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Abstract It is well-known that heuristic search in ILP is prone to plateau
phenomena. An explanation can be given after the work of Giordana and
Saitta: the ILP covering test is NP-complete and therefore exhibits a sharp
phase transition in its coverage probability. As the heuristic value of a hy-
pothesis depends on the number of covered examples, the regions “yes”
and “no” represent plateaus that need to be crossed during search without
an informative heuristic value. Several subsequent works have extensively
studied this finding by running several learning algorithms on a large set
of artificially generated problems and argued that the occurrence of this
phase transition dooms every learning algorithm to fail to identify the target
concept. We note however that only generate-and-test learning algorithms
have been applied and that this conclusion has to be qualified in the case
of data-driven learning algorithms. Mostly building on the pioneering work
of Winston on near-miss examples, we show that, on the same set of prob-
lems, a top-down data-driven strategy can cross any plateau if near-misses
are supplied in the training set, whereas they do not change the plateau
profile and do not guide a generate-and-test strategy. We conclude that the
location of the target concept with respect to the phase transition alone
is not a reliable indication of the learning problem difficulty as previously
thought.

1 Introduction

It was discovered early on that learning in relational languages had to face
important plateau phenomena (see e.g. (Hayes-Roth & McDermott, 1977;
Quinlan, 1991; Silverstein & Pazzani, 1991; Richards & Mooney, 1992)): the
evaluation function, used to prioritize nodes in the refinement graph is con-
stant in parts of the search space, and the search goes blind. These plateau
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Fig. 1 From (Giordana & Saitta, 2000): Coverage probability Psol of an example
with L constants by a hypothesis with m literals. The contour level plots, projected
onto the plane (m, L), correspond to the region where Psol is between 0.99 and
0.01.

phenomena are the pathological case of heuristic search, complete or not
(Pearl, 1985). An explanation can be given after the work of (Giordana &
Saitta, 2000), who studied the ILP covering test within the phase transi-
tion framework. As illustrated in figure 1, the covering test is NP-complete
and therefore exhibits a sharp phase transition in its coverage probability
(Cheeseman, Kanefsky, & Taylor, 1991). When one studies the probability
of covering a random example of a fixed size by a hypothesis given the hy-
pothesis’ size, one distinguishes three well-identified regions: a region named
“yes”, where the probability of covering an example is close to 1, a region
named “no”, where the probability is close to 0, and finally inbetween the
phase transition, named the “mushy” or the “pt” region, where an example
may or may not be covered. As the heuristic value of a hypothesis depends
on the number of covered examples (positive or negative), we see that the
two regions “yes” and “no” represent plateaus that need to be crossed dur-
ing search without an informative heuristic value.

To investigate the impact of the occurrence of a phase transition in
the covering test on the learning success rate, systematic experiments with
several learning algorithms (FOIL, G-Net, Smart+ and PROGOL) have
been conducted on a large set of artificially generated problems by Botta,
Giordana, Saitta, and Sebag (2003). The authors generated a set of 451
problems by choosing each target concept according to its location in the
(m, L) plane with respect to the phase transition, as shown in figure 1. The
“yes”, “no” and “pt” regions are uniformly visited by varying (m,L) pairs
without replacement (m ranges in [5,30] and L ranges in [12,40]). Figure 2
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Fig. 2 From (Botta & al., 2003): FOIL’s competence map: success and failure re-
gions. The phase transition region is indicated by the dashed curves, corresponding
to the contour plots for Psol = 0.9, Psol = 0.5 and Psol = 0.1 respectively.

summarizes the application of FOIL on this set of problems: learning fail-
ure or success is noted for each problem identified by the (m, L) pair. One
important conclusion of their work is that the occurrence of a phase tran-
sition in the covering test is a general problem for all learning algorithms:
the phase transition is viewed as an “attractor” for the heuristic search of
any learning algorithm, which is bound to find a concept definition in the
phase transition. Precisely, for all tested learners, there exists a failure re-
gion where the learnt theories are seemingly randomly constructed, with no
better predictive accuracy than random guessing.

We note however that only generate-and-test learning algorithms have
been investigated in this work and that this conclusion has to be quali-
fied in the case of data-driven learning algorithms. In the generate-and-test
paradigm, refinements are only based on the structure of the hypothesis
space, independently of the learning data. Therefore, for a given hypothe-
sis, generate-and-test algorithms have to deal with many refinements that
are not relevant with respect to the discrimination task. On the contrary,
data-driven strategies allow to use the training data to prune irrelevant
branches of the refinement graph before relying on the evaluation function
and may overcome the problem of plateaus. Notably, building on the pio-
neering work of Winston on near-miss examples (Winston, 1975), we show
that, on the same set of problems as (Botta et al., 2003), a top-down data-
driven strategy can cross any plateau and reach the target concept whenever
near-misses are supplied in the training set, whereas these near-misses do
not change the plateau profile and do not guide a generate-and-test strat-
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egy. We conclude that the location of the target concept with respect to the
phase transition alone is not a reliable indication of the learning problem
difficulty, as previously thought.

