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Abstract

Introduction: Information Extraction (IE) systems have been proposed in recent years to extract genic interactions from biblio-
graphical resources. They are limited to single interaction relations, and have to face a trade-off between recall and precision, by
focusing either on specific interactions (for precision), or general and unspecified interactions of biological entities (for recall). Yet,
biologists need to process more complex data from literature, in order to study biological pathways. An ontology is an adequate
formal representation to model this sophisticated knowledge. However, the tight integration of IE systems and ontologies is still a
current research issue,a fortiori with complex ones that go beyond hierarchies.
Method: We propose a rich modeling of genic interactions with an ontology, and show how it can be used within an IE system.
The ontology is seen as a language specifying a normalized representation of text. First, IE is performed by extracting instances
from Natural Language Processing (NLP) modules. Then, deductive inferences on the ontology language are completed, and new
instances are derived from previously extracted ones. Inference rules are learnt with an Inductive Logic Programming (ILP) al-
gorithm, using the ontology as the hypothesis language, andits instantiation on an annotated corpus as the example language.
Learning is set in a multi-class setting to deal with the multiple ontological relations.
Results:We validated our approach on an annotated corpus of gene transcription regulations in theBacillus subtilisbacterium. We
reach a global recall of 89.3% and a precision of 89.6%, with high scores for the ten semantic relations defined in the ontology.
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1. Introduction

The elucidation of molecular regulations between genes and
proteins, as well as the physical interactions associated to it,
is essential in the understanding of living organisms, as they
underlie the control of biological functions. However, their
knowledge is usually not available in structured formats from
widely accessed international databanks, which contain generic
annotations of genomes. This is basically concerning data col-
lections such as EMBL/GenBank for annotated DNA sequences
of complete genomes, SwissProt/UniProt for annotated protein
sequences, or KEGG, which is dedicated to the metabolism of
the cells and other biological processes. Contrary to this,most
of the descriptions of molecular interactions are scattered in the
unstructured texts of scientific publications.

For this reason, numerous works in recent years have been
carried out to design Information Extraction (IE) systems,
which aim at automatically extracting genic interaction net-
works from bibliography [1, 2, 3, 4]. Relations between bio-
logical entities are multiple (protein and gene regulations, DNA
binding, phosphorylation, homology relations, etc.). Neverthe-
less, most IE systems are limited to extract unique relations,
and face a trade-off between recall and precision. Some focus

on precision by extracting specific interactions, for instance be-
tween proteins [2, 5, 1, 6, 7], and do not handle other biological
phenomenons; whereas other stress on recall using general re-
lations [8, 9], but face greater lexical variability which makes
extraction more difficult. However, this does not take into ac-
count the complexity of the data processed by biologists, such
as biological pathways [10].

Ontologies are a suitable formal representation able to con-
vey this complex knowledge, but their utilization in IE, beyond
mere conceptual hierarchies, is still a research issue. In this pa-
per, we introduce a rich modeling of genic interactions, anda
way to fully integrate an ontology within an IE platform. We
refer to an ontology as a thesaurus (concept and relation hier-
archies), along with a logical theory given as a set of inference
rules (see e.g. [11]). The ontology is seen as a specificationof
a normalized and decontextualized text representation. A Nat-
ural Language Processing (NLP) pipeline extracts a first setof
ontology instances, then deductive inferences on the ontology
language are completed, deriving more instances. IE results are
a set of concept instances linked by semantic relations.

Using several well-defined relations gives the opportunityto
more accurately model biological domains, and inference rules
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reasoning on the ontology are able to gather information oth-
erwise scattered throughout bibliographical databases, and to
discover knowledge not explicitly stated in texts. Inference
rules may be crafted by the domain expert as part of the ontol-
ogy design, or automatically learnt by Machine Learning (ML)
techniques. We focus on this latter case which has been well-
motivated in the context of IE systems, as a generic component
to easily adapt them to new domains (e.g. [12, 13]). However,
as opposed to previous approaches, learning takes place in the
ontology language to produce deductive rules which hold in the
domain ontology. From a ML point of view, the learner uses
the ontology as hypothesis language, and instantiations ofthe
ontology as example language.

