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Unité Mathématique,

Informatique et Génome
Institut National de la

Recherche Agronomique
F78352 Jouy-en-Josas

philippe.bessieres
@jouy.inra.fr

Abstract

Information Extraction (IE) systems have
been proposed in recent years, to extract
genic interactions from bibliographical re-
sources. But they are limited to single in-
teraction relations, and have to face a trade-
off between recall and precision, by focus-
ing either on specific interactions (for pre-
cision), or general and unspecified inter-
actions of biological entities (for recall).
Yet, biologists need to process more com-
plex data from literature, in order to study
biological pathways, so an ontology is an
adequate formal representation to model
this sophisticated knowledge. But the tight
integration of IE systems and ontologies
is still a current research issue, a fortiori
with complex ones that go beyond hierar-
chies. Here, we propose a rich modeling
of genic interactions with an ontology, and
show how it can be used within an IE sys-
tem. The ontology is seen as a language
specifying a normalized representation of
text. IE is performed by first extracting in-
stances from Natural Language Processing
(NLP) modules, then deductive inferences
on the ontology language are completed.
New instances may be infered, bringing to-
gether otherwise scattered textual informa-
tion. We validated our approach on an an-
notated corpus of gene transcription regula-
tions inBacillus subtilis. We reach a global
recall of 89.3% and a precision of 89.6%,
with high scores for the ten semantic rela-
tions defined in the ontology.

1 Introduction

Interactions between genes and proteins were
long studied, while most of their biological
knowledge is not described in structured formats

of genomic databanks, but scattered in scientific
articles. For this reason, numerous works in re-
cent years have been carried out to design In-
formation Extraction (IE) systems, which aim
at automatically extracting genic interaction net-
works from bibliography (Blaschke et al., 1999;
Craven and Kumlien, 1999; Friedman et al., 2001;
Krallinger et al., 2007). Relations between bi-
ological entities are multiple (protein and gene
regulations, DNA binding, phosphorylation, ho-
mology relations, etc.). Nevertheless, most IE
systems are limited to extract unique relations,
and face a trade-off between recall and preci-
sion. Some focus on precision by extracting spe-
cific interactions, for instance between proteins
(Craven and Kumlien, 1999; Rindflesch et al.,
2000; Blaschke et al., 1999; Ono et al., 2001;
Saric et al., 2005), whereas other stress on recall
using general relations (Nédellec, 2005; Fundel
et al., 2007). However, this does not take into ac-
count the complexity of the data processed by bi-
ologists, such as biological pathways (Oda et al.,
2008). Therefore, ontologies are a well-motivated
formal representation able to convey this com-
plex knowledge, but their utilization in IE, beyond
mere conceptual hierarchies, is still a research is-
sue. In this paper, we introduce a rich modeling
of genic interactions, and a way to fully integrate
an ontology within an IE platform.

We refer to an ontology as a thesaurus (con-
cept and relation hierarchies), along with a log-
ical theory given as a set of inference rules (see
e.g. (Gómez-Pérez, 1999)). The ontology is seen
as a specification of a normalized and decontex-
tualized text representation. A NLP pipeline ex-
tracts a first set of ontology instances, then de-
ductive inferences on the ontology language are
completed, deriving more instances. IE results



are a set of concept instances linked by seman-
tic relations. Using several well-defined relations
gives the opportunity to model more accurately
biological domains, and inference rules reason-
ing on the ontology are able to gather informa-
tion otherwise scattered throughout bibliographi-
cal databases, and to discover knowledge not ex-
plicitly stated in texts. Inference rules may be
crafted by the domain expert as part of the on-
tology design, or automatically learnt by Machine
Learning (ML) techniques. We focus on this latter
case which has been well-motivated in the context
of IE systems, as a generic component to easily
adapt them to new domains. However, as opposed
to previous approaches, learning takes place in
the ontology language to produce deductive rules
which hold in the domain ontology. From a ML
point of view, the learner uses the ontology as hy-
pothesis language, and instantiations of ontology
as example language.

However, as stated by (Friedman et al., 2002),
ontologies are not necessarily useful to IE, in the
sense that the granularity of the classes between a
conceptual and a sublanguage model may differ.
We deal with this problem by introducing, along
with the ontology, a lexical layer, i.e. relations
and classes in an intermediate level of abstraction
between raw text and concept. This is in line with
(Cimiano et al., 2007; Brickley and Miles, 2005),
who propose a lexicon model to map expressions
in natural language to their corresponding ontol-
ogy structure, although none of them address it in
an IE context.

