Lazy Propositionalisation for Relational Learning

Erick Alphonse and Céline Rouveirol!

Abstract.

redundant, and cannot be directly addressed as such foleoneta-

A number of Inductive Logic Programming (ILP) systems have tional learning problems like [19]. Stochastic samplindgtaf match-

addressed the problem of learning First Order Logic (FOkYdimi-

nant definitions by first reformulating the FOL learning piext into

an attribute-value one and then applying efficient leartéatpniques
dedicated to this simpler formalism. The complexity of spcbpo-

sitionalisation methods is now in the size of the reformedigprob-
lem which is exponential when tackling non-determinatatiehal

problems. We propose a method that selectively proposiliegs the
FOL training set by interleaving attribute-value refortihn and al-
gebraic resolution. It avoids, as much as possible, therggoe of

reformulated examples which are not relevant wrt the disitra-

tion task, and still ensures that explicit correct and catgbdefini-
tions are learned. We present an AQ-like algorithm expigitihis
lazy propositionalisation method and then provide a firspigicel

evaluation on a standard benchmark dataset for ILP, thedéutsis
problem.

1 INTRODUCTION

Itis a well known fact that concept learning in restrictiaigirst Or-
der Logic (FOL) has to cope with complexity issues that stesmf
both the size of the search space and the complexity of treusuyt
tion test in such complex languages.

Both aspects are traditionally handled in Inductive LogiegPam-
ming (ILP) directly in a FOL framework by adopting a generatel
test approach carefully controlled through sophisticdtatjuage
andsearchbias (see for instanceéj-determination [11], see [12] for
an extended study of bias in ILP).

A number of ILP systems (among others, LINUS [8], STILL [17],

REPART [21], SP [7]) have adopted an alternative to this aggin
and have addressed the problem by first reformulating thi@lifOL
learning problem into an attribute-value or boolean probénd then
by applying efficient learning techniques dedicated to #imspler
formalism. This representation change, narpeapositionalisation
in the remainder is as follows : givenpattern termedP(a formula
of the initial FOL search space), FOL examples are refortedlanto
their multiple matchings withP. The initial FOL learning problem
is then described in a tabular representation inducef by

The advantages of such an approach are that, once the nejarese

tion change has been performed, well-known robust ateivatue
learning techniques may be successfully applied, provitat the
discriminant features of the FOL learning problem are pnesst by
propositionalisation. But, as the subsumption test carnxpereential
even in restricted of FOL languages such as Datalog, themefo
lated training set can be of exponential size [17], as welhighly

I Inference and Learning Group, Laboratoire de Recherchaferhatique,
UMR 8623 of CNRS, Batiment 490, Université Paris-Sud BL4@rsay
Cedex (France), emaialphonse,celing@lri.fr

ing space [17] or strong bias [8, 20, 21] have been previcasplied
to build a reformulated learning problem of tractable sizattstill
captures the discriminant features of the initial FOL |éagnprob-
lem.

We present here an alternative method demonstrating tbpbpi-
tionalisation may be directly used in a FOL context. Onlyacfion
of the positive and negative examples is indeed sufficiefgéam a
correct and complete FOL definition. An ILP method can effitie
approximate this set, which enables one to have a reforedilairn-
ing problem of tractable size. This set of attribute-valogtances is
then used to efficiently solve the initial ILP problem by appy a
data-driven top-down strategy [9]. This strategy allowsftusing
the search by dynamically pruning irrelevant branches efréine-
ment graph.

Our method is based on the notionlaty reformulationof FOL
examples into attribute-value vectors that interleavetbate-value
reformulation and algebraic resolution. Information ga#d during
resolution is used to constrain the propositionalisatioocess in
order to avoid as much as possible the generation of irretene
formulated examples. Lazy propositionalisation does bartesany
negative reformulated instances and only stores a smalidraof
positive examples; therefore, it lifts the above mentiolitations
of propositionalisation-based learning techniques. firessented in
this paper independently of the subsumption relation inottiginal
FOL search space and it can be combined with additional Wwizish
could further improve the overall efficiency of the learnisystem.

