
Phase Transition and Heuristic Search in Relational Learning

Erick ALPHONSE and Aomar OSMANI
LIPN-CNRS UMR 7030, Université Paris 13, France

Abstract
Several works have shown that the covering test in re-

lational learning exhibits a phase transition in its covering
probability. It is argued that this phase transition dooms
every learning algorithm to fail to identify a target con-
cept lying close to it. However, in this paper we exhibit a
counter-example which shows that this conclusion must be
qualified in the general case. Mostly building on the work
of Winston on near-misse examples, we show that, on the
same set of problems, a top-down data-driven strategy can
cross any plateau if near-misses are supplied in the train-
ing set, whereas they do not change the plateau profile and
do not guide a generate-and-test strategy. We conclude that
the location of the target concept with respect to the phase
transition alone is not a reliable indication of the learning
problem difficulty as previously thought.

1 Introduction

It was discovered early on that learning in relational lan-
guages, also known as Inductive Logic Programming (ILP),
had to face important plateau phenomena: the evaluation
function, used to prioritize nodes in the refinement graph is
constant in parts of the search space, and the search goes
blind. These plateau phenomena are the pathological case
of heuristic search, complete or not [11]. An explanation
can be given after the work of [4], who studied the ILP
covering test within the phase transition framework. As il-
lustrated in figure 1, the covering test is NP-complete and
therefore exhibits a sharp PT in its coverage probability [5].
When one studies the probability of covering a random ex-
ample of a fixed size by a hypothesis given the hypothe-
sis’ size, one distinguishes three well-identified regions: a
region named “yes”, where the probability of covering an
example is close to 1, a region named “no”, where the prob-
ability is close to 0, and finally in between the phase tran-
sition, named the “mushy” or the “pt” region, where an ex-
ample may or may not be covered. As the heuristic value
of a hypothesis depends on the number of covered exam-
ples (positive or negative), we see that the two regions “yes”
and “no” represent plateaus that need to be crossed during
search without an informative heuristic value.

To investigate the impact of the occurrence of a PT in the
covering test on the learning success rate, systematic experi-
ments with several learning algorithms have been conducted
on a large set of artificially generated problems by [4]. The

Figure 1. From [4]: Coverage probability Psol

of an example with L constants by a hypoth-
esis with m literals. The contour level plots,
projected onto the plane (m, L), correspond
to the region where Psol ∈ [0.01, 0.99].

authors generated a set of 451 problems by choosing each
target concept according to its location in the (m,L) plane
with respect to the PT, as shown in figure 1. Figure 2 sum-
marizes the application of FOIL on this set of problems:
learning failure or success is noted for each problem iden-
tified by the (m,L) pair. One important conclusion of their
work is that the occurrence of a PT in the covering test
is a general problem for all learning algorithms: the PT
is viewed as an “attractor” for the heuristic search of any
learning algorithm, which is bound to find a concept defini-
tion in the PT.

Figure 2. From [4]: FOIL’s competence map:
success and failure regions. The PT region is
indicated by the dashed curves, correspond-
ing to Psol = 0.9, Psol = 0.5 and Psol = 0.1
We note however that only generate-and-test (GT) learn-

ing algorithms have been investigated in this work and that
this conclusion has to be qualified in the general case. In

the GT paradigm, refinements are only based on the struc-
ture of the hypothesis space, independently of the learn-
ing data. Therefore, for a given hypothesis, GT algorithms
have to deal with many refinements that are not relevant
with respect to the discrimination task. On the contrary,
data-driven strategies (DD) allow to use the training data
to prune irrelevant branches of the refinement graph before
relying on the evaluation function and may overcome the
problem of plateaus. Notably, building on the pioneering
work of Winston on near-miss examples [16], we show, as a
counter-example, that, on the same set of problems as [4], a
Top-down Data-Driven learner (TDD) can cross any plateau
and reach the target concept whenever near-misses are sup-
plied in the training set, whereas these near-misses do not
change the plateau profile and do not guide a TGT learner.
This counter-example exhibits a class of problems where
the hypothesis search is trivial although the covering test
acts as a plateau. We conclude that the location of the tar-
get concept with respect to the PT alone is not a reliable
indication of the learning problem difficulty, as previously
thought.

