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Abstract. The feasibility of symbolic learning strongly relies on the effi-
ciency of heuristic search in the hypothesis space. However, recent works
in relational learning claimed that the phase transition phenomenon
which may occur in the subsumption test during search acts as a plateau
for the heuristic search, strongly hindering its efficiency. We further de-
velop this point by proposing a learning problem generator where it is
shown that top-down and bottom-up learning strategies face a plateau
during search before reaching a solution. This property is ensured by
the underlying CSP generator, the RB model, that we use to exhibit a
phase transition of the subsumption test. In this model, the size of the
current hypothesis maintained by the learner is an order parameter of
the phase transition and, as it is also the control parameter of heuristic
search, the learner has to face a plateau during the problem resolution.
One advantage of this model is that small relational learning problems
with interesting properties can be constructed and therefore can serve as
a benchmark model for complete search algorithms used in learning. We
use the generator to study complete informed and non-informed search
algorithms for relational learning and compare their behaviour when fac-
ing a phase transition of the subsumption test. We show that this gen-
erator exhibits the pathological case where informed learners degenerate
into non-informed ones.

1 Introduction

According to [Mit82], symbolic learning is defined as search: given a hypothesis
space defined a priori, identified by its representation language, find a hypothe-
sis consistent with the learning data. This paper, relating symbolic learning to
search in a space state, has enabled machine learning to integrate techniques
from problem solving, operational research and combinatorics. The search is
NP-complete for a large variety of languages of interest (e.g. [Hau89,KV94]) and
heuristic search is crucial for efficiency. Whereas heuristic search has been showed
to be effective in attribute-value languages, it appeared early that learning in
relational languages, also known as Inductive Logic Programming (ILP), had to
face important plateau phenomena (see e.g. [Qui91,SP91,RM92]): the evaluation
function, used to prioritise nodes in the refinement graph is constant in parts of



the search space, and the search goes blind. These plateau phenomena are the
pathological case of heuristic search, being complete or not [Pea85].

[SGS01,Alp04,AO08] pointed out that an explanation for these plateaus is
the phase transition behaviour of the NP-complete subsumption test, as shown
by [GBS99,GS00]. When one studies the probability of covering a random exam-
ple of a fixed size by a hypothesis given the hypothesis’ size, one distinguishes
three well-identified regions: a under-constrained region for small hypothesis size,
named “yes”, where the probability of covering an example is close to 1, an over-
constrained region for large hypothesis size, named “no”, where the probability
is close to 0, and finally in between the phase transition or the “pt” region, where
an example may or may not be covered. As the heuristic value of a hypothesis
depends on the number of examples covered (positive or negative), we see that
the two regions “yes” and “no” represent plateaus that need to be crossed during
search without an informative heuristic value.

We think that a systematic study of the impact of plateaus on heuristic search
used in learning is a necessary step for the development of scaling-up relational
learners, much in the line of recent advances in combinatorics through the phase
transition framework.

In this paper, we propose a consistency problem generator in relational learn-
ing, RLPG, that guarantees the existence of plateaus during search, based on
model RB proposed for CSP. Using its properties, it is proved that the current
hypothesis’ size evaluated during learning is an order parameter of the phase
transition of the subsumption test. This result asymptotically guarantees the
existence of a plateau for the heuristic search. Moreover, it is shown that the
size of the plateau grows sub-quadratically with the problem size. In practice,
we will show that problems of very small size can be generated while still guar-
anteeing plateaus, which makes it suitable as a benchmark model for relational
learning. This is empirically validated by running several complete search learn-
ers on problems generated by RLPG that exhibit the pathological case where
informed search learners degenerate into non-informed ones.

In section 2, we present the necessary background on relational learning and
Constraint Satisfaction Problems (CSP). In the next section, we discuss another
model proposed to import the phase transition framework into relational learn-
ing [BGSS03]. However, they tackle the different problem of studying the link
between the localisation of the target concept with respect to the phase transi-
tion and the generalisation performance on a test set. This model cannot be lifted
to our problem as we will discuss it. The section 4 presents the model RLPG
(Relational Learning Problem Generator). Then, this generator is empirically
validated in section 5 on several complete search strategies for learning, avail-
able in the learning systems Aleph [Sri99], Progol [Mug95] and Propal [AR06].
Finally, we conclude on further developments of the model RLPG.