Section 2 introduces the background notions for the papéeto
self-contained. Section 3 presents a brief state of the fatL®
propositionalisation based techniques and motivatesekd of lazy
propositionalisation for learning relational conceptecton 4 de-
tails our lazy propositionalisation based learning aldpon PROPAL.
Finally, section 5 sketches results of first experiment§ \WROPAL,
and section 6 concludes on further perspectives for thi&wor

2 PROPOSITIONALISATION

Given P, a propositionalisation pattern, either built from thenag
set [16, 7] or provided by the user [20, 21]), each examplee-
scribed in FOL is reformulated into the set of matchinggofvith
E. Each matching defines a set of constraints, representezbéesin
or valued attributes, which describes some features ofiitialiFOL
problem that we are going to described in the following.

After [15, 21], a FOL learning problem can be decomposed into

two sub-problems, i.e., eelational (or structural) one and &unc-
tional one. A relational learning problem is concerned with dis-
crimination by predicate occurrence(s) and variable lifggual-
ity/inequality between variables), while a functionalraag prob-

lem is concerned by discrimination through the values ofaides
seen as attributes. This imposes a partition on variabisiy oc-
cur in clauses of the search space: some are referredtyectvari-
ables the value of which does not carry any discriminantrinfion,

bc,) that will be used to reformulate each FOL examplpositive

or negative) off’,. into a set of boolean vectors as detailed in the al-
gorithm of fig. 1. A boolean vector is thus constructed fortesab-
stitution o, such thatP matches a subset ef For convenience, we

the others arattributevariables, which are assumed to be functions will not distinguish in the remainder of the paper a matchisgpsti-

of subsets of object variables. As a consequence, propoaitsation
shifts the original FOL search space into an attribute-@adaarch
space in which boolean attributes represent the relatjpendlof the
propositionalisation pattern, and valued attributesutscfional part
(see [15] for details).

In this paper, we will focus on relational learning, whichtyp-
ically the non-determinate learning problem, in a learrfimgn en-
tailment context [4]. Consequently, we consider a repriadgiem shift
that transfers the initial FOL search space to a booleaitédatinly.
We consider, without loss of generality [13] that we are hixag
wrt an empty background knowledge in a non recursive Datialiog
guagé, in which a clause possibly contains multiple occurrendes o
some variables and/or predicate symbols, and with exisierdri-
ables in the body of the clauséNe do not set any restriction on the
depth or level of “indeterminacy” of existential variables opposed,
for instance, to [10, 8]. Lastly, we consider subsumptiolatiens
that are weaker or equivalent @esubsumptiof't In this context, we
define oumpropositionalisatiorprocess as follows.

2.1 Propositionalisation of the training set

Let T;. be the initial FOL training set, represented as a set of Dgtal
ground clauses, and let, be a partial ordering on the FOL search
spaceL,.. Thepattern of propositionalisatio® is a FOL formula of
L, made of two partsP U C.P = head < [, ...,y is a definite
clause and’ = ¢4, ..., ¢y iS @ conjunction of constraints between
pairs of variables of®.

propositionalise(e,P)
% returns a boolean vector associatecetgiven P.
O = [}
Yet_Matched := 0; Still_To_Be_Matched := P
Repeat
Select literal; from Still_To_Be_Matched
Still_To_Be_Matched := Still_To_Be_Matched — l;
if there exister / (Yet_-Matched U l;)og.0c C e

thenoy :=op.0; by, :=1;
Yet_Matched := Yet_Matched U [;
elseb;, :=0

until Still_To_Be_Matched = ()
For eachc; in C do
if ¢;.01 is satisfied ire
thenb,, =lelseb., =0
return (b, ..., bi,, bcr s+, bem)-

Figure 1. Propositionalisation Algorithm

Each literall; (resp.c;) of P defines a boolean attributg , (resp.

2 i.e., a non recursive Horn clause language without funcsigmbols other
than constants.

3 i.e., variables that occur in the body of the clause and nit¢ inead.

4 Let us recall that in the considered concept langu#igeubsumption is
equivalent to logical implication.

5 Strictly,when learning in a Datalog language, the langualgeonstraints
only accepts equalities between variablegof

tution) and its associated boolean vector.

The FOL search space is shifted to a boolean lattice of bottom
P. The search space of the reformulated problem is therelfiateof
concepts more general (or equal) thdmunder set inclusion.