In the next section, we recall the two top-down learning strategies that
we investigate in this paper, namely the top-down generate-and-test and
the top-down data-driven strategies. For the sake of clarity, in section 3, we
illustrate their behaviour on an attribute-value problem, namely an XOR
problem, where a plateau is shown. We will see how the near-misses can be
exploited by the top-down data-driven strategy to solve the problem with-
out search. In section 4, we draw a parallel between the phase transition of
the covering test and the evaluation function of a learning algorithm. For
that purpose, we re-use the set of learning problems proposed in (Giordana
& Saitta, 2000; Giordana, Saitta, Sebag, & Botta, 2000; Botta et al., 2003).
Notably, we run additional experiments of FOIL on these problems with
new settings where the hypothesis space is set so that the value of a given
evaluation function can be directly read from the coverage probability of
a hypothesis, as in figure 1. Although our conclusion on the ability of a
generate-and-test approach in this setting differs from (Botta et al., 2003),
these new experiments allow us to better compare the behaviour of the
generate-and-test and data-driven approaches when facing plateaus in the
evaluation function. Next, in section 5, we show how we can add near-misses
to those problems in such a way that the plateaus are unchanged (and might
even be wider) in order to guide a top-down data-driven algorithm to the
target concept without search in the hypothesis space. This shows in par-
ticular that plateaus are pathological for generate-and-test algorithms but
are not a complexity criterion for all algorithms. Finally, we will draw some
conclusions about this work and present future research on the evaluation
of learning complexity in a phase transition framework.

2 The top-down generate-and-test and data-driven strategies

In concept learning, we are given a learning set E = E+ ∪ E−, with posi-
tive and negative examples of the unknown target concept, drawn from an
example or instance language Le, a hypothesis language Lh, a generality
relation named covering test ≥ which relates Le and Lh and partially or-
der the hypotheses. After (Mitchell, 1982), concept learning is defined as
search in Lh. The problem, known as the consistency problem, is to find a
hypothesis h ∈ Lh such that h is consistent with the data:

∀e+ ∈ E+, h ≥ e+ (completeness) ∀e− ∈ E−, h 6≥ e− (correctness)

This seminal paper, relating (symbolic) concept learning to search in a
state space, has enabled machine learning to integrate techniques from prob-
lem solving, operational research and combinatorics: greedy search in C4.5
(Quinlan, 1986) and FOIL (Quinlan, 1990), beam search in AQ (Michalski,
1983) and CN2 (Clark & Niblett, 1989), breadth-first search in (Shapiro,
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1983) and Aleph (Srinivasan, 1999), ’A’ search in PROGOL (Muggleton,
1995), IDA (Iterative-Deepening A) search in MIO (Peña-Castillo & Wro-
bel, 2002) to name a few systems. However, search in languages of interest,
as those typically considered in ILP, is NP-hard (e.g. (Haussler, 1989; Co-
hen, 1993; Kearns & Vazirani, 1994)) and heuristic search is crucial for
efficiency (Pearl, 1985). Heuristic search makes use of an evaluation func-
tion to prioritize nodes to consider at each stage of the search. A survey of
evaluation functions used in machine learning can be found in (Fürnkranz
& Flach, 2005). It shows that all of them are based, without loss of general-
ity, on three parameters that are the coverage rate of positive examples, the
coverage rate of negative examples and a complexity measure of the hypoth-
esis under consideration. The first two parameters are inherited from the
learning task definition given above and stress the impact of the relevance
of the covering test on the quality of search.

A central idea in concept learning is the use of a generality partial or-
der between hypotheses to guide the resolution of the consistency problem
(Mitchell, 1982): if a hypothesis is incorrect (covering negative examples),
it is said to be too general and has to be specialised. The natural stopping
criterion1 of a top-down strategy is the acquisition of a correct hypothesis.
In the rest of the article, we will consider that learning of a clausal theory
is done with the covering strategy. Building on the works of (Plotkin, 1970;
Newell & Simon, 1972; Winston, 1975; Michalski, 1983), Mitchell further re-
fines the search strategy into the generate-and-test (TGT) and data-driven
(TDD) strategies.

2.1 The top-down generate-and-test strategy

The large majority of top-down algorithms are based on the generate-and-
test paradigm. In this paradigm, the refinement operator is only based on
the structure of the hypothesis space, independently of the learning data
(see e.g. (Laird, 1986)).

Definition 1 (top-down generate-and-test refinement operator) Let
h ∈ Lh:

ρ(h) = {h′ ∈ Lh|h ≥ h′}

The advantage of this method, also called weak method, is that it is easy
to apply it on a large variety of problems. However, for a given hypothesis,
generate-and-test algorithms have to deal with many refinements that are
not relevant with respect to the discrimination task. They only rely on the
evaluation function to prune the irrelevant branches.

1 In the article, only the noise-free learning setting is considered. In the case of noise, this
stopping criterion is relaxed to accept hypotheses that are not consistent.
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2.2 The top-down data-driven strategy

The top-down data-driven strategy has been advocated by Winston (Winston,
1975) and developed in attribute-value learning in the AQ system (Michalski,
1983) and among others AQR (Clark & Niblett, 1989), INBF (Smith &
Rosenbloom, 1990), and recently in ILP (Alphonse & Rouveirol, 2006). This
strategy searches the space of hypotheses that are more general than or equal
to a given positive example, named the seed example, and uses negative ex-
amples to prune irrelevant branches in the refinement graph. As opposed
to a TGT approach, a TDD approach can therefore compensate for a poor
evaluation function by using the learning data.

In attribute-value learning, the top-down data-driven refinement opera-
tor is described in (Michalski, 1983) as a set of rules (extension-against rules)
for computing refinements of boolean attributes, numerical attributes, nom-
inal as well as hierarchical ones. The name of extension-against rules comes
from the fact that the refinements are computed with respect to a chosen
negative example: only refinements rejecting that particular example are
generated. Formally, it is defined as a binary operator:

Definition 2 (top-down data-driven refinement operator) Let h ∈
Lh, e− ∈ E−:

ρ(h, e−) = {h′ ∈ Lh|h ≥ h′ and h′ 6≥ e−}

Note that the idea of reducing the hypothesis space by covering a seed
example is used within systems like PROGOL, Aleph or MIO. However they
do not benefit from the associated TDD operator and address the learning
task within the generate-and-test paradigm. Relying on the negative ex-
amples allows a TDD strategy to have a branching factor that is smaller
than the branching factor of a generate-and-test strategy searching in the
same hypothesis space. Moreover, some TDD strategies make the most of
the negative instances in order to select informative negative examples only
(Winston, 1975; Smith & Rosenbloom, 1990; Alphonse & Rouveirol, 2006),
e.g. near-misses after Winston. A near-miss in Winston’s terminology is a
negative example that differs from the seed example by only one description
(a literal or an attribute of the positive example that is not in the nega-
tive example). This description necessarily belongs to the hypothesis that
discriminates them. Ultimately, a TDD algorithm learning from a dataset
provided with all near-misses with respect to the target concept would con-
verge to the concept without search, generating only one refinement at each
step. This is the result we are going to use in ILP to overcome the problem of
plateaus exemplified in the phase transition framework (Giordana & Saitta,
2000), showing that plateaus do not necessarily imply a high complexity of
search in learning.

In the following, we describe the behaviour of two greedy learners imple-
menting the two above-mentioned strategies on an attribute-value learning
example, the XOR problem. The greedy TGT strategy is implemented, for
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example, in attribute-value learning in C4.5 (Quinlan, 1993) and Ripper
(Cohen, 1995) or in ILP in FOIL (Quinlan, 1990) and Tilde (Blockeel &
Raedt, 1998). As for the TDD strategy, it is implemented in attribute-value
learning in AQ (Michalski, 1983) and in ILP in Propal (Alphonse & Rou-
veirol, 2006). They use a beam search but are essentially equivalent to greedy
search for non-trivial plateaus. The XOR problem is famous for exhibiting
a plateau in top-down search. We are going to describe the resolution of
the problem with the same methodology as the one used in the case of the
phase transition of the covering test framework proposed by (Botta et al.,
2003).