In the next section, we recall the two top-down learning
strategies that we investigate in this paper, namely the TGT
and the TDD strategies. In section 3, we draw a parallel be-
tween the PT of the covering test and the evaluation function
of a learning algorithm. Next, in section 4, we show how we
can add near-misses to those problems in such a way that the
plateaus are unchanged in order to guide a TDD algorithm
to the target concept without search in the hypothesis space.
This shows in particular that plateaus are pathological for
TGT algorithms but are not a complexity criterion for all
algorithms.

2 Top-down generate-and-test and data-driven
strategies

In concept learning, we are given a learning set
E = E+ ∪ E−, with positive and negative examples
of the unknown target concept, drawn from an example
or instance language Le, a hypothesis language Lh, a
generality relation named covering test ≥ which relates
Le and Lh and partially order the hypotheses. After
[10], concept learning is defined as search in Lh. The
problem, known as the consistency problem, is to find
a hypothesis h ∈ Lh such that h is consistent with
the data: ∀e+ ∈ E+, h ≥ e+ (completeness) and
∀e− ∈ E−, h 6≥ e− (correctness).

This seminal paper, relating (symbolic) concept learn-
ing to search in a state space, has enabled machine learning
to integrate techniques from problem solving, operational
research and combinatorics: greedy search in C4.5 and
FOIL beam search in AQ and CN2, breadth-first search and
Aleph, ’A’ search in PROGOL, IDA (Iterative-Deepening

A) search in MIO to name a few systems. However, search
in languages of interest, as those typically considered in
ILP, is NP-hard (e.g. [7, 8]) and heuristic search is crucial
for efficiency [11]. Heuristic search makes use of an eval-
uation function to prioritize nodes to consider at each stage
of the search. A survey of evaluation functions used in ma-
chine learning can be found in [6]. It shows that all of them
are based, without loss of generality, on three parameters
that are the coverage rate of positive examples, the cover-
age rate of negative examples and a complexity measure of
the hypothesis under consideration. The first two param-
eters are inherited from the learning task definition given
above and stress the impact of the relevance of the covering
test on the quality of search.

A central idea in concept learning is the use of a general-
ity partial order between hypotheses to guide the resolution
of the consistency problem [10]: if a hypothesis is incor-
rect, it is said to be too general and has to be specialised.
The natural stopping criterion1 of a top-down strategy is the
acquisition of a correct hypothesis. In the rest of the ar-
ticle, we will consider that learning of a clausal theory is
done with the covering strategy. Mitchell further refines the
search strategy into the generate-and-test and data-driven
strategies.
In the GT paradigm, the top-down refinement operator,
noted ρ, is only based on the structure of the hypothesis
space, independently of the learning data:

Let h ∈ Lh : ρ(h) = {h′ ∈ Lh|h ≥ h′}

Therefore, generate-and-test algorithms have to deal with
many refinements that are not relevant with respect to the
discrimination task. They only rely on the evaluation func-
tion to prune the irrelevant branches. On the contrary, the
DD strategy searches the space of hypotheses that are more
general than or equal to a given positive example, named the
seed example, and uses negative examples to prune irrele-
vant branches in the refinement graph. Formally, the TDD
refinement operator is defined as a binary operator:

Let h ∈ Lh, e− ∈ E− : ρ(h, e−) = {h′ ∈ Lh|h ≥ h′ and h′ 6≥ e−}

As opposed to a TGT approach, a TDD approach can there-
fore compensate for a poor evaluation function by using the
learning data. Relying on the negative examples allows a
TDD strategy to have a branching factor that is smaller than
the branching factor of a generate-and-test strategy search-
ing in the same hypothesis space. Moreover, some TDD
strategies make the most of the negative instances in order
to select informative negative examples only [16, 14, 2], e.g.
near-misses after Winston. A near-miss in the Winston’s