A FOL example is theoretically to be reformulated, under
subsumption and given a pattef) as the set oh;'” boolean vec-
tors, wheren; andm; are the number of occurrences of predicate
symbolp; in the FOL example: and in P. This combinatoric ex-
plosion comes from the fact that, in our target concept lagey,,
existential variables non deterministically map on contstaof the
examples of the training set.

Example 1 Consider a FOL search space ordered b§-
subsumption, denoteek, in the following. LetE, and E’ be
two positive examples ardE be a negative example of the target
concept, the tabular representation of which is descrilvefigure 2:

E'":c(a) — p(a,b), q(b), q(a),r(c)

E: c(a) < p(a,b),p(b,c), q(c), q(a)

CE : c(a) < p(a,b),p(b,c), q(b),q(a)
Let us assume that’ has been selected as the seed example, that
will be used for constructing the patterR: P is chosen here as
the maximal variabilization undex, of the seed example’ , i.e.,
P:c(U) —p(V,W),q(X),q(Y),r(Z).Cis set to the conjunction
of equality constraints between pairs of variablesFfwhich are
satisfied inE’,i.e.,C: U=V, U=Y,V =Y, W = X.

By construction of algorithm in fig. 1E’ is projected to

the most specific element of the boolean lattieg;. Let us
now consider more closely how examgleis reformulated. The
propositionalisation process first builds the substitotior,:
{U/a,V/a,W/b, X/a,Y/c}. Notice that literalr(Z) of P has not
been matched to any literal af. Only constraintU = V of
P is satisfied for this substitution. When backtracking footier
possible matching for literalg(X) and ¢(Y") onto literals of E,
one gets another substitutiens » = {U/a, V/a,W/b, X/c,Y/a},
with constraintsU = V,U = Y andV = Y of P. Another
backtrack on the matching of literal(U, V') in E yieldsog,; =
{U/a,V/b,W/c,X/c,Y/a} , with constraintsV = Y, W = X of
P. Five other substitutions (and therefore five other booleactors)
are obtained when backtracking on all possible partial rhaigs of
variables ofP on constants of.

2.2 New learning task

As pointed out in [20], our learning task is no longer to inelacFOL
concept consistent with all positive and negative boolesotors but
is now amulti-instance proble(]:

Definition 2.1 The reformulated learning task consists in finding a
concept that covers for each FOL positive example at leastobits
associated boolean vectors (completeness) and none obtiean
vectors associated to any FOL negative example (corresines

[20] gives a theorem, which states when the FOL original fewmb
and the reformulated problem, as described above, are agnotv
We reformulate it with our notations.

= @) [pV) [aX) [a0) [r(2) [U=V [U=Y [V=Y |[W=X
op 1 1 1 1 1 1 1 1 1
oA 1 1 1 1 0 1 0 0 0
0w 1 1 1 1 0 1 1 1 0
OB 1 1 1 1 0 0 0 0 1
oom1 | 1 1 1 1 0 1 0 0 1
ocez | 1 1 1 1 0 1 1 1 1
oomy; | 1 1 1 1 0 0 0 1 0

Figure 2. The tabular representation of a FOL problem

Theorem 1 Given a FOL search spacg,, with subsumption order- tion in the context of non determinate FOL problems: STILIZ][1
ing <, and a patternP (a formula ofZ,), searching for a gener- and REPART [21]. For the former, the propositionalisationgess
alization of P under <. that is a subset of’ (up a to variable re- is done through a stochastic selectionjofxample matchings(is
naming) is equivalent to searching the reformulated spaitie ¥ as a system parameter) with the pattern, which allows for baugnthe
propositionalisation pattern. size of the reformulated problem, yielding a polynomial giettiza-
tion process. To offset the imperfection of such genertibna as
"single” classifiers, STILL learns a committee of them (ore px-
ample), that classify unseen examples in a nearest neigdilkbavay.
A large fraction of the boolean vectors generated by prdjowsil- For the latter, restriction of the reformulated problemésfprmed
isation do not directly take part in the process of buildingoarect through the choice of a relevant propositionalisation guatt The
and complete discriminant solution (we call theedundantin the user/expert must provide a pattern as a (strong) bias whlmsato
remainder of the paper) and need not be generated (see fopéxa drastically decrease the matching space. The validity eitiethod
infig. 20,1 andocg,1 Wrt og 2 andocg 2 respectively). relies on the assumption that the selected pattern presémeedis-