2 Background

2.1 Relational Learning (RL)

In this article, we study what has been termed the ILP-consistency problem
for function-free Horn clauses by [GLS97]. Given a set of positive examples E+

and a set of negative examples E− of function-free ground Horn clauses and an
integer k polynomial in |E+∪E−|, does there exist a non-recursive function-free
Horn clause h with no more than k literals such that h logically implies each
element in E+ and h does not implies any element in E−.

In such hypothesis space, the logical implication is equivalent to θ-subsumption
which is NP-complete and therefore decidable [Got87].

Definition 1 (θ-subsumption). Let C, D two clauses. C θ-subsumes D, noted

C ≥θ D iff there exists a substitution θ such that Cθ ⊆ D

The consistency problem is fundamental in learning as it is the core of the
Statistical Learning Theory, notably studied in the PAC framework (see [KV94]
for details). This a fortiori is true in Relational Learning where almost all noise-
resistant learners are relaxation of this problem [Für97].

A central idea in symbolic learning is the use of a generality partial or-
der between hypotheses, in the hypotheses space denoted Lh, to guide the
resolution of the consistency problem (see Mitchell [Mit82] for more details).
Mitchell defined top-down search and bottom-up search strategies. Without loss
of generality, we restrict ourselves to top-down search. The search strategies
are further refined into generate-and-test (GT) and data-driven (DD) strate-
gies. In the GT paradigm, the top-down refinement operator, noted ρ, is only
based on the structure of the hypothesis space, independently of the learning
data: Let h ∈ Lh : ρ(h) = {h′ ∈ Lh|h ≥ h′}. Therefore, generate-and-test
algorithms have to deal with many refinements that are not relevant with re-
spect to the discrimination task. On the contrary, the DD strategy searches
the space of hypotheses that are more general than or equal to a given pos-
itive example and uses negative examples to prune irrelevant branches in the
refinement graph. It is defined as a binary operator: Let h ∈ Lh, e− ∈ E− :
ρ(h, e−) = {h′ ∈ Lh|h ≥ h′ and h′ 6≥ e−}. Relying on the negative examples
allows a TDD strategy to have a branching factor that is smaller than the branch-
ing factor of a generate-and-test strategy, and can therefore compensate for a
poor evaluation function by using the learning data [AR06,AO08]. The so-called
near-misses are negative examples that reduce the branching factor to one.

2.2 Constraint satisfaction problems and random problem
generators

A Constraint Satisfaction Problem (CSP) is defined by a finite set of vari-
ables {X1, . . . , Xn}, a set of finite domains {D1, . . . , Dn}, each variable Xi

taking its value from its corresponding domain Di, and a set of constraints
{C1, C2, C3, . . . , Cm}. Each constraint Ci is defined over a subset of k variables



called its scope and denoted by scope(Ci). An extensional definition of a con-
straint Ci is the set of tuples of values allowed for the variables in scope(Ci).
Instantiating a variable is affecting to it a value from its domain. A solution of
a CSP is an assignment of all variables that satisfies all constraints. When (∀i)
|scope(Ci)| = 2, the CSP is called binary.

Studies on CSP assume a model of random instance generation [HW94,SD96].
Randomly generated CSP have widely been used experimentally and theoreti-
cally to study the phase transition between the regions of under-constrained and
over-constrained CSP. Most studies use one of the known models A, B, C, D
(see [Smi01] for details). In each of these models, sets of randomly generated CSP
were used. Each set of problems is characterised by four parameters [SD96]: a set
of n variables; the number of values d in each variable domain; p1, the proportion
between the number of generated constraints and the number of possible con-
straints, defining the CSP density, and p2, the proportion between the number of
incompatibles tuples and the possible ones in each constraint, defining the con-
straint’s tightness. p1 and p2 are order parameters to exhibit phase transitions in
CSP. For instance, by fixing one of the order parameters and varying the other
one from 0 to 1, one wanders from an under-constraint region, the “yes” region,
where the probability of solubility is close to 1, to an over-constrained region,
the “no” region, where the probability is close to 0, with the phase transition
localisation depending on the parameters’ value.