3 Plateau phenomena in the attribute-value case

3.1 Problem description

A k-n-XOR problem is a boolean learning problem where instances are
drawn from Le = {0, 1}n and are tagged positive (1) or negative (0) ac-
cording to the exclusive-or of the last k boolean attributes. The width of
the plateau is k − 1, that is to say, for a given depth d < k, all hypotheses
generated with d literals have the same evaluation. We give an example for
k = 2 and n = 3 where the complete set of examples is given:

Table 1 Complete XOR examples with k = 2 and n = 3

example a1 a2 a3 concept example a1 a2 a3 concept

e1 0 0 0 0 e5 1 0 0 0

e2 0 0 1 1 e6 1 0 1 1

e3 0 1 0 1 e7 1 1 0 1

e4 0 1 1 0 e8 1 1 1 0

3.2 Facing the plateau with a TGT strategy

A TGT learner starts from the most general hypothesis and generates all
of its refinements: {a1 = 0, a1 = 1, a2 = 0, a2 = 1, a3 = 0, a3 = 1}. Each
new hypothesis covers two positives examples and two negatives examples.
Given that all evaluation functions use the coverage rate of the positive and
negative examples (and that all hypotheses are of size 1), they cannot make
a difference between all the possible refinements and have to rely on an
arbitrary tie-breaking mechanism. For instance, we can consider that the
first refinement is chosen and then it does not lead to a correct definition
as only literals involving the two last attributes are relevant.
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3.3 Crossing the plateau using near-misses with a TDD strategy

We now run the TDD strategy, which makes use of the negative examples
to prune branches of the refinement graph before relying on the evalua-
tion function to guide the search. The TDD strategy sets the search to the
generalisation set of a seed example, which is the first uncovered positive
example so far, namely e2. The closest negative example to the seed is e1.
The two examples differ only by the value of one attribute and therefore e1

is a Winston’s near-miss: the application of the TDD refinement operator
(definition 2) produces only the refinement {a3 = 1}, which is a literal of
the target concept. There is no choice to make and the search does not have
to rely on an evaluation function. As we have the whole set of instances,
at the next refinement step, the search is conducted further without choice
thanks to e4, which is also a near-miss more specific than the hypothesis.
The resulting hypothesis a3 = 1 ∧ a2 = 0 is correct and has been found
without search.

Note that the use of a seed example in a generate-and-test approach
like in PROGOL, ALEPH or MIO does not change the problem. While the
number of generated hypotheses is reduced to three ({a1 = 0, a2 = 0, a3 =
1}), the search still sees a plateau and goes blind.

We have illustrated the difference in behaviour between the TGT and
TDD strategies when search faces a plateau of the evaluation function: the
efficiency of search can be hindered by plateaus but is not alone a reliable
criterion of the search complexity. We next draw a parallel between this be-
haviour and the one of the same strategies in ILP, when the phase transition
of the covering test acts as a plateau for the evaluation function.

4 Impact of the phase transition of the covering test on the
learning success

In this section, we investigate the impact of the phase transition of the
covering test on the quality of the evaluation function and subsequently on
the efficiency of the heuristic search. For that purpose, we re-use the set
of learning problems2 presented in (Botta et al., 2003) but in a different
setting where there is a direct parallel between the plateaus of the “yes”
and “no” regions in figure 1 and the plateau of the heuristic search. As noted
in (Botta et al., 2003), the hypothesis space where FOIL is run is different
from the hypothesis space where the phase transition is drawn. Precisely,
the learning algorithms are allowed to add several literals based on the
same predicate symbol and they evaluate hypotheses whose coverage rates
are different from those pictured in the figure of the phase transition (figure
1). We conduct the same experiments but FOIL is bound to search in the
same hypothesis space as the one where the phase transition is exhibited
(Giordana & Saitta, 2000). To run the experiments, we use the learning

2 These problems are available at http://www.di.unito.it/˜mluser/challenge/index.html
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platform Aleph (Srinivasan, 1999) as FOIL, as far as we know, cannot be
set to run in such a hypothesis space when only one occurrence of a given
predicate symbol is allowed. Aleph is a highly configurable platform that
can emulate a large variety of learning algorithms including FOIL, as a pure
greedy learner lead by the information gain.

For the sake of completeness, we first recall the ILP setting of Botta
et al. for the hypothesis space and the generation of the learning problems
that have been used to study the behaviour of the learning algorithms.
We will describe our experiments performed with FOIL on the same set of
problems with the different hypothesis space. We then discuss the difference
in behaviour between the TGT learner FOIL and the TDD learner Propal

(Alphonse & Rouveirol, 2006) on the sets where near-misses are added.

4.1 Problem description

Botta et al. tackle the learning of a single Datalog clause from the hypothesis
space Lm

h built as follow:

Lm
h = {c←

n−1∧

k=1

plk(Xk, Xk+1) ∧

m∧

k=n

plk(Xik
, Xjk

)}

where c is the clause head without variables, ik < jk ∈ {1, . . . , n}, lk ∈
{1, . . . , m} and such that all literals in the clause body are built on distinct
binary predicate symbols. We can see that the first n − 1 literals ensure
that all variables are linked and therefore that the set of variables cannot
be decomposed into sets of independent variables that can break the cover-
ing test into easier sub-problems (Giordana & Saitta, 2000). Examples are
represented as ground Datalog clauses. Formally, let A = {a1, . . . , aL} be
the set of all constants of cardinality L, and N the number of literals per
predicate symbol. The example language Le is the set of ground Datalog
clauses defined as follow:

Le = {c←

m∧

i=1

N∧

j=1

pi(aij1 , aij2)}

Each pair of constants (aij1 , aij2 ) is drawn uniformly without replacement
from the set A × A.