However, as stated by [14], ontologies are not necessarily
useful to IE, in the sense that the granularity of the classesbe-
tween a conceptual and a sub-language model may differ. We
deal with this problem by introducing, along with the ontology,
a Lexical Layer, i.e. relations and classes in an intermediate
level of abstraction between raw text and concept. This is in
line with [15, 16], who propose a lexicon model to map expres-
sions in Natural Language to their corresponding ontological
structure, although none of them address it in an IE context.

The article will firstly discuss related works using ontologies
and ML techniques to support IE systems in section 2. In the
following section, we will present our approach where IE is
fully specified through the design of a domain ontology along
with its lexical layer. We will describe how ML techniques can
be applied on the ontology instantiations from a corpus to learn
deductive rules that can infer new instances during the extrac-
tion process in section 4. Next, we will validate our architecture
by defining an ontology of genes transcription in bacteria, and
by learning inference rules to extract genic interactions from a
corpus of the LLL05 challenge (section 5). We will discuss
how a complex domain ontology helps extracting information
beyond current systems’ capabilities. Finally, we will conclude
and give perspectives on our work.

2. Related works

The unifying purpose of the ontology allows us to integrate
several aspects not simultaneously handled in related works.
Consider the sentence:

The degR gene is transcribed by RNA polymerase contain-
ing sigma D, and the level of its expression is low in a
mecA-deficient mutant. (PMID: 10486575.)

Extracting the interaction-related knowledge involves processes
occurring in multiple abstraction levels. The biological en-
tities have to be recognized, and properly represented. Sim-
plest lexical variations are captured by Named Entities Recog-
nition (NER), as extensively discussed in [17, 18]. A term–
concept connection is assumed by several systems, which use
mere conceptual hierarchies, without relation [19, 8, 7]. Here,
we normalize a term as a subgraph of ontology instances, in-
cluding domain knowledge: in the example, the term “RNA
polymerase containing sigma D” may be represented as apro-
tein complexrelation between an “RNA polymerase”enzyme

and a “sigma D”protein. All the synonyms have to share
the same representation (e.g. “EsigmaD” or “RNA polymerase
sigma D”). We emphasize the terminology status: while, in the
previous expression, some approaches (e.g. [8]) only tag the
“sigma D” protein and inaccurately regard it as the interact-
ing entity, we normalize the full term (“RNA polymerase con-
taining sigma D”). Furthermore, whereas most terminological
works focus on nouns, we handle verbal terms: the terms “tran-
scription by EsigmaD” and “transcribed by EsigmaD” will be
identically represented.

[8, 20] use respectively a general “genic interaction” relation
or a very specific one, as trade-offs between recall and preci-
sion. The ontology allows to define various conceptual rela-
tions: a transcription event between EsigmaD and degR, and
a more general regulation between the mecA mutant and the
degR gene.

Furthermore, we do not only provide rules processing on a
syntactico-semantic level [19, 21, 22], but using ontologyas
our representation language, we can reason at a semantic level
(see, for instance, the use of inference rules in OWL [23]). In
the previous sentence, this allows to deduce that, althoughthe
second interaction of the example involves an inhibition (“level
of its expression is low”), as a mutant gene is implied, mecA
and degR are linked by an activation.

Ontologies become preeminent in the IE field, while most
authors exploit it punctually. Their structure may offer a basis
to craft extraction rules [7, 3], or a useful disambiguationre-
source. For instance, [24, 25] use it to solve coreferences,[22]
selects relevant syntactic graphs from a parser using the struc-
ture of an ontology; [7] stress the benefit of an ontology to solve
some syntactical ambiguities relying on concepts arity. Inmost
IE pipelines, an ontology (as a conceptual hierarchy) is only ap-
plied to enrich the text with semantic categories [21, 20]. On
the contrary, we used the ontology structure throughout theex-
traction process, as a language to make inferences from text.

ML techniques have often been used to acquire resources for
IE systems, like extraction patterns or rules [12, 13, 2, 21,26],
which are related to our approach. However, they are limited
to learn from enriched text representation, as opposed to our
approach, where learning takes place in the ontology language.