We detail the standard stochastic model B [SD96] and its extension model
RB [XL00,XBHL07] we are going to use in the following. Model B is defined
by the tuple B(k, n, d, p1, p2), where k ≥ 2 denotes the arity of each constraint,
n ≥ 2 the number of variables, d the domain size for all constraints, p1 constraint
density and p2 constraint tightness. We note that in model B, the number of
constraints is m = p1.(

n
k ), the number of disallowed tuples of each constraint is

t = p2.d
k. Some limitations of model B regarding the asymptotic complexity have

been pointed out by [AKK+97]. They prove that random problems generated
with B model suffer from trivial insoluble instances as problem size increases.
Model RB, which share the same generation procedure as model B, avoids its
limitations by adding constraints of the parameters’ values. Model RB is denoted
by RB(k, n, α, r, p), where k, n, p are respectively the same as k, n, p2 in model
B, α defines the domain size d = nα and r defines the number of constraints
m = r.n.ln(n).

To generate a problem in each model, we have to build m constraints, each one
formed by randomly selecting, uniformly and without replacement, a scope of k
(distinct) variables and randomly selecting, uniformly and without replacement,
a relation of t distinct disallowed tuples. [XL00] prove that model RB, under
some conditions, avoids trivial asymptotic behaviours and provides exact phase
transition thresholds for random CSP. Model RB guarantees the phase transition
by varying one of the two defined parameters r and p. Note that the main
difference between B and RB is that the domain size of each variable in RB grows
polynomially with the number of variables. We will use the following theorem



to show that the hypothesis size in relational learning is an order parameter of
the phase transition.

Theorem 1 ([XL00]). Let Psat denotes a probability distribution, if k, α > 1
k

and p ≤ k−1
k

be constants and rcr = −α/ln(1− p) then

lim
n→∞

Psat[P ∈ RB(k, n, α, r, p) is sat] =

{

1 if r < rcr

0 if r > rcr

This theorem indicates that a phase transition is guaranteed when the domain
is not too small and the constraint tightness not too large. In the case of binary
constraints (k = 2), the domain size is required to be greater that the squared
root of the number of variables.

2.3 Reduction of extensional CSP to θ-subsumption

As θ-subsumption is NP-complete, various models used to study phase transition
phenomena from other NP-complete problems can be imported to relational
learning via reduction. Models for random CSP are easy to import in relational
learning because of their trivial reduction to the subsumption problem (time and
space complexity linear in the problem size), that is to decide if a variabilised
function-free horn clause, C, θ-subsumes a ground function-free horn clause, D.

Following the presentation of CSP in section 2.2, C encodes the scope of the m
constraints with m literals built on different predicate symbols : each constraint
Ci is associated with a literal li such that scope(Ci) = vars(li). By definition, C
cannot have more literals than (n

k ). The extensional definitions of the constraints
is given by D : for each constraint we define as many ground literals as there are
allowed tuples in it, built from its associated predicate symbol. The size of D is
then Σm

i |Ci|, with |Ci| the cardinality of the set of allowed tuples by Ci.
We illustrate the reduction on an example. Let be a CSP defined over 3 vari-

ables with D1 = D2 = {a, b} and D3 = {a, b, c}, and 2 constraints C1(X1, X2) =
{(a, b)} and C2(X1, X2, X3) = {(a, b, c), (b, a, a)}. We define C as:
c← c1(X1, X2), c2(X1, X2, X3) and D as c← c1(a, b), c2(a, b, c), c2(b, a, a). Note
that the positive literal is only relevant for the learning task as it doesn’t encode
anything CSP specific. It is easy to see that a substitution θ, solution to the
subsumption problem, is the solution tuple of the CSP and conversely. In the
example θ = {X1/a, X2/b, X3/c}.

3 Related work

A model to study the phase transition of the subsumption test has been proposed
in [GS00] and the study of its possible impact on relational learning efficiency
has been proposed in [GBS99,BGSS03]. We are going to discuss them and show
their limitations to study the impact of the phase transition of the subsumption
test on plateaus during search.



3.1 Model to study the phase transition of the subsumption test

In [GS00], they propose a model, inspired by model B, to study the phase tran-
sition of the subsumption test. Hypotheses are function-free horn clauses from
the hypothesis space Lm

h built as follow:

Lm
h = {c←

n−1
∧

k=1

plk(Xk, Xk+1) ∧

m
∧

k=n

plk(Xik
, Xjk

)}

where c is the clause head without variables, ik < jk ∈ {1, . . . , n}, lk ∈ {1, . . . , m}
and such that all literals in the clause body are built on distinct binary predicate
symbols. The first n−1 literals ensure that all variables are linked, and therefore,
that the set of variables cannot be decomposed into sets of independent variables
that can break the subsumption test into easier sub-problems [GS00]. That is
to say, p1, the constraint density, can not be fewer than p1min = 2/n. Examples
are represented as ground clauses as described earlier to encode the constraints’
domains. They showed that m, the hypothesis size, and L, the domain size, were
order parameters of the phase transition in their settings. However, there is no
guarantee that a phase transition will occur as their model differs from random
CSP models. p1 and p2, the order parameters in most CSP models, are random
variables here, depending on m and L. Indeed, the variables pairs are randomly
drawn with replacement and several literals can be built on the same pair of
variables. The constraint on the variables is no longer a set of tuples built on a
unique predicate symbol, but the intersection of all sets of tuples related to the
literals. For instance, let n = 4, then the maximal number of constraints in a
binary CSP is mmax = 6. Let m = mmax and the two following hypotheses:

h1 : c← p1(X, Y ), p2(Y, Z), p3(Z, T ), p4(X, Y ), p5(X, Y ), p6(X, Y )

h2 : c← p1(X, Y ), p2(Y, Z), p3(Z, T ), p4(X, Z), p5(X, T ), p6(Y, T )

We remark that in h1, the order parameter p1 = p1min and p2 is undefined, and
in h2, the order parameter p1 = 1 and p2 = 1−N/L2.
To exhibit the phase transition of subsumption, we propose to use model RB,
where phase transition is proved to occur asymptotically and can be precisely
located.

3.2 Phase transition of subsumption and relational learning

Bringing the phase transition framework to the realm of Relational Learning
has been first done by Giordana et al. [GBS99,BGSS03] where they proposed
to study the link between the localisation of the target concept with respect to
the phase transition of the subsumption test and the generalisation performance
on a test set. They tackle the learning of a function-free horn clause from the
hypothesis space Lm

h described above. A learning problem is parametrised with
the pair (m, L), the number of variables n being fixed to 4 and the number of
allowed tuples N is fixed to 100 in their experiments. In a (m, L) problem, m



is the size of the target concept drawn from Lm
h and L the number of constants

in the examples. For each problem, a learning set and a test set are built to
evaluate generalisation performance of learning algorithms. Both are balanced
sets of examples with 100 positive examples and 100 negative examples. It has
to be noted that if (m, L) lies in the “yes” (resp. “no”) region, by construction
the concept description will almost surely cover (resp. reject) any randomly
constructed example. For those problems, the example generator is modified
and relies on a repair mechanism to ensure a balanced distribution of positive
and negative examples [BGSS03].

It was shown in [AO08], however, that this localisation of the concept was
not a reliable indication of the learning problem difficulty, and that plateaus
generated by the phase transition behaviour of the subsumption test prevented
FOIL from solving any problem.

