the performance of boolean satisfiability (bsdlvers, which can deal
with problems’ sizes that are orders of magnitude largen this research community
would expect to solve only a decade ago. This progress has drdeen by studies
of randomly generated problem instances, in phase transition framewoyrkvhere
hard to solve instances can be reliably generated, indemgiydrom the solver used.
This framework, strongly developed in many combinatoriesdins, as in SAT or CSP
domains, since (Huberman & Hogg, 1987; Cheesestaal., 1991), has changed the
way search algorithms are empirically evaluated. This bad to new designs of search
algorithms, from incomplete to complete solvers and frotedmainistic to randomised
solvers (see e.g. (Carla Gomes & Selman, 2007)).

We think that RL, as a combinatorics field, must follow the sgpath in order to
re-new and improve its algorithmic approach in order to arstlve new challenges of
modern applications. More generally, symbolic learning Beldom known any deve-
lopments of the Phase Transition (PT) framework. As far akmn@v, the only work
that studied the PT of learning has been done in attribulige\ay (Rickeret al,, 2002)
who showed that the number of positive and negative examgiese order parameters
of the k-term DNF consistency problem, a well-known NP-cteteproblem (Kearns
& Vazirani, 1994). Indeed, if one keeps the number of posiixamples constant and
varies the number of negative examples, one wanders fronm@ertconstraint region,
named the “yes” region, with few negative examples, wheezethis almost surely a
consistent hypothesis, to an over-constraint region, ilime “no” region, as the num-
ber of negative examples increases, where almost surelgnerglisation of the posi-

http ://www-ai.ijs.si/ ilpnet2/apps/index.html
2Relevant information on these systems can be found at hitw-ai.ijs.si/ ilpnet2/systems
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tive examples is correct. The same holds if we keep the nuwoilbreegative examples
constant and vary the number of positive examples. A relattk studied the PT of
the subsumption test, which is a key NP-complete sub-pnoloierelational learning
(Giordana & Saitta, 2000; Bottet al, 2003). Although, this study has been fruitful
in linking this phenomenon to plateaus during heuristicde&Alphonse & Osmani,
2008), it is only a facet of the ILP complexity as it is very éaplent of the search
strategy and does not study the complexity of learning asa@enih the PT framework.
Also, this framework inspired a number of approaches iy where threshold phe-
nomena of the generalisation error are shown dependingasnifey parameters (e.qg.
Ahr et al. (1999); Baskiotis & Sebag (2004)).

RL is arguably harder than attribute-value learning, likeekn DNF learning, which
has been formalised by Gottladt al. (1997) who showed that the simple bounded
ILP consistency problem, which will be discussed in lateB,4-complete. This is one
class higher in the polynomial hierarchy than NP-complete&l; -complete) problems.
Some authors, (Bylander, 1996; Gent & Walsh, 1999), havgectured that a phase
transition could be exhibited further up the polynomialrarehy and therefore that this
framework could be useful to other PSPACE problems. This sugported by results
on planning and QBF-2 (Quantified Boolean Formulas with tiieraating quantifiers,
see also (Chen & Interian, 2005)).

In this paper, we show that this also holds true for the bodndE consistency pro-
blem : we propose a random problem instance generator wheneumber of positive
and negative examples are order parameters of the phaséitranWe show that the
median learning cost exhibits the easy-hard-easy patt&émansimple lgg-based lear-
ner. As such, it is the first work that studies the phase ttimsof RL.

We present, in the next section, the necessary backgroutiedrounded ILP consis-
tency problem and the model RLPG, which is a generator pegpts study this pro-
blem, first described in (Alphonse & Osmani, 2008). SectiailBresent the complete
learner used to answer the ILP consistency problem. Setiiti then go on to exhibit
the phase transition, beyond NP, of the ILP consistencylprolwvith respect to the two
order parameters which are the number of positive and negakamples. We show
that the solver used allows to exhibit the easy-hard-eadgnpeof median search cost.
Finally, we will conclude with a discussion on some benefits perspectives of these
results for RL.

2 Background

In this article, we study what has been termed the boundeatiniBistency problem
for function-free Horn clauses by (Gottl@bal., 1997). Given a set of positive examples
ET and a set of negative exampl&s of function-free ground Horn clauses and an
integer! polynomial in| E* U E~|, does there exist a non-recursive function-free Horn
clauseh with no more thari literals such that is consistent withE™ andE~ :

— h logically implies each element iB™ (completeness)
— h does not logically implies each elementiit (correctness)
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In such hypothesis space, the logical implication is edaivieto §-subsomptiofiwhich
is NP-complete and therefore decidable (Gottlob, 1987).

The consistency problem is fundamentalin learning as ittiseacore of the Statistical
Learning Theory, notably studied in the PAC framework (deaussler, 1989; Kearns
& Vazirani, 1994) for details). This fortiori is true in RL where almost all noise-
resistant learners are relaxation of this problem (Flimkyd997), therefore studying
this problem will benefit search strategies for learning.

