
Lazy Propositionalisation for Relational Learning
Érick Alphonse and Céline Rouveirol1

Abstract.
A number of Inductive Logic Programming (ILP) systems have

addressed the problem of learning First Order Logic (FOL) discrimi-
nant definitions by first reformulating the FOL learning problem into
an attribute-value one and then applying efficient learningtechniques
dedicated to this simpler formalism. The complexity of suchpropo-
sitionalisation methods is now in the size of the reformulated prob-
lem which is exponential when tackling non-determinate relational
problems. We propose a method that selectively propositionalises the
FOL training set by interleaving attribute-value reformulation and al-
gebraic resolution. It avoids, as much as possible, the generation of
reformulated examples which are not relevant wrt the discrimina-
tion task, and still ensures that explicit correct and complete defini-
tions are learned. We present an AQ-like algorithm exploiting this
lazy propositionalisation method and then provide a first empirical
evaluation on a standard benchmark dataset for ILP, the Mutagenesis
problem.

1 INTRODUCTION

It is a well known fact that concept learning in restrictionsof First Or-
der Logic (FOL) has to cope with complexity issues that stem from
both the size of the search space and the complexity of the subsump-
tion test in such complex languages.

Both aspects are traditionally handled in Inductive Logic Program-
ming (ILP) directly in a FOL framework by adopting a generateand
test approach carefully controlled through sophisticatedlanguage
andsearchbias (see for instance,ij-determination [11], see [12] for
an extended study of bias in ILP).

A number of ILP systems (among others, LINUS [8], STILL [17],
REPART [21], SP [7]) have adopted an alternative to this approach
and have addressed the problem by first reformulating the initial FOL
learning problem into an attribute-value or boolean problem and then
by applying efficient learning techniques dedicated to thissimpler
formalism. This representation change, namedpropositionalisation
in the remainder is as follows : given apattern, termedP (a formula
of the initial FOL search space), FOL examples are reformulated into
their multiple matchings withP . The initial FOL learning problem
is then described in a tabular representation induced byP .

The advantages of such an approach are that, once the representa-
tion change has been performed, well-known robust attribute-value
learning techniques may be successfully applied, providedthat the
discriminant features of the FOL learning problem are preserved by
propositionalisation. But, as the subsumption test can be exponential
even in restricted of FOL languages such as Datalog, the reformu-
lated training set can be of exponential size [17], as well ashighly

1 Inference and Learning Group, Laboratoire de Recherche en Informatique,
UMR 8623 of CNRS, Bâtiment 490, Université Paris-Sud 91405 - Orsay
Cedex (France), email :{alphonse,celine}@lri.fr

redundant, and cannot be directly addressed as such for complex rela-
tional learning problems like [19]. Stochastic sampling ofthe match-
ing space [17] or strong bias [8, 20, 21] have been previouslyapplied
to build a reformulated learning problem of tractable size that still
captures the discriminant features of the initial FOL learning prob-
lem.

We present here an alternative method demonstrating that proposi-
tionalisation may be directly used in a FOL context. Only a fraction
of the positive and negative examples is indeed sufficient tolearn a
correct and complete FOL definition. An ILP method can efficiently
approximate this set, which enables one to have a reformulated learn-
ing problem of tractable size. This set of attribute-value instances is
then used to efficiently solve the initial ILP problem by applying a
data-driven top-down strategy [9]. This strategy allows for focusing
the search by dynamically pruning irrelevant branches of the refine-
ment graph.

Our method is based on the notion oflazy reformulationof FOL
examples into attribute-value vectors that interleaves attribute-value
reformulation and algebraic resolution. Information gathered during
resolution is used to constrain the propositionalisation process in
order to avoid as much as possible the generation of irrelevant re-
formulated examples. Lazy propositionalisation does not store any
negative reformulated instances and only stores a small fraction of
positive examples; therefore, it lifts the above mentionedlimitations
of propositionalisation-based learning techniques. It ispresented in
this paper independently of the subsumption relation in theoriginal
FOL search space and it can be combined with additional bias,which
could further improve the overall efficiency of the learningsystem.

