
Extension of the Top-Down Data-Driven
Strategy to ILP

Erick Alphonse and Céline Rouveirol

LIPN-CNRS UMR 7030, Université Paris 13, France
{alphonse,rouveirol}@lipn.univ-paris13.fr

Abstract. Several upgrades of Attribute-Value learning to Inductive
Logic Programming have been proposed and used successfully. However,
the Top-Down Data-Driven strategy, popularised by the AQ family, has
not yet been transferred to ILP: if the idea of reducing the hypothesis
space by covering a seed example is utilised with systems like PRO-
GOL, Aleph or MIO, these systems do not benefit from the associated
data-driven specialisation operator. This operator is given an incorrect
hypothesis h and a covered negative example e and outputs a set of
hypotheses more specific than h and correct wrt e. This refinement oper-
ator is very valuable considering heuristic search problems ILP systems
may encounter when crossing plateaus in relational search spaces. In
this paper, we present the data-driven strategy of AQ, in terms of a lgg-
based change of representation of negative examples given a positive seed
example, and show how it can be extended to ILP. We evaluate a basic
implementation of AQ in the system Propal on a number of benchmark
ILP datasets.

1 Introduction

In Inductive Logic Programming (ILP), various learning strategies from
Attribute-Value (AV) learning have been adapted: to name a few, top-down
induction of decision trees in the TILDE system [4], top-down induction of rules
in the systems FOIL [28], PROGOL [24], Aleph [35] and MIO [26]. Bottom-up
data-driven algorithms, based on the least-general-generalisation (lgg) operator
(also known as most-specific generalisation) have also been implemented (see
[17] for the main results). However, the Top-down Data-Driven (TDD) strategy
has very few incarnations and is not used in ILP. Its emblem is the family of
AV systems AQ [22]. The search is top-down in the space of hypotheses more
general than or equal to a particular example which is named in this context
a seed example. If the idea of reducing the hypothesis space by covering a seed
example is utilised with systems like PROGOL, Aleph or MIO, these systems do
not benefit from the associated TDD operator. They address the learning prob-
lem within the generate-and-test paradigm (computing refinements based on the
structure of the search space only) : they have to deal with many refinements,
for a given hypothesis, that are not relevant with respect to the discrimination
task. The TDD operator is the dual of the lgg operator in the sense that, given

S. Muggleton, R. Otero, and A. Tamaddoni-Nezhad (Eds.): ILP 2006, LNAI 4455, pp. 49–63, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

50 E. Alphonse and C. Rouveirol

an incorrect hypothesis h and a covered negative example e, it outputs a set of
hypotheses more specific than h and correct with respect to e. This refinement
operator is described in [22] as a set of extension-against rules for computing
refinements of boolean attributes, numerical attributes, nominal as well as hier-
archical ones. For example, a rule for using a boolean attribute att for refining
an incorrect hypothesis is:

If att = val in the seed and att �= val in a covered negative example then att = val is
a valid refinement

Relying on the training set allows a TDD strategy to have a branching factor
which is necessarily smaller than or equal to the branching factor of a generate-
and-test strategy searching in the same hypothesis space. This makes this strat-
egy very appealing for ILP which is known to be prone to important plateau
phenomena in heuristic search (see e.g. [13,2]). As a special case and as advocated
by Winston [39] (see also [34]), a TDD learning algorithm can take advantage of
negative examples that differ from positive examples by only one attribute, the
so-called near-misses, to reduce the branching factor to 1 during the heuristic
search. Ultimately, a TDD algorithm learning from a dataset provided with all
near-misses of the target concept would converge to the concept without search,
generating only one refinement each step.

In the rest of the paper, we present the TDD strategy of the AQ system
in terms of a lgg-based change of representation of negative examples given a
positive seed example. After applying this representation change, the instance
space and the hypothesis space are merged into a simpler hypothesis space, and
learning can rely on an algebraic formalisation of AQ’s extension against rules.
The second contribution of the paper concerns the implementation of the TDD
in relational languages as complex as Datalog with negation and constrained
variables, which is complete for OI-subsumption [1]. We propose a formalisa-
tion of the problem of computing the set of “nearest-miss” lggs between two
relational examples, which is at the core of the TDD strategy, as a Weighted
Constraint Satisfaction Problem [8]. In the last part of the paper, we present an
implementation of the basic AQ strategy as given by Clark and Niblett [5] (often
referred as AQR) in Propal and we evaluate it on a number of ILP benchmark
datasets. Although this version of Propal does not include any noise-handling
mechanism, its performance is quite competitive with respect to state of the art
ILP generate-and-test systems.

2 Change of Representation of Learning Data in the
TDD Strategy

2.1 Top-Down Data Driven Strategy

The AQ system [22] is a top-down covering learning algorithm. AQ’s outer loop
is a classical covering algorithm that iterates while some positive examples are
still uncovered. Its inner-loop randomly selects an uncovered positive example,

Extension of the Top-Down Data-Driven Strategy to ILP 51

the seed example, denoted as s in the rest of the paper. AQ then performs
a top-down data driven beam search to build a set of maximal and correct
generalisations of s, given the set of negative examples. For a given negative
example e−, if a candidate hypothesis h in the beam covers e−, h is minimally
specialised in order to reject it, while still covering s. Throughout the paper,
E+ and E− denote the set of positive and negative examples of the learning
problem, Lh denotes the hypothesis space, � the coverage relation between a
hypothesis of Lh and an example, ≥h the partial order between hypotheses of
Lh (generality relationship). Ls ⊆ Lh is the space of generalisations of the seed
s. The TDD operator can be formally defined as follows.