Their model cannot be lifted to our study of the link between plateaus and
heuristic search efficiency. Notably, we can note that the hypothesis space is
very large in their settings and prohibits the study of average heuristic search
behaviour of complete learners and even incomplete learners. There is also no
guarantee that plateaus, through the occurrence of a phase transition, will occur
with smaller parameter values, as their model differs from random CSP models
as stated above, but also as a balanced distribution of the examples is ensured
by a repair mechanism and is no longer random.
Also, the proposed problem generator does not translate into lattice-like hypoth-
esis space (the target concept being one of the most specific elements) and the
link between variables is a hidden structure. This point is important to be able
to easily run standard learning approaches on generated problems. For instance,
this prevents the use of popular approaches based on the existence of a bottom-
most element in the search space, like top-down seed-based approaches (Aleph,
Progol, Propal) and bottom-up approaches, like lgg-based approaches [Plo70].

We introduce in the next section a model to analyse phase transition and
plateau phenomena in relational learning. It guarantees plateaus during search
in problems of very small size, suitable to evaluate the average performance
of learners, and defines the hypothesis space as a boolean lattice to ease the
implementation of various learning strategies.

4 Model for exhibiting plateaus in random RL problems

A learning problem instance in our model is denoted RLPG(k, n, α, N, Pos, Neg).
The parameters k, n, α are the same parameters as in RB. N is defined as
in [GBS99] as the number of allowed tuples by each constraint and we have
N = (1 − p).dk, with p the constraint tightness. As they argued, this is more
meaningful for learning as it is the number of literals built on the predicate sym-
bol associated to a given constraint. Pos and Neg are the number of positive
and negative examples in the learning dataset, respectively.

Given k and n, the maximum number of constraints is (n
k ). All these con-

straints are encoded in a clause which is set as the bottom clause of the hypoth-



esis space Lh. Lh is then defined as the power set of the bottom clause, which is
isomorphic to a boolean lattice. As said previously, this property is interesting
for learning because it eases the implementation of various learning strategies
like bottom-up generate-and-test and data-driven (i.e. lgg based [Plo70]) strate-
gies. Also, this restriction is often used in top-down learning systems like Aleph,
Progol or Propal to define complete and efficient refinement operators. In that
space, it is guaranteed that each hypothesis evaluated by the learning algorithms
encodes a valid constraint network of the underlying model RB. The refinement
operator is to add a literal from the bottom clause that is not in the hypothe-
sis, hence the number of literals in the hypothesis is exactly m, the number of
constraints in the underlying CSP.

Learning examples are randomly drawn, independently and identically dis-
tributed, given n, α and N , as explained in section 2.2. Their size is N.(n

k ).
Each example defines the set of allowed tuples of size N for possible constraint
networks ranging from 0 to (n

k ) constraints.
In the next section, we detail how this model exhibits a phase transition

of the subsumption test when varying hypothesis sizes, and in section 4.2 how
this phase transition translates into a plateau for the heuristic search, during
the resolution of the consistency problem. From now on, we restrict ourselves
to binary CSP, that is all logical predicates are binary. As in [BGSS03], this
restriction is for the sake of simplicity while still being representative of typical
relational learning problems.

4.1 The phase transition of the subsumption problem

Given a randomly drawn example according to model RLPG, a hypothesis of
size m defines m constraints over n variables, each constraint being extensionally
defined in the example. As the hypothesis size m varies during search from 1
to n(n − 1)/2 (k = 2 here), r = m/(nln(n)), the order parameter of the phase
transition, varies (or equivalently in model B, p1 varies from 0 to 1). In model
RB, there exists an exact localisation of the phase transition for r = rcr. As we
use the same model, varying m, the hypothesis size of the current hypothesis
asymptotically exhibits a phase transition.

[XL00] give an asymptotic value of the cross-over point of the phase transition
as rcr = −α/ln(1 − p) (theorem 1). This critical value is the point where the
expected number of solutions of the problem E(N) = 1. In practice, this is often
used to localise the critical value of the order parameter where Psat = 0.5 (see

e.g. [SD96]). In our case, the critical hypothesis size is mcr = −αnln(n)
ln(1−p) . We can

see that as n increases, the value of mcr grows in nln(n). Interestingly, even when
n is small (starting from 5), experiments corroborate the theoretical results as
shown in figure 1. Note that for each plot, the maximum number of possible
literals is n(n− 1)/2.
Empirical validation of the localisation of the crossover point regarding to the
order parameter m is summarised in table 1. We observe that for all values of
n, greater than 5, the empirical value of the crossover point mcr is close to the
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Fig. 1. Psat drawn for different values of n (d = nα with α = 1, p = 0.75) as m varies,
averaged over 300 drawn (hypothesis,example) pairs.