A learning problem is parameterised with the tuple (m, L). The number
of variables n is fixed to 4 and the number of literals per predicate symbol
N is fixed to 100. In a (m, L) problem, m is the size of the target concept
drawn from Lm

h and L the number of constants in Le. One can note that the
target concept is one of the most specific clauses of the hypothesis space. For
each problem, a learning set and a test set are built. Both are balanced sets
of examples with 100 positive examples and 100 negative examples. In order
to visit as uniformly as possible the “yes”, “no” and “pt” regions, (m, L)
problems have been uniformly selected without replacement for m ∈ [5, 29]
and L ∈ [12, 39]. It has to be noted that if (m, L) lies in the “yes” (resp.
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“no”) region, by construction the concept description will almost surely
cover (resp. reject) any randomly constructed example. For those problems,
the example generator is modified and relies on a repair mechanism to ensure
a balanced distribution of positive and negative examples (Botta et al.,
2003).

4.2 Facing the plateau with a TGT learner

We ran FOIL on problems on m = 5 and m = 10 lines and on the upper-
right corner problems ranging from L ∈ [24, 39] on the m = 18 line and
from m ∈ [18, 29] on the L = 24 line. We also sampled some other problems
without any difference in the results. On all of these problems, FOIL is
unable to find any good approximation of the target concepts, being in the
“yes”, “no” or “pt” regions. Note that this result differs from (Botta et al.,
2003) where FOIL, in a different hypothesis space, was shown to fail only
in the “pt” region and in the “no” region for small numbers of constants
L (see figure 2). To show why, we plot for a problem the coverage rate of
the positive and the negative examples, as well as their standard deviation
depending on the size of the hypothesis, averaged over 1000 randomly and
uniformly drawn hypotheses as in (Giordana & Saitta, 2000). A plateau is
materialised by a standard deviation of the coverage rates of the examples
close to 0.

Figure 3 shows the results for the (5,15) and (10,15) problems in the
“yes” region, (5,35) and (10,20) in the “pt” region and (8,34) and (10,35) in
the “no” region. For each problem, the value of a hypothesis, given an evalu-
ation function, can be read on average from the corresponding sub-figure. As
the top-down learner searches the hypothesis space, it evaluates hypotheses
in turn of increasing size. For instance, on the (5, 15) problem, we can see
that all positive examples are covered (100% of positive coverage rate) for
any hypothesis size, and all negative examples up to a size of 3. Whatever
the evaluation function is, the top-down learner will see hypotheses up to 3
literals long of equal value, or equivalently, it has to cross a plateau of width
3 before being able to use the evaluation function to discriminate between
hypotheses.

As we can see for the “yes” and the “pt” regions, hypotheses at the bot-
tom of the search space are incorrect (i.e. for the maximum hypothesis size):
on average, there does not exist a correct theory of the learning problems in
these regions. The target concept is hidden among the bottom hypotheses
and a TGT algorithm can only find it by chance as we will detail later. The
natural stopping criterion of the TGT strategy is only met for problems
generated in the “no” region and a TGT learner is bound to output hy-
potheses belonging to the intermediate region inbetween the “pt” and the
“no” regions. This is similar to the findings of (Botta et al., 2003). There-
fore, we ran FOIL on several problems in the “no” region, whose results of
typical cases are summarised in table 2.
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Fig. 3 Covering rates and plateau profiles for representative problems in the
“yes”, “pt” and “no” regions.

Table 2 Accuracy measured on the test set, the number of clauses, as well as
their minimum and maximum size, output by FOIL in the Aleph framework for
some representative problems of the “no” region.

(m,L) (8,34) (8,39) (14,17) (14,28) (14,38) (19,17) (29,15) (29,24)

Accuracy(%) 54.5 58 47.5 53 54.5 55.5 55.5 46

# of clauses 91 83 55 55 66 44 36 38

〈min, max〉 〈7, 7〉 〈6, 7〉 〈7, 8〉 〈7, 9〉 〈6, 8〉 〈11, 14〉 〈15, 18〉 〈8, 9〉
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This table gives for each problem the accuracy evaluated on the corre-
sponding test set, the number of clauses in the theory and the minimum
and maximum size of the clauses in the theory. Again FOIL is unable to
produce any reasonable approximations of the target concept and performs
seemingly as a random classifier. These results are not surprising as we can
see that the “yes” region of the phase transition represents plateaus for
the heuristic search that must be crossed without an informative evaluation
function to guide the search toward the good path to the target concept.