(Gottlob et al,, 1997) proved that this problem K%-complete (orNPNF) : the
search is NP-complete and it is guided by the subsumptiomtash is NP-complete.
(Alphonse & Osmani, 2008) proposed a random generator fsrgtoblem, named
model RLPG (Relational Learning Problem Generator), altficthey did not study the
PT of learning. A learning problem instance is dena®dPG (k, n, «, N, Pos, Neg).
The parameters, n, o, N are related to the definition of the hypothesis and example
spacesPos and Neg are the number of positive and negative examples respéctive
The first four parameters are defined in order to ensure thadsusnption test between a
hypothesis and an example during search encode a valid @Bk pr. This requirement
is imposed as the model RLPG was proposed to study the imp#e phase transition
of the NP-complete subsumption test on heuristic searchrédéd! their meaning and
focus on the last two parameters, which were not studiedreedind which will be
shown to be order parameters of the phase transition of tRetnsistency problem.

k > 2 denotes the arity of each predicate present in the learmingdagen > 2
the number of variables in the hypothesis spacthe domain size for all variables as
being equal tav*, and finally,IV the number of literals in the examples built on a given
predicate symbol. Giveh andn, the size of the bottom clause of the hypothesis space
Ly is (%), and encodes the largest constraint network of the unaerlSP model.
Each constraint between variables is encoded by a liteiiftldu a unique predicate
symbol.L;, is then defined as the power set of the bottom clause, whicdomadrphic
to a boolean lattice. Its size #&+).

Learning examples are randomly drawn, independently aedtichlly distributed,
givenk, n, o and N. Each example define¥ literals for each predicate symbol and
then its size iSV.(}). TheN tuples of constants used to define those literals are drawn
uniformly and without replacement from the possible se(t}ﬁf) tuples.

As an illustration, table 1 shows a randd®L PG(2,3,«,1,1,1) problem, witha
such thatn® = 5. The first line shows the bottom-most element of the hypaghes
space, which encodes all binary constraints defined frons#teof 3 variables. The
next two lines show the positive and the negative exampépeetively, allowing only
one matching of a given predicate symbol (ds= 1). The search space is of si2é
and consists of all hypothesis built with the same head abdktem clause, and with
a subset of its body as body. In such a space, it is easy to aethéne is no solution,
given that no hypothesis subsumes the positive exampleutifubsuming the negative
example.

Whereas, the problem illustrated in table 2 accepts theviafig clause as solution :
p0(A) — p2(A, B, D), p3(A,C, D)

3The clause” #-subsumes the claud iff there exists a substitutiol such thatC6 C D
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L | p0(A) < pl(A4, B,C),p2(A, B, D),p3(A, C, D)
— | p0(e2) « pl(e2,c, f),p2(e2,d, e),p3(e2,d, c)

TAB. 1 — Example of a random learning problem generated with Rl no solu-
tion.

+ | pO(el) < pl(el,b,c),p2(el,d,e),p3(el, e, e)
— | p0(e2) « pl(e2,b,b),p2(e2,e,e),p3(e2,e,c)

TAB. 2 — Example of arandom learning problem generated with Riv#AtA a solution.

Note that an extra argument has been artificially added tb peedicate in order to
link all body literals to the head.

3 Exhibiting the easy-hard-easy pattern with a complete
solver

In the phase transition framework, it is conjectured thattthrdest problem instances
occur in the phase transition (see e.g. (Cheeseazhah, 1991; Davenport, 1995; Gent
& Walsh, 1999)). The under-constraint problems from thes*yeegion appear to be
easily solvable, as there are many solutions. This is theedamover-constraint pro-
blems from the “no” region as it is easy to prove that they aspiuble. These findings
have been corroborated on several problems, with diffeygr@s of algorithms, and it
is considered that the problem instances appearing in thggtinansition are inherently
hard, independently of the algorithms used. In the “yes™awd regions, the easy ones,
the complexity appears to be very dependent of the algoriffirere are, in these re-
gions, some problems exceptionally hard, whose complexitginates the complexity
of instance problems in the phase transition region foragetypes of algorithm (Hogg
& Williams, 1994; Davenport, 1995).

In other words, exhibiting the easy-hard-easy patternirega “good” algorithm. We
propose to use a depth-first algorithm to solve the ILP cterséy problem, DF-BDD
(Depth-First Bottom-up Data-Driven), which has been psmubby (Plotkin, 1970) for
such a problem, that is when a single clause is sought as tiosn{see also (Haussler,
1989)). This is similar to the approach of (Rickettal, 2002) for the k-term DNF
consistency problem. Its Prolog code is given below :

1 df _bdd(Sol,[],_, Sol).

2 df _bdd(Hypo,[Pos|L_Pos],L _Neg, Sol) :-

% non- det erm ni stic computation
% of a LGG

I gg( Hypo, Pos, LGG),

% consi stency check
correctness(LGG L_Neg),

~NOoO ok~ w
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8 df _bdd(LGG, L_Pos, L_Neg, Sol).

Starting from the bottom element, the algorithm generalibe current hypothesis to
subsume each positive example in turn, until it outputs asistent hypothesis, or until
it proves that no correct hypothesis subsumes all positaegles. The generalisation
step uses Plotkin’s binary operator, namely the leastigégeneralisation (Igg) opera-
tor, which computes the least-general element that subsboth input elements. Note
that if the hypothesis space is not a lattice, which is the ¢&se undef-subsumption
as the hypothesis space is finite, the Igg operator outpytessible generalisations on
subsequent backtracks. The computation of Iggs (line 5)medvith depth-first search
into possible subsets of the hypothesis (see (Kietz, 1393pfplementation details).
It outputs the largest subsets that subsume the example.&gg has been computed,
we test, in a depth-first way, if it is correct with respect tbreegative examples (line
7).

4 Numbers of positive and negative examples as order
parameters

In this section, we study the effect of the number of positinel negative examples
on the solubility probability and the solving cost of the IE&nsistency problem. If we
refer to section 2RL PG is parametrised with 6 parameters but we only study the last
two, Pos and Neg, as the effect of the other parameters have already beeiedtind
(Alphonse & Osmani, 2008) for constant number of positivd apgative examples.
Here, we focus on few settings for these parameters, with2, n = 5 andn = 6, to
study different problem sizeg, = 1.4 and N = 10. The choice of these parameters
ensures that we do not generate trivially insoluble prolsié@ent & Walsh, 1999), but
also various experiments, not shown here, indicated tlegtiwrere representative of the
phase transition behaviour of the ILP consistency problenall experiments below,
statistics were computed from a sample of 500 learning prabl

We start by varying bottPos and Neg. Figure 1 shows the solubility probability of
the ILP consistency problem wheétvs = Neg are varied froml to 15, for n = 5 and
n = 6. As we can see, when the number of examples is small, thehmésasurely a
consistent hypothesis, and when the number is large, imest surely impossible to
find a consistent hypothesis. The cross-over point, wheretbbability of solubility is
about 0.5, is around 4 for = 5 and 5 withn = 6. It is not surprising that it increases
with bigger problems. Far = 5, the hypothesis space sizeid and2'® for n = 6. We
could not conduct experiments for larger values.@fs the hypothesis space grows too
fast in RLPG. For instancep = 7 sets a hypothesis space of siZé, which cannot
be handled by our complete solver. In the future, it would feriesting to modify
RLPG to specify the size of the bottom clause and then draw the eugftvariables
accordingly.

Figure 2 and 3 show the associated cost (the median cost alibnghe 25th and
75th percentiles) to solve the problem instances, with 5. We measured the cost by
recording the time in milliseconds, as well as the numbeieakiracks of the subsump-
tion procedure, needed to solve a learning problem. Therlagems relevant, as the
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FiG. 1 — Probability of satisfiability according to the numbelasdrning examples (=Pos
= Neg), withn = 5andn = 6

subsumption test is used to compute the Iggs.

We can see that a complexity peak is associated with insteindbe phase transition
region, and that the search cost follows the easy-hardeatsyrn. The complexity in
the “no” region slowly decreases as the number of examptaeases, where we could
have expected a sharper decrease, but it may be related éhoige of algorithm. Fi-
gure 4 and 5 show the associated cost for problem instan¢bs:wi 6. The increase
in cost is even sharper in the region where the hardest prabége located, for this set
of parameters.

We study now the phase transition along the number of pestramples, for constant
values ofNeg, but omit cost plots. Figures 6 and 7 show the phase transitieenPos
varies froml to 25, for n = 5 andn = 6 respectively. With no positive examples,
the bottom element of the search space is solution, bitvasncreases, complete hy-
potheses get more general and eventually subsume a negedirgle. The transition
becomes sharper aéeg increases, which is not surprising as the subset of coryg-h
theses shrinks a¥eg increases. The second order parameter is the number ofiveegat
examplesgVeg. The results almost have the same profile wReR is constant andVeg
varies, and are not shown here because of space constraints.

5 Conclusion

Although Relational Learning has been cast, more than 26y, as search, it has
known very few developments from the search strategy pdinieav and most lear-
ners rely on general-purpose solvers. This is a strongaiioin to its applicability on
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many modern applications, as it prevents RL to scale-up. Wellthe other hand, im-

portant progress has been made in other combinatorics

coities) such as SAT and

CSP, in the development of efficient specialised solversuih the study of random
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NP-complete problem generators in the phase transitiondveork. RL has a higher
complexity, being at least>-hard in the general case. However, we argue that this
framework will benefit RL, based on the conjecture that thagghtransition can be
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exhibited further up the polynomial hierarchy. We show titéé conjecture holds true
with the bounded ILP consistency problemy.g&complete problem, representative of
RL problems. We propose a first simple random generator tti@biés a phase tran-
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sition in the problem’s solubility, with the number of pagi and negative examples
as order parameters. The search cost as given by a deptludiisased solver exhibits
the easy-hard-easy pattern. As a follow-up, we plan to stbidyimpact of the other
RLPG's parameters on the generation of hard instances astiidy the behaviour of
the different solvers proposed in RL on those instances.
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