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Abstract. Relational Learning (RL) has aroused interest to fill the gap
between efficient attribute-value learners and growing applications stored
in multi-relational databases. However, current systems use general-
purpose problem solvers that do not scale-up well. This is in contrast with
the past decade of success in combinatorics communities where studies of
random problems, in the phase transition framework, allowed to evaluate
and develop better specialised algorithms able to solve real-world appli-
cations up to millions of variables. A number of studies have been pro-
posed in RL, like the analysis of the phase transition of a NP-complete
sub-problem, the subsumption test, but none has directly studied the
phase transition of RL. As RL, in general, is Σ2 − hard, we propose a
first random problem generator, which exhibits the phase transition of
its decision version, beyond NP. We study the learning cost of several
learners on inherently easy and hard instances, and conclude on expected
benefits of this new benchmarking tool for RL.

1 Introduction

Even though the expressiveness of (supervised) Relational Learning (RL), also
known as Inductive Logic Programming (ILP), is attractive for many modern
applications1, such as life sciences, environmental sciences, engineering, natural
language processing or arts (see also [1]), RL has to face the well-known trade-off
between expressivity and efficiency.

From the efficiency perspective, one of the major obstacles is search efficiency,
and several authors have acknowledged that a step forward would be in the de-
sign of novel search techniques (e.g. [2,1]). RL, as a sub-domain of symbolic
learning, has been cast more than 25 years ago as search into a state space[3]:
given a hypothesis space defined a priori, identified by its representation lan-
guage, find a hypothesis consistent with the learning data. This seminal pa-
per, relating symbolic learning to search in a state space, has enabled machine
learning to integrate techniques from problem solving, operational research and
combinatorics: greedy search in FOIL, beam search in ICL, breadth-first search
in Aleph, ’A’ search in PROGOL, IDA (Iterative-Deepening A) search in MIO

1 http://www-ai.ijs.si/~ilpnet2/apps/index.html
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to name a few systems2. Besides very few exceptions, all systems are rooted in
the generate-and-test paradigm [4] and therefore rely on general-purpose search
strategies.

This approach has to be contrasted with the important progress, made during
the past few years, in the performance of specialised SAT or CSP solvers, which
can deal with problems’ sizes that are orders of magnitude larger than those re-
search communities would expect to solve only a decade ago. This progress has
been driven by studies of randomly generated problem instances, in the phase
transition framework, where hard to solve instances can be reliably generated, in-
dependently from the solver used. This framework relies on the conjecture that a
phase transition in the probability of solubility of NP-complete problems can be
exhibited along so-called order parameters and that the phase transition region
contains the most difficult problem instances, those on which the computational
complexity shows an exponential increase in the problem size [5,6,7]. This tool
allows to design benchmark datasets to point out and filter “bad” algorithms,
and to promote “good” algorithms which are close to the “easy-hard-easy” com-
plexity resolution pattern, standard nowadays [8,9,10]. Since then, it has been
strongly developed in many combinatorics domains and has changed the way
search algorithms are empirically evaluated. This has lead to new designs of
search algorithms, from incomplete to complete solvers and from deterministic
to randomised solvers (see e.g. [11]).

We think that RL, as a combinatorics field, must follow the same path and
study learning as a decision problem in the phase transition (PT) framework in
order to re-new and improve its algorithmic approach to answer the new chal-
lenges of modern applications. As the consistency problem is at the core of the
Statistical Learning Theory, notably studied in the PAC framework (see [12,13]
for details), the PT framework will be able to go beyond the worst-case com-
plexity analysis and allow to study the behaviour of learning algorithms in the
“average” or “typical” complexity case. Most importantly, it is also at the core
of learners’ optimisation algorithms, typical of real-world systems: optimisation
procedures are obtained by adding branch-and-bound techniques, or treated as
subsequent decision problems3. This a fortiori is true in RL where almost all
noise-resistant learners are relaxation of this problem [15], therefore studying
this problem will benefit search strategies for learning.