Table 1. Comparison between empirical and theoretical values of m for α = 1, p = .75

n mTP empirical value of m

5 5,79 ± 1 between 5 and 6
10 16,61 ± 1 between 14 and 15
15 29,30 ± 1 between 26 and 27
20 43,21 ± 1 between 39 and 40

theoretical asymptotic value. Even when the conditions of theorem 1 are not
respected (p = 0.75 in Figure 1), we observe that Psat = 1 almost surely for
m < mcr. It was noted already in [Smi01] that the conditions attached to α and
p are strong and it should be possible to relax them by using other methods to
compute Psat lower bounds. This robustness allows us to define small problems
where the phase transition is exhibited, which translates into small hypothesis
spaces as we will see in the next section.

We show the phase transition along the second order parameter p of model
RB in figure 2, with α = 1.4 where the contour plots correspond to Psat =
0.99, 0.5 and 0.01, and in figure 3, where the contour plot corresponds to Psat =
0.5, with different values of α. Each point is averaged over 1000 subsumption
tests. p is controlled with N in RLPG and we observe that as N increases, p
decreases which gives smaller values for mcr.

p can also be controlled by varying α, keeping N constant, as in [GS00] who
used the domain size as order parameter, which is pictured in figure 4. We are
going to use this control parameter in the next section to change the localisation
of the “pt” region and therefore to change the plateau length of a problem in the
next section. Although this is not strictly model RB, the advantage of d = nα
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Fig. 2. Probability of solubility of the subsumption test in the (m, N) plane for n = 5
and α = 1.4.

here to control p instead of N is that the examples’ size does not change and it
keeps learning problem size constant. However, p changes faster, quadratically
in d instead of linearly in N , as it can be seen in the figure.

4.2 The plateaus of heuristic search

A relational learning problem is defined by drawing, independently and identi-
cally distributed, Pos positive examples and Neg negative examples. By con-
struction, a hypothesis, solution of the consistency problem, can only be found
in the phase transition region, as hypotheses in the “yes” (resp. the “no”) will
almost surely subsume (resp. not subsume) all learning examples. The top-down
search, which starts from the top-most hypothesis in the hypothesis space lat-
tice, will have to specialise hypotheses by adding a literal at a time to cross the
“yes” region before reaching the phase transition region where a solution can be
expected. Dually, a bottom-up search will have to cross the “no” region before
reaching the “pt” region.

The “yes” and “no” regions implies a plateau to cross during a heuristic
search in these regions. Indeed, if we study the state of the art on evaluation
functions used in learning (see for instance [FF03]), it shows that all of them
are based, without loss of generality, on three parameters that are the coverage
rate of positive examples, the coverage rate of negative examples and possibly
a complexity measure of the hypothesis under consideration. In the “yes” or
“no” regions, the coverage rate of positive and negative examples is constant
and implies that all evaluation functions are constant, defining a plateau. It has
to be noted that, as the first two parameters are inherited from the learning task
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Fig. 3. Contour plot corresponding to Psat = 0.5 in the (m, N) plane for n = 5 and
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definition, it is unlikely that a solution for solving the plateau problem consists
in designing new evaluations functions.

We show the plateaus for a top-down approach in figure 5. It shows the
contour plot corresponding to Psat = 0.991 for problems defined with n = 5
variables and different values of N . Psat is evaluated on average at each point in
the (m, d) plan by running 1000 subsumption tests. These contour plots indicate
the beginning of the “pt” region to the right, the left part, for low m, being the
plateau in the “yes” region. We see that varying d the number of constants in
the example, we change the tightness of the constraints which varies the plateau
length.