1In the article, only the noise-free learning setting is considered. In the
case of noise, this stopping criterion is relaxed to accept hypotheses that
are not consistent.

terminology is a negative example that differs from the seed
example by only one description (a literal or an attribute of
the positive example that is not in the negative example).
This description necessarily belongs to the hypothesis that
discriminates them. Ultimately, a TDD algorithm learning
from a dataset provided with all near-misses with respect to
the target concept would converge to the concept without
search, generating only one refinement at each step. This
is the result we are going to use in ILP to overcome the
problem of plateaus exemplified in the PT framework [4],
showing that plateaus do not necessarily imply a high com-
plexity of search in learning.

3 Covering test PT and learning success rate

This section investigates the impact of the PT of the cov-
ering test on the quality of the evaluation function and sub-
sequently on the efficiency of the heuristic search.We re-use
the set of learning problems presented in [4] but in a dif-
ferent setting where there is a direct parallel between the
plateaus of the “yes” and “no” regions in figure 1 and the
plateau of the heuristic search. As shown in [4], the hypoth-
esis space where FOIL is run is different from the hypoth-
esis space where the PT is drawn. Precisely, the learning
algorithms are allowed to add several literals based on the
same predicate symbol and they evaluate hypotheses whose
coverage rates are different from those pictured in the figure
of the PT (figure 1). We conduct the same experiments but
FOIL is bound to search in the same hypothesis space as
the one where the PT is exhibited. To run the experiments,
we use Aleph [15] to emulate FOIL, as FOIL, as far as we
know, cannot be set to run in such a hypothesis space.

3.1 Problem description

Botta et al. tackle the learning of a single Datalog clause
from the hypothesis space Lm

h built as follow:

Lm
h = {c←

n−1∧
k=1

plk (Xk, Xk+1) ∧
m∧

k=n

plk (Xik , Xjk)}

where c is the clause head without variables, ik < jk ∈
{1, . . . , n}, lk ∈ {1, . . . ,m} and such that all literals in the
clause body are built on distinct binary predicate symbols.
Examples are represented as ground Datalog clauses. For-
mally, let A = {a1, . . . , aL} be the set of all constants of
cardinality L, and N the number of literals per predicate
symbol. The example language Le is the set of ground Dat-
alog clauses defined as follow:

Le = {c←
m∧

i=1

N∧
j=1

pi(aij1 , aij2)}

Each pair of constants (aij1 , aij2) is drawn uniformly with-
out replacement from the set A×A.

A learning problem is parametrized with the tuple
(m,L). The number of variables n is fixed to 4 and the
number of literals per predicate symbols N is fixed to 100.
In a (m,L) problem, m is the size of the target concept
drawn from Lm

h and L the number of constants in Le. For
each problem, a learning set and a test set are built. Both
are balanced sets of examples with 100 positive examples
and 100 negative examples. In order to visit as uniformly
as possible the “yes”, “no” and “pt” regions, (m,L) prob-
lems have been uniformly selected without replacement for
m ∈ [5, 29] and L ∈ [12, 39]. It has to be noted that if
(m,L) lies in the “yes” (resp. “no”) region, by construc-
tion the concept description will almost surely cover (resp.
reject) any randomly constructed example. For those prob-
lems, The example generator is modified and relies on a re-
pair mechanism to ensure a balanced distribution of positive
and negative examples [4].