Machine Learning has known several developments in the study of phase tran-
sition phenomena since the early 90s. The first works were in neural networks
[16,17,18,19] and studied the phase transition of the generalization error, where
the number of examples are shown as order parameters. Other works studied the
impact of the phase transition of the solubility probability of the NP-complete
subsumption test, a sub-problem of Relational Learning, on the generalisation

2 Relevant information on these systems can be found at
http://www-ai.ijs.si/~ilpnet2/systems

3 This latter strategy, for instance, is used to solve pseudo-boolean constraints, an
optimisation version of SAT: one of the best pseudo-boolean solver, Minisat+ is
based on the SAT solver Minisat [14].

http://www-ai.ijs.si/~ilpnet2/systems
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error [20] and heuristic search [21]. However, as surprising as it may seem, the
phase transition framework strongly developped in combinatorics has almost not
been imported to the realm of symbolic learning. To the best of our knowledge,
the only work along this line has been done by Ruckert et al. [22] who exhib-
ited the phase transition of the probability of solubility of a learning problem,
the k-term DNF consistency problem, a well-known NP-complete problem [13],
showing that the number of variables, the number of positive and negative ex-
amples were order parameters.

RL is arguably harder than attribute-value learning, like k-term DNF learn-
ing, which has been formalised by Gottlob et al. [23] who showed that the sim-
ple bounded ILP consistency problem, which will be discussed in later, is Σ2-
complete. This is one class higher in the polynomial hierarchy than NP-complete
(or Σ1-complete) problems. Some authors [24,25], have conjectured that a phase
transition could be exhibited further up the polynomial hierarchy and therefore
that this framework could be useful to other PSPACE problems. This was sup-
ported by results on planning and QBF-2 (Quantified Boolean Formulas with
two alternating quantifiers, see also [26]).

In this paper, we show that this also holds true for the bounded ILP con-
sistency problem and we present two main results. First, we exhibit the phase
transition of the probability of solubility of the bounded ILP consistency prob-
lem, with the number of positive and negative examples as order parameters.
Second, we exploit this framework as a benchmarking tool to evaluate for the first
time learning algorithms on inherently hard and inherently easy problems, from a
complexity point of view. We evaluate classical complete relational learners found
in the learning systems Aleph [27], Progol [28] and Propal [29]: informed search
algorithms such as Best-First Top-down Generate-and-Test (BESTF-TGT), A-
search Top-down Generate-and-Test (A-TGT), and non-informed ones, such as
Breadth-First Top-down Generate-and-Test and Data-Driven (BF-TGT and BF-
TDD), Depth-First Top-Down Generate-and-Test (DF-TGT). We also use a lgg-
based learner: Depth-First Bottom-up Data-Driven (DF-BDD).

The expected benefit is the same as for other combinatorics domains: (1) point-
ing out particularly bad algorithms; (2) importing and adapting the best search
strategies developed in other domains; (3) developing a unified framework for the
empirical evaluation of learners, not only based on real-world applications (as this
is always necessary), but also on problems with controlled complexity; (4) under-
standing scaling-up problems acknowledged in Relational Learning (see e.g. [2])
by studying their behaviour on inherent hard instances in the phase transition;
and last (5) finding ways to generate hard instances to understand the problem’s
complexity and to provide challenging benchmark datasets [30,31].

The paper is organised in the following manner. Section 2 presents background
information about relational learning and search strategies, as well as main results
on the phase transition framework in combinatorics and the “easy-hard-easy”pat-
tern. Section 3 describes the random problem instance generator, which has been
already proposed to study the bounded ILP consistency problem in [21], although
they did not study its PT as they did not investigate the relevant parameters for
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this work. Next, section 4 shows that RL exhibits a phase transition of the proba-
bility of solubility and therefore can be used to reliably assess inherent complexity
of learning problems. This is used in section 5 to evaluate and discuss the behaviour
of popular complete learners on inherently hard and inherently easy problems. Fi-
nally, section 6 discusses the expected benefit of the development of the phase tran-
sition framework in RL and conclude on future works.

2 Background

2.1 Relational Learning

In machine learning, we are given a learning set E = E+ ∪ E−, with positive
and negative examples of the unknown target concept, drawn from an example
language Le, a hypothesis language Lh, a generality relation named subsump-
tion test ≥ which relates Le and Lh and partially order the hypotheses. After
[3], (symbolic) learning is defined as search in Lh. The problem, known as the
consistency problem, is to find a hypothesis h ∈ Lh such that h is consistent with
the data. A given hypothesis h is consistent iff it is complete: ∀e+ ∈ E+, h ≥ e+

and correct: ∀e− ∈ E−, h �≥ e−.
In this article, we study a typical instance of this problem in relational learn-

ing, known as the ILP consistency problem for function-free Horn clauses [23]:
givenLe, a language of function-free ground Horn clauses,Lh, a language of (non-
recursive) function-free Horn clauses and an integer l polynomial in |E+ ∪E−|,
does there exist h ∈ Lh with no more than l literals such that h logically im-
plies each element in E+ and none element in E−. In such hypothesis space, the
logical implication is equivalent to θ-subsumption4 which is NP-complete and
therefore decidable [32]. This result implies that relational learning is higher
than attribute-value learning in the polynomial hierarchy. [23] proved that this
problem is ΣP

2 -complete (or equivalently NPNP ): the search is NP-complete
and it is guided by the subsumption test which is NP-complete.