As far as negative examples are concerned, and after [18hB8¢ crimination information sought for.
is a partial orderingr{earest-missof the negative instance space, and We present in the next section a lazy propositionalisatiethod
it has been shown that only maximally specific negative exasnp which does not generate the whole reformulated trainindtbete-
are sufficient for solving the discriminant learning prableFor pos- fore yielding a redundant training set of exponential sibe} gener-
itive examples, after definition 2.1, a FOL example is cotérethe ates the reformulated problem "on the fly” during learningisTen-
boolean search space if at least one of its correspondinigdimeec- ables us to generate a reformulated problem of reasonataefist
tors is covered, hence, by transitivity of the subsumptiafedng, if because it only partially stores positive reformulateddnses, and
one of its more specific associated boolean vectors (duatiyed because it empirically avoids the generation of redundzstainces.
nearest-hif is covered.

The size of the set of non redundant elements of the boolean in
stance space is upper-bounded by the maximal number of 'mconf1 LAZY PROPOSITIONALISATION
parable elements belonging to a boolean lattice, ('Fri7;2J) with
n = |P|. As an illustration, if we consider the Mutagenesis dataset
with #-subsumption as partial ordering, the matching set siza is i
40", to be compared with the number of non-redundant VeCtOrSyaneral correct definitions) is actively used to avoid gatieg ir-

which is inQ(24°). This theoretical upper-bound reflects the inher- gjeyant boolean vectors wrt the current discriminatisktauch as
ent complexity of the relational learning process in thisckof learn- ¢, instance, boolean vectors that are not covered by angthgsis

ing method. maintained by the algorithm. It therefore dynamically eifs:

2.3 Partial ordering on the instance space

Our method is inspired from test incorporation methods f&] rom
more recent developments in constraint satisfaction nusthia the
sense that information gathered during resolution (i@rrent most

3 RELATED WORKS e information gathered during resolution to only generatelean

examples that are useful for (in)validating the currentcigdeza-
Some ILP systems have addressed the problem of the expanenti tjon step

space complexity of the reformulated problem. e the partial ordering on the instance space in order to gémese-
The LINUS system, that first introduced the idea of propositi ful examples, that is, that are “close to” most specific ones.

alisation, and its extended version DINUS [8] handle rettd FOL

target concept languages in which the subsumption testyaqamial In the next section, we present the lazy propositionabsatethod

in the size of clauses. By construction in such language$) E®L used in our system BOPAL. We then discuss the efficiency of this

example is reformulated into a single attribute-value @ect method in terms of how well the set of non redundant vectors is

As far as we know, two learning systems have addressed the pro approximated, as this factor obviously has a direct infleenc the
lem of the intractable space complexity inherent to prafmsalisa- quality of the algebraic resolution.

4.1 PROPAL's learning algorithm

PROPAL is a relational learning algorithm that uses an AQ-like res-
olution strategy [9], the inner loop of which is summarizedigure

3. As far as we know, it is the first ILP learning system thatriea
clausal concepts using a data-driven specialization égera

P — P UC from a seed positive example (see section 2.1)
G — {T} (the most general element of the lattice)
For eachnegative relational example do
Repeat
Selectg € G incorrect wrtce (* 3o /g.0 <r ce *)
(1) Compute a boolean vectbifrom ce
* P <» b=p g,bas specific as possible *)
(2) SpecializeG to discriminateb (* data-driven strategy)
(3) Evaluate each element 6f wrt pos. example coverage
UpdateG (* beam search strategy *)
Until all elements of7 rejectce
endfor
return the best element aff

Figure 3. PROPAL, an AQ-like algorithm for relational learning

Lazy propositionalisation takes place at steps 1 and 3 ofithe
gorithm. For lack of space, we will not describe lazy refotation
of positive examples (step 3). Given an incorrect hypothesind a
negative relational exampte such thayo C ce, we use the proper-
ties of the reformulated problem (see section 2.2) to lagiiypo-

refined into the set of hypothesggU) — p(V,W),r(Z); c(U) «—
p(Vv W)7 q(Y)7 U= Y; C(U) — p(Vv W)a q(Y)7 V= Y}

4.2 Gain of lazy propositionalisation

On the one hand, thanks to the top-down search performedtigire
in the FOL search space, the number of vectors generatedzpy la
propositionalisation is in the worst case equal to the siz¢he
matching space searched. This space is induced by litdralaop-
posed toP, i.e., by relevant literals wrt the current discriminargka
The expected benefit is theoretically dramatic and becoergsi as
the learning description involves multiple predicate ageences or
relations which are not discriminant.