3. Knowledge representation language of an IE system
based on an ontology

Historically, following the “General Theory of Terminology”
created by Eugene Ẅuster from the late 1930s, a term is defined
as a word or a group of words which correspond to a concept
in a pre-existing conceptual model. More recently, some have
criticized this doctrine [27, 28]: the conceptual model andthe
terms are not seen anymore as absolute notions, but as the re-
sult of an artificial and application-oriented construction pro-
cess based on a domain-related corpus. In other words, the ter-
minology is notdiscovered, but constructed. We follow this
latter conception: our conceptual model, the ontology, is seen
as a specification of a normalized representation of a text, ne-
glecting some aspects of the discourse, and keeping some other
ones. By designing it, we specify an IE system. Hence, the
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IE process is equivalent to an automatic semantic annotation of
text, into which sentence fragments (terms) are normalizedas
ontology instances.

3.1. Ontology as a representation language

Figure 1 exemplifies a simplified ontology of transcription
in bacteria. In this model, the “transcription” of a gene (“et” )
from a promoter (“t from” ) may happen due to the action of a
protein (“t by” ). Also, a protein may bind to a site (“b to” ) of a
promoter (“s of” ), meaning that a promoter of a gene (“p of” )
may be dependent of a protein (“p dep”), and therefore an in-
teraction exists between a protein and a gene (“i” ). Further-
more, a protein results from the expression of a gene (“prod-
uct of” ), and a protein complex results from the assembly of
several proteins (“complex with” ).

Figure 1: Example of ontology. Labels of “isa” relations are omitted.

Figure 2 shows, on an example sentence, the result of the
IE system provided as instances of the ontology. Note that,
as a normalized representation of the text, not all the mean-
ing is kept: for instance, we do not stress anymore about the
“DNA binding” nature of the “GerE” protein; the fact that the
transcription happens from “several” promoters is lost. The se-

Figure 2: Example of a semantic representation resulting fromthe IE system.

mantic relations at the bottom of the figure, in plain line, were
extracted from text. From the term “transcription from several
promoters”, a terminological module has extracted instances of

“transcription” and “promoter”. Then, inference rules have ex-
tracted from text a “t from” (“transcription from”) semantic re-
lation between them. The “p dep” relation, in bold line in the
middle of the figure, is inferred from instances previously ex-
tracted from the text, by applying deductive rules on the nor-
malized text representation. This representation fits the speci-
fications of the ontology shown in figure 1. Such a rule is the
following:

p dep(B,A) ← t by(C,A),

t f rom(C, B),

protein(A),

promoter(B),

transcription(C).

It means that “if protein A is responsible for a transcription
event C from promoter B, then B is dependent on (may be
bound by) protein A”. Additionally, instances in dotted lines
result from domain knowledge: the “GerE” protein is encoded
by the “gerE” gene, and the “E sigmaK” protein is a RNA poly-
merase complexed with the “SigK” protein, itself encoded by
the “sigK” gene.

3.2. Features choice for text extraction

Inferences from text require more features. Basically, nor-
malizing a text to a conceptual representation is equivalent to
gathering multiple lexical forms into a single semantic repre-
sentation. Hence, the difficulty of the task is related to thecom-
plexity of the encountered types of variations. Methods aim-
ing at capturing orthographical and morphological variations
are related to Named Entities Recognition (NER), describedin
[17, 18]. The more complex types of variations are related tore-
lational IE, and processing them involves using NLP tools toen-
rich the text with syntactic and semantic features. A first set of
works builds syntactico-semantic parsers [3, 29, 20, 7], whereas
a second class of systems uses full parsers [30, 22, 19, 9]. The
latter implies two distinct modules [30]: a linguistic module,
that handles domain-independent structural aspects of thesen-
tence (possibly adapted as in [31]); and an IE module, which is
a task-dependent parameter. We follow this general approach
which does not involve designing a new syntactico-semantic
parser for each new application. This impacts the design of
the lexical layer we describe in the next section.

3.3. Lexical Layer

The goal of our IE system is to automatically produce, from
Natural Language (NL) inputs, a set of instances compliant
with the domain ontology. This requires complex mappings
between expressions in NL to ontology structures [15], going
beyond mere class/label linking (like therdf:label prop-
erty of RDF [32], or the more complex properties of SKOS
[16]). To bridge the gap, some authors introduce lexicon mod-
els [15, 33] to ground the semantic information to the linguistic
domain, although not in an IE context.