A central idea in symbolic learning is the use of a generality partial
order between hypotheses to guide the resolution of the consistency problem [3].
Mitchell refines the search strategy into the generate-and-test (GT) and data-
driven (DD) strategies. Virtually all GT algorithms are top-down, as it appeared
early that a bottom-up approach would start with a too specific hypothesis to be
efficiently guided by a heuristic function (see [33] for details). In this paradigm,
the top-down refinement operator, noted ρ, is only based on the structure of the
hypothesis space, independently of the learning data: Let h ∈ Lh : ρ(h) = {h′ ∈
Lh|h ≥ h′}.

Therefore, generate-and-test algorithms have to deal with many refinements
that are not relevant with respect to the discrimination task. They only rely on
the evaluation function to prune the irrelevant branches. On the contrary, the
top-down DD (TDD) strategy searches the space of hypotheses that are more

4 Let C, D two clauses. C θ-subsumes D, noted C ≥θ D iff there exists a substitution
θ such that Cθ ⊆ D.
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general than or equal to a given positive example, named the seed example, and
uses negative examples to prune irrelevant branches in the refinement graph.
Formally, the TDD refinement operator is defined as a binary operator: Let h ∈
Lh, e− ∈ E− : ρ(h, e−) = {h′ ∈ Lh|h ≥ h′ and h′ �≥ e−}.

As opposed to a TGT approach, a TDD approach can therefore compensate
for a poor evaluation function by using the learning data [29]. Moreover, some
TDD strategies make the most of the negative instances in order to select infor-
mative negative examples, e.g. near-misses according to Winston. Dually to the
TDD strategy, the Bottom-up Data Driven (BDD) strategy relies on positive ex-
amples to guide its generalisation step. Its BDD refinement operator, noted δ is
given as follows: Let h ∈ Lh, e+ ∈ E+ : δ(h, e+) = {h′ ∈ Lh|h ≤ h′ and h′ ≥ e+}.

This strategy has been first formalised by [34], who made the link between
generalisation in learning and lowest-upper bound (lub) in lattice theory. Such
an operator, also known as least-general generalisation (lgg) or most-specific gen-
eralisation (msg), has known several theoretic developments [35,12,36] but has
been seldom used in learning systems, whose the best-known system is probably
GOLEM [37].

2.2 Phase Transition and “Easy-Hard-Easy“ Pattern

Phase transition is a term originally used in physics to describe the changes
of state of matter [38]. Even though originally referring to gas, liquid, or solid,
within the framework of thermodynamics, it is used, by extension, to describe
an abrupt and suddenly change in one of the parameters describing the state
(in thermodynamic sense) of an arbitrary system. Thus, the transition from
ferromagnetic to paramagnetic state, the emergence of super-fluidity, changing
the type of crystal (with broken symmetry), or denaturation transition of DNA
are characterised as phase transitions. A well-known example in everyday life is
water, which is boiling (at normal pressure) at 100 oC. At the transition point
there is a coexistence of liquid water and vapor (a “first order” phase transition).
When plotting the density as a function of the temperature, a jump at the tran-
sition temperature can be observed. In this example, using physics terminology,
density corresponds to the order parameter, whereas temperature corresponds
to the external parameter of the phase transition. Notice that, in computer sci-
ences, the term order parameter is used instead of external parameter, and we
will keep this terminology in the following.

The phase transition of the probability of NP-complete decision problems,
and beyond, certainly is the most studied phase transition framework in Com-
puter Sciences as it has important consequences in practice on the average search
complexity [5,39,7,8,9,40,41,25,42,43]. The so-called order parameters allow to
wander from an under-constrained region, named the “yes” region, where this is
almost surely a solution, to an over-constrained region, named the “no” region,
where there is almost surely no solution. In between, the phase transition region
contains the most difficult problem instances, those on which the computational
complexity shows an exponential increase in the problem size, independently of
the solver used [5,6,41,7]. The under-constrained problems from the “yes” region
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Fig. 1. Typical “easy-hard-easy” pattern [10]. Solid line shows median solution cost
for dynamic backtracking and dashed line shows probability of a solution as a func-
tion of assignments to a pair of variables in random CSP that are considered to be
inconsistent(number of no-goods).

appear to be easily soluble, as there are many solutions. This is the same for
over-constrained problems from the “no” region as it is easy to prove that they
are insoluble. These findings have been corroborated on several problems, with
different types of algorithms, and it is considered that the problem instances
appearing in the phase transition are inherently hard, independently of the al-
gorithms used. In the “yes” and “no” regions, the easy ones, the complexity
appears to be very dependent of the algorithm. There are, in these regions, some
problems exceptionally hard, whose complexity dominates the complexity of in-
stance problems in the phase transition region for certain types of algorithms
[9,41,40]. In other words, a “good” algorithm when studied along the three dif-
ferent regions has to exhibit an average complexity following the so-called “easy-
hard-easy” pattern. Such a typical pattern is shown in figure 1, from [10]. The
search cost varies as a function of a given order parameter (refereed as nogoods)
for a class of problems, independent of particular search algorithms.

The interest of the framework is two-fold as it gives a way to empirically assess
the efficiency of algorithms on classes of problems whose inherent complexity is
controlled by order parameters, and as finding ways to generate hard instances
for a problem is important to understand the complexity of the problem [43,30].
We present in the next section the model RLPG for the bounded ILP consistency
problem that we will use to exhibit the PT.

3 Random Generator for Relational Learning Problem

A learning problem instance in this model is denoted RLPG(k, n, α, N, Pos, Neg).
The parameters k, n, α, N are related to the definition of the hypothesis and exam-
ple spaces. Pos and Neg are the number of positive and negative examples respec-
tively. The first four parameters are defined in order to ensure that a subsumption
test between a hypothesis and an example during search encode a valid CSP prob-
lem following the model RB for random CSP [43]. We recall their meaning and
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Table 1. Example of a random learning problem generated with RLPG, with no solu-
tion

⊥ p0(A)← p1(A, B, C), p2(A,B, D), p3(A,C, D)

+ p0(e1)← p1(e1, b, c), p2(e1, c, d), p3(e1, e, f)
− p0(e2)← p1(e2, c, f), p2(e2, d, e), p3(e2, d, c)

Table 2. Example of a random learning problem generated with RLPG, with a solution

⊥ p0(A)← p1(A, B, C), p2(A, B,D), p3(A,C, D)

+ p0(e1)← p1(e1, b, c), p2(e1, d, e), p3(e1, e, e)
− p0(e2)← p1(e2, b, b), p2(e2, e, e), p3(e2, e, c)

focus on the last two parameters, which were not studied before and which will
be shown to be order parameters of the phase transition of the ILP consistency
problem.

k ≥ 2 denotes the arity of each predicate present in the learning language, n ≥ 2
the number of variables in the hypothesis space, α the domain size for all variables
as being equal to nα, and finally, N the number of literals in the examples built on a
given predicate symbol. Given k and n, the size of the bottom clause of the hypoth-
esis space Lh is (n

k ), and encodes the largest constraint network of the underlying
CSP model. Each constraint between variables is encoded by a literal built on a
unique predicate symbol. Lh is then defined as the power set of the bottom clause,
which is isomorphic to a boolean lattice. Its size is 2(n

k ).
Learning examples are randomly drawn, independently and identically dis-

tributed, given k, n, α and N . Their size is N.(n
k ). Each example defines N

literals for each predicate symbol. The N tuples of constants used to define
those literals are drawn uniformly and without replacement from the possible
set of (nα

k ) tuples.
As an illustration, table 1 shows a random RLPG(2, 3, α, 1, 1, 1) problem, with

α such that nα = 5. The first line shows the bottom-most element of the hypothe-
sis space, which encodes all binary constraints between 3 variables. The next two
lines show the positive and the negative example, respectively, allowing only one
matching of a given predicate symbol (as N = 1). The search space is of size 23

and consists of all hypotheses built with the same head as the bottom clause, and
with a subset of its body as body. In such a space, it is easy to see that there is
no solution, given that no hypothesis subsumes the positive example without sub-
suming the negative example.Whereas the problem illustrated in table 2 accepts
the following clause as solution: p0(A)← p2(A, B, D), p3(A, C, D).