Section 2 introduces the background notions for the paper tobe
self-contained. Section 3 presents a brief state of the art of ILP
propositionalisation based techniques and motivates the need of lazy
propositionalisation for learning relational concepts. Section 4 de-
tails our lazy propositionalisation based learning algorithm PROPAL.
Finally, section 5 sketches results of first experiments with PROPAL,
and section 6 concludes on further perspectives for this work.

2 PROPOSITIONALISATION

GivenP , a propositionalisation pattern, either built from the training
set [16, 7] or provided by the user [20, 21]), each exampleE de-
scribed in FOL is reformulated into the set of matchings ofP with
E. Each matching defines a set of constraints, represented as boolean
or valued attributes, which describes some features of the initial FOL
problem that we are going to described in the following.

After [15, 21], a FOL learning problem can be decomposed into
two sub-problems, i.e., arelational (or structural) one and afunc-
tional one. A relational learning problem is concerned with dis-
crimination by predicate occurrence(s) and variable links(equal-
ity/inequality between variables), while a functional learning prob-

lem is concerned by discrimination through the values of variables
seen as attributes. This imposes a partition on variables that may oc-
cur in clauses of the search space: some are referred to asobjectvari-
ables the value of which does not carry any discriminant information,
the others areattributevariables, which are assumed to be functions
of subsets of object variables. As a consequence, propositionalisation
shifts the original FOL search space into an attribute-value search
space in which boolean attributes represent the relationalpart of the
propositionalisation pattern, and valued attributes its functional part
(see [15] for details).

In this paper, we will focus on relational learning, which istyp-
ically the non-determinate learning problem, in a learningfrom en-
tailment context [4]. Consequently, we consider a representation shift
that transfers the initial FOL search space to a boolean lattice only.
We consider, without loss of generality [13] that we are learning
wrt an empty background knowledge in a non recursive Dataloglan-
guage2, in which a clause possibly contains multiple occurrences of
some variables and/or predicate symbols, and with existential vari-
ables in the body of the clause3. We do not set any restriction on the
depth or level of “indeterminacy” of existential variables, as opposed,
for instance, to [10, 8]. Lastly, we consider subsumption relations
that are weaker or equivalent toθ-subsumption4. In this context, we
define ourpropositionalisationprocess as follows.

2.1 Propositionalisation of the training set

Let Tr be the initial FOL training set, represented as a set of Datalog
ground clauses, and let�r be a partial ordering on the FOL search
spaceLr. Thepattern of propositionalisationP is a FOL formula of
Lr made of two parts,P ∪ C. P = head← l1, . . . , ln is a definite
clause andC = c1, . . . , cm is a conjunction of constraints between
pairs of variables ofP5.

propositionalise(e,P)
% returns a boolean vector associated toe given P.

σk := ∅
Y et Matched := ∅; Still T o Be Matched := P
Repeat

Select literalli from Still T o Be Matched
Still T o Be Matched := Still T o Be Matched− li
if there existsσ / (Y et Matched ∪ li)σk.σ ⊆ e

then σk := σk.σ; bli := 1 ;
Y et Matched := Y et Matched ∪ li

elsebli := 0
until Still T o Be Matched = ∅
For eachcj in C do

if cj .σk is satisfied ine
then bcj

= 1 else bcj
= 0

return (bl1 , . . . , bln , bc1 , . . . , bcm).

Figure 1. Propositionalisation Algorithm

Each literalli (resp.cj) of P defines a boolean attributebli , (resp.

2 i.e., a non recursive Horn clause language without functionsymbols other
than constants.

3 i.e., variables that occur in the body of the clause and not inits head.
4 Let us recall that in the considered concept language,θ-subsumption is

equivalent to logical implication.
5 Strictly,when learning in a Datalog language, the languageof constraints

only accepts equalities between variables ofP .

bcj
) that will be used to reformulate each FOL examplee (positive

or negative) ofTr into a set of boolean vectors as detailed in the al-
gorithm of fig. 1. A boolean vector is thus constructed for each sub-
stitutionσk such thatP matches a subset ofe. For convenience, we
will not distinguish in the remainder of the paper a matching(substi-
tution) and its associated boolean vector.

The FOL search space is shifted to a boolean lattice of bottom
P . The search space of the reformulated problem is therefore that of
concepts more general (or equal) thanP under set inclusion.