3.2 Facing the plateau with a TGT strategy

We ran FOIL on problems on m=5 and 10 lines and on
the upper-right corner problems ranging from L ∈ [24, 39]
on the m=18 line and from m ∈ [18, 29] on the L=24 line.
We also sampled some other problems without any differ-
ence in the results. On all of these problems, FOIL is un-
able to find any good approximation of the target concepts,
being in the “yes”, “no” or “pt” regions. Note that this re-
sult differs from [4] where FOIL, in a different hypothesis
space, was shown to fail only in the “pt” region and in the
“no” region for small numbers of constants L (see figure 2).
To show why, we plot for a problem the coverage rate of the
positive and the negative examples, as well as their standard
deviation depending on the size of the hypothesis, averaged
over 1000 randomly and uniformly drawn hypotheses as in
[4]. A plateau is materialised by a standard deviation of the
coverage rates of the examples close to 0.

The left side of figure 3 shows the results for the (5,15)
problems in the “yes” region, (10,20) in the “pt” region and
(14,28) in the “no” region. For each problem, the value of a
hypothesis, given an evaluation function, can be read on av-
erage from the corresponding sub-figure. As the top-down
learner searches the hypothesis space, it evaluates hypothe-
ses in turn of increasing size. For instance, on the (5, 15)
problem, we can see that all positive examples are cov-
ered (100% of positive coverage rate) for any hypothesis
size, and all negative examples up to a size of 3. Whatever
the evaluation function is, the top-down learner will see hy-
potheses up to 3 literals long of equal value, or equivalently,
it has to cross a plateau of width 3 before being able to use
the evaluation function to discriminate between hypotheses.

As we can see for the “yes” and the “pt” regions, hy-
potheses at the bottom of the search space are incorrect (i.e.
for the maximum hypothesis size): on average, there does

(5,15): ”yes” region without
near misses

(5,15): ”yes” region with
near misses

(10,20): ”pt” region without
near misses

(10,20): ”pt” region with
near misses

(14,28): ”no” region without
near misses

(14,28’): ”no” region with
near misses

Figure 3. Coverage rates and plateau profiles
for representative “pt” problems in the “yes”,
“pt” and “no” regions.

not exist a correct theory of the learning problems in these
regions. The target concept is hidden among the bottom hy-
potheses and a TGT algorithm can only find it by chance
as we will detail later. The natural stopping criterion of the
TGT strategy is only met for problems generated in the “no”
region and a TGT learner is bound to output hypotheses be-
longing to the intermediate region in between the “pt” and
the “no” regions. This is similar to the finding of [4]. There-
fore, we ran FOIL on several problems in the “no” region,
whose results of typical cases are summarised in table 1.

Table 1. Accuracy measured on the test set.
(m,L) (8,34) (14,17) (14,38) (19,35) (29,24)

Accuracy (%) 54.5 47.5 54.5 58 46
of clauses 91 55 66 54 38
〈min, max〉 〈7, 7〉 〈7, 8〉 〈6, 8〉 〈13, 14〉 〈8, 9〉

This table gives, for each problem, the accuracy evaluated
on the corresponding test set, the number of clauses in the
theory and the minimum and maximum size of the clauses
in the theory. Again FOIL is unable to produce any rea-
sonable approximations of the target concept and performs

seemingly as a random classifier. These results are not sur-
prising as we can see that the “yes” region of the phase
transition represents plateaus for the heuristic search that
must be crossed without an informative evaluation function
to guide the search toward the good path to the target con-
cept.