4 Number of Positive and Negative Examples as Order
Parameters

In this section, we study the effect of the number of positive and negative ex-
amples on the solubility probability of the ILP consistency problem. If we refer
to the previous section, RLPG is parametrised with 6 parameters but we only
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study the last two, Pos and Neg, as the effect of the other parameters have
already been studied in [21] for constant number of positive and negative exam-
ples. Here, we focus on few settings for these parameters, with k = 2, n = 5 and
n = 6, to study different problem sizes, α = 1.4 and N = 10. The choice of these
parameters ensures that we do not generate trivially insoluble problems (see [25]
for details), but also various experiments, not shown here, indicated that they
were representative of the phase transition behaviour of the ILP consistency
problem. In all experiments below, statistics were computed from a sample of
500 learning problems, solved with a complete learner.

We start by varying both Pos and Neg. Figure 2 shows the solubility prob-
ability of the ILP consistency problem when Pos = Neg are varied from 1 to
15, for n = 5 and n = 6. As we can see, when the number of examples is small,
there is almost surely a consistent hypothesis, and when the number is large, it
is almost surely impossible to find a consistent hypothesis. The cross-over point,
where the probability of solubility is about 0.5, is around 4 for n = 5 and 5 with
n = 6. It is not surprising that it increases with bigger problems. For n = 5,
the hypothesis space size is 210 and 215 for n = 6. We could not conduct exper-
iments for larger values of n as the hypothesis space grows too fast in RLPG.
For instance, n = 7 sets a hypothesis space of size 221, which cannot be handled
by our complete solver. In the future, it would be interesting to modify RLPG
to specify the size of the bottom clause and then draw the number of variables
accordingly.

We study now the phase transition along the number of positive examples,
for constant values of Neg. Figures 3 and 4 show the phase transition when Pos
varies from 1 to 25, for n = 5 and n = 6 respectively. With no positive examples,
the bottom element of the search space is solution, but as Pos increases, complete
hypotheses get more general and eventually subsume a negative example. The
transition becomes sharper as Neg increases, which is not surprising as the subset
of correct hypotheses shrinks as Neg increases. The second order parameter is



Empirical Study of Relational Learning Algorithms 59

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25

P
sa

t

Pos

Neg = 1
Neg = 2
Neg = 3
Neg = 4

Fig. 3. Probability of satisfiability ac-
cording to the number of positive exam-
ples with n = 5, for Neg = 1, 2, 3, 4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25

P
sa

t

Pos

Neg = 1
Neg = 2
Neg = 3
Neg = 4

Fig. 4. Probability of satisfiability ac-
cording to the number of positive exam-
ples with n = 6, for Neg = 1, 2, 3, 4

the number of negative examples Neg but it is not shown here because of the
space requirements. The plots essentially exhibit the same profile.

5 Evaluating Complete Learners

We evaluate complete learners representative of the search strategies described
in section 2.1. As non-informed searches, we use the Breadth-First TGT search
(BF-TGT) and the Depth-First TGT search (DF-TGT). As informed searches,
we use the A TGT search (A-TGT) and the Best-First TGT search (BESTF-
TGT). Informed search makes use of an evaluation function to minimise, whose
general form is f = g + h. g is defined as the cost from the start to the current
hypothesis and h as an estimation of the distance from the current hypothesis
to the goal. We define A-TGT according to the Progol system: g is defined as
the length of the current hypothesis and h as the difference between the number
of negative examples and the number of positive examples. In our context, as
all positive examples must be subsumed, it simplifies to the number of negative
examples. BESTF-TGT is not biased towards shorter hypotheses and defines
g = 0. We refer to [27,28] for details about their implementations.

The next learning strategy we study is the one used in the TDD learner
Propal. This is an incomplete learner as it performs a beam search guided by
the Laplace function. So we set Propal with a beam of unlimited size, which
basically turns down to a non-informed Breadth-First search (BF-TDD). The
only difference is that when the solution is reached at a level of the search, it
will be the first picked up at the next level. Note also that, as an incomplete
learner, it does not have an optimal refinement operator, like the other learners,
and may evaluate the same hypothesis several times.