We discuss related works using ontologies and
ML techniques to support IE systems in section 2.
We present our approach where IE is fully spec-
ified through the design of a domain ontology
along with its lexical layer in the next section. We
describe how ML techniques can be applied on
the ontology instantiations from a corpus to learn
deductive rules which can infer new instances
during the extraction process (section 4). And we
validate our architecture by defining an ontology
of genes transcription in bacteria, and by learning
inference rules to extract genic interactions from
a corpus of the LLL05 challenge (section 5), to
finally give perspectives of our work.

2 Related works

The unifying purpose of the ontology allows us to
integrate several aspects not simultaneously han-

dled in related works. Consider the sentence:

The degR gene is transcribed by RNA poly-
merase containing sigma D, and the level
of its expression is low in a mecA-deficient
mutant. (PMID: 10486575.)

Extracting the interaction-related knowledge in-
volves processes occurring in multiple abstrac-
tion levels. The biological entities have to be
recognized, and properly represented. Simplest
lexical variations are captured by Named Enti-
ties Recognition (NER), as extensively discussed
in (Tanabe and Wilbur, 2002; Park and Kim,
2006). A term–concept connection is assumed by
several systems, which use mere conceptual hi-
erarchies, without relation (Miyao et al., 2006;
Nédellec, 2005; Saric et al., 2005). Here, we
normalize a term as a subgraph of ontology in-
stances, including domain knowledge: in the ex-
ample, the term “RNA polymerase containing
sigma D” may be represented as aprotein com-
plex relation between an “RNA polymerase”en-
zymeand a “sigma D”protein. All the synonyms
have to share the same representation (e.g. “Es-
igmaD” or “RNA polymerase sigma D”). We em-
phasize the terminology status: while, in the pre-
vious expression, (Nédellec, 2005) only tag the
“sigma D” protein and inaccurately regard it as
the interacting entity, we normalize the full term
(“RNA polymerase containing sigma D”). Fur-
thermore, whereas most terminological works fo-
cus on nouns, we handle verbal terms: the terms
“transcription by EsigmaD” and “transcribed by
EsigmaD” will be identically represented.

(Nédellec, 2005; Saric et al., 2004) use respec-
tively a general “genic interaction” relation, or
a very specific one. The ontology allows to de-
fine various conceptual relations: a transcription
event between EsigmaD and degR, and a more
general regulation between the mecA mutant and
the degR gene.

Furthermore, we do not only provide rules pro-
cessing on a syntactico-semantic level (Miyao et
al., 2006; Alphonse et al., 2004; Daraselia et al.,
2004), but using ontology as our representation
language, we can reason at a semantic level (see,
for instance, the use of inference rules in OWL
(Mcguiness et al., 2004)). In the previous sen-
tence, this allows to deduce that, although the sec-
ond interaction of the example involves an inhibi-
tion (“level of its expression is low”), as a mutant



gene is implied, mecA and degR are linked by an
activation. Inferences may be achieved on multi-
ple sentences, inducing knowledge not explicitly
present in the text as we will show it in section 5.

Ontologies become preeminent in the IE field,
while most authors exploit it punctually. Their
structure may offer a basis to craft extraction rules
(Saric et al., 2005; Friedman et al., 2001), or
a useful disambiguation resource. For instance,
(Cimiano, 2003; Gaizauskas et al., 2003) use it
to solve coreferences, (Daraselia et al., 2004) se-
lects relevant syntactic graphs from a parser using
the structure of an ontology, (Saric et al., 2005)
stress the benefit of an ontology to solve some
syntactical ambiguities relying on concepts arity.
In most IE pipelines, ontology (or conceptual hi-
erarchy) is only applied to enrich the text with se-
mantic categories (Alphonse et al., 2004; Saric et
al., 2004). On the contrary, we used the ontology
structure throughout the extraction process, as a
language to make inferences from text.

ML techniques have often been used to acquire
resources for IE systems, like extraction patterns
or rules (Huffman, 1996; Riloff, 1996; Craven
and Kumlien, 1999; Alphonse et al., 2004), which
are related to our approach. However, they are
limited to learn from enriched text representation,
as opposed to our approach, where learning takes
place in the ontology language.