The impact of plateaus is well-known on classical heuris-
tic search and they are a pathological case of heuristic
search, whether complete or not, as the search goes blind
(see e.g. [11, 9, 13]). For instance, in the case of a greedy
search such as used in FOIL, the algorithm has to make a
random choice between possible refinements and therefore
acts as a random walker. In one of the smaller problems
(5, 15), the plateau is already as wide as 3 literals. FOIL’s
search can be seen as starting the top-down search from a
randomly and uniformly drawn partial hypothesis of size 3.
It appears on all learning problems that a plateau of such
width, which lengthens as we take problems with smaller
number of constants L, is enough to fool the search. Sev-
eral approaches have been proposed to overcome the lim-
itation of a greedy search in ILP like look-ahead [3] or
macro-operators [1] but we do not discuss these techniques
here as their effectiveness strongly depends on the width
of the plateau and we rather focus on complete heuristic
searches. This is also a pathology for complete heuris-
tic searches, like the best-first or the best-first iterative-
deepening searches [9] implemented in PROGOL and MIO
respectively, although they can theoretically find the target
concept in any of the considered learning problems (see be-
low). Best-first search (and its relatives A or A*) cannot be
guided by the evaluation function and it therefore degener-
ates into a breadth-first search where the space requirement
grows exponentially. It is often said that A-like search runs
out of memory before reaching the time limit [9]. Best-first
iterative-deepening (and its relatives IDA or IDA*), used in
MIO, avoid the exponential space complexity but will reach
the time limit.

The state of the art on evaluation functions used in learn-
ing shows that they are all, without loss of generality, based
on two main parameters that are the rate of positive and
negative examples covered. As these two parameters are
inherited from the definition of the learning task, it is un-
likely that a solution to overcome these plateau phenomena
consists in designing new evaluation functions. The TGT
learning paradigm seems doomed to fail to identify a good
approximation of the target concept when facing non-trivial
plateaus.

4 Crossing the plateau using near-misses
with a TDD strategy

In this section, we show that near-misses can be added
to a learning problem without changing the plateau profile.

In doing so, a TGT learner cannot take advantage of the ad-
dition of the most informative negative examples whereas a
TDD learner is guided to the target concept without search
and then overcomes the plateau problems. For the sake of
readability, we quickly present the TDD strategy in ILP,
limited to our setting, and we refer to [2] for a detailed pre-
sentation.

4.1 The TDD strategy in ILP

The TDD strategy is biased toward the covering of a seed
example, s, and then amounts to map the initial search space
of the learning algorithm into the space of generalisations
of the seed example. Additionally, it is required that this
space of generalisations be isomorphic to a boolean lattice
and therefore the TDD refinement operator is an algebraic
resolution of the learning problem. Looking for a hypothe-
sis of Lm

h that both covers s and rejects a negative example
e− can be equivalently performed by looking for a gener-
alisation of s that rejects lgg(s, e−), the least general gen-
eralisation of s and e−. By definition of the lgg [12], we
have h ≥ s ∧ h ≥ e− ⇔ h ≥ lgg(s, e−). Equivalently, by
transposition, we have h 6≥ s ∨ h 6≥ e− ⇔ h 6≥ lgg(s, e−).
As the TDD strategy is biased toward the covering of s,
h 6≥ e− ⇔ h 6≥ lgg(s, e−). Note that in ILP the lggs are
not unique and several lggs need to be rejected before re-
jecting the initial negative example.
By reformulating the whole negative example set into a
boolean search space by means of lggs, we can show that
only the most specific set of lggs, which are incomparable
by definition, are useful for learning. By making use of this
partial order between negative examples, the TDD strategy
can reject the most informative negative examples only and
following that way efficiently prune the refinement graph.
Precisely, if a negative example is such that one of its lggs
with the seed misses only one literal of the seed, then this
literal necessarily belongs to the hypothesis that discrimi-
nate them. This particular example, or its particular lgg, is
a Winston’s near-miss. The TDD strategy implemented in
PROPAL makes the most of this property by rejecting the
closest examples first, named in this context the nearest-
misses examples. A Winston’s near-miss is a nearest-miss
by definition, being the closest.

4.2 Generating near-misses in the artificially gen-
erated problems

To guide the search with near-misses, we have to create
new negative examples which differ from the seed example
only by one literal in the reformulated space by means of
lggs. We will have as many near-misses as literals in the
target concept to guide the refinement process literal by
literal. Before presenting the generation procedure, we
have to set the seed example, or equivalently the bottom

clause of the search space. For efficiency reasons, and
without loss of generality, we do not choose a positive
example as seed. The reason is that the examples provided
in the set of problems can be very large with up to 3000
literals. Instead, we choose as a bottom clause the union
of the most specific clauses in the hypothesis space, taking
into account the fact that they are all built from the same
set of variables. Then, for a target concept of size m with
n variables, the bottom clause has m × n(n−1)

2 literals. It
is necessarily more specific than any hypothesis and it is
covered by the target concept.

Algorithm 1 GenerateProblemWithNearMisses(h,m,E)

begin
1 NM = ∅ % the set of near-misses
2 Create the bottom clause B of Lm

h

3 For k=1 to m do % one near-miss per concept’s literal
4 Extract a negative example e− from E % E = E \ e−

5 Add to e−’s a skolemised version of the bottom clause
6 While ∃θ such that hθ ⊆ e− do
7 Remove pk(Xi, Xj)θ from e− % the kth literal of h
8 NM = NM ∪ e−

9 Return E ∪NM
End

The generation procedure is given in algorithm 4.2. It
takes as input a target concept h of size m, the correspond-
ing learning problem E and outputs a new learning prob-
lem. This new learning problem has the same number of
positive and negative examples as the input problem. At
line 5, we see that a negative example e− is augmented
with the addition of a skolemised version of the bottom
clause. Hence, it is now covered by all the hypotheses in
Lm

h and, supposing that a solution of the learning problem
exists in Lm

h , is now turned into a positive example: for
each h ∈ Lm

h , we can exhibit a substitution θ, involving
only the skolem constants of the added bottom clause, such
that hθ ⊆ e−. It has to be modified into a negative exam-
ple which is done at the lines 6 and 7. It guarantees that
the new negative example is a near-miss: the longest lgg
between the bottom clause and the example will differ only
in the relevant literal of the target concept. When this near-
miss example will be used by the TDD refinement operator
to specialise the incorrect hypothesis, only the relevant lit-
eral will be produced as refinement.

The most important point of this problem generation is
to note that the number of models of a hypothesis in the
near-misses can only be greater than in the original nega-
tive examples: if a hypothesis covers the original negative
example, it covers the corresponding near-miss and the con-
verse is not true. This property is necessary to show that a
near-miss can be added without changing the plateau pro-
file.
At lines 6 and 7, during the computation of substitutions

between the target concept and the positive example, only
substitutions of the variables onto the skolem constants of
the bottom clause part of the example can be found as the
original example is a negative example. This property is due
to the fact that a phase transition is shown in a space of hy-
potheses where the resulting matching problems cannot be
decomposed into simpler sub-matching problems (see [4]).
Therefore, the computed substitutions can only involve the
skolem constants and not a mix of some constants from the
original example and some skolem constants. In the next
section, we show the resulting plateau profiles and discuss
the behaviour of the TGT and the TDT learners on these
new problems.

We ran FOIL on the same problems as before, aug-
mented with near-misses as described above. On all of these
problems, FOIL is unable to find any good approximation of
the target concepts, being in the “yes”, “no” or “pt” regions.
As we can see in the right side of figure 3, the plateau profile
does not change and a TGT learner cannot take advantage of
the addition of the most informative negative examples. The
problems of the “no” region exhibit a different behaviour of
FOIL which cannot even output a correct theory for any of
them. If we look at the rate of covered negative examples
for the maximum hypothesis size, we see that the most spe-
cific hypotheses are not correct on average. These hypothe-
ses cover the near-misses which by construction are more
specific than all hypotheses but merely the ones that are on
the path to the target concept. This is an illustration of the
performance of FOIL as worse as random guessing on the
original problems in the “no” region described in section
3.2.

The opposite behaviour is exhibited by the TDD learner
PROPAL which, by construction, solves all of the problems
being in the “yes”, “pt” or “no” regions. The learner makes
the most of the learning data by exploiting only the informa-
tion provided by the near-misses to guide its search. Note
that as the branching factor is reduced to one thanks to the
near-misses, the target concept is exactly identified each
time as opposed to evaluating the quality of the approxima-
tion on a test set as for FOIL. Interestingly, the resolution
of the problems is quite fast, taking below 20 minutes on
a desktop computer up to problems on the line m = 14 to
several hours for the hardest ones.