On the other hand, we can ensure that at each step of the search
the generated boolean vectors are necessarily incompasabhore
specific than previously generated vectors.

For negative examples, as a result of the specializatiatesty
(step 2 of the algorithm), new elements@fare necessarily incom-
parable withb. As a consequence, further extracted boolean vectors
are incomparable td, or more specific tham in caseb is not a
nearest-miss.

For positive examples, during the (top-down) search, agiaolean
vector can take part in several coverage tests wrt positteenples
(step 3 of the algorithm). For example, if a lazy proposiéitisation

of a positive example gives a boolean example equal to therpat
each element of7 during the whole learning process will cover it
and the propositionalisation process need not be be inviuketiis
example anymore. ThereforeRBPAL stores generated boolean pos-
itive examples for further coverage tests as long as theg@rered

sitionalisece. There is a one-to-one mapping between subsets oby an element ofy. Consequently, if a boolean vector is computed

P (viewed as a FOL formula) and the boolean lattice of bottoistmo
elementP (viewed as a boolean vector). We thus kngig incorrect,
because there exists a negative vector, more specific ot &mya
that can be extracted frone. While computing this negative vector,

during the positive example coverage test for a given pasiEOL
example, it is necessarily incomparable than any prewogsher-
ated boolean vector for this FOL example, or more specifi@sedt
is not a nearest-hit.

ProPAL can efficiently specialize the set of hypotheses maintained The quality of approximation of the set of non-redundanttoes

in G (seen as boolean vectors) in order to rejecf9] (step 2).

We use the fact thaP <® b < g¢. The boolean vectob is ex-
tracted as follows : after computing as a matching substitution of
the currentg with a negative FOL instances, PROPAL completes
o by deterministically matching literals P — g with ce. For this
purpose, ROPAL implements a polynomial heuristic search in the
matching space based on an efficient graph related subsamgdti
gorithm [14]. We therefore cannot ensure that the extrabtedlean
vector is a most specific one, which would require an expoaknt
complexity in theP siz€, but is only "close to” a most specific one.
Notice that, oncé has been rejected, it does not need to be stored.

Example 2 As an illustration of howPROPALworks, let us solve the
ILP problem described in section 2.1. Let us assume thaetimaing
algorithm evaluates the incorrect hypothesgis c¢(U) — p(V, W),
provided thayo C CE witho = {U/a,V/a,W/b}. g is mapped to
the vector{11000000}. Thus, we know is incorrect because there
exists a negative vector, more specific tlgamhich can be extracted
from C'E. Applying the lazy propositionalisation process, we deter
ministically completer with ¢’ = {X/b,Y/b}, yieldingocg,1 =
{111101001} (see figure 2). In order to produce refinementsgof
which no longer covesck,1, PROPAL adds tog one of the follow-
ing literals or constraints:*(Z),U = Y,V = Y. Therefore,g is

6 In caseP = b, there is no discriminant solution.
7 In fact, extracting a nearest-miss is equivalent to soleentlax-clique prob-
lem, which is much harder than the subsumption problem.

has a direct impact on the relevance of the generated refmspaand
therefore on the efficiency of heuristic search. As an itatson, if we
consider again example 2, the heuristic search in the nrajcpace
has reformulated’E into o ¢ k.1, which is not the best move. Indeed,
would the heuristic search have generated; » (i.e., a near-miss in
Winston’s terminology), the learning process would haveeagated
a single refinement of: c¢(U) «— p(V,W),r(Z).