Definition 1 (TDD operator). Let s ∈ E+, h ∈ Ls, e
− ∈ E−, ρs(h, e−) =

{h′ ∈ Ls | h ≥h h′ and h′ �� e−}

This operator can be seen as the dual of the lgg operator [27]: given an incorrect
hypothesis h and a covered negative example e−, it outputs a set of maximally
general hypotheses more specific than h and correct with respect to e−, with the
additional constraint that each of these specialisations of h should still cover s.

The fact that each minimal specialisation of h should cover a seed example
amounts to map the initial search space of the learning algorithm onto the space
of generalisations of the seed example. Looking for a hypothesis of Lh that
both covers s and rejects e− can be equivalently performed by looking for a
generalisation of s that rejects lgg(s, e−). By definition of the lgg [27], we have
h � s ∧ h � e− ⇔ h ≥h lgg(s, e−). Equivalently, by contraposition, we have
h �� s ∨ h �� e− ⇔ h �≥h lgg(s, e−). As the TDD strategy is biased towards
generating hypotheses that cover s, h �� e− ⇔ h �≥h lgg(s, e−).

10 01

??

b? ?a

bb

?b

11aa ab

a?

ba

00

s e−
2 se−

1

e−
2

e−
1

Fig. 1. Bias of Lh towards the covering of a positive example

This lgg-based representation change transforms the initial learning problem
(E, �, ≥h, Lh) into a new learning problem (Es, ≥h, ≥h, Ls), Es being the new
set of examples where each example e ∈ E is reformulated into lgg(s, e). In
this new problem, the instance space and the hypothesis space are merged, as
illustrated in figure 1 for a simple AV learning problem. The leftmost part of
figure 1 shows three training instances, described in terms of two AV attributes.
In the initial search space, each of the involved attributes has domain {a, b, ?},
where ′?′ denotes any value in the domain, meaning this attribute should be
dropped from the hypothesis. The three initial examples s, e−1 and e−2 are each
mapped in the new search space Ls (right part of figure 1), here the power-set

52 E. Alphonse and C. Rouveirol

of the seed example. By definition, s is mapped to the lower bound of Ls, e−1 is
mapped to the top node of Ls

′00′ (lgg(s, e−1) =′??′ ≥h
′ab′) and e−2 is mapped

to ′01′ (lgg(s, e−2) =′?b′ ≥h
′ab′).

This reformulation is interesting, because it shows that the so-called
“extension-against” rules correspond to an algebraic resolution of the learning
problem in a boolean lattice1 and have broader applications than attribute-value
learning as long as the generalisation space of the seed is isomorphic to a boolean
lattice as shown in figure 1. In the rest of the paper, we will refer to the TDD
refinement operator instead of the “extension-against” rules to point that we
take into account the lggs of the negative examples directly in the generalisation
space of the seed. It is therefore possible to reformulate the specialisation step
of AQ as shown in the algorithm of figure 2.

FindBestRule(s,E−,E+)
G := {�} % top element of Lh

BestRule := ∅
While G �= ∅

G′ := ∅
For each g ∈ G

G := G \ g

If g is correct and score(g,E+) ≥ score(BestRule,E+) Then
BestRule := g

Else
% computation of the nearest-miss
NM := g % by definition g ≥h NM

For each e− ∈ E−

If lgg(s, e−) nearer-miss than NM Then NM := lgg(s, e−)
G′ := G′ ∪ ρs(g, NM) % specialisation using the TDD refinement operator

G := k best hypotheses from G′ % beam search
Return BestRule

Fig. 2. AQ’s specialisation loop algorithm for a given seed s

In order to make the specialisation step efficient, the algorithm makes the
most of the partial ordering of negative examples to handle most informative
negative examples only. First of all, only most specific negative examples in
Es are useful: in the toy example of figure 1, e−2 is more specific than e−1 so
rejecting e−2 also rejects e−1 . In this simple example, there is only one candidate
solution obtained by applying once the TDD operator: hypothesis ′10′ in the
boolean space, corresponding to the hypothesis ′a?′ in the initial search space.
If several most specific negative examples are available at that step, which are
incomparable by definition, we give preference to the one that is closer to s than
1 The “extension-against” rules are actually more general and can consider distributive

lattices as the product of a boolean lattice with interval lattices and chains whenever
numerical and hierarchical attributes are involved [1]. In the present work, we use
the product of boolean and interval lattices but in this section, we only discuss the
logical part.

Extension of the Top-Down Data-Driven Strategy to ILP 53

any other negative examples as it yields the smallest branching factor for ρs

(see e.g. [34,5]). We name it the nearest-miss and we define it as a most specific
element with respect to a total pre-order named nearer-miss. It is reflexive,
transitive, total, but not antisymmetric.

Definition 2 (nearer-miss). Let s ∈ Lh be the seed example, x, y ∈ Ls, the
distance d(s, y) be the number of attributes’ values that differ between s and y.
x is nearer-miss than y iff (x ≤h y) ∨ (y �≤h x ∧ d(s, x) ≤ d(s, y)). It is a total
pre-order on the elements of Ls. A least element (most specific) with respect to
this total pre-order is a nearest-miss.