The last learning strategy is Depth-First BDD (DF-BDD), based on Plotkin’s
lgg operator, and we refer to [36] for implementation details. Briefly, starting
from the bottom element, the algorithm generalises the current hypothesis to
subsume each positive example in turn, until it outputs a consistent hypothesis,
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or until it proves that no correct hypothesis subsumes all positive examples.
Note that as the hypothesis space is not a lattice, which is the case here under
θ-subsumption as the hypothesis space is finite, the lgg operator outputs all
possible generalisations on subsequent backtracks.

We evaluate complete RL learners on random problem instances whose inher-
ent complexity is controlled by the order parameter of the PT. We plot their
search cost as a function of the order parameter to compare their complexity
pattern to the standard “easy-hard-easy” pattern, as it is an indication of search
efficiency (see section 2.2). As the consistency problem in RL is Σp

2 -complete
(see section 2.1), the search cost measurement has to take into account both the
cost of the exploration of the hypothesis space and the cost of the consistency
check. We propose to measure both the number of backtracks of the subsump-
tion procedure and the time in milliseconds needed to solve a learning problem.
The former measure is relevant for GT approaches, as the cost of the refine-
ment operator is negligible compared to the subsumption cost, and it reflects
the number of evaluated hypotheses. This is also the case for DF-BDD, as the
lgg operator uses the subsumption test to find the common generalisations of
two given clauses. However, it is not appropriate for BF-TDD which is based
on the Propal system. Propal delegates the computation of refinements to a
Weighted CSP solver [29] whose cost does not translate into backtracks of the
subsumption test. It would be interesting to propose a relevant cost measure for
all RL learners, independently on the implementation but we leave it for future
research. Thus, we use the resolution time as cost measure for this strategy, and
although it does not allow a direct comparison with other approaches, it is still
relevant to study its expected cost pattern.

All experiments are done using instances from RLPG(k, n, α, N, Pos, Neg),
with k = 2, n = 5 and n = 6 to study different problem sizes, α = 1.4 and
N = 10. Additional experiments using different parameter values (not shown
here) have been conducted and result in similar findings. In the following figures
every plot is averaged over 500 randomly drawn learning problems.

Figure 5 shows the results obtained with A-TGT, for n = 6. We can see that
the easy problems resolution from the “yes” region follows the standard pattern.
The superposition of the solubility probability plot shows the PT region. The
cost sharply increases as soon as the solubility probability is no longer 1 (when
both the number of positive and negative examples are greater than 3). This
increase stops when the probability gets close to 0. However, the plot does not
reach a maximum right after the PT. This is indicative of a bad search algorithm,
as the backtracking cost keeps increasing, as the number of examples increases,
in the region theoretically easy, dominating then the cost in the PT.

We are going to see that this behaviour is typical of the top-down approaches:
interestingly, in the “no” region, extra examples do not help enough pruning the
hypothesis space to compensate the increase in subsumption cost of those extra
examples.

For various percentiles, figure 6 shows that BF-TGT, as a non-informed search
strategy, is costly very early in the “yes” region. However, after the PT, A-TGT
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and BF-TGT are about equivalent: they cannot cope with an increasing number
of examples, and the cost in the “no” region dominates the cost in the PT region.

In the “yes” region, DF-TGT behaves better than BF-TGT. This is partic-
ularly true in the “yes” region where there are a lot of solutions. In that case,
to keep specialising a complete hypothesis leads almost surely to a consistent
hypothesis. DF-TGT is as good as A-TGT in this region, but when they get
closer to the PT, A-TGT performs better. Its heuristic function prioritizes hy-
potheses which discriminate negative examples the most and this seems to lead
to consistent hypotheses faster. In the “no” region, we see again that DF-TGT
degenerates as A-TGT and BF-TGT.

In figure 8, we show results for the data-driven search, DF-BDD, first on
problems of size n = 5. It gets close to the standard pattern for the “yes’ region
problems. We note however that for higher percentiles (e.g. the median) the
algorithm has a non negligible cost even for 1 positive and 1 negative example.
Moreover, the superposition of the solubility plot shows the cross-over point
of the PT between 4 and 5 examples and that the complexity peak is slightly
shifted to the right with respect to this point, which indicates that DF-BDD’s
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Fig. 9. Backtracking cost using DF-BDD
strategy for various percentiles, for n = 6
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cost pattern is close to the “easy-hard-easy” pattern. Also, we see that for all
percentiles, the cost slowly decreases after the PT. We can say that this algorithm
is a good search algorithm, although some improvements can be done.

