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Résumé : L’Apprentissage Relationnel (AR) a suscité un grand intérêt en Fouille
de Données récemment, étant vu comme un moyen de combler le fossé entre
des algorithmes d’apprentissage attribut-valeur efficaces, travaillant sur une seule
table ou relation, et un nombre croissant d’applications, intrinsèquement relation-
nelles, dont les données sont stockées dans les bases de donnéees relationnelles.
Cependant, les systèmes d’AR actuels utilisent des solveurs génériques qui ne
leurs permettent pas de passer à l’échelle. Cette approche est à opposer aux pro-
gès réalisés depuis une dizaine d’années dans les communautés de la combina-
toire, telles que SAT ou CSP, où l’étude de problèmes aléatoires, dans le cadre de
la transition de phase, a permis d’évaluer et de développer des algorihmes spécia-
lisés très performants. Dans cet article, nous argumentonsque l’import d’un tel
outil est nécessaire au développement de l’AR. Un certain nombre de travaux ré-
cents se sont penchés sur l’analyse de la transition de phased’un sous-problème
de l’AR, le test de subsomption NP-complet, qui a été utile pour faire le lien
entre ce phénomène de transition de phase et les plateaux de la recherche heu-
ristique. Cependant, ce n’est qu’une facette de la complexité de l’AR car celle-ci
est très dépendante de la stratégie de recherche. Sa complexité intrinsèque doit
être globalement analysée pour développer des algorithmesefficaces. L’AR est
plus difficile que l’apprentissage attribut-valeur, ce quia été formellement mon-
tré par Gottlob et al. qui ont démontré que le problème dit problème de cohérence
borné simple estΣ2 − complet. Certains auteurs ont prédit que la transition de
phase pouvait être exhibée au-delà de NP, dans toute la hiérachie polynomiale,
et nous montrons que c’est le cas en AR. Nous proposons un générateur d’ins-
tances de problèmes aléatoire pour l’AR, où le nombre d’exemples positifs et
négatifs sont les paramètres d’ordre de la transition de phase. Nous montrons que
le coût d’apprentissage exhibe bien le profile “easy-hard-easy” avec un algorithm
d’apprentissage de type lgg.
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1 Introduction

Even though the expressiveness of (supervised) RelationalLearning (RL), also known
as Inductive Logic Programming (ILP), is attractive for many modern applications1,
such as life sciences, environmental sciences, engineering, natural language processing
or arts (see also (Domingos, 2003)), RL has to face the well-known trade-off between
expressivity and efficiency.

From the efficiency perspective, one of the major obstacles is search efficiency, and
several authors have acknowledged that a step forward wouldbe in the design of novel
search techniques (e.g. (Page & Srinivasan, 2003; Domingos, 2003)). RL, as a sub-
domain of symbolic learning, has been cast more than 25 yearsago as search into a
state space (Mitchell, 1982) : given a hypothesis space defined a priori, identified by
its representation language, find a hypothesis consistent with the learning data. This se-
minal paper, relating symbolic learning to search in a spacestate, has enabled machine
learning to integrate techniques from problem solving, operational research and com-
binatorics : greedy search in FOIL, beam search in ICL, breadth-first search in Aleph,
’A’ search in PROGOL, IDA (Iterative-Deepening A) search inMIO to name a few
systems2. Besides very few exceptions, all systems are rooted in the generate-and-test
paradigm (Newell & Simon, 1972) and therefore rely on general-purpose search strate-
gies.

This approach has to be contrasted with the important progress, made during the past
few years, in the performance of boolean satisfiability (SAT) solvers, which can deal
with problems’ sizes that are orders of magnitude larger than this research community
would expect to solve only a decade ago. This progress has been driven by studies
of randomly generated problem instances, in thephase transition framework, where
hard to solve instances can be reliably generated, independently from the solver used.
This framework, strongly developed in many combinatorics domains, as in SAT or CSP
domains, since (Huberman & Hogg, 1987; Cheesemanet al., 1991), has changed the
way search algorithms are empirically evaluated. This has lead to new designs of search
algorithms, from incomplete to complete solvers and from deterministic to randomised
solvers (see e.g. (Carla Gomes & Selman, 2007)).

We think that RL, as a combinatorics field, must follow the same path in order to
re-new and improve its algorithmic approach in order to answer the new challenges of
modern applications. More generally, symbolic learning has seldom known any deve-
lopments of the Phase Transition (PT) framework. As far as weknow, the only work
that studied the PT of learning has been done in attribute-value by (Rückertet al., 2002)
who showed that the number of positive and negative exampleswhere order parameters
of the k-term DNF consistency problem, a well-known NP-complete problem (Kearns
& Vazirani, 1994). Indeed, if one keeps the number of positive examples constant and
varies the number of negative examples, one wanders from an under-constraint region,
named the “yes” region, with few negative examples, where there is almost surely a
consistent hypothesis, to an over-constraint region, named the “no” region, as the num-
ber of negative examples increases, where almost surely no generalisation of the posi-

1http ://www-ai.ijs.si/ ilpnet2/apps/index.html
2Relevant information on these systems can be found at http ://www-ai.ijs.si/ ilpnet2/systems
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tive examples is correct. The same holds if we keep the numberof negative examples
constant and vary the number of positive examples. A relatedwork studied the PT of
the subsumption test, which is a key NP-complete sub-problem of relational learning
(Giordana & Saitta, 2000; Bottaet al., 2003). Although, this study has been fruitful
in linking this phenomenon to plateaus during heuristic search (Alphonse & Osmani,
2008), it is only a facet of the ILP complexity as it is very dependent of the search
strategy and does not study the complexity of learning as a whole in the PT framework.
Also, this framework inspired a number of approaches in learning where threshold phe-
nomena of the generalisation error are shown depending on learning parameters (e.g.
Ahr et al. (1999); Baskiotis & Sebag (2004)).

RL is arguably harder than attribute-value learning, like k-term DNF learning, which
has been formalised by Gottlobet al. (1997) who showed that the simple bounded
ILP consistency problem, which will be discussed in later, isΣ2-complete. This is one
class higher in the polynomial hierarchy than NP-complete (or Σ1-complete) problems.
Some authors, (Bylander, 1996; Gent & Walsh, 1999), have conjectured that a phase
transition could be exhibited further up the polynomial hierarchy and therefore that this
framework could be useful to other PSPACE problems. This wassupported by results
on planning and QBF-2 (Quantified Boolean Formulas with two alternating quantifiers,
see also (Chen & Interian, 2005)).

In this paper, we show that this also holds true for the bounded ILP consistency pro-
blem : we propose a random problem instance generator where the number of positive
and negative examples are order parameters of the phase transition. We show that the
median learning cost exhibits the easy-hard-easy pattern with a simple lgg-based lear-
ner. As such, it is the first work that studies the phase transition of RL.

We present, in the next section, the necessary background onthe bounded ILP consis-
tency problem and the model RLPG, which is a generator proposed to study this pro-
blem, first described in (Alphonse & Osmani, 2008). Section 3will present the complete
learner used to answer the ILP consistency problem. Section4 will then go on to exhibit
the phase transition, beyond NP, of the ILP consistency problem with respect to the two
order parameters which are the number of positive and negative examples. We show
that the solver used allows to exhibit the easy-hard-easy pattern of median search cost.
Finally, we will conclude with a discussion on some benefits and perspectives of these
results for RL.

2 Background

In this article, we study what has been termed the bounded ILPconsistency problem
for function-free Horn clauses by (Gottlobet al., 1997). Given a set of positive examples
E+ and a set of negative examplesE− of function-free ground Horn clauses and an
integerl polynomial in|E+ ∪E−|, does there exist a non-recursive function-free Horn
clauseh with no more thanl literals such thath is consistent withE+ andE− :

– h logically implies each element inE+ (completeness)
– h does not logically implies each element inE− (correctness)
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In such hypothesis space, the logical implication is equivalent toθ-subsomption3 which
is NP-complete and therefore decidable (Gottlob, 1987).

The consistency problem is fundamental in learning as it is at the core of the Statistical
Learning Theory, notably studied in the PAC framework (see (Haussler, 1989; Kearns
& Vazirani, 1994) for details). Thisa fortiori is true in RL where almost all noise-
resistant learners are relaxation of this problem (Fürnkranz, 1997), therefore studying
this problem will benefit search strategies for learning.

(Gottlob et al., 1997) proved that this problem isΣP
2 -complete (orNP NP ) : the

search is NP-complete and it is guided by the subsumption test which is NP-complete.
(Alphonse & Osmani, 2008) proposed a random generator for this problem, named
model RLPG (Relational Learning Problem Generator), although they did not study the
PT of learning. A learning problem instance is denotedRLPG(k, n, α, N, Pos, Neg).
The parametersk, n, α, N are related to the definition of the hypothesis and example
spaces.Pos andNeg are the number of positive and negative examples respectively.
The first four parameters are defined in order to ensure that a subsumption test between a
hypothesis and an example during search encode a valid CSP problem.This requirement
is imposed as the model RLPG was proposed to study the impact of the phase transition
of the NP-complete subsumption test on heuristic search. Werecall their meaning and
focus on the last two parameters, which were not studied before and which will be
shown to be order parameters of the phase transition of the ILP consistency problem.

k ≥ 2 denotes the arity of each predicate present in the learning language,n ≥ 2
the number of variables in the hypothesis space,α the domain size for all variables as
being equal tonα, and finally,N the number of literals in the examples built on a given
predicate symbol. Givenk andn, the size of the bottom clause of the hypothesis space
Lh is (n

k
), and encodes the largest constraint network of the underlying CSP model.

Each constraint between variables is encoded by a literal built on a unique predicate
symbol.Lh is then defined as the power set of the bottom clause, which is isomorphic
to a boolean lattice. Its size is2(n

k
).

Learning examples are randomly drawn, independently and identically distributed,
givenk, n, α andN . Each example definesN literals for each predicate symbol and
then its size isN.(n

k
). TheN tuples of constants used to define those literals are drawn

uniformly and without replacement from the possible set of(n
α

k
) tuples.

As an illustration, table 1 shows a randomRLPG(2, 3, α, 1, 1, 1) problem, withα

such thatnα = 5. The first line shows the bottom-most element of the hypothesis
space, which encodes all binary constraints defined from theset of 3 variables. The
next two lines show the positive and the negative example, respectively, allowing only
one matching of a given predicate symbol (asN = 1). The search space is of size23

and consists of all hypothesis built with the same head as thebottom clause, and with
a subset of its body as body. In such a space, it is easy to see that there is no solution,
given that no hypothesis subsumes the positive example without subsuming the negative
example.

Whereas, the problem illustrated in table 2 accepts the following clause as solution :
p0(A)← p2(A, B, D), p3(A, C, D)

3The clauseC θ-subsumes the clauseD iff there exists a substitutionθ such thatCθ ⊆ D



Transition de phase en apprentissage relationnel

⊥ p0(A)← p1(A, B, C), p2(A, B, D), p3(A, C, D)
+ p0(e1)← p1(e1, b, c), p2(e1, c, d), p3(e1, e, f)
− p0(e2)← p1(e2, c, f), p2(e2, d, e), p3(e2, d, c)

TAB . 1 – Example of a random learning problem generated with RLPG, with no solu-
tion.

⊥ p0(A)← p1(A, B, C), p2(A, B, D), p3(A, C, D)
+ p0(e1)← p1(e1, b, c), p2(e1, d, e), p3(e1, e, e)
− p0(e2)← p1(e2, b, b), p2(e2, e, e), p3(e2, e, c)

TAB . 2 – Example of a random learning problem generated with RLPG, with a solution.

Note that an extra argument has been artificially added to each predicate in order to
link all body literals to the head.

3 Exhibiting the easy-hard-easy pattern with a complete
solver

In the phase transition framework, it is conjectured that the hardest problem instances
occur in the phase transition (see e.g. (Cheesemanet al., 1991; Davenport, 1995; Gent
& Walsh, 1999)). The under-constraint problems from the “yes” region appear to be
easily solvable, as there are many solutions. This is the same for over-constraint pro-
blems from the “no” region as it is easy to prove that they are insoluble. These findings
have been corroborated on several problems, with differenttypes of algorithms, and it
is considered that the problem instances appearing in the phase transition are inherently
hard, independently of the algorithms used. In the “yes” and“no” regions, the easy ones,
the complexity appears to be very dependent of the algorithm. There are, in these re-
gions, some problems exceptionally hard, whose complexitydominates the complexity
of instance problems in the phase transition region for certain types of algorithm (Hogg
& Williams, 1994; Davenport, 1995).

In other words, exhibiting the easy-hard-easy pattern requires a “good” algorithm. We
propose to use a depth-first algorithm to solve the ILP consistency problem, DF-BDD
(Depth-First Bottom-up Data-Driven), which has been proposed by (Plotkin, 1970) for
such a problem, that is when a single clause is sought as a solution (see also (Haussler,
1989)). This is similar to the approach of (Rückertet al., 2002) for the k-term DNF
consistency problem. Its Prolog code is given below :

1 df_bdd(Sol,[],_,Sol).
2 df_bdd(Hypo,[Pos|L_Pos],L_Neg,Sol) :-
3 % non-deterministic computation
4 % of a LGG
5 lgg(Hypo,Pos,LGG),
6 % consistency check
7 correctness(LGG,L_Neg),
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8 df_bdd(LGG,L_Pos,L_Neg,Sol).

Starting from the bottom element, the algorithm generalises the current hypothesis to
subsume each positive example in turn, until it outputs a consistent hypothesis, or until
it proves that no correct hypothesis subsumes all positive examples. The generalisation
step uses Plotkin’s binary operator, namely the least-general generalisation (lgg) opera-
tor, which computes the least-general element that subsumes both input elements. Note
that if the hypothesis space is not a lattice, which is the case here underθ-subsumption
as the hypothesis space is finite, the lgg operator outputs all possible generalisations on
subsequent backtracks. The computation of lggs (line 5) is done with depth-first search
into possible subsets of the hypothesis (see (Kietz, 1993) for implementation details).
It outputs the largest subsets that subsume the example. Once a lgg has been computed,
we test, in a depth-first way, if it is correct with respect to all negative examples (line
7).

4 Numbers of positive and negative examples as order
parameters

In this section, we study the effect of the number of positiveand negative examples
on the solubility probability and the solving cost of the ILPconsistency problem. If we
refer to section 2,RLPG is parametrised with 6 parameters but we only study the last
two, Pos andNeg, as the effect of the other parameters have already been studied in
(Alphonse & Osmani, 2008) for constant number of positive and negative examples.
Here, we focus on few settings for these parameters, withk = 2, n = 5 andn = 6, to
study different problem sizes,α = 1.4 andN = 10. The choice of these parameters
ensures that we do not generate trivially insoluble problems (Gent & Walsh, 1999), but
also various experiments, not shown here, indicated that they were representative of the
phase transition behaviour of the ILP consistency problem.In all experiments below,
statistics were computed from a sample of 500 learning problems.

We start by varying bothPos andNeg. Figure 1 shows the solubility probability of
the ILP consistency problem whenPos = Neg are varied from1 to 15, for n = 5 and
n = 6. As we can see, when the number of examples is small, there is almost surely a
consistent hypothesis, and when the number is large, it is almost surely impossible to
find a consistent hypothesis. The cross-over point, where the probability of solubility is
about 0.5, is around 4 forn = 5 and 5 withn = 6. It is not surprising that it increases
with bigger problems. Forn = 5, the hypothesis space size is210 and215 for n = 6. We
could not conduct experiments for larger values ofn as the hypothesis space grows too
fast inRLPG. For instance,n = 7 sets a hypothesis space of size221, which cannot
be handled by our complete solver. In the future, it would be interesting to modify
RLPG to specify the size of the bottom clause and then draw the number of variables
accordingly.

Figure 2 and 3 show the associated cost (the median cost alongwith the 25th and
75th percentiles) to solve the problem instances, withn = 5. We measured the cost by
recording the time in milliseconds, as well as the number of backtracks of the subsump-
tion procedure, needed to solve a learning problem. The latter seems relevant, as the
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FIG. 1 – Probability of satisfiability according to the number oflearning examples (=Pos
= Neg), withn = 5 andn = 6

subsumption test is used to compute the lggs.
We can see that a complexity peak is associated with instances in the phase transition
region, and that the search cost follows the easy-hard-easypattern. The complexity in
the “no” region slowly decreases as the number of examples increases, where we could
have expected a sharper decrease, but it may be related to ourchoice of algorithm. Fi-
gure 4 and 5 show the associated cost for problem instances with n = 6. The increase
in cost is even sharper in the region where the hardest problems are located, for this set
of parameters.

We study now the phase transition along the number of positive examples, for constant
values ofNeg, but omit cost plots. Figures 6 and 7 show the phase transition whenPos

varies from1 to 25, for n = 5 andn = 6 respectively. With no positive examples,
the bottom element of the search space is solution, but asPos increases, complete hy-
potheses get more general and eventually subsume a negativeexample. The transition
becomes sharper asNeg increases, which is not surprising as the subset of correct hypo-
theses shrinks asNeg increases. The second order parameter is the number of negative
examplesNeg. The results almost have the same profile whenPos is constant andNeg

varies, and are not shown here because of space constraints.

5 Conclusion

Although Relational Learning has been cast, more than 25 years ago, as search, it has
known very few developments from the search strategy point of view and most lear-
ners rely on general-purpose solvers. This is a strong limitation to its applicability on
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FIG. 2 – Cost in resolution time (ms.) according to the number of learning examples (=
Pos = Neg), forn = 5
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FIG. 3 – Cost in number of backtracks of the subsumption test according to the number
of learning examples (= Pos = Neg), forn = 5

many modern applications, as it prevents RL to scale-up well. On the other hand, im-
portant progress has been made in other combinatorics communities, such as SAT and
CSP, in the development of efficient specialised solvers, through the study of random
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FIG. 4 – Cost in resolution time (ms.) according to the number of learning examples (=
Pos = Neg), forn = 6
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FIG. 5 – Cost in number of backtracks of the subsumption test according to the number
of learning examples (= Pos = Neg), forn = 6

NP-complete problem generators in the phase transition framework. RL has a higher
complexity, being at leastΣ2-hard in the general case. However, we argue that this
framework will benefit RL, based on the conjecture that the phase transition can be
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FIG. 6 – Probability of satisfiability according to the number ofpositive examples with
n = 5, for Neg = 1, 2, 3, 4
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FIG. 7 – Probability of satisfiability according to the number ofpositive examples with
n = 6, for Neg = 1, 2, 3, 4

exhibited further up the polynomial hierarchy. We show thatthis conjecture holds true
with the bounded ILP consistency problem, aΣ2-complete problem, representative of
RL problems. We propose a first simple random generator that exhibits a phase tran-



Transition de phase en apprentissage relationnel

sition in the problem’s solubility, with the number of positive and negative examples
as order parameters. The search cost as given by a depth-firstlgg-based solver exhibits
the easy-hard-easy pattern. As a follow-up, we plan to studythe impact of the other
RLPG’s parameters on the generation of hard instances and tostudy the behaviour of
the different solvers proposed in RL on those instances.
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