The nearer-miss pre-order induces an equivalence relation between elements of
Ls which are incomparable under ≥h and at the same distance from the seed.
Note that we define the nearer-miss relation as a linear extension of the partial
order ≥h to deal with redundancy in Es, such that the nearest-miss is necessarily
a most specific element of Es wrt ≥h. This is necessary when we deal with
numerical attributes. For example, if we have only one numerical attribute a
and a seed a = 1 and two negative examples a = 2 and a = 3 reformulated as
a ∈ [1, 2] and a ∈ [1, 3], although both negative examples are at a distance of 1
from the seed, a ∈ [1, 2] is nearer-miss than a ∈ [1, 3] as it is more specific and
its rejection will reject the other negative example.

On figure 1, it can be seen that the maximal branching factor of a top-down
generate-and-test operator is 4 without the seed bias, and 2 when only consid-
ering specialisations covering s. The branching factor of the TDD operator is 1,
as the lgg of e−2 with s is actually a Winston’s near-miss. Note that even in the
worst case (only far-misses are provided, i.e. negative examples that maximally
differ from the seed example), the branching factor of the TDD operator cannot
exceed the one of the top-down generate-and-test operator biased to cover a seed
example. We now will go on to discuss the extension of the TDD strategy to ILP.

3 Extension of the TDD Strategy to ILP

The TDD strategy, which is biased towards covering a seed example, relies on the
reformulation of each negative example e− as its lgg with the seed. The strength
of the strategy is that the instance space is merged into the hypothesis space
which forms a simple boolean lattice (or a product of a boolean lattice and inter-
val lattices in the case of numerical learning). In this lattice, the TDD refinement
operator can efficiently discriminate the negative examples as explained in the
previous section. Our approach to upgrade this TDD strategy to ILP consists
in working in a seed generalisation space with the same algebraic structure and
then computing lggs between the negative examples and the seed in such a space.
Such algebraic structures can be obtained in relational languages, although with
the cost of increased complexity, and sometimes incompleteness.

In this work, we target languages as expressive as non-recursive Datalog
clauses with negation [21]. In order to deal with numerical data, we add con-
straint variables to the language (see e.g. [32]) and classically set their generali-
sation language to the lattice of convex intervals for numerical variables [22].

54 E. Alphonse and C. Rouveirol

A substantial number of works have been done on computing lggs in restric-
tions of first-order logic under several partial orders [27,14,17,12]. One partic-
ularly interesting partial order is the Object Identity (OI) subsumption. It is
stronger than the well-known θ-subsumption, because matching substitutions
are limited to be injective, that is, each variable has to be bound to a different
object. It has been shown in [38,10] that a Datalog space lower-bounded by a null
element (the seed here) under OI-subsumption is isomorphic to a boolean lattice:
the set of generalisations of a clause is its power set (up to a variable renaming)
and the complete generalisation operator is the dropping-literal rule. An im-
portant corollary is that the TDD strategy is complete under OI-subsumption.
However, as noted for example in [14,18], the generalisation of two examples
is not unique, as opposed to AV learning, and computing their least general
generalisation will yield several lggs, as shown in figure 3.

s : west(T) ← car(T, V1), rectangular(V1),
car(T, V2), #wheels(V2, 2),
car(T, V3), ¬roof(V3), short(V3), circular(V3).

e− : west(T ′) ← car(T ′, V ′
1), ¬roof(V ′

1), rectangular(V ′
1),

car(T ′, V ′
2), ¬roof(V ′

2), #wheels(V ′
2 , 3), circular(V ′

2),
car(T ′, V ′

3), triangular(V ′
3), short(V ′

3).

Fig. 3. A train-like problem with a positive example s and a negative example e−

This figure describes a toy relational learning problem inspired by the Michal-
ski’s trains. The semantic is classical: s is a train having three cars, one is rec-
tangular, the other has two wheels and the last one does not have a roof, is
short and circular. Using s as a seed example, it is equivalent to consider the
new learning problem where all lggs between the seed and the negative examples
have to be rejected in the generalisation space of s. This new problem is given in
figure 4 as well as its propositional encoding, given the OI-subsumption order.

In fact, any partial order can be used within the TDD strategy, like θ-
subsumption, as soon as the generalisation space of the seed example is limited
to a boolean lattice for the logical part (the logical part of a clause excludes
literals with numerical variables). This is at the expense of completeness, as it is
known that the space of generalisation under θ-subsumption is infinite even in
Datalog [27] and that no ideal refinement exists for this partial order [37]. Various
restrictions in generate-and-test approaches have been proposed to define opera-
tional restrictions of θ-subsumption, the most usual one consisting in restricting
the generalisation space of the clause to its power-set (see e.g. [24,35]), which
exactly corresponds to the applicability condition of the TDD strategy. Let us
now provide an example that illustrates this lgg-based representation change as
well as a sketch of the algorithm to compute these lggs.

Extension of the Top-Down Data-Driven Strategy to ILP 55

e−1 : west(T) ← car(T, V1),
car(T, V2), #wheels(V2, [2, 3]),
car(T, V3), ¬roof(V3).

e−2 : west(T) ← car(T, V1), rectangular(V1),
car(T, V2),
car(T, V3), ¬roof(V3), circular(V3).

e−3 : west(T) ← car(T, V1), rectangular(V1),
car(T, V2), #wheels(V2, [2, 3])
car(T, V3), short(V3).

s car(T, V1) rec(V1) car(T, V2) #w(V2, N) N car(T, V3) ¬roof(V3) short(V3) cir(V3)
e−1 1 0 1 1 [2, 3] 1 1 0 0
e−2 1 1 1 0 - 1 1 0 1
e−3 1 1 1 1 [2, 3] 1 0 1 0

Fig. 4. A train-like problem and its reformulation with s as seed example, with OI-
subsumption as partial ordering on the relational search space

3.1 Example

In order to exemplify the approach, let us solve the learning problem pre-
sented in figure 3. This problem is reformulated by replacing e− by the three
clauses resulting from the computation of lgg(s, e−) as shown in figure 4. For in-
stance, e−2 in figure 4 represents the lgg obtained with the matching substitution
{V1/V ′

1 , V2/V ′
3 , V3/V ′

2} between s and e− of figure 3. The learning algorithm
is that of figure 2. In this example, we instantiate the beam size k to 2. The
candidate literals to refine the top clause produced by the rejection of the first
negative example e−1 are:

{rectangular(V 1); N ∈ (−∞, 3); short(V3); circular(V3)}

Those produced by the second negative example e−2 are:

{#wheels(V2, N); short(V3)}

Note that the examples e−1 , e−2 and e−3 are incomparable with respect to ≥h, but
according to algorithm of figure 2, we chose to reject e−2 first, as e−2 is nearer-miss
than both e−1 and e−3 . Specialising G against e−2 produces only two refinements,
which corresponds to the size of the beam. Selecting nearest-miss examples has
the advantage that the algorithm relies as little as possible on the evaluation
function to select the best refinements of the current hypothesis. G specialises
into two hypotheses with the addition of the literal #wheels(V2, N) and the
literal short(V3). The most general specialisation of G is produced by adding
all the literals necessary to get linked hypotheses.2 The following new bound is
obtained:
2 The discriminant literal selected by the TDD strategy do not necessarily produce

a connected clause. We assume in this example and in this work that adding the
literals to produce linked clauses, such as car(T, V2) and car(T, V3), is simple.

56 E. Alphonse and C. Rouveirol

G = { west(T) ← car(T, V2), #wheels(V2, N);

west(T) ← car(T, V3), short(V3)}

We now take each hypothesis in G and check for their correctness. None of them
are correct and both cover the nearest-miss e−3 . After another specialisation step,
we obtain the new G bound:

G = { west(T) ← car(T, V2), #wheels(V2,N),N ∈ (−∞,3);

west(T) ← car(T, V2), #wheels(V2, N), car(T, V3), circ(V3);

west(T) ← car(T, V2), #wheels(V2,N), car(T,V3), ¬roof(V3);

west(T) ← car(T, V3), short(V3),

car(T, V2), #wheels(V2, N), N ∈ (−∞, 3);

west(T) ← car(T, V3), short(V3), circular(V3);

west(T) ← car(T, V3), short(V3), ¬roof(V3)}

Let us now assume that the evaluation function selects the two hypotheses in
boldface in the previous list: the first hypothesis is correct and is a candidate
solution. The second one is incorrect (it covers e−1) and will in turn be specialised.
Finally, after specialising and pruning G, we obtain at the end of this refinement
step:

G = { west(T) ← car(T, V2), #wheels(V2, N), N ∈ (−∞, 3);

west(T) ← car(T, V 1), rectangular(V 1), car(T, V2), #wheels(V2, N),

car(T, V3), ¬roof(V3)}

After three refinement steps, we have a subset of all correct hypotheses with
respect to the initial relational example e−. We can notice that the second hy-
pothesis has six literals which would have required six refinement steps with a
generate-and-test approach a la FOIL or PROGOL.

3.2 Computation of a Nearest-Miss of the Seed from a Negative
Example

At the core of algorithm of figure 2 is the computation of nearest-miss examples
among lggs between the seed and the negative examples. In this section, we show
that their computation is equivalent to the resolution of Weighted Constraint
Satisfaction Problems. After recalling the main results on computation of lggs
under OI, we extend them to handle constraint variables and give an example
of encoding for the learning example given above.

A complete algorithm to compute all lggs under OI-subsumption has been
proposed by [18,12]. This algorithm is based on the observation that these lggs are
maximally incomparable substructures embedded into Plotkin’s lgg. Both works
propose a graph encoding of the problem such that computing lggs under OI-
subsumption amounts to extract all incomparable maximal cliques in the graph.
We build upon their result but provide some simplifications and an extension
of the algorithm to handle constraint variables. First, let us note that not all
lggs are needed to solve the problem as shown in the algorithm of figure 2:

Extension of the Top-Down Data-Driven Strategy to ILP 57

i) only those more specific than the hypotheses in the current G bound are
necessary; ii) only the nearest-miss lgg is used for the current specialisation step
(see section 2). The problem is then to compute the maximum-clique, that is the
largest maximal one, in the corresponding graph. Second, it can be seen that
their graph formulation is the consistency graph of a Constraint Satisfaction
Problem (CSP). This equivalence between the CSP and the clique problem on
the CSP consistency graph is well-known [15,30]. The CSP formulation is more
natural as it is equivalent to the one used for computing the covering test in
ILP [9]. Therefore, finding the nearest-miss lgg between a seed and a negative
example corresponds to finding the largest subset of variables in s which admits
a consistent variable assignment.

This formulation needs to be adapted for handling constraint variables. To
take that information into account, we need to add a valuation structure to
the CSP which is known in the literature as a Weighted CSP. Weighted CSP
(WCSP) extends the CSP framework by associating costs to tuples. These costs
give preferences among partial assignments. The usual task is to find a complete
consistent assignment with minimum cost, which is NP-hard. Informally, to com-
pute a nearest-miss, we define a cost as the number of literals and constraint
variables’ values of the seed example that are not matched onto the negative
example. Concerning the numerical literal #wheels(V2, 2) in the seed, there are
three options: either there is an exactly matching literal in the negative example,
the associated cost is then 0. If there is a literal of the form #wheels(V2, N) with
N �= 2 in the negative example, the cost is 13. Finally, it may also be the case
that the literal is unmatched, in that case the cost is 2.

Due to lack of space, we refer to [8,7] for a detailed description of WCSPs
and the associated algorithms. Here, we briefly give the definition of a Weighted
CSP and illustrate the encoding of the problem of nearest-miss computation of
figure 3.

Definition 3 (Weighted CSP). A binary WCSP is a tuple (k, X, D, C). X
and D are the variables and domains as in classical CSP. C is a set of cost
functions. A binary constraint Cij assigns costs to assignments of variables i
and j, ranging from 0 to k. A unary constraint Ci assigns costs to assignments
of variable i, ranging from 0 to k. The cost of a tuple t, noted cost(t), is the
sum of all its associated costs. When a constraint C assigns a cost greater
than or equal to k to a tuple t (cost(t) ≥ k), it means that C forbids t, oth-
erwise t is allowed by C, with the corresponding cost. A tuple is consistent if
cost(t) < k.

For computing the nearest-miss of the seed example s from the example e−

(see figure 3), we have the corresponding WCSP, omitting the head literal for
convenience:

3 This way of handling cost does not take into account partial ordering between nu-
merical values in the negative examples and this has to be handled through post-
processing.

58 E. Alphonse and C. Rouveirol

Variables Domains
car(T,V1) 1 : nm 0 : car(T′,V′

1) 0 : car(T ′, V ′
2) 0 : car(T ′, V ′

3)
rectangular(V1) 1 : nm 0 : rectangular(V′

1)
car(T,V2) 1 : nm 0 : car(T ′, V ′

1) 0 : car(T ′, V ′
2) 0 : car(T′, V′

3)
#wheels(V2, 2) 2 : nm 1 : #wheels(V ′

2 , 3)
car(T,V3) 1 : nm 0 : car(T ′, V ′

1) 0 : car(T′,V′
2) 0 : car(T ′, V ′

3)
¬roof(V3) 1 : nm 0 : ¬roof(V ′

1) 0 : ¬roof(V′
2)

short(V3) 1 : nm 0 : short(V ′
3)

circular(V3) 1 : nm 0 : circular(V′
2)

Literals of the seed s (i.e., the variables of the WCSP) are shown in the first
column of the table. For each literal of s, we describe candidate matching literals
in e−, i.e., the domains of the WCSP variables. Matching a literal corresponds
to satisfying a unary constraint. To each literal of e−, we associate the corre-
sponding unary cost of matching it. In order to account for unmatched seed
literals, we use an additional value nm for not matched, which indicates that
the seed literal is not matched and does not belong to the lgg. For instance,
if the literal short(V3) is unmatched, this will have a cost of 1. The binary
costs (not shown here) are the same as for a CSP encoding of the subsump-
tion test: they define that a pair of matchings is compatible to ensure that the
solution tuple is a lgg of the seed and the negative example. To each matched
literal of the seed, we associate a substitution θi. A pair (θi, θj) is compatible
iff the substitution θi.θj is a valid substitution under the partial order consid-
ered. The corresponding cost is zero or k otherwise. The solution of the WCSP
which leads to construct e−2 is outlined in boldface in the table, this solution
has cost 3. e−2 is among the solutions of lowest cost and is used to compute
(west(T) ← car(T, V2), #wheels(V2, N)). The computation of the next nearest-
miss more specific than this hypothesis is computed by removing the nm values
from the domain of the two literals car(T, V2) and #wheels(V2, N), thus forcing
them to be part of the nearest-miss.

4 Related Works

A first version of the Propal algorithm has been presented in [3], where the
link between the TDD strategy and Propal was not made and no formalisation
was proposed. Moreover, the algorithm could not deal with numerical data.
It was also presented as a propositionalisation system and we plan to further
investigate in the future the link between propositionalisation and computation
of lggs between examples and a seed.

A first comparison has to be made with the learning systems PROGOL, Aleph
and MIO. As we said, they use the same search space as Propal, by the mean of
a seed example, but are rooted in the generate-and-test paradigm and do not use
the TDD strategy. They have to deal with many refinements during the search
that are not relevant with respect to the discrimination task.

A related approach to our system is the system STILL [33]. STILL is a propo-
sitionalisation system [19] which upgrades the attribute-value learning algorithm

Extension of the Top-Down Data-Driven Strategy to ILP 59

DiVS [31]. DiVS makes use of the extension-against rules of Michalski in the fol-
lowing manner. For each example e (positive and negative) DiVS builds G(e),
the bound G covering e and rejecting all the negative examples with respect
to its class by applying the extension-against rules. Each G(e) votes to classify
unseen examples. The upgrade of DiVS to ILP is done through the use of the
propositionalisation technique in an indeterminate language prior to learning
[40,32]: all matchings between a seed example and the examples to reformulate
are computed and rewritten as attribute-value vectors. To avoid the exponential
space requirement of propositionalisation in an indeterminate hypothesis space,
the authors perform a sampling of k vectors in the matching space (k a user-
supplied parameter). As the propositionalisation technique of STILL randomly
selects matchings and is applied before learning, STILL does not benefit from
the TDD strategy that focuses on lggs between the seed examples and the infor-
mative negative examples. As a consequence, STILL mostly extracts irrelevant
vectors for the discrimination task as only the ones corresponding to nearest-miss
lggs are relevant in the case of the TDD strategy (section 2). Therefore STILL,
being a randomised polynomial-time algorithm, cannot ensure to output a cor-
rect theory with respect to the learning data. However, STILL has been shown
to be successful on the “mutagenesis” dataset (B2 and B3 only, see section 5)
with some parameters inherited from DiVS.

5 Experiments

The TDD strategy implemented in Propal to run the experiments detailed
below is the same as AQ’s presented figure 2. Propal conducts a beam search
in the hypothesis space, guided by the Laplace function4. The default beam
size is fixed to 5. We extended this basic algorithm to handle missing values in
constraint variables (or attributes) with the same technique as AQ’s [23] and
Ripper’s [6]: all tests involving the constraint variable V are defined to fail on
examples for which the value of V is missing.

To solve the WCSPs, Propal’s implementation of nearest-miss extraction
relies on the state-of-the-art complete algorithm Toolbar5 [8]. We have used in
the experiments the default parameters of Toolbar. However, we set the timer of
Toolbar to 60 seconds to keep computation of a nearest-miss within a reasonable
amount of time. This is usually needed for the one or two last seeds of problems
like “mutagenesis”, that can be quite large compared to the other positive ex-
amples. When the time limit is reached, Toolbar returns the best solution (i.e.,
the most specific negative example) found so far. As shown in [3], this approxi-
mation degrades the heuristic search by increasing the branching factor but still
ensures the correctness of the output theory.

We validate our implementation of the TDD strategy in ILP by comparing
Propal’s performances with the ILP systems FOIL, PROGOL, STILL and
4 The Laplace function is defined as p+1

p+n+2 , with p and n the number of positive and
negative examples covered by the hypothesis.

5 http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro

60 E. Alphonse and C. Rouveirol

TILDE on the “mutagenesis” datasets [36]. The “mutagenesis” dataset used
is regression-friendly with the 4 versions of background knowledge (from B1 to
B4). We made additional comparisons with the two propositionalisation systems
RSD and RELAGGS, on the “KRK illegal chess position” [25] datasets and
two learning problems extracted from the PKDD99 financial challenge by [20].
The two last problems involve learning to classify bank loans into profitable and
non-profitable loans. For the last three problems, we performed a 10-fold cross-
validation averaged over 10 runs as in [20]. For the “mutagenesis” dataset, we
followed the protocol described in [36].

On the “mutagenesis” datasets, the results for FOIL and PROGOL have been
taken from [36], for TILDE from [4] and for STILL from [33]. On the “KRK
illegal position” and the two tasks from PKDD99, the results are taken from
[20]. When several values of parameters were tried for these systems, we chose
their best results. As noted in [29], this can produce an optimistic bias in favour
of the other algorithms compared to Propal, which is run on all datasets with
a standard size of beam of 5. This is the only parameter of Propal for now as
we recall that no noise-coping strategy has been implemented.

Table 1. Accuracy in % of learnt theories by PROGOL, FOIL, TILDE, STILL, RSD,
RELAGGS and Propal on the “mutagenesis”, “KRK” and “loans” datasets, and time
for Propal to output the theories

B1 B2 B3 B4 KRK.illegal Loan (AvB) Loan (ACvBD)
PROGOL 76 81 83 88 n.a. 45.7 n.a.
FOIL - 75.8 83 86 97.2 - 87.3
TILDE 75 79 85 86 75.1 - n.a.
STILL - 86.5 88.8 - - - -
RELAGGS - - - - 72.3 88 94.1
RSD - - - - 76.2 n.a. n.a.
Propal 85.5 86.7 88.2 85.1 100 84,4 85,19
Time (s.) 3692 60698 40949 8274 179 117 564

Table 1 summarises the results. The symbol “-” indicates that the result is
not available or that the experiments have been done with a different protocol.
The symbol “n.a.” indicates that the learner exhausted the time limit of 2 days
of computation on at least one of the fold as reported in [20].

We can see from table 1 that Propal’s performance is competitive with the
state-of-the-art generate-and-test approaches which use sophisticated heuristic
search and pruning techniques. On B1, which is the hardest domain for learning
in the “mutagenesis” domain, Propal performed as well as the other systems
with B3, which uses expert attributes; the performance on B1, B2 and B3 are
among the best reported. We see a lower performance on the richest domain
B4, where descriptions of higher-level structures that appear in a molecule are
added. This over-fitting may be explained by the large increase in the size of the
hypothesis space, as Propal does not restrict the search space beyond the choice
of a seed example, and the fact that no noise-coping strategies are implemented.

Extension of the Top-Down Data-Driven Strategy to ILP 61

The “KRK” dataset is a good example where the TDD strategy pays off: the
dataset provides a lot of near-misses (the branching factor being often reduced
to 1) and it can be considered noise-free. The result largely improves those of
the propositionalisation systems and of TILDE.

Another example of a good performance of Propal is on the “Loan” datasets,
which is advocated in [20] as representative of large datasets where current ILP
systems do not perform well: on “loanAvB”, PROGOL has an accuracy below
50% and RSD cannot solve at least one fold after two days of computation;
on “loanACvDB”, they run out of time, as well as TILDE and only FOIL per-
forms well on it. RELAGGS [20] performs best with 88% and 94.1% respectively.
Propal is able to solve the two problems quickly with rather good performance
comparatively.

6 Conclusion

We have studied in this paper the TDD strategy, popularised by the AQ family, in
the context of ILP. We made a link between AQ, Winston’s work on near-misses
and a change of representation of the negative examples through lggs computed
with a seed example. This lgg-based reformulation merges the instance space and
the search space into a simpler learning space, where the learning problem can
be solved algebraically. This formalisation allowed us to propose a simple exten-
sion of the TDD strategy to ILP in languages as expressive as non-recursive Dat-
alog clauses with negation. The TDD strategy offers a theoretical advantage over
generate-and-test systems such as PROGOL, Aleph and MIO, by making it pos-
sible to prune irrelevant branches of the refinement graph by using most relevant
negative examples. The extraction of nearest-miss examples through a lgg-based
reformulation has been formalised as a Weighted CSP, allowing a flexible imple-
mentation of the AQR strategy within Propal using a state-of-the-art WCSP
solver, Toolbar. This implementation, which does not include any noise-handling
mechanism, has been shown to be competitive with generate-and-test FOL learn-
ers and propositionalisation systems. However, it is known that data-driven strate-
gies are more prone to noise issues than their generate-and-test counterparts. We
plan to further validate the approach by studying the impact of noise. In particu-
lar, we plan to investigate the works in this domain proposed for the AQ system
[16] and for rule learning [11]. Secondly, now that the mechanism for extracting
nearest-miss examples has been implemented within Toolbar, we plan study the
impact of various propagation mechanisms and various approximation strategies
on Propal’s running time and performance.

Acknowledgements

We are very grateful to H. Soldano for the numerous discussions on the Top-
Down Data-Driven strategy and its relevance to ILP, and to A. Osmani for
sharing with us his many insights concerning WCSP. We also would like to
thank Mark-André Krogel for providing the “loan” datasets and for helping us

62 E. Alphonse and C. Rouveirol

with the experiments. Finally, we thank Christophe Caron of the MIG-INRA
group and the LRI-UMR8623, for providing us access to their computational
resources.

References

1. Alphonse, E.: Macro-opérateurs et Sélection Relationnelle en Programmation
Logique Inductive: théorie et algorithmes. PhD thesis, Université Paris-Sud (2003)

2. Alphonse, E., Osmani, A.: On the connection between the phase transition of the
covering test and the learning success rate. In: Proc. 16th Conf. of Inductive Logic
Programming (2006)

3. Alphonse, E., Rouveirol, C.: Lazy propositionalization for relational learning. In:
Proc. ECAI’2000, pp. 256–260. IOS Press, Amsterdam (2000)

4. Blockeel, H., De Raedt, L.: Top-down induction of first order decision trees. Ar-
tificial Intelligence 101, 285–297 (1998)

5. Clark, P., Niblett, T.: The CN2 induction algorithm. Machine Learning 3, 261–283
(1989)

6. Cohen, W.W.: Fast effective rule induction. In: Proc. 12th ICML, pp. 115–123.
Morgan Kaufmann, San Francisco (1995)

7. de Givry, S., Larrosa, J., Meseguer, P., Schiex, T.: Solving Max-SAT as weighted
CSP. In: Proc. CP 2003, pp. 363–376 (2003)

8. de Givry, S., Zytnicki, M., Heras, F., Larrosa, J.: Existential arc consistency:
Getting closer to full arc consistency in weighted CSP. In: Proc. of IJCAI-05
(2005)

9. Eisinger, N.: Subsumption and connection graphs. In: Proc. of IJCAI’81, pp. 480–
486. William Kaufmann (1981)

10. Esposito, F., Laterza, A., Malerba, D., Semeraro, G.: Refinement of Datalog pro-
grams. In: Proc. of the MLnet Familiarization Workshop on ILP for KDD, pp.
73–94 (1996)

11. Fürnkranz, J.: Pruning methods for rule learning algorithms. In: Proc. 4th Int.
Workshop on ILP, pp. 321–336 (1994)

12. Geibel, P., Wysotzki, F.: A Logical Framework for Graph Theoretical Decision
Tree Learning. In: Proc. ILP’97 (1997)

13. Giordana, A., Saitta, L., Sebag, M., Botta, M.: Analyzing relational learning in
the phase transition framework. In: Proc. ICML, pp. 311–318 (2000)

14. Haussler, D.: Learning conjunctive concepts in structural domains. Machine
Learning 4(1), 7–40 (1989)

15. Jagota, A.: Constraint satisfaction and maximum clique. In: Working Notes,
AAAI Spring Symposium on AI and NP-hard Problems, pp. 92–97 (1993)

16. Kaufman, K.A., Michalski, R.S.: Learning from inconsistent and noisy data: The
AQ18 approach. In: Proc. of the Eleventh ISMIS, pp. 411–419 (1999)

17. Kietz, J.-U.: A comparative study of structural most specific generalisations used
in machine learning. In: Proc. Third Workshop on ILP, pp. 149–164 (1993)

18. Kietz, J.-U.: Some computational lower bounds for the computational complexity
of inductive logic programmming. In: Proc. 6th ECML, Vienna, Austria (1993)

19. Kramer, S., Lavrac, N., Flach, P.: Propositionalization approaches to relational
data mining. In: Dzeroski, S., Lavrac, N. (eds.) Relational Data Mining, pp. 262–
291. Springer, Heidelberg (2001)

Extension of the Top-Down Data-Driven Strategy to ILP 63

20. Krogel, M.: On Propositionalization for Knowledge Discovery in Relational Data-
bases. PhD thesis, Univ. Magdeburg (2005)

21. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Berlin (1987)
22. Michalski, R.S.: A theory and methodology of inductive learning. Machine Learn-

ing: An Artificial Intelligence Approach I, 83–134 (1983)
23. Michalski, R.S., Wojtusiak, J.: Reasoning with meta-values in AQ learning. Tech-

nical report, George Mason University (2006)
24. Muggleton, S.: Inverse entailment and PROGOL. New Generation Computing 13,

245–286 (1995)
25. Muggleton, S.H., Bain, M., Hayes-Michie, J., Michie, D.: An experimental com-

parison of human and machine learning formalisms. In: Proc. 6th IWML, San
Mateo, CA, pp. 113–118. Morgan Kaufmann, San Francisco (1989)

26. Castillo, L.P., Wrobel, S.: On the stability of example-driven learning systems: A
case study in multirelational learning. In: Coello Coello, C.A., de Albornoz, Á.,
Sucar, L.E., Battistutti, O.C. (eds.) MICAI 2002. LNCS (LNAI), vol. 2313, pp.
321–330. Springer, Heidelberg (2002)

27. Plotkin, G.: A note on inductive generalization. In: Machine Intelligence, vol. 5,
Edinburgh University Press, Edinburgh (1970)

28. Quinlan, J.R.: Learning logical definitions from relations. Machine Learning 5(3),
239–266 (1990)

29. Scheffer, T., Herbrich, R.: Unbiased assessment of learning algorithms. In: Proc.
Int. Joint Conf. on Artificial Intelligence (IJCAI’97), pp. 798–803 (1997)

30. Scheffer, T., Herbrich, R., Wysotzki, F.: Efficient θ-subsumption based on graph
algorithms. In: Inductive Logic Programming. LNCS, vol. 1314, pp. 312–329.
Springer, Heidelberg (1997)

31. Sebag, M.: Delaying the choice of bias: a disjunctive version space approach. In:
Proc. 13th ICML, pp. 444–452 (1996)

32. Sebag, M., Rouveirol, C.: Constraint inductive logic programming. In: Advances
In Inductive Logic Programming, pp. 277–294. IOS Press, Amsterdam (1996)

33. Sebag, M., Rouveirol, C.: Resource-bounded relational reasoning: Induction and
deduction through stochastic matching. Machine Learning 38(1/2), 41–62 (2000)

34. Smith, B.D., Rosenbloom, P.S.: Incremental non-backtracking focusing: A polyno-
mially bounded generalization algorithm for version spaces. In: Proc. 8th AAAI,
pp. 848–853 (1990)

35. Srinivasan, A.: A learning engine for proposing hypotheses (Aleph) (1999)
36. Srinivasan, A., Muggleton, S., King, R.D.: Comparing the use of background

knowledge by inductive logic programming systems. In: De Raedt, L. (ed.) Proc.
of the 5th ILP Workshop, pp. 199–230. Scientific Report, K.U.Leuven (1995)

37. van der Laag, P.R.J., Nienhuys-Cheng, S-H.: Existence and nonexistence of com-
plete refinement operators. In: Proc. of the 7th ECML, pp. 307–322. Springer,
Heidelberg (1994)

38. VanLehn, K.: Efficient specialization of relational concepts. Machine Learning 4,
99–106 (1989)

39. Winston, P.H.: Learning structural descriptions form examples. In: Winston, P.H.
(ed.) The Psychology of Computer Vision, pp. 157–209. McGraw-Hill, New York
(1975)

40. Zucker, J.-D., Ganascia, J.-G.: Selective reformulation of examples in concept
learning. In: Proc. 11th ICML, pp. 352–360 (1994)

	Introduction
	Change of Representation of Learning Data in the TDD Strategy
	Top-Down Data Driven Strategy

	Extension of the TDD Strategy to ILP
	Example
	Computation of a Nearest-Miss of the Seed from a Negative Example

	Related Works
	Experiments
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