5 Conclusion

Plateau phenomena in ILP have been studied recently in
the phase transition framework and an important work has
been done on identifying the criteria of success of learning
algorithms [4]. The conclusion drawn from this work was
that the location of the target concept with respect to the
PT of the covering test was conclusive of the difficulty of
the learning problems. A failure region was identified for

all the tested learners, starting from the “pt” region to the
beginning of the “no” region. We performed additional ex-
periments that strengthen this result. When the top-down
search is conducted in the hypothesis space that exhibits a
PT in its covering test, the “yes” region acts as a plateau for
the heuristic search. This is the pathological case of heuris-
tic search, whether complete or not, as the plateau must be
crossed without being able to differentiate between refine-
ments. In such a case, the greedy TGT learner, FOIL, can-
not solve any of the problems. We showed, moreover, that
this criterion alone is not reliable. As a main result, we ex-
hibited a counter-example where a TDD learning algorithm
[2], supplied with near-miss examples was able to solve all
problems, although the near-miss examples are still non-
informative for TGT algorithms. The plateau phenomena
exhibited in the PT framework is a pathological case of the
TGT learners as they only rely on an evaluation function to
guide their search, but it is not, alone, a reliable complexity
measure for all learners.

References

[1] E. Alphonse. Macro-operators revisited in inductive logic
programming. In Proc. of ILP’2004, pages 8–25, 2004.

[2] E. Alphonse and C. Rouveirol. Extension of the top-down
data-driven strategy to ILP. Proc. of ILP’2006, 2006.

[3] H. Blockeel and L. D. Raedt. Lookahead and discretization
in ILP. In Proc. of ILP’1997, LNAI, pages 77–84, 1997.

[4] M. Botta, A. Giordana, L. Saitta, and M. Sebag. Relational
learning as search in a critical region. Journal of Machine
Learning Research, 4:431–463, 2003.

[5] P. Cheeseman, B. Kanefsky, and W. M. Taylor. Where the
really hard problems are. In R. Myopoulos, John; Reiter,
editor, Proc. of IJCAI’1991, pages 331–340, 1991.

[6] J. Fürnkranz and P. Flach. Roc ’n’ rule learning-towards
a better understanding of covering algorithms. Machine
Learning Journal, pages 39–77, 2005.

[7] D. Haussler. Learning conjunctive concepts in structural do-
mains. Machine Learning, 4(1):7–40, 1989.

[8] M. J. Kearns and U. V. Vazirani. An Introduction to Compu-
tational Learning Theory. The MIT Press, 1994.

[9] R. E. Korf. Depth-first iterative-deepening: An optimal ad-
missible tree search. Artificial Intelligence, 27(1):97–109,
1985.

[10] T. M. Mitchell. Generalization as search. Artificial Intelli-
gence, 18:203–226, 1982.

[11] J. Pearl. Heuristics. Addison-Wesley, Reading, 1985.
[12] G. Plotkin. A note on inductive generalization. In Machine

Intelligence, pages 153–163. 1970.
[13] S. Russell and P. Norvig. Artificial Intelligence: A Modern

Approach. Prentice Hall, Englewood Cliffs, NJ, 1995.
[14] B. D. Smith and P. S. Rosenbloom. Incremental non-

backtracking focusing: A polynomially bounded generaliza-
tion algorithm for version spaces. In Proc. 8th AAAI, pages
848–853, 1990.

[15] A. Srinivasan. A learning engine for proposing hypotheses
(Aleph), 1999.

[16] P. H. Winston. Learning structural descriptions form exam-
ples. In P. H. Winston, editor, The Psychology of Computer
Vision, pages 157–209. McGraw-Hill, 1975.