Figure 9 shows results for the same algorithm, but on larger problems, with
n = 6. The cross-over point is now around 5, and DF-BDD’s behaviour gets
closer to the standard pattern in the “yes” region. Although there is a minimum
cost (6000 backtracks as median cost), certainly due to the naive implementation
of the lgg refinement operator, this cost does not vary much in the “yes” region.
Among all tested algorithms, it is the only one exhibiting the “easy-hard-easy”
pattern.

Figure 10 summarises the backtracking cost of the search algorithms dis-
cussed above, with the addition of BESTF-TGT. The results are clear: all GT
approaches are interesting for problems with many solutions but are partic-
ularly bad when there are few or no solutions. Moreover, either informed or
non-informed search strategies, they all have the same profile in this latter case,
which is an interesting point to detail in the future. Conversely, DF-BDD, al-
though penalised in the “yes” region, is more efficient in those problems with
few or no solutions, with a decrease in cost as the number of examples increases.

The complexity analysis limited to the number of backtracks of the subsump-
tion test is not enough for this study because it does not take into account
the cost of the refinement operators for all approaches, such as for BF-TDD (see
above). We then complete it by plotting the resolution time of BF-TDD in figure
11. Although the search cost cannot be directly compared, we see that it behaves
similarly to the other top-down approaches. In the “yes” region, the TDD op-
erator cannot compensate the breadth-first search with its smaller branching
factor, and therefore behaves like BF-TGT. After the exponential increase in
cost on the inherent hard instances, the cost keeps increasing as the number of
examples grows in the “no” region. The penalty here is that the number of calls
to the Weighted CSP solver to compute a near-miss is proportional to the num-
ber of negative examples. This is clearly too costly and the trade-off between
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Fig. 11. Time cost using BF-TDD strategy for various percentiles, for n = 6

the quality of the near-miss and the reduction of the search space has to be
evaluated.

6 Conclusion

Although Relational Learning has been cast, more than 25 years ago, as search,
it has known very few developments from the search strategy point of view and
most learners rely on general-purpose solvers. This is a strong limitation to its
applicability on many modern applications, as it prevents RL to scale-up well.
On the other hand, important progress has been made in other combinatorics
communities, such as SAT and CSP, in the development of efficient specialised
solvers, through the study of random NP-complete problem generators in the
phase transition framework. RL has a higher complexity, being Σ2-hard in the
general case. However, we argue that this framework will benefit RL, based on
the conjecture that the phase transition can be exhibited further up the polyno-
mial hierarchy. We show that this conjecture holds true with the bounded ILP
consistency problem, a Σ2-complete problem, representative of RL problems.
We propose a first simple random generator that exhibits a phase transition
in the problem’s solubility, with the number of positive and negative examples
as order parameters. We used this framework to generate benchmark datasets
with controlled complexity, based on conjectures linking the probability of prob-
lem solubility with inherent problem hardness. First, this study shows that all
well-known top-down relational algorithms, rooted either in the generate-and-
test or the data-driven paradigm, are bad as they fail to exhibit the standard
“easy-hard-easy” pattern. Their complexity tend to increase with the number
of examples, although the extra examples do not change the solubility of the
problem, and therefore they exhibit an “easy-hard-hard” pattern. This has to
be contrasted with DF-BDD, a lgg-based learner, which does not perform as well
on the easy problems in the “yes” region, but well on the easy problems of the
“no” region, as well as in the phase transition compared to the other algorithms.
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This study shows that search strategies standard in RL lag behind what is
considered state of the art in other combinatorics communities. It is clear that
this study does not take into account all the dimensions of learning problems:
optimization instead of consistency, presence of noise, etc. However, the first idea
is to understand the complexity landscape of learning problems and to define
order parameters to control this complexity. The most important advantage of
the proposed approach to evaluate algorithm complexity is that contrary to re-
sults obtained directly on real-world applications, which hardly transpose when
the size of the problems change of scale, the phenomena observed with few vari-
ables are the same as those observed with thousands of variables. We hope that
it will enable RL and ILP to import and/or develop better search algorithms,
to eventually benefit to better scaling relational learners. For instance, we plan
to investigate lgg-based learning algorithms, which have been seldom used in
learning systems but seem to be efficient solvers.
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