3 Knowledge representation language of
an IE system based on an ontology

Historically, following the “General Theory of
Terminology” created by Eugene Wüster from
the late 1930s, a term is defined as a word or a
group of words which correspond to a concept in
a pre-existing conceptual model. More recently,
some have criticized this doctrine (Rastier, 1995;
Bourigault and Jacquemin, 2000): the conceptual
model and the terms are not seen anymore as ab-
solute notions, but as the result of an artificial and
application-oriented construction process based
on a domain-related corpus. In other words, the
terminology is notdiscovered, but constructed.
We follow this latter conception: our conceptual
model, the ontology, is seen as a specification of
a normalized representation of a text, neglecting
some aspects of the discourse, and keeping some
other ones. By designing it, we specify an IE sys-
tem. Hence, the IE process is equivalent to an
automatic semantic annotation of text, into which

sentence fragments (terms) are normalized as on-
tology instances.

3.1 Ontology as a representation language

Figure 1 exemplifies a simplified ontology of tran-
scription in bacteria. In this model, the “tran-
scription” of a gene (“et” ) from a promoter
(“t from” ) may happen due to the action of a pro-
tein (“t by” ). Furthermore, a protein results from

Figure 1: Example of ontology. Labels of “isa” rela-
tions are omitted.

the expression of a gene (“product of” ), and a
protein complex results from the assembly of sev-
eral proteins (“complex with” ). Figure 2 shows,
on an example sentence, the result of the IE sys-
tem provided as instances of the ontology. Note
that, as a normalized representation of the text,
not all the meaning is kept: for instance, we do not
stress anymore about the “DNA binding” nature
of the “GerE” protein; the fact that the transcrip-
tion happens from “several” promoters is lost.
The semantic relations at the bottom of the fig-

Figure 2: Example of a semantic representation result-
ing from the IE system.

ure, in plain line, were extracted from text. From
the term “transcription from several promoters”,
a terminological module has extracted instances
of “transcription” and “promoter”. Then, infer-
ences rules have extracted from text a “tfrom”
(“transcription from”) semantic relation between
them. The “pdep” relation, in bold line in the
middle of the figure, is inferred from instances
previously extracted from the text, by applying
deductive rules on the normalized text represen-
tation. This representation fits the specifications



of the ontology shown in figure 1. Such a rule is
the following:

p dep(B,A) ← t by(C,A),

t from(C,B),

protein(A),

promoter(B),

transcription(C).

It means that “if protein A is responsible for a
transcription event C from promoter B, then B is
dependent on (may be binded by) protein A”. Ad-
ditionally, instances in dotted lines result from do-
main knowledge: the “GerE” protein is encoded
by the “gerE” gene, and the “E sigmaK” protein
is a RNA polymerase complexed with the “SigK”
protein, itself encoded by the “sigK” gene.

3.2 Features choice for text extraction

Inferences from text require more features. Ba-
sically, normalizing a text to a conceptual rep-
resentation is equivalent to gather multiple lexi-
cal forms into a single semantic representation.
Hence, the difficulty of the task is related to the
complexity of the encountered types of varia-
tions. Methods aiming at capturing orthograph-
ical and morphological variations are related to
Named Entities Recognition (NER), described in
(Tanabe and Wilbur, 2002; Park and Kim, 2006).
The more complex types of variations are re-
lated to relational IE, and processing them in-
volves using NLP tools to enrich the text with
syntactic and semantic features. A first set of
works builds syntactico-semantic parsers (Fried-
man et al., 2001; McDonald et al., 2004; Saric
et al., 2004; Saric et al., 2005), whereas a sec-
ond class of systems uses full parsers (Yakushiji
et al., 2001; Daraselia et al., 2004; Miyao et al.,
2006; Fundel et al., 2007). The latter implies two
distinct modules (Yakushiji et al., 2001): a lin-
guistic module, that handles domain-independent
structural aspects of the sentence; and an IE mod-
ule, which is a task-dependent parameter (possi-
bly adapted to the task (Pyysalo et al., 2004)). We
follow this general approach which does not in-
volve designing a new syntactico-semantic parser
for each new application. This impacts the design
of the lