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Abstract

Introduction: Information Extraction (IE) systems have been propose@demt years to extract genic interactions from biblio-
graphical resources. They are limited to single interactelations, and have to face a trade-off between recall aacigion, by
focusing either on specific interactions (for precisiom)general and unspecified interactions of biological esgi(for recall). Yet,
biologists need to process more complex data from litegatarorder to study biological pathways. An ontology is archte
formal representation to model this sophisticated knogéedHowever, the tight integration of IE systems and ontelegs still a
current research issua fortiori with complex ones that go beyond hierarchies.

Method: We propose a rich modeling of genic interactions with an loglyy and show how it can be used within an IE system.
The ontology is seen as a language specifying a normalizgdgentation of text. First, IE is performed by extractingtéances
from Natural Language Processing (NLP) modules. Then, deduinferences on the ontology language are completatinaw
instances are derived from previously extracted ones.rdnfe rules are learnt with an Inductive Logic Programmih) al-
gorithm, using the ontology as the hypothesis language,itaridstantiation on an annotated corpus as the exampleidaysy
Learning is set in a multi-class setting to deal with the ipldtontological relations.

Results:We validated our approach on an annotated corpus of gergetiption regulations in thBacillus subtilisbacterium. We
reach a global recall of 89.3% and a precision of 89.6%, wiigh Bcores for the ten semantic relations defined in the ogyol

Key words: Information Extraction, Ontology, Machine Learning, Gehiteractions, Inductive Logic Programming

1. Introduction on precision by extracting specific interactions, for insebe-
tween proteins [2, 5, 1, 6, 7], and do not handle other biakmlgi
The elucidation of molecular regulations between genes anghenomenons; whereas other stress on recall using geseral r
proteins, as well as the physical interactions associatét t |ations [8, 9], but face greater lexical variability whichakes
is essential in the understanding of living organisms, &y th extraction more difficult. However, this does not take inte a

underlie the control of biological functions. However, ithe count the Comp|exity of the data processed by b|0|og|5m su
knowledge is usually not available in structured formatsxfr  as biological pathways [10].

widely accessed international databanks, which contaiere
annotations of genomes. This is basically concerning dalta c . S
lections such as EMBL/GenBank for annotated DNA sequence\éey this complex kpowledge, t.)Ut the|r ut|I|zat|on n lEZ loey]
of complete genomes, SwissProt/UniProt for annotatedprot mere cqnceptual h|er§1rch|es, IS still a resgar'ch |ssu¢1|strpa-
sequences, or KEGG, which is dedicated to the metabolism dteh we introduce a rich modeling of genic interactions, and

the cells and other biological processes. Contrary to thist way to fully integrate an ontology within an IE platform_. We_
of the descriptions of molecular interactions are scatter¢he refer_ to an ontolo.gy as a.thesaurus (goncept and re".”‘“‘m hie
unstructured texts of scientific publications. archies), along with a logical theory given as a set of infeee

For this reason, numerous works in recent years have beéHIeS (sqe €.g. [11]). The ontolqu is seen as a spepificaﬁon
carried out to design Information Extraction (IE) systems,a normalized and decontextualized text representationath N

which aim at automatically extracting genic interactior-ne ural Lang_uage Processing (NLP? pipeline extracts a firsoiet
works from bibliography [1, 2, 3, 4]. Relations between bio- ontology instances, then ded.u.ct|ve mfe_rences on the ogyol
logical entities are multiple (protein and gene regulagiddNA language are completed, dgnvmg more mstqnces. .IE ceatet
binding, phosphorylation, homology relations, etc.). Siée- a set of concept instances linked by semantic relations.
less, most IE systems are limited to extract unique relation Using several well-defined relations gives the opportuttity
and face a trade-off between recall and precision. Somesfocunore accurately model biological domains, and inferentzsru

Ontologies are a suitable formal representation able te con
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reasoning on the ontology are able to gather information othand a “sigma D”protein All the synonyms have to share
erwise scattered throughout bibliographical databasas$,t@ the same representation (e.g. “EsigmaD” or “RNA polymerase
discover knowledge not explicitly stated in texts. Infamen sigma D”). We emphasize the terminology status: while, & th
rules may be crafted by the domain expert as part of the ontoprevious expression, some approaches (e.g. [8]) only &g th
ogy design, or automatically learnt by Machine Learning ML “sigma D” protein and inaccurately regard it as the interact
technigues. We focus on this latter case which has been weling entity, we normalize the full term (“RNA polymerase con-
motivated in the context of IE systems, as a generic comgoneiaining sigma D"). Furthermore, whereas most terminolabic
to easily adapt them to new domains (e.g. [12, 13]). Howevenvorks focus on nouns, we handle verbal terms: the terms-“tran
as opposed to previous approaches, learning takes plabe in tscription by EsigmaD” and “transcribed by EsigmaD” will be
ontology language to produce deductive rules which holtién t identically represented.
domain ontology. From a ML point of view, the learner uses [8, 20] use respectively a general “genic interaction”tieta
the ontology as hypothesis language, and instantiatiotiseof or a very specific one, as trade-offs between recall and preci
ontology as example language. sion. The ontology allows to define various conceptual rela-
However, as stated by [14], ontologies are not necessariltions: a transcription event between EsigmaD and degR, and
useful to IE, in the sense that the granularity of the clabses a more general regulation between the mecA mutant and the
tween a conceptual and a sub-language model may differ. WegR gene.
deal with this problem by introducing, along with the ontpjp Furthermore, we do not only provide rules processing on a
a Lexical Layer, i.e. relations and classes in an intermedia syntactico-semantic level [19, 21, 22], but using ontolagy
level of abstraction between raw text and concept. This is irour representation language, we can reason at a semaric lev
line with [15, 16], who propose a lexicon model to map expres{see, for instance, the use of inference rules in OWL [23]). In
sions in Natural Language to their corresponding ontoklgic the previous sentence, this allows to deduce that, alththugh
structure, although none of them address it in an IE context. second interaction of the example involves an inhibitidaevgl
The article will firstly discuss related works using ontdkgy  of its expression is low”), as a mutant gene is implied, mecA
and ML techniques to support IE systems in section 2. In thend degR are linked by an activation.
following section, we will present our approach where IE is Ontologies become preeminent in the IE field, while most
fully specified through the design of a domain ontology alongauthors exploit it punctually. Their structure may offerasis
with its lexical layer. We will describe how ML techniquesxca to craft extraction rules [7, 3], or a useful disambiguatien
be applied on the ontology instantiations from a corpusdale source. For instance, [24, 25] use it to solve corefereri2gs,
deductive rules that can infer new instances during theaextr selects relevant syntactic graphs from a parser using the-st
tion process in section 4. Next, we will validate our arcttitee  ture of an ontology; [7] stress the benefit of an ontology teeso
by defining an ontology of genes transcription in bactenw a some syntactical ambiguities relying on concepts aritynbst
by learning inference rules to extract genic interactionsfa  |E pipelines, an ontology (as a conceptual hierarchy) ig apt
corpus of the LLLO5 challenge (section 5). We will discussplied to enrich the text with semantic categories [21, 20h O
how a complex domain ontology helps extracting informationthe contrary, we used the ontology structure throughouéxhe
beyond current systems’ capabilities. Finally, we will cludle  traction process, as a language to make inferences from text

and give perspectives on our work. ML techniques have often been used to acquire resources for
IE systems, like extraction patterns or rules [12, 13, 2,25],
2 Reated works which are related to our approach. However, they are limited

to learn from enriched text representation, as opposed tto ou
The unifying purpose of the ontology allows us to integrateapproach, where learning takes place in the ontology lagmgua
several aspects not simultaneously handled in related swork

Consider the sentence: 3. Knowledge representation language of an IE system

The degR gene is transcribed by RNA polymerase contain- based on an ontology
ing sigma D, and the level of its expression is low in a

mecA-deficient mutant, (PMID: 10486575.) Historically, following the “General Theory of Terminolgg

created by Eugene Wgter from the late 1930s, a term is defined
Extracting the interaction-related knowledge involvesgesses as a word or a group of words which correspond to a concept
occurring in multiple abstraction levels. The biological-e in a pre-existing conceptual model. More recently, someshav
tities have to be recognized, and properly represented.- Sintriticized this doctrine [27, 28]: the conceptual model &inel
plest lexical variations are captured by Named Entitiesdgec terms are not seen anymore as absolute notions, but as the re-
nition (NER), as extensively discussed in [17, 18]. A term-sult of an artificial and application-oriented construotjoro-
concept connection is assumed by several systems, which usess based on a domain-related corpus. In other words,rthe te
mere conceptual hierarchies, without relation [19, 8, 7¢réJ  minology is notdiscovered but constructed We follow this

we normalize a term as a subgraph of ontology instances, idatter conception: our conceptual model, the ontologyeins
cluding domain knowledge: in the example, the term “RNAas a specification of a normalized representation of a text, n
polymerase containing sigma D” may be represented@s-a  glecting some aspects of the discourse, and keeping soree oth
tein complexrelation between an “RNA polymerasehzyme ones. By designing it, we specify an IE system. Hence, the
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IE process is equivalent to an automatic semantic annatafio “transcription” and “promoter”. Then, inference rules baax-
text, into which sentence fragments (terms) are normalésed tracted from text at'from” (“transcription from”) semantic re-
ontology instances. lation between them. Thep“deg relation, in bold line in the
middle of the figure, is inferred from instances previousty e
tracted from the text, by applying deductive rules on the nor
malized text representation. This representation fits pleeis
fications of the ontology shown in figure 1. Such a rule is the
following:

3.1. Ontology as a representation language

Figure 1 exemplifies a simplified ontology of transcription
in bacteria. In this model, the “transcription” of a getiet( )
from a promoter‘t _from”) may happgn due to. the action of a pdenB,A) « t.byC, A),
protein (t _by”). Also, a protein may bind to a sitéh(_to”) of a

promoter {s _of”), meaning that a promoter of a gerip (of”) tf rorp(C, B).
may be dependent of a proteitp(dep”), and therefore an in- protein(A),
teraction exists between a protein and a géiie)( Further- promote(B),

more, a protein results from the expression of a gépmd-
uctof”), and a protein complex results from the assembly of
several proteins‘¢éomplex with”). It means that “if protein A is responsible for a transcriptio
event C from promoter B, then B is dependent on (may be
bound by) protein A’. Additionally, instances in dotteddm
result from domain knowledge: the “GerE” protein is encoded
by the “gerE” gene, and the “E sigmaK” protein is a RNA poly-
merase complexed with the “SigK” protein, itself encoded by
the “sigK” gene.

transcriptionC).

bio_object

3.2. Features choice for text extraction

Inferences from text require more features. Basically; nor
malizing a text to a conceptual representation is equivaten
gathering multiple lexical forms into a single semanticreep
sentation. Hence, the difficulty of the task is related todie-
plexity of the encountered types of variations. Methods-aim
ing at capturing orthographical and morphological vaiasi
are related to Named Entities Recognition (NER), described
Figure 1: Example of ontology. Labels of “&’ relations are omitted. [17, 18]. The more complex types of variations are related-to
lational IE, and processing them involves using NLP tooksrto

Figure 2 shows, on an example sentence, the result of tHach the text with syntactic and gemantic features. A firsbée
IE system provided as instances of the ontology. Note thatVOrks builds syntactico-semantic parsers [3, 29, 20, 7greas
as a normalized representation of the text, not all the mearf Second class of systems uses full parsers [30, 22, 19, 8]. Th
ing is kept: for instance, we do not stress anymore about thitter implies two distinct modules [30]: a linguistic mdelu
“DNA binding” nature of the “GerE” protein; the fact that the that handles domain-independent structural aspects cfetie
transcription happens from “several” promoters is loste - tence (possibly adapted as in [31]); and an |E module, wisch i
a task-dependent parameter. We follow this general approac
which does not involve designing a new syntactico-semantic

p_dep
s_of

gerE 7 sigK Ak =T - 2 L :
X-- ~Z--" product_o parser for each new application. This impacts the design of
; product_of p_dep complex_with the lexical layer we describe in the next section.

1 — -

T > 3.3. Lexical Layer
t_by t_from p_dep The goal of our IE system is to automatically produce, from
The DNA binding protein GerE Natural Language (NL) inputs, a set of instances compliant
stimulates transcription with the domain ontology. This requires complex mappings
from several promoters used by E sigmaK between expressions in NL to ontology structures [15], goin

beyond mere class/label linking (like thalf : | abel prop-
erty of RDF [32], or the more complex properties of SKOS
Figure 2: Example of a semantic representation resulting fremE system. [16]). To bridge the gap, some authors introduce lexicon-mod
els [15, 33] to ground the semantic information to the lirsgai
mantic relations at the bottom of the figure, in plain lineyeve domain, although not in an IE context.
extracted from text. From the term “transcription from gave We follow this approach by providing lexical layeralong
promoters”, a terminological module has extracted ingtarmd ~ with the ontology. However, where the previous authorsfell



a linguistic point of view, by proposing a model to link ontol . _~bio_actofre _ }

ogy structures to lexical descriptions, we adopt an apiptioa P T
oriented perspective. Our lexical layer is a task-depengan - i N Tl
rameter, it comprises classes and relations required katiie
output of NLP modules with the ontology. Its purpose is to-pro

vide a representation with sufficient expressiveness fumiefit

inference. These classes and relations define normalizagiio  Figure 5: Definition of a syntactico-semantic feature (dibtiee) in the ontol-
text in intermediate stages of abstraction, between ratarek ~ °%

conceptual level.

For instance, a relation of the lexical layer may associate @hich hold in the domain ontology and in the Lexical Layer.
SyntaCtiC label with an inStance, ora SyntaCtiC relatiomvieen A domain expert has to provide |earning examp|es defined as
two instances (subjectqubj” ) and object {obj” ) relations in  jnstantiations of the ontology. He creates instances ofepts
figure 3). The lexical layer is described in the same langaage and relations of the ontology from a corpus, some instances
the ontology, so the inference rules can benefit from it. rinfe being output by NLP modules. Target relations are specified t
ence rules do not only need semantic features, but alsoctinta pe logically implied by the inference rules. Figure 6 exeifigs
ones. such annotation, the dashed lines corresponding to retat®
learn.

subj:V-N obj:V-N comp_from:N-N

transcription ). _ _ _ xy(promoter
- t_from =
Sl Sl _--"tby - .-

semmmm——n T Tmeel ==
transcription K 3

Figure 6: Learning example provided by a semantic annotation.

Figure 3: Sample of the lexical layer (elements in dotted ladehg with the

domain ontology. Learning from such a relational language is known as Induc-

tive Logic Programming (ILP) [34, 35], where the hypothesis
and the example languages are subsets of first-order logist M
learners handle learning in Datalog which is expressiveigho

for the task. In Datalog, learning examples are represeadged
closed Horn clauses, where the head of the clause is the targe
relation to learn [36]. For instance, the example of théyt
relation in figure 6 will be equivalently represented as tble f
lowing:

tby(id1,id2) « subjv.n(id2,id3),
obj.v_n(id1, id3),

Figure 4 illustrates a final representation combining sdiman
features (a protein instance “GerE"), and syntactic onesifa
ject “subj:V-N" relation between “GerE” and “stimulate”na
instance of the “regulation” concept). The lexical layesoal-

subj:V-N comp_from:N-N comp_by:V-N

RNA polymerase
¢

obj:V-N subj:V-PASS-N

complex_with

The DNA binding protein GerE

[stimulates|transcription transcription(id1),
from several promoters by E sigmaK protein(id2),
regulation(id3).
Figure 4: Example of a text representation As several relations have to be learnt, learning is set imo t

multi-class setting where each target relation is learritiin,
lows to introduce classes which may be semantically ireelev  ysing the other ones as negative examples. Note that all the
from a domain ontology point of view but factorize conceptsontological knowledge is given as background knowledge to
that share common properties, and thus, factorize together  the |LP algorithm, like the generalisation relation between-
erwise multiple inference rules. We exemplify this prooedu cepts. For instance, specifying that a protein complex i®a p

in figure 5, which shows the definition of a “bi0|0gical actor” tein, and a protein or a RNA are a gene product' will be repre-
(bio_actor) class. This class is semantically irrelevant, but &ented by a clausal theory:

“gene”, a “protein” and a “genes family” may share common

syntactical contexts. protein(A) < protein.complexA).
geneproduc{A) < protein(A).
4. Acquisition of inferencerules geneproductA) < rna(A).

As opposed to previous approaches (see section 2), learnifrocessing an example involving a protein complex or a RNA,
takes place in the ontology language to produce deductiegs ru the learning algorithm now has the opportunity to choose the

4



most relevant generality level (e.g. “protein complex’rdp s_of

tein” or “gene product”) to learn the rules. ,
expression of yvyD -35 sequence of the promoter

5. Results

p_dep (promoter
We validate the architecture of our IE system by designing

an ontology of molecular interactions and regulationsdutse ~ SigmaA recognizes promoter elements
learn inference rules from a corpus concerning the trapisoni
of genes in theBacillus subtilismodel bacterium. Therefore, /
the ontology is mainly oriented about the description ofacst t.by complex_with @
tural model of genes, the mechanisms of their transcrip&od
interactions and regulations associated to it. As a matteict
the ontology is catching a model of gene transcription tocihi
authors implicitly refer in their publications.

product_of,

transcription by final sigma(A)-RNA polymerase

. . . Figure 7: Normalisation of phrases as ontology instanceshthlines repre-
5.1. Ontology encoding biological knowledge sent domain knowledge relations).

The ontology includes some forty concepts, mainly about bi-
ological objects (gene, promoter, binding site, RNA, opero (
protein, protein complex, gene and protein families, etmy
biological events (transcription, expression, regulatibind-

p_of) cotC. The well-defined nature of the involved relations
allows to deduce that the cotC promoter is dependertefp

; ; i : of SpollID, as the latter binds to one of its sites. From secte
ing, etc.). In the following, we will focus on the ten relaiof 3, which asserts that cotC transcription is activated byEGer

the ontolqu. i it is possible to deduce that it happens from the cotC promote
We defined ten relations, from the most general, such as taff,from). This latter deduction permits to conclude that thi€co

get event (“et”) and interaction (“i"), to the ones specifigene promoter is dependent (gep) of GerE.

transcription (especially relations concerning tramg@n and If less descriptive knowledge is needed, it is easy, by djini
promoters). Table 1 lists the set of relation names with an exy general transitive relation, to provide a database wétlgtmic
amplt_a of term. For instance,_ the third line i_n the table_ St_ateinteracting couples (spolliD,cotC), (gerE,cotC), (geigk)
that, n tr,]e sentenC(_a “EBerE E)lnds near the §|gK transcriptio and (sigK,cotC). Relations between interacting entitiagl a
start site”, the protein “GerE” (in bold font) binds to{b) the  ae5 are provided by domain knowledge, as illustratedein th
site “transcriptional start site” (in italics). Figure 7ats some figure with “sigmak RNA polymerase”. The protein complex

qor_mallsatlons of phrases involving those relations wittan- is known to include protein sigmaK, which is the product @ th
tiations of sub-graphs of the ontology. sigk gene

Using an ontology including inference rules, to describe
some aspects of the transcription, allows to model biokigic g o Learning the inference rules
knowledge more accurately. This is exemplified in figure 8,
which shows the instances extracted from four sentences Fr
the first sentence, inference rules provide the followingmed-
ization: SpollID binds to (o) a site of (sof) the promoter of

We want to validate the interest of using multiple relations
defined with an ontology, to learn inference rules by ML. In or
der to test the ontology relevance, we reused the corpusof th

| Name | Example |

et expression of yvyD

i KinC was responsible for SpoOATRoduction
b_to GerE binds near the sighkranscriptional start site
s.of -35 sequencef the promoter

rm yvyDis a member of sigmaBegulon

r.dep | sigmaBregulon

p-of thearaE promoter

p-dep | sigmaArecognizepromoter elements

t_from | transcription from the SpoOA-dependeptomoter
t_by transcription by final sigma(A)-RNA polymerase

Figure 8: Extracted network from: (1) SpolllD binds strongytwo sites in
Table 1: List of relations defined in the ontology, and phresamples (sub-  the cotC promoter region; (2) SpolllD represses cotC traptien by sigma(K)
terms of the relation are shown in italic and bold fonts). Télations are: event  RNA polymerase; (3) Transcription of cotC by sigmakK RNA polyas is
target (et), general interaction relation (i), bind tot@), site of (sof), regulon  activated by GerE; (4) GerE represses transcription froensigk promoter.
member (rm), regulon dependencei@p), promoter of (ff), promoter depen-  Dashed lines represent domain knowledge relations, and lingsl inferred
dence (pdep), transcription from (from), transcription by (by). ones.



Relation | Recall (%) | Prec. (%)] Numb.

LLLOS5 challenge [8]. It contains 160 sentences, in which we

annotated terms, concepts and relations; 587 relations laer et 95.8 99.4 168
beled. This corpus provides dependency like parsing oféhe s i 76.4 73.5 161
tences, following a normalised set of syntactic relatiodig],[ b-to 75.0 90.0 14
with resolved coreferences. Output of NLP tools is complex s.of 61.7 80.7 21
and heavily noisy, making errors difficult to trace. Thusfde rm 90.0 90.0 17
cus exclusively on the rules acquisition task, we only cttose rdep 95.0 100.0 12
allow as parameters the representation choice and thdrigarn p-of 87.5 85.2 39
algorithm, the remaining having to be constants and as noise p-dep 91.5 94.3 47
less as possible. Hence, we enriched and manually curated th tfrom 85.0 96.7 18

t_by 65.5 82.6 44

linguistic annotations of the LLLO5 corpus (parse treesi-sy
tactic categories, lemmas). The representation of the pbemm
was defined following the procedure described in 3.3. We inTable 2: Multi-class learning results, for ten fold crostidetion averaged ten
troduced Syntactic relations between classes, and Smact times, with Recall and Precision in %, and the Number of exanipieslation.
semantic classes, meant for factorizing entities which may

share the same syntactical context: namely, gene and iprotei
gene family and protein family, transcription and expressi
events. Syntactic relations were limited to the membersef t
syntactic path between the two entities implied in each sgima
relations. This was proved to be a useful bias in severaliprev

ous studies (see, e.g., [38]). Eventually, the annotategtiso the ten conceptual relations into a positive label, and as/sh

he | i ) . ) C
was used to proQucet € learning set . . .in table 3, we obtain good recall and precision, in line with t
To help learning, we added a class of non-interacting bi-

ological entities which was generated using thesed-world bgesioresults reported on the original LLLO5 challenge (sge e
assumptionmeaning that everything not tagged as true in the[ ’Thil).corroborates the benefit of using multiple specific-rela
corpus s false. This assumption allows to use any untagged ttions to model biological knowledge, which involves lesgeo
ples of arguments as negative examples of the target nesatio 9 ge,

For example, according to figure 6py(transcription,GerE) ple_x rules. For instance, |n“the unique “genic interactioer
; " . lation case, the sentences “sigma(H)-dependent expres§io
will be a positive example of the_by relation, whereas

t_by(GerE transcriptionill be a negative one According to Spo0A” and "sigma(K)-dependent cwiH gene” would need two

section 4, this negative example is represented as thevialijp rules to be matched (typically, patterns like "A-dependex

: . pression of B” and “A-dependent B"); however, in the mulksipl
Horn clause (only the order of arguments differs): relation case, the first sentence would be matched by the pat-

t_by(id2,id1) « subjv_n(id2,id3), terns “A-dependent B” (“i" relation) and “B of C” (“et” rela-
obj.v.n(id1, id3), t?on), and th(_a second sentence by “A_—dependent B” (“i" rela-
tion). Thus, in the second case, the “i” rule matches two sen-
tences, where two “genic interaction” rules were needed.

As expected, the more specific relations (edep, rm), as-
sumed to have little lexical variability, are rather triMia learn,
and reach especially high scores. On the contrary, more gen-
eral ones (i, by), exhibiting greater variability, are noticeably
harder to learn. We also experiment the two-class casejmgerg

transcription(idl),
protein(id2),

regulatior(id3). 6. Conclusion and Per spectives

We applied the multi-class ILP learner8prAL [39] to ac- ) o

quire a set of rules for each relation; the non-interactiagz Ve introduced an ontology-based IE platform, which is not
was used as negative examples each time but was not learfifnited to extract a single interaction, but allows to hanutiul-
From the 587 relation examples, we excluded 46 of them, aliPle biological relations. Specific relations are definacan
they were matched by expert rules which exhibited recursio@ntelogy, which is an appropriate formalism to model bielog
patterns like the transitivity of the general interactietation ~ ical knowledge. We showed how a domain ontology allows
“i”, Learning such recursive dependencies is a very intergs 2cC€ss to knowledge beyond the capability of current IE sys-
follow-up but it is out of the scope of the paper. We providedtems’ by alllowmg mferences on the semantic Ieyel as vyell as
PROPAL with 541 examples from ten classes, and 10155 fronfh€ syntactico-semantic level, thanks to the addition afx |

the non-interacting class. cal layer. |E is performed by first extracting a set of insemc
from NLP modules, then deductive inferences on the ontology
5.3. Information extraction language are performed to complete the extraction provéss.

validated the approach by designing an ontology of genéar-int
actions, and used Machine Learning techniques to learn-infe
ence rules from @acillus subtiliscorpus. From a ML point

of view, we use the ontology as hypothesis language, and in-
stances of this ontology as example language.

LIDs are substituted by terms for clarification. In the future, we plan to extend the ontology to handle more

We used ten-fold cross-validation (stratified), averaged t
times, to evaluate recall and precision of the extractiatess.
The results are shown in table 2.




[ Recall (%) | Prec. (%)] [13]
[ 893 [ 896 |

Table 3: Results for two classes learning, using ten foldk@lidation aver-

aged ten times. [14]

. o N - 15
phenomenons, especially inhibition/activation disiimict and el

non-genic actors (e.g. environmental factors). Also, fram
operational perspective, we aim at fully automatizing org-s  [16]
tem by linking the lexical layer to an available NLP pipeline
before evaluating its performances. Notably, as the repres
tation choice is a crucial step in ML, its declarative defomit [18]
through the ontology is a significant contribution. We théamp
to work on text representation, through a comparative stidy
several lexical layers.

(17]

(19]
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