5 EXPERIMENTATIONS

We have evaluateddPAL by performing experiments on the Muta-
genesis dataset, a well-known ILP problem used as a benkhesar
In this dataset, each example consists of a structuraligéser of a
molecule as a definite clause. The molecules have to be fidassi
into mutagenic and non-mutagenic ones. As our paper foouses
relational learning only, the representation languagel uses been
defined from background knowledd®, (see [19] for a deeper ex-
planation, as well as for details of the experimental protpdn a
few words, positive and negative examples of the targetemnare
molecules described in terms of atoms (between 25 and 40sgtom
and bonds between some of these atoms.

The search space of the algorithm is a Datalog clause space or
dered under Ol [6], a partial ordering weaker thassubsumption,
where each matching substitution has to be injective. It hesen
proved [1] that, given such a partial ordering, the set ofisohs
of the initial FOL problem is preserved through propositibsation.

The beam size, the only parameter of the system, was settsde-i
fault value. Figure 4 showsHDPAL's performance on the Mutagene-

ACKNOWLEDGEMENTS

We wish to thank M. Sebag for the many discussions about STILL

Accuracy (%) | Time (s.)
PROGOL 76 117039
FOIL 61 4950
TILDE 75 41 1]
PrROPAL 83 517
: i [2
Figure 4. Learning results of PROGOL, FOIL, TILDE,APAL for the
Mutagenesis problem
3]
[4]
sis problem compared with that of FOIL (version 6.2), PROGOEe 5]
Srinivasan’s P-PROGOL) and TILDE as reported in [3], avethg
over tenfold cross-validation. Time for FOIL and PROGOL wer
measured on a HP-720, TILDE on a Sun SPARC-20 a®dfAL on (6]
Pentium [1-350. Because of the different hardware, theniegrtime
should be considered indicative.
We can see that the accuracy of the learned theoryrayPRL out- 7
performs the others systems in a reasonable learning tiomsjaber-
ing that no user restriction has been set a priori on the besrace.

This result demonstrates that lazy propositionalisatidowa for 8]
learning clausal concepts in a highly non-determinate dionton-
sidering the good results obtained with a relatively cruéarsh [9]
heuristic, this also demonstrates the claim that a datedistrategy
compensates for, or at least has to be used upstream of thgeoom
language and search bias used by PROGOL and TILDE. [10]

[11]

6 CONCLUSION

A number of ILP methods have addressed the problem of legrnin[12]
FOL discriminant definitions by first reformulating the FO&alrn-
ing problem into an attribute-value one and then applyirfigiefit
learning techniques dedicated to this simpler formalism.

However, the new learning problem has some inherent priegert [14]
not suitable for efficiently learning clausal theories froon deter-
minate domains. We have proposed an original propositisstadn
method, termed lazy propositionalisation, which intevlsareformu-
lation of FOL examples and resolution step in order to adsitesm.

Such lazy propositionalisation enables us to implementta-da [16]
driven learning algorithm, ROPAL, in the spirit of AQ, to tackle the
problem of learning relational definitions. This algorithmas been
validated on the Mutagenesis problem, a highly non-deteatei
learning problem used as a benchmark dataset by the ILP coemmu
nity. PROPALoutperforms some state of the art generate-and-test ILP
methods when operating on examples described with low uat- [18]
tural information.

This first result is very encouraging and demonstrates the re
vance of the approach. Moreover, lazy propositionaliseigoadapt-
able to any subsumption relation in the original FOL searnzécs,
and it can be combined with additional bias that can furthmrove
the overall efficiency. For instance, user bias [20, 21] caringor-
porated in the pattern definition to further decrease the eizthe
matching space.

As a perspective, we plan to extend the lazy propositioattia
technique to handle numerical attributes and to improvéntheistic
of PROPAL, by integrating heuristics implemented in the latter ver-
sions of AQ. These steps will allow us to perform a better eigi
evaluation of the method.

[13]

[15]

[17]

[19]

[20]

[21]

and propositionalisation methods in general.

REFERENCES

E. Alphonse and C. Rouveirol, ‘Object identity for retaial learning’,
Technical report, Deliverable LRIc(1), ESPRIT LTR 2023LRR),
(1999).

J. S. Bennett and T. G. Dietterich, ‘The test incorpamthypothesis
and the weak methods’, Technical Report CSTR-86-30-4, @r&jate
University, Department of Computer Science, (1986).