Various experiments have been conducted with different parameter values
which show all similar plateau profiles. It is interesting to note that the smallest
value for n where plateaus were exhibited is n = 5. In this case, the bottom-
most hypothesis in the lattice has a size of n(n − 1)/2 = 10, and therefore
the plateaus are exhibited for a hypothesis space of 210 hypotheses only. This
is a very small problem size which makes it very useful for studying average

1 Any value arbitrarily closer to 1.0 gives the same result.



Fig. 4. Contour plot corresponding to Psat = 0.5 in the (m, d) plane for n = 5 and
various values of N.

performances of complete search learners in reasonable time. We are going to use
it in the next section to compare the behaviours of different complete informed
and non-informed search learners.

Fig. 5. Contour plot corresponding to plateaus size: Psat ≥ 0.99 in the (m, d) plane
for n=5 and various values of N.



5 Experimental results

Complete search learners, available in the learning systems Aleph, Progol and
Propal are run on a collection of problems denoted by RLPG(2, 5, d, 15, Pos, Neg),
with d varying from 5 to 20, and Pos = Neg varying from 1 to 5. We evaluate
the impact of the plateaus on their heuristic search cost by recording the num-
ber of evaluated hypotheses to answer the consistency problem. Every plot is
averaged over 1000 randomly drawn learning problems. As said previously, we
limit ourselves to top-down approaches. For a detailed description of the various
strategies we discuss below, we refer to [Pea85,Sri99,Mug95,AR06] because of
the space requirements of the paper.
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As non-informed searches, we use the breadth-first TGT search (BF-TGT)
and the depth-first TGT search (DF-TGT). As informed searches, we use the A
TGT search (A-TGT) and the best-first TGT search (BESTF-TGT). Informed
search makes use of an evaluation function to minimise, whose general form is
f = g + h. g is defined as the cost from the start to the current hypothesis
and h as an estimation of the distance from the current hypothesis to the goal.
We define A-TGT according to the Progol system: g is defined as the length of
the current hypothesis and h has the difference between the number of negative
examples and the number of positive examples. In our context, as all positive
examples must be subsumed, it simplifies to the number of negative examples.
BESTF-TGT is not biased towards shorter hypotheses and defines g = 0.
In all these complete strategies, the implemented refinement operator structures
the hypothesis space as a tree in order to avoid redundancy during search. This
is done classically with boolean lattices by fixing a total order on the possible
refinements.
The last learning strategy we study is the one used in the TDD learner Propal.



This is an incomplete learner as it performs a beam search guided by the Laplace
function. So we set Propal with a beam of unlimited size, which basically turns
down to a non-informed breadth-first search (BF-TDD). The only difference is
that when the solution is reached at a level of the search, it will be the first
picked up at the next level. Note also that, as an incomplete learner, it does not
have an optimal refinement operator, like the other learners, and may evaluate
the same hypothesis several times.

We only show results obtained when Pos = Neg = 1, 3 and 5, as extensive
experiments varying the number of examples exhibited the same patterns. Figure
6 shows the median cost of the different learning strategies for Pos = Neg = 3
with various plateau lengths defined by d (as illustrated in figure 5). We can
notice several patterns for the learners depending on the plateau lengths.

We first compare BF-TGT and BF-TDD. BF-TDD outperforms its generate-
and-test counter-part, as it has been shown in [AR06] that the TDD approach
necessarily has a branching factor smaller or equal to that of a TGT strategy.
When d = 5, the plateau is the largest and no consistent hypothesis exists.
BF-TGT has to evaluate all the hypotheses (1024) before answering the prob-
lem. As d increases, the plateau length decreases and BF-TGT will develop all
hypotheses up to the phase transition region where a hypothesis can be found.
As for BF-TDD, the computation of a near-miss with the bottom of the search
space in the case of d = 5 yields an inconsistency as the near-miss is equal to the
bottom-most hypothesis and the search halts with no evaluated hypotheses. As
d increases, near-misses will be farther from the bottom of the search space and
the branching factor will increase. This is pictured by an increasing number of
evaluated hypotheses, which converge towards the cost of BF-TGT. The other
non-informed learner, DF-TGT, shows the same behaviour as BF-TGT for low
values of d as it cannot detect trivial inconsistency. When d is above 13, it per-
forms best as there are several solutions in the “pt” region. DF-TGT directly
crosses the plateau and ends up doing few backtracks before finding a consistent
hypothesis.