The impact of plateaus is well-known on classical heuristic search and
they are a pathological case of heuristic search, whether complete or not, as
the search goes blind (see e.g. (Pearl, 1985; Korf, 1985b; Russell & Norvig,
1995)). For instance, in the case of a greedy search such as used in FOIL,
the algorithm has to make a random choice between possible refinements
and therefore acts as a random walker. In one of the smaller problem (5, 15),
the plateau is already as wide as 3 literals. FOIL’s search can be seen as
starting the top-down search from a randomly and uniformly drawn partial
hypothesis of size 3. It appears on all learning problems that a plateau of
such width, which lengthens as we take problems with smaller number of
constants L, is enough to fool the search. A parallel can be made with the
XOR problem described in section 1 where a plateau of width 1 was enough
to miss the target concept. Several approaches have been proposed to over-
come the limitation of a greedy search in ILP like look-ahead (Blockeel &
Raedt, 1997), randomised look-ahead (Serra, Giordana, & Saitta, 2001) or
macro-operators (Alphonse, 2004) but we do not discuss these techniques
here as their effectiveness strongly depends on the width of the plateau and
we rather focus on complete heuristic searches. This is also a pathology
for complete heuristic searches, like the best-first or the best-first iterative-
deepening searches (Korf, 1985a) implemented in PROGOL and MIO re-
spectively, although they can theoretically find the target concept in any of
the considered learning problems (see below). Best-first search (and its rela-
tives A or A*) cannot be guided by the evaluation function and it therefore
degenerates into a breadth-first search where the space requirement grows
exponentially. It is often said that A-like search runs out of memory before
reaching the time limit (Korf, 1985b). Best-first iterative-deepening (and its
relatives IDA or IDA*), used in MIO, avoid the exponential space complex-
ity but will reach the time limit.

If general-purpose complete learning algorithms cannot solve such prob-
lems with large plateaus within the time limit, it has to be noted that a
complete enumeration algorithm has been proposed to solve the problems
in the “no” region (Ales-Bianchetti, Rouveirol, & Sebag, 2002). The au-
thors propose to use dedicated pruning techniques to prune large parts of
the hypothesis space. The algorithm generalises a set of positive examples
in a restricted hypothesis space that contains the target concept. If the re-
stricted hypothesis space is in the “no” region, it is shown that the number
of common generalisations of a set of positive examples decreases exponen-
tially in the number of positive examples and therefore can be searched for
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a consistent hypothesis. However this pruning technique, making assump-
tions about the target concept, is tailored to the problem at hand and is
not a general learning technique.

The state of the art on evaluation functions used in learning shows that
they are all, without loss of generality, based on two main parameters that
are the rate of positive and negative examples covered. As these two pa-
rameters are inherited from the definition of the learning task, it is unlikely
that a solution to overcome these plateau phenomena consists in designing
new evaluation functions. The generate-and-test learning paradigm seems
doomed to fail to identify a good approximation of the target concept when
facing non-trivial plateaus.

5 Crossing plateaus using near-misses with the TDD strategy

In this section, we show that near-misses can be added to a learning problem
without changing the plateau profile3. In doing so, a TGT learner cannot
take advantage of the addition of the most informative negative examples
whereas a TDD learner is guided to the target concept without search and
then overcomes the plateau problems. For the sake of readability, we quickly
present the TDD strategy in ILP, limited to our setting, and we refer to
(Alphonse & Rouveirol, 2006) for a detailed presentation.

5.1 The TDD strategy in ILP

The TDD strategy is biased toward the covering of a seed example, s, and
then amounts to mapping the initial search space of the learning algorithm
into the space of generalisations of the seed example. Additionally, it is
required that this space of generalisations be isomorphic to a boolean lattice
and therefore the TDD refinement operator (see definition 2) is an algebraic
resolution of the learning problem. This requirement is naturally met in
ILP under the “object identity” partial order, but also under other partial
orders as θ-subsumption as classically handled in systems like PROGOL or
Aleph. Indeed, as it is known that no (ideal) refinement operators exist for
this partial order (Laag & Nienhuys-Cheng, 1994), the hypothesis space is
often restricted to the power set of a seed example, which is isomorphic to
a boolean lattice. Looking for a hypothesis of Lm

h that both covers s and
rejects a negative example e− can be equivalently performed by looking for
a generalisation of s that rejects lgg(s, e−), the least general generalisation
of s and e−. By definition of the lgg (Plotkin, 1970), we have h ≥ s ∧ h ≥
e− ⇔ h ≥ lgg(s, e−). Equivalently, by transposition, we have h 6≥ s ∨ h 6≥
e− ⇔ h 6≥ lgg(s, e−). As the TDD strategy is biased toward the covering of
s, h 6≥ e− ⇔ h 6≥ lgg(s, e−). Note that in ILP the lggs are not unique and
several lggs need to be rejected before rejecting the initial negative example.

3 The scripts used in this paper to add the near-misses examples are available on demand.
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By reformulating the whole negative example set into a boolean search space
by means of lggs, we can show that only the most specific set of lggs, which
are incomparable by definition, are useful for learning. By making use of this
partial order between negative examples, the TDD strategy can reject the
most informative negative examples only and following that way efficiently
prune the refinement graph. Precisely, if a negative example is such that one
of its lggs with the seed misses only one literal of the seed, then this literal
necessarily belongs to the hypothesis that discriminate them. This particular
example, or its particular lgg, is a Winston’s near-miss. The TDD strategy
implemented in Propal makes the most of this property by rejecting the
closest examples first, named in this context the nearest-misses examples.
A Winston’s near-miss is a nearest-miss by definition, being the closest.

5.2 Generating near-misses in the artificially generated problems

To guide the search with near-misses, we have to create new negative exam-
ples which differ from the seed example only by one literal in the reformu-
lated space by means of lggs. We will have as many near-misses as literals
in the target concept to guide the refinement process literal by literal4. Be-
fore presenting the generation procedure, we have to set the seed example,
or equivalently the bottom clause of the search space. For efficiency rea-
sons, and without loss of generality, we do not choose a positive example
as seed. The reason is that the examples provided in the set of problems
can be very large with up to 3000 literals. Instead, we choose as a bottom
clause the union of the most specific clauses in the hypothesis space, taking
into account the fact that they are all built from the same set of variables.
Then, for a target concept of size m with n variables, the bottom clause has

m × n(n−1)
2 literals. It is necessarily more specific than any hypothesis and

it is covered by the target concept.

Algorithm 1 GenerateProblemWithNearMisses(h,m,E)

begin

1 NM = ∅ % the set of near-misses

2 Create the bottom clause B of Lm
h

3 For k=1 to m do % one near-miss per concept’s literal

4 Extract a negative example e− from E % E = E \ e−

5 Add to e−’s definition a skolemised version of the bottom clause
6 While ∃θ such that hθ ⊆ e− do
7 Remove pk(Xi, Xj)θ from e− % the kth literal of h

8 NM = NM ∪ e−

9 Return E ∪NM

End

4 One can note in the following that only one negative example can represent all near-
misses. However, to make a parallel with the near-misses in attribute-value learn-
ing, we consider here that one near-miss is associated with one negative example.
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The generation procedure is given in algorithm 1. It takes as input a tar-
get concept h of size m, the corresponding learning problem E and outputs
a new learning problem. This new learning problem has the same number
of positive and negative examples as the input problem. At line 5, we see
that a negative example e− is augmented with the addition of a skolemised
version of the bottom clause. Hence, it is now covered by all the hypotheses
in Lm

h and, supposing that a solution of the learning problem exists in Lm
h ,

is now turned into a positive example: for each h ∈ Lm
h , we can exhibit

a substitution θ, involving only the skolem constants of the added bottom
clause, such that hθ ⊆ e−. It has to be modified into a negative example
which is done at lines 6 and 7. It guarantees that the new negative example
is a near-miss: the longest lgg between the bottom clause and the exam-
ple will differ only in the relevant literal of the target concept. When this
near-miss example will be used by the TDD refinement operator to spe-
cialise the incorrect hypothesis, only the relevant literal will be produced
as refinement. For the sake of completeness, note that in the case where
there are several possible matchings of the target concept onto the bottom
clause the near-miss will have as many missing literals. It means that there
exist several syntactic variants of the target concept in the power set of the
bottom clause and each unmatched or missing literal belongs to a different
syntactic version. A greedy search can still be applied successfully as any
literal is a valid refinement toward a definition of the target concept. The
initial definition of near-miss by Winston does not take into account this
particularity of relational learning but we leave this consideration out, as
it is beyond the scope of the paper. Pratically, we do not observe that in
the learning problems we consider here: there is always a single possible
matching substitution between the target concept and the bottom clause.

The most important point of this problem generation is to note that the
number of models of a hypothesis in the near-misses can only be greater
than in the original negative examples: if a hypothesis covers the original
negative example, it covers the corresponding near-miss and the converse
is not true. This property is necessary to show that a near-miss can be
added without changing the plateau profile. At lines 6 and 7, during the
computation of substitutions between the target concept and the positive
example, only substitutions of the variables onto the skolem constants of the
bottom clause part of the example can be found as the original example is
a negative example. This property is due to the fact that a phase transition
is shown in a space of hypotheses where the resulting matching problems
cannot be decomposed into simpler sub-matching problems as explained
in section 4.1 (see (Giordana & Saitta, 2000)). Therefore, the computed
substitutions can only involve the skolem constants and not a mix of some
constants from the original example and some skolem constants. In the next
section, we show the resulting plateau profiles and discuss the behaviour of
the TGT and the TDT learners on these new problems.
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5.3 Experiments
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Fig. 4 Coverage rates and plateau profiles for representative learning problems
in the “yes”, “pt” and “no” regions with-near misses.

We ran FOIL on the same problems as before, augmented with near-
misses as described above. On all of these problems, FOIL is unable to
find any good approximation of the target concepts, being in the “yes”,
“no” or “pt” regions. As we can see in figure 4, the plateau profile does
not change and a TGT learner cannot take advantage of the addition of
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the most informative negative examples. The problems of the “no” region
exhibit a different behaviour of FOIL which cannot even output a correct
theory for any of them. If we look at the rate of covered negative examples
for the maximum hypothesis size, we see that the most specific hypotheses
are not correct on average. These hypotheses cover the near-misses which
by construction are more specific than all hypotheses but merely the ones
that are on the path to the target concept. This is an illustration of the
performance of FOIL as bad as random guessing on the original problems
in the “no” region described in section 4.2. As noted in (Ales-Bianchetti et
al., 2002), these types of problems are equivalent to finding the needle in the
haystack: almost only the target concept is the solution of the consistency
problem.

The opposite behaviour is exhibited by the TDD learner Propal which,
by construction, solves all of the problems being in the “yes”, “pt” or “no”
regions. The learner makes the most of the learning data by exploiting only
the information provided by the near-misses to guide its search. Note that as
the branching factor is reduced to one thanks to the near-misses, the target
concept is exactly identified each time as opposed to evaluating the quality
of the approximation on a test set as for FOIL. Interestingly, the resolution
of the problems is quite fast, taking below 20 minutes on a desktop computer
up to problems on the line m = 14 to several hours for the hardest ones.

6 Conclusions

Plateau phenomena in ILP have been studied recently in the phase tran-
sition framework and an important work has been done on identifying the
criteria of success of learning algorithms (Botta et al., 2003). The conclu-
sion drawn from this work was that the location of the target concept with
respect to the phase transition of the covering test was conclusive of the
difficulty of the learning problems. A failure region was identified for all
the tested learners, starting from the “pt” region to the beginning of the
“no” region. We performed additional experiments that strengthen this re-
sult. When the top-down search is conducted in the hypothesis space that
exhibits a phase transition in its covering test, the “yes” region acts as a
plateau for the heuristic search. This is the pathological case of heuristic
search, whether complete or not, as the plateau must be crossed without
being able to differentiate between refinements. In such a case, the greedy
TGT learner, FOIL, cannot solve any of the problems. We showed, however,
that this criterion alone is not reliable. As a main result, we showed that
a top-down data-driven learning algorithm (Alphonse & Rouveirol, 2006),
supplied with near-miss examples was able to solve all problems, although
the near-miss examples are still non-informative for generate-and-test algo-
rithms. The plateau phenomena exhibited in the phase transition framework
is a pathological case of the generate-and-test learners as they only rely on
an evaluation function to guide their search, but it is not, alone, a reliable
complexity measure for all learners.
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In future work, we are going to further investigate the complexity of ILP
within the phase transition framework by studying the impact of the loca-
tion of a learning problem with respect to the phase transition of the search
problem. The learning problems considered in this paper are instances of
what is known as the bounded ILP-consistency problem in (Gottlob, Leone,
& Scarcello, 1997). That is finding a (single) horn clause, with a size bounded
by an integer k polynomial in the problem size, that is consistent with the
examples. It is known that this problem is NP NP (or equivalently ΣP

2 -
complete): the search is NP-complete and it is guided by the covering test
which is NP-complete. Therefore, ILP potentially has to face two phase tran-
sitions: the phase transition of the covering test and the phase transition of
search. We believe that the study of the latter is a better complexity mea-
sure relevant to both strategies as it translates into the inherent complexity
of search.
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