H Blockheel and L. De Raedt, ‘Top-down induction of firster deci-
sion trees’ Artificial Intelligence 101, 285-297, (1998).

L. De Raedt, ‘Logical settings for concept learningitificial Intelli-
gence 95, 187-201, (1997).

T. Dietterich, R. Lathrop, and T. Lozano-Perez, ‘Sotyithe multi-
instance problem with axis-parallel rectanglettificial Intelligence
89, 31-71, (1996).

F. Esposito, A. Laterza, D. Malerba, and G. Semerarofitieenent of
datalog programs’, ifProc. of the MLnet Familiarization Workshop on
Data Mining with Inductive Logic Programming (ILP for KDDPpp.
73-94, (July 1996).

S. Kramer, B. Pfahringer, and C. Helma, ‘Stochastic psifionaliza-
tion of non-determinate background knowledge’Piroc. of the 8th In-
ternational Workshop on Inductive Logic Programmiregl., D. Page,
pp. 80-94. Springer Verlag, (1998).

N. Lavra¢ and S. DZeroskinductive Logic Programming : techniques
and ApplicationsEllis Horwood, 1994.

R. S. Michalski, ‘A theory and methodology of inductivealrning’,
in Machine Learning: An Artificial Intelligence Approackds., R. S.
Michalski, J. G. Carbonell, and T. M. Mitchell, volume |, |§8-134,
Palo Alto, CA, (1983). Tioga.

S. Muggleton, ‘Inverse entailment and PROGONew Generation
Computing 13, 245-286, (1995).

S. Muggleton and C. Feng, ‘Efficient induction in logicograms’, in
International Workshop on Inductive Logic Programmied., S. Mug-
gleton, 281-298, Academic Press, (1992).

C. Nédellec, C. Rouveirol, H. Adé, F. Bergadano, andTBusend,
‘Declarative bias in ILP’, iPAdvances in Inductive Logic Programming
ed., L. De Raedt, 82-103, I0S Press, (1996).

C. Rouveirol, ‘Flattening and saturation: Two repnes¢ion changes
for generalization’ Machine Learning14(2), 219-232, (1994).

T. Scheffer, R. Herbrich, and F. Wysotzki, ‘Efficiefitsubsumption
based on graph algorithms’, iRroceedings of the 6th International
Workshop on Inductive Logic Programmingd., S. Muggleton, pp.
312-329. Stockholm University, Royal Institute of Tectowyl, (1996).
M. Sebag, ‘Resource bounded induction and deductidalinn Multi
Strategy Learning(1998).

M. Sebag and C. Rouveirol, ‘Constraint inductive logiogramming’,
in Advances In Inductive Logic Programmired., L. De Raedt, 277—
294, 10S Press, (1996).

M. Sebag and C. Rouveirol, ‘Tractable induction andssification in
first order logic via stochastic matching’, irbth Int. Join Conf. on Ar-
tificial Intelligence (IJCAI'97), Nagoya, Japomp. 888—893. Morgan
Kaufmann, (1997).

B. D. Smith and P. S. Rosenbloom, ‘Incremental non-backing fo-
cusing: A polynomially bounded generalization algorithan ¥ersion
spaces’, inProceedings of the 8th National Conference on Atrtificial
Intelligence ed., T. S. W. Dietterich, pp. 848-853, Hynes Convention
Centre, (July—August 1990). MIT Press.

A. Srinivasan, S. Muggleton, and R.D. King, ‘Comparitige use of
background knowledge by inductive logic programming syste in
Proceedings of the 5th International Workshop on Indudtiegic Pro-
gramming ed., L. De Raedt, pp. 199-230. Scientific Report, Departe-
ment of Computer Science, K.U.Leuven, (1995).

J.-D. Zucker and J.-G. Ganascia, ‘Changes of repratientfor effi-
cient learning in structural domains’, iRroc. of 13" International
Conference on Machine Learninilorgan Kaufmann, (1996).

J.-D. Zucker and J.-G. Ganascia, ‘Learning strcutunaleterminate
clauses’, inProc. of the 8th International Workshop on Inductive Logic
Programminged., D. Page, pp. 235-244. Springer Verlag, (1998).