A FOL example is theoretically to be reformulated, underθ-
subsumption and given a patternP , as the set ofn

mj

j boolean vec-
tors, wherenj andmj are the number of occurrences of predicate
symbolpj in the FOL examplee and inP . This combinatoric ex-
plosion comes from the fact that, in our target concept languageLr,
existential variables non deterministically map on constants of the
examples of the training set.

Example 1 Consider a FOL search space ordered byθ-
subsumption, denoted�θ in the following. LetE, and E′ be
two positive examples andCE be a negative example of the target
concept, the tabular representation of which is described in figure 2:

E′ : c(a)← p(a, b), q(b), q(a), r(c)
E : c(a)← p(a, b), p(b, c), q(c), q(a)
CE : c(a)← p(a, b), p(b, c), q(b), q(a)

Let us assume thatE′ has been selected as the seed example, that
will be used for constructing the patternP : P is chosen here as
the maximal variabilization under�θ of the seed exampleE′ , i.e.,
P : c(U)← p(V, W), q(X), q(Y), r(Z). C is set to the conjunction
of equality constraints between pairs of variables ofP which are
satisfied inE′, i.e.,C : U = V, U = Y, V = Y, W = X.

By construction of algorithm in fig. 1,E′ is projected to
the most specific element of the boolean lattice,σP . Let us
now consider more closely how exampleE is reformulated. The
propositionalisation process first builds the substitution σE,1 =
{U/a, V/a, W/b, X/a, Y/c}. Notice that literalr(Z) of P has not
been matched to any literal ofE. Only constraintU = V of
P is satisfied for this substitution. When backtracking for another
possible matching for literalsq(X) and q(Y) onto literals ofE,
one gets another substitutionσE,2 = {U/a, V/a,W/b, X/c, Y/a},
with constraintsU = V, U = Y andV = Y of P . Another
backtrack on the matching of literalp(U, V) in E yields σE,i =
{U/a, V/b, W/c, X/c, Y/a} , with constraintsU = Y, W = X of
P . Five other substitutions (and therefore five other booleanvectors)
are obtained when backtracking on all possible partial matchings of
variables ofP on constants ofE.

2.2 New learning task

As pointed out in [20], our learning task is no longer to induce a FOL
concept consistent with all positive and negative boolean vectors but
is now amulti-instance problem[5]:

Definition 2.1 The reformulated learning task consists in finding a
concept that covers for each FOL positive example at least one of its
associated boolean vectors (completeness) and none of the boolean
vectors associated to any FOL negative example (correctness).

[20] gives a theorem, which states when the FOL original problem
and the reformulated problem, as described above, are equivalent.
We reformulate it with our notations.

P c(U) p(V, W) q(X) q(Y) r(Z) U = V U = Y V = Y W = X

σP 1 1 1 1 1 1 1 1 1
σE,1 1 1 1 1 0 1 0 0 0
σE,2 1 1 1 1 0 1 1 1 0
. . .

σE,i 1 1 1 1 0 0 0 0 1
. . .

σCE,1 1 1 1 1 0 1 0 0 1
σCE,2 1 1 1 1 0 1 1 1 1
. . .

σCE,j 1 1 1 1 0 0 0 1 0
. . .

Figure 2. The tabular representation of a FOL problem

Theorem 1 Given a FOL search spaceLr, with subsumption order-
ing �r and a patternP (a formula ofLr), searching for a gener-
alization ofP under�r that is a subset ofP (up a to variable re-
naming) is equivalent to searching the reformulated space with P as
propositionalisation pattern.

2.3 Partial ordering on the instance space

A large fraction of the boolean vectors generated by propositional-
isation do not directly take part in the process of building acorrect
and complete discriminant solution (we call themredundantin the
remainder of the paper) and need not be generated (see for example
in fig. 2 σE,1 andσCE,1 wrt σE,2 andσCE,2 respectively).

As far as negative examples are concerned, and after [18, 16], there
is a partial ordering (nearest-miss) of the negative instance space, and
it has been shown that only maximally specific negative examples
are sufficient for solving the discriminant learning problem. For pos-
itive examples, after definition 2.1, a FOL example is covered in the
boolean search space if at least one of its corresponding boolean vec-
tors is covered, hence, by transitivity of the subsumption ordering, if
one of its more specific associated boolean vectors (dually termed
nearest-hit) is covered.