We follow this approach by providing alexical layeralong
with the ontology. However, where the previous authors follow
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a linguistic point of view, by proposing a model to link ontol-
ogy structures to lexical descriptions, we adopt an application-
oriented perspective. Our lexical layer is a task-dependent pa-
rameter, it comprises classes and relations required to link the
output of NLP modules with the ontology. Its purpose is to pro-
vide a representation with sufficient expressiveness for efficient
inference. These classes and relations define normalizations of
text in intermediate stages of abstraction, between raw text and
conceptual level.

For instance, a relation of the lexical layer may associate a
syntactic label with an instance, or a syntactic relation between
two instances (subject (“subj” ) and object (“obj” ) relations in
figure 3). The lexical layer is described in the same languageas
the ontology, so the inference rules can benefit from it. Infer-
ence rules do not only need semantic features, but also syntactic
ones.

Figure 3: Sample of the lexical layer (elements in dotted line)along with the
domain ontology.

Figure 4 illustrates a final representation combining semantic
features (a protein instance “GerE”), and syntactic ones (asub-
ject “subj:V-N” relation between “GerE” and “stimulate”, an
instance of the “regulation” concept). The lexical layer also al-

Figure 4: Example of a text representation

lows to introduce classes which may be semantically irrelevant
from a domain ontology point of view but factorize concepts
that share common properties, and thus, factorize togetheroth-
erwise multiple inference rules. We exemplify this procedure
in figure 5, which shows the definition of a “biological actor”
(bio actor) class. This class is semantically irrelevant, but a
“gene”, a “protein” and a “genes family” may share common
syntactical contexts.

4. Acquisition of inference rules

As opposed to previous approaches (see section 2), learning
takes place in the ontology language to produce deductive rules

Figure 5: Definition of a syntactico-semantic feature (dotted line) in the ontol-
ogy.

which hold in the domain ontology and in the Lexical Layer.
A domain expert has to provide learning examples defined as
instantiations of the ontology. He creates instances of concepts
and relations of the ontology from a corpus, some instances
being output by NLP modules. Target relations are specified to
be logically implied by the inference rules. Figure 6 exemplifies
such annotation, the dashed lines corresponding to relations to
learn.

Figure 6: Learning example provided by a semantic annotation.

Learning from such a relational language is known as Induc-
tive Logic Programming (ILP) [34, 35], where the hypothesis
and the example languages are subsets of first-order logic. Most
learners handle learning in Datalog which is expressive enough
for the task. In Datalog, learning examples are representedas
closed Horn clauses, where the head of the clause is the target
relation to learn [36]. For instance, the example of the “tby”
relation in figure 6 will be equivalently represented as the fol-
lowing:

t by(id1, id2) ← sub j v n(id2, id3),

ob j v n(id1, id3),

transcription(id1),

protein(id2),

regulation(id3).

As several relations have to be learnt, learning is set into the
multi-class setting where each target relation is learnt inturn,
using the other ones as negative examples. Note that all the
ontological knowledge is given as background knowledge to
the ILP algorithm, like the generalisation relation between con-
cepts. For instance, specifying that a protein complex is a pro-
tein, and a protein or a RNA are a gene product, will be repre-
sented by a clausal theory:

protein(A)← protein complex(A).

geneproduct(A)← protein(A).

geneproduct(A)← rna(A).

Processing an example involving a protein complex or a RNA,
the learning algorithm now has the opportunity to choose the
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most relevant generality level (e.g. “protein complex”, “pro-
tein” or “gene product”) to learn the rules.

5. Results

We validate the architecture of our IE system by designing
an ontology of molecular interactions and regulations, used to
learn inference rules from a corpus concerning the transcription
of genes in theBacillus subtilismodel bacterium. Therefore,
the ontology is mainly oriented about the description of a struc-
tural model of genes, the mechanisms of their transcription, and
interactions and regulations associated to it. As a matter of fact,
the ontology is catching a model of gene transcription to which
authors implicitly refer in their publications.

5.1. Ontology encoding biological knowledge

The ontology includes some forty concepts, mainly about bi-
ological objects (gene, promoter, binding site, RNA, operon,
protein, protein complex, gene and protein families, etc.), and
biological events (transcription, expression, regulation, bind-
ing, etc.). In the following, we will focus on the ten relations of
the ontology.

We defined ten relations, from the most general, such as tar-
get event (“et”) and interaction (“i”), to the ones specific of gene
transcription (especially relations concerning transcription and
promoters). Table 1 lists the set of relation names with an ex-
ample of term. For instance, the third line in the table states
that, in the sentence “GerE binds near the sigK transcriptional
start site”, the protein “GerE” (in bold font) binds to (bto) the
site “transcriptional start site” (in italics). Figure 7 shows some
normalisations of phrases involving those relations with instan-
tiations of sub-graphs of the ontology.

Using an ontology including inference rules, to describe
some aspects of the transcription, allows to model biological
knowledge more accurately. This is exemplified in figure 8,
which shows the instances extracted from four sentences. From
the first sentence, inference rules provide the following normal-
ization: SpoIIID binds to (bto) a site of (sof) the promoter of

Name Example

et expression of yvyD
i KinC was responsible for Spo0A˜Pproduction
b to GerE binds near the sigKtranscriptional start site
s of -35 sequenceof thepromoter
rm yvyD is a member of sigmaBregulon
r dep sigmaBregulon

p of thearaE promoter
p dep sigmaArecognizespromoter elements
t from transcription from the Spo0A-dependentpromoter
t by transcription by finalsigma(A)-RNA polymerase

Table 1: List of relations defined in the ontology, and phraseexamples (sub-
terms of the relation are shown in italic and bold fonts). The relations are: event
target (et), general interaction relation (i), bind to (bto), site of (sof), regulon
member (rm), regulon dependence (rdep), promoter of (pof), promoter depen-
dence (pdep), transcription from (tfrom), transcription by (tby).

Figure 7: Normalisation of phrases as ontology instances (dashed lines repre-
sent domain knowledge relations).

(p of) cotC. The well-defined nature of the involved relations
allows to deduce that the cotC promoter is dependent (pdep)
of SpoIIID, as the latter binds to one of its sites. From sentence
3, which asserts that cotC transcription is activated by GerE,
it is possible to deduce that it happens from the cotC promoter
(t from). This latter deduction permits to conclude that the cotC
promoter is dependent (pdep) of GerE.

If less descriptive knowledge is needed, it is easy, by defining
a general transitive relation, to provide a database with the genic
interacting couples (spoIIID,cotC), (gerE,cotC), (gerE,sigK)
and (sigK,cotC). Relations between interacting entities and
genes are provided by domain knowledge, as illustrated in the
figure with “sigmaK RNA polymerase”. The protein complex
is known to include protein sigmaK, which is the product of the
sigK gene.

5.2. Learning the inference rules

We want to validate the interest of using multiple relations,
defined with an ontology, to learn inference rules by ML. In or-
der to test the ontology relevance, we reused the corpus of the

Figure 8: Extracted network from: (1) SpoIIID binds stronglyto two sites in
the cotC promoter region; (2) SpoIIID represses cotC transcription by sigma(K)
RNA polymerase; (3) Transcription of cotC by sigmaK RNA polymerase is
activated by GerE; (4) GerE represses transcription from the sigK promoter.
Dashed lines represent domain knowledge relations, and boldlines inferred
ones.
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LLL05 challenge [8]. It contains 160 sentences, in which we
annotated terms, concepts and relations; 587 relations were la-
beled. This corpus provides dependency like parsing of the sen-
tences, following a normalised set of syntactic relations [37],
with resolved coreferences. Output of NLP tools is complex
and heavily noisy, making errors difficult to trace. Thus, tofo-
cus exclusively on the rules acquisition task, we only choseto
allow as parameters the representation choice and the learning
algorithm, the remaining having to be constants and as noise-
less as possible. Hence, we enriched and manually curated the
linguistic annotations of the LLL05 corpus (parse trees, syn-
tactic categories, lemmas). The representation of the examples
was defined following the procedure described in 3.3. We in-
troduced syntactic relations between classes, and syntactico-
semantic classes, meant for factorizing entities which may
share the same syntactical context: namely, gene and protein,
gene family and protein family, transcription and expression
events. Syntactic relations were limited to the members of the
syntactic path between the two entities implied in each semantic
relations. This was proved to be a useful bias in several previ-
ous studies (see, e.g., [38]). Eventually, the annotated corpus
was used to produce the learning set.

To help learning, we added a class of non-interacting bi-
ological entities which was generated using theclosed-world
assumption, meaning that everything not tagged as true in the
corpus is false. This assumption allows to use any untagged tu-
ples of arguments as negative examples of the target relations.
For example, according to figure 6,t by(transcription,GerE)
will be a positive example of thet by relation, whereas
t by(GerE,transcription)will be a negative one1. According to
section 4, this negative example is represented as the following
Horn clause (only the order of arguments differs):

t by(id2, id1) ← sub j v n(id2, id3),

ob j v n(id1, id3),

transcription(id1),

protein(id2),

regulation(id3).

We applied the multi-class ILP learner PROPAL [39] to ac-
quire a set of rules for each relation; the non-interacting class
was used as negative examples each time but was not learnt.
From the 587 relation examples, we excluded 46 of them, as
they were matched by expert rules which exhibited recursion
patterns like the transitivity of the general interaction relation
“i”. Learning such recursive dependencies is a very interesting
follow-up but it is out of the scope of the paper. We provided
PROPAL with 541 examples from ten classes, and 10155 from
the non-interacting class.

5.3. Information extraction

We used ten-fold cross-validation (stratified), averaged ten
times, to evaluate recall and precision of the extraction process.
The results are shown in table 2.

1IDs are substituted by terms for clarification.

Relation Recall (%) Prec. (%) Numb.

et 95.8 99.4 168
i 76.4 73.5 161
b to 75.0 90.0 14
s of 61.7 80.7 21
rm 90.0 90.0 17
r dep 95.0 100.0 12

p of 87.5 85.2 39
p dep 91.5 94.3 47
t from 85.0 96.7 18
t by 65.5 82.6 44

Table 2: Multi-class learning results, for ten fold cross validation averaged ten
times, with Recall and Precision in %, and the Number of examplesby relation.

As expected, the more specific relations (et, rdep, rm), as-
sumed to have little lexical variability, are rather trivial to learn,
and reach especially high scores. On the contrary, more gen-
eral ones (i, tby), exhibiting greater variability, are noticeably
harder to learn. We also experiment the two-class case, merging
the ten conceptual relations into a positive label, and as shown
in table 3, we obtain good recall and precision, in line with the
best results reported on the original LLL05 challenge (see e.g.
[9, 40]).

This corroborates the benefit of using multiple specific rela-
tions to model biological knowledge, which involves less com-
plex rules. For instance, in the unique “genic interaction”re-
lation case, the sentences “sigma(H)-dependent expression of
spo0A” and “sigma(K)-dependent cwlH gene” would need two
rules to be matched (typically, patterns like “A-dependentex-
pression of B” and “A-dependent B”); however, in the multiple
relation case, the first sentence would be matched by the pat-
terns “A-dependent B” (“i” relation) and “B of C” (“et” rela-
tion), and the second sentence by “A-dependent B” (“i” rela-
tion). Thus, in the second case, the “i” rule matches two sen-
tences, where two “genic interaction” rules were needed.

6. Conclusion and Perspectives

We introduced an ontology-based IE platform, which is not
limited to extract a single interaction, but allows to handle mul-
tiple biological relations. Specific relations are defined in an
ontology, which is an appropriate formalism to model biolog-
ical knowledge. We showed how a domain ontology allows
access to knowledge beyond the capability of current IE sys-
tems, by allowing inferences on the semantic level as well as
the syntactico-semantic level, thanks to the addition of a lexi-
cal layer. IE is performed by first extracting a set of instances
from NLP modules, then deductive inferences on the ontology
language are performed to complete the extraction process.We
validated the approach by designing an ontology of genic inter-
actions, and used Machine Learning techniques to learn infer-
ence rules from aBacillus subtiliscorpus. From a ML point
of view, we use the ontology as hypothesis language, and in-
stances of this ontology as example language.
In the future, we plan to extend the ontology to handle more
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Recall (%) Prec. (%)

89.3 89.6

Table 3: Results for two classes learning, using ten fold cross validation aver-
aged ten times.

phenomenons, especially inhibition/activation distinction, and
non-genic actors (e.g. environmental factors). Also, froman
operational perspective, we aim at fully automatizing our sys-
tem by linking the lexical layer to an available NLP pipeline,
before evaluating its performances. Notably, as the represen-
tation choice is a crucial step in ML, its declarative definition
through the ontology is a significant contribution. We then plan
to work on text representation, through a comparative studyof
several lexical layers.
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