We discuss now the informed strategies. We can see that they both have a
similar behaviour, and mimic BF-TGT, although they evaluate fewer hypothe-
ses than it for smaller plateaus. However, they systematically evaluate more
hypotheses than DF-TGT, and than BF-TDD, except for the largest values of
d. This behaviour is the pathological case of an informed search. As an illus-
tration, we plot the number of hypotheses evaluated according to their size, for
d = 8 in figure 7, where the plateau is large, and for d = 15 in figure 8, where the
plateau is smaller. We can see that they all develop all hypotheses up to m = 5
for d = 8, given a plateau size of 4 in figure 5, and up to m = 3 for d = 15, given
a plateau size of 2. It is only in the ”pt” region that the heuristic becomes useful
to guide the search and differentiates the different approaches. The fact that each
time m is one literal bigger than the plateau size is not clear. We can note that
BESTF-TGT systematically outperforms A-TGT, even slightly, as A-TGT will
give preference to a hypothesis that subsumes 2 negative examples compared to
a hypothesis one literal longer that subsumes only 1 negative example.
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Fig. 7. Median number of evaluated hypotheses during search according to their size,
with d = 8
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Fig. 8. Median number of evaluated hypotheses during search according to their size,
with d = 15

We can note that the cost of resolution, after decreasing up to d = 15 for
the GT learners, starts increasing after this point. The problems seem harder
for BF-TDD too. This point corresponds to problems that have a probability of
solubility close to 0.5 and would correspond to the phase transition region of the
consistency problem. As noted in [AO08], learners solving the ILP-consistency
problem potentially have to face two phase transitions: the phase transition of
the NP-complete subsumption test and the phase transition of NP-complete
search. It is a very interesting follow-up to study how the parameters of RLPG
can exhibit this second phase transition as the probability of solubility of the
consistency problem may impact the behaviour of learning strategies. Figure 9
shows problems generated with Pos = Neg = 1, where the number of solutions
is high. In this case, we observe the same behaviour of algorithms as in figure



6, with a notable difference for DF-TGT which quickly reaches the “pt” region
and finds a solution with almost no backtrack.
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Fig. 9. Median number of evaluated hypotheses during search for learning problems
with Pos = Neg = 1 and d varying from 5 to 20

Figure 10 shows the median cost of the different learning strategies in prob-
lems with Pos = Neg = 5 where almost no solution exists and all learners have
to search the entire space. We observe that all informed and non-informed TGT
approaches have the same high median cost as they cannot efficiently detect
inconsistency as opposed to the TDD approach for all values of d.
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Fig. 10. Median number of evaluated hypotheses during search for learning problems
with Pos = Neg = 5 and d varying from 5 to 20



6 Conclusion

Recent works in relational learning pointed out that the phase transition phe-
nomenon, which may occur in the subsumption test during search, acts as a
plateau for the heuristic search, strongly hindering its efficiency [AO08]. We
proposed to systematically investigate this issue by designing a relational learn-
ing problem generator where it is shown that top-down and bottom-up learning
strategies face a plateau during search before reaching a solution. This property
is ensured by using the generative model RB defined for CSP to exhibit the
phase transition of the subsumption test, with the hypothesis size as an order
parameter. The size of the plateau grows sub-quadratically with the problem
size and it is guaranteed asymptotically. Intensive experiments show that even
for small problems the asymptotic model of RLPG still holds. This feature al-
lows to study a wide range of algorithms in reasonable time and is therefore
suitable as a benchmark model. At the end of the paper, we have presented pre-
liminary results with various complete learners and interesting behaviours have
been pointed out. Notably, it has been shown, as a validation, that RLPG exhib-
ited the pathological case where informed search degenerates into non-informed
one when facing plateaus.

Finally, this model points out interesting follow-ups. We plan to further study
the properties of generated problems depending on RLPG’s parameters; im-
plement and compare other learning strategies, notably bottom-up, to exhibit
characteristic behaviours to help design better heuristic approaches for relation
learning.
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