The size of the set of non redundant elements of the boolean in-
stance space is upper-bounded by the maximal number of incom-
parable elements belonging to a boolean lattice, i.e.,

(

n
⌊n/2⌋

)

with
n = |P |. As an illustration, if we consider the Mutagenesis dataset,
with θ-subsumption as partial ordering, the matching set size is in
4040, to be compared with the number of non-redundant vectors,
which is inO(240). This theoretical upper-bound reflects the inher-
ent complexity of the relational learning process in this kind of learn-
ing method.

3 RELATED WORKS

Some ILP systems have addressed the problem of the exponential
space complexity of the reformulated problem.

The LINUS system, that first introduced the idea of proposition-
alisation, and its extended version DINUS [8] handle restricted FOL
target concept languages in which the subsumption test is polynomial
in the size of clauses. By construction in such languages, each FOL
example is reformulated into a single attribute-value vector.

As far as we know, two learning systems have addressed the prob-
lem of the intractable space complexity inherent to propositionalisa-

tion in the context of non determinate FOL problems: STILL [17]
and REPART [21]. For the former, the propositionalisation process
is done through a stochastic selection ofη example matchings (η is
a system parameter) with the pattern, which allows for bounding the
size of the reformulated problem, yielding a polynomial generaliza-
tion process. To offset the imperfection of such generalizations as
”single” classifiers, STILL learns a committee of them (one per ex-
ample), that classify unseen examples in a nearest neighbor-like way.

For the latter, restriction of the reformulated problem is performed
through the choice of a relevant propositionalisation pattern. The
user/expert must provide a pattern as a (strong) bias which allows to
drastically decrease the matching space. The validity of the method
relies on the assumption that the selected pattern preserves the dis-
crimination information sought for.

We present in the next section a lazy propositionalisation method
which does not generate the whole reformulated training set(there-
fore yielding a redundant training set of exponential size), but gener-
ates the reformulated problem ”on the fly” during learning. This en-
ables us to generate a reformulated problem of reasonable size, first
because it only partially stores positive reformulated instances, and
because it empirically avoids the generation of redundant instances.

4 LAZY PROPOSITIONALISATION

Our method is inspired from test incorporation methods [2] and from
more recent developments in constraint satisfaction methods, in the
sense that information gathered during resolution (i.e., current most
general correct definitions) is actively used to avoid generating ir-
relevant boolean vectors wrt the current discrimination task, such as
for instance, boolean vectors that are not covered by any hypothesis
maintained by the algorithm. It therefore dynamically exploits:

• information gathered during resolution to only generate boolean
examples that are useful for (in)validating the current specializa-
tion step

• the partial ordering on the instance space in order to generate use-
ful examples, that is, that are “close to” most specific ones.

In the next section, we present the lazy propositionalisation method
used in our system PROPAL. We then discuss the efficiency of this
method in terms of how well the set of non redundant vectors is
approximated, as this factor obviously has a direct influence on the
quality of the algebraic resolution.

4.1 PROPAL’s learning algorithm

PROPAL is a relational learning algorithm that uses an AQ-like res-
olution strategy [9], the inner loop of which is summarized in figure
3. As far as we know, it is the first ILP learning system that learns
clausal concepts using a data-driven specialization operator.

P ← P ∪ C from a seed positive example (see section 2.1)
G← {⊤} (the most general element of the lattice)
For eachnegative relational examplece do

Repeat
Selectg ∈ G incorrect wrtce (* ∃σ/g.σ ≺r ce *)

(1) Compute a boolean vectorb from ce
(* P ≺b b �b g, b as specific as possible *)

(2) SpecializeG to discriminateb (* data-driven strategy*)
(3) Evaluate each element ofG wrt pos. example coverage

UpdateG (* beam search strategy *)
Until all elements ofG rejectce

endfor
return the best element ofG

Figure 3. PROPAL, an AQ-like algorithm for relational learning

Lazy propositionalisation takes place at steps 1 and 3 of theal-
gorithm. For lack of space, we will not describe lazy reformulation
of positive examples (step 3). Given an incorrect hypothesis g and a
negative relational examplece such thatgσ ⊆ ce, we use the proper-
ties of the reformulated problem (see section 2.2) to lazilypropo-
sitionalisece. There is a one-to-one mapping between subsets of
P (viewed as a FOL formula) and the boolean lattice of bottommost
elementP (viewed as a boolean vector). We thus knowg is incorrect,
because there exists a negative vector, more specific or equal to g,
that can be extracted fromce. While computing this negative vector,
PROPAL can efficiently specialize the set of hypotheses maintained
in G (seen as boolean vectors) in order to rejectce [9] (step 2).

We use the fact thatP ≺6 b � g. The boolean vectorb is ex-
tracted as follows : after computingσ as a matching substitution of
the currentg with a negative FOL instancece, PROPAL completes
σ by deterministically matching literals ofP − g with ce. For this
purpose, PROPAL implements a polynomial heuristic search in the
matching space based on an efficient graph related subsumption al-
gorithm [14]. We therefore cannot ensure that the extractedboolean
vector is a most specific one, which would require an exponential
complexity in theP size7, but is only ”close to” a most specific one.
Notice that, onceb has been rejected, it does not need to be stored.

Example 2 As an illustration of howPROPALworks, let us solve the
ILP problem described in section 2.1. Let us assume that the learning
algorithm evaluates the incorrect hypothesisg : c(U) ← p(V, W),
provided thatgσ ⊆ CE withσ = {U/a, V/a,W/b}. g is mapped to
the vector{11000000}. Thus, we knowg is incorrect because there
exists a negative vector, more specific thang, which can be extracted
from CE. Applying the lazy propositionalisation process, we deter-
ministically completeσ with σ′ = {X/b, Y/b}, yieldingσCE,1 =
{111101001} (see figure 2). In order to produce refinements ofg
which no longer coverσCE,1, PROPAL adds tog one of the follow-
ing literals or constraints:r(Z), U = Y, V = Y . Therefore,g is

6 In caseP = b, there is no discriminant solution.
7 In fact, extracting a nearest-miss is equivalent to solve the max-clique prob-

lem, which is much harder than the subsumption problem.

refined into the set of hypotheses:{c(U) ← p(V,W), r(Z); c(U)←
p(V,W), q(Y), U = Y ; c(U)← p(V, W), q(Y), V = Y }.

4.2 Gain of lazy propositionalisation

On the one hand, thanks to the top-down search performed directly
in the FOL search space, the number of vectors generated by lazy
propositionalisation is in the worst case equal to the size of the
matching space searched. This space is induced by literals of g as op-
posed toP , i.e., by relevant literals wrt the current discriminant task.
The expected benefit is theoretically dramatic and becomes larger as
the learning description involves multiple predicate occurrences or
relations which are not discriminant.

On the other hand, we can ensure that at each step of the search,
the generated boolean vectors are necessarily incomparable or more
specific than previously generated vectors.

For negative examples, as a result of the specialization strategy
(step 2 of the algorithm), new elements ofG are necessarily incom-
parable withb. As a consequence, further extracted boolean vectors
are incomparable tob, or more specific thanb in caseb is not a
nearest-miss.
For positive examples, during the (top-down) search, a given boolean
vector can take part in several coverage tests wrt positive examples
(step 3 of the algorithm). For example, if a lazy propositionalisation
of a positive example gives a boolean example equal to the pattern,
each element ofG during the whole learning process will cover it
and the propositionalisation process need not be be invokedfor this
example anymore. Therefore, PROPALstores generated boolean pos-
itive examples for further coverage tests as long as they arecovered
by an element ofG. Consequently, if a boolean vector is computed
during the positive example coverage test for a given positive FOL
example, it is necessarily incomparable than any previously gener-
ated boolean vector for this FOL example, or more specific in case it
is not a nearest-hit.

The quality of approximation of the set of non-redundant vectors
has a direct impact on the relevance of the generated refinements, and
therefore on the efficiency of heuristic search. As an illustration, if we
consider again example 2, the heuristic search in the matching space
has reformulatedCE intoσCE,1, which is not the best move. Indeed,
would the heuristic search have generatedσCE,2 (i.e., a near-miss in
Winston’s terminology), the learning process would have generated
a single refinement ofg: c(U)← p(V, W), r(Z).

5 EXPERIMENTATIONS

We have evaluated PROPALby performing experiments on the Muta-
genesis dataset, a well-known ILP problem used as a benchmark test.
In this dataset, each example consists of a structural description of a
molecule as a definite clause. The molecules have to be classified
into mutagenic and non-mutagenic ones. As our paper focuseson
relational learning only, the representation language used has been
defined from background knowledgeB1 (see [19] for a deeper ex-
planation, as well as for details of the experimental protocol). In a
few words, positive and negative examples of the target concept are
molecules described in terms of atoms (between 25 and 40 atoms)
and bonds between some of these atoms.

The search space of the algorithm is a Datalog clause space or-
dered under OI [6], a partial ordering weaker thanθ-subsumption,
where each matching substitution has to be injective. It hasbeen
proved [1] that, given such a partial ordering, the set of solutions
of the initial FOL problem is preserved through propositionalisation.

The beam size, the only parameter of the system, was set to 5, its de-
fault value. Figure 4 shows PROPAL’s performance on the Mutagene-

Accuracy (%) Time (s.)
PROGOL 76 117039
FOIL 61 4950
TILDE 75 41
PROPAL 83 517

Figure 4. Learning results of PROGOL, FOIL, TILDE, PROPAL for the
Mutagenesis problem

sis problem compared with that of FOIL (version 6.2), PROGOL(the
Srinivasan’s P-PROGOL) and TILDE as reported in [3], averaged
over tenfold cross-validation. Time for FOIL and PROGOL were
measured on a HP-720, TILDE on a Sun SPARC-20 and PROPAL on
Pentium II-350. Because of the different hardware, the learning time
should be considered indicative.
We can see that the accuracy of the learned theory by PROPAL out-
performs the others systems in a reasonable learning time, consider-
ing that no user restriction has been set a priori on the search space.

This result demonstrates that lazy propositionalisation allows for
learning clausal concepts in a highly non-determinate domain. Con-
sidering the good results obtained with a relatively crude search
heuristic, this also demonstrates the claim that a data-driven strategy
compensates for, or at least has to be used upstream of the complex
language and search bias used by PROGOL and TILDE.

6 CONCLUSION

A number of ILP methods have addressed the problem of learning
FOL discriminant definitions by first reformulating the FOL learn-
ing problem into an attribute-value one and then applying efficient
learning techniques dedicated to this simpler formalism.

However, the new learning problem has some inherent properties
not suitable for efficiently learning clausal theories fromnon deter-
minate domains. We have proposed an original propositionalisation
method, termed lazy propositionalisation, which interleaves reformu-
lation of FOL examples and resolution step in order to address them.

Such lazy propositionalisation enables us to implement a data-
driven learning algorithm, PROPAL, in the spirit of AQ, to tackle the
problem of learning relational definitions. This algorithmhas been
validated on the Mutagenesis problem, a highly non-determinate
learning problem used as a benchmark dataset by the ILP commu-
nity. PROPALoutperforms some state of the art generate-and-test ILP
methods when operating on examples described with low levelstruc-
tural information.

This first result is very encouraging and demonstrates the rele-
vance of the approach. Moreover, lazy propositionalisation is adapt-
able to any subsumption relation in the original FOL search space,
and it can be combined with additional bias that can further improve
the overall efficiency. For instance, user bias [20, 21] can be incor-
porated in the pattern definition to further decrease the size of the
matching space.

As a perspective, we plan to extend the lazy propositionalisation
technique to handle numerical attributes and to improve theheuristic
of PROPAL, by integrating heuristics implemented in the latter ver-
sions of AQ. These steps will allow us to perform a better empirical
evaluation of the method.

ACKNOWLEDGEMENTS

We wish to thank M. Sebag for the many discussions about STILL
and propositionalisation methods in general.

REFERENCES
[1] E. Alphonse and C. Rouveirol, ‘Object identity for relational learning’,

Technical report, Deliverable LRIc(1), ESPRIT LTR 20237 (ILP2),
(1999).

[2] J. S. Bennett and T. G. Dietterich, ‘The test incorporation hypothesis
and the weak methods’, Technical Report CSTR-86-30-4, Oregon State
University, Department of Computer Science, (1986).

[3] H Blockheel and L. De Raedt, ‘Top-down induction of first order deci-
sion trees’,Artificial Intelligence, 101, 285–297, (1998).

[4] L. De Raedt, ‘Logical settings for concept learning’,Artificial Intelli-
gence, 95, 187–201, (1997).

[5] T. Dietterich, R. Lathrop, and T. Lozano-Perez, ‘Solving the multi-
instance problem with axis-parallel rectangles’,Artificial Intelligence,
89, 31–71, (1996).

[6] F. Esposito, A. Laterza, D. Malerba, and G. Semeraro, ‘Refinement of
datalog programs’, inProc. of the MLnet Familiarization Workshop on
Data Mining with Inductive Logic Programming (ILP for KDD), pp.
73–94, (July 1996).

[7] S. Kramer, B. Pfahringer, and C. Helma, ‘Stochastic propositionaliza-
tion of non-determinate background knowledge’, inProc. of the 8th In-
ternational Workshop on Inductive Logic Programming, ed., D. Page,
pp. 80–94. Springer Verlag, (1998).

[8] N. Lavrač and S. Džeroski,Inductive Logic Programming : techniques
and Applications, Ellis Horwood, 1994.

[9] R. S. Michalski, ‘A theory and methodology of inductive learning’,
in Machine Learning: An Artificial Intelligence Approach, eds., R. S.
Michalski, J. G. Carbonell, and T. M. Mitchell, volume I, pp.83–134,
Palo Alto, CA, (1983). Tioga.

[10] S. Muggleton, ‘Inverse entailment and PROGOL’,New Generation
Computing, 13, 245–286, (1995).

[11] S. Muggleton and C. Feng, ‘Efficient induction in logic programs’, in
International Workshop on Inductive Logic Programming, ed., S. Mug-
gleton, 281–298, Academic Press, (1992).

[12] C. Nédellec, C. Rouveirol, H. Adé, F. Bergadano, and B. Tausend,
‘Declarative bias in ILP’, inAdvances in Inductive Logic Programming,
ed., L. De Raedt, 82–103, IOS Press, (1996).

[13] C. Rouveirol, ‘Flattening and saturation: Two representation changes
for generalization’,Machine Learning, 14(2), 219–232, (1994).

[14] T. Scheffer, R. Herbrich, and F. Wysotzki, ‘Efficientθ-subsumption
based on graph algorithms’, inProceedings of the 6th International
Workshop on Inductive Logic Programming, ed., S. Muggleton, pp.
312–329. Stockholm University, Royal Institute of Technology, (1996).

[15] M. Sebag, ‘Resource bounded induction and deduction infol’, in Multi
Strategy Learning, (1998).

[16] M. Sebag and C. Rouveirol, ‘Constraint inductive logicprogramming’,
in Advances In Inductive Logic Programming, ed., L. De Raedt, 277–
294, IOS Press, (1996).

[17] M. Sebag and C. Rouveirol, ‘Tractable induction and classification in
first order logic via stochastic matching’, in15th Int. Join Conf. on Ar-
tificial Intelligence (IJCAI’97), Nagoya, Japon, pp. 888–893. Morgan
Kaufmann, (1997).

[18] B. D. Smith and P. S. Rosenbloom, ‘Incremental non-backtracking fo-
cusing: A polynomially bounded generalization algorithm for version
spaces’, inProceedings of the 8th National Conference on Artificial
Intelligence, ed., T. S. W. Dietterich, pp. 848–853, Hynes Convention
Centre, (July–August 1990). MIT Press.

[19] A. Srinivasan, S. Muggleton, and R.D. King, ‘Comparingthe use of
background knowledge by inductive logic programming systems’, in
Proceedings of the 5th International Workshop on InductiveLogic Pro-
gramming, ed., L. De Raedt, pp. 199–230. Scientific Report, Departe-
ment of Computer Science, K.U.Leuven, (1995).

[20] J.-D. Zucker and J.-G. Ganascia, ‘Changes of representation for effi-
cient learning in structural domains’, inProc. of 13th International
Conference on Machine Learning. Morgan Kaufmann, (1996).

[21] J.-D. Zucker and J.-G. Ganascia, ‘Learning strcuturalindeterminate
clauses’, inProc. of the 8th International Workshop on Inductive Logic
Programming, ed., D. Page, pp. 235–244. Springer Verlag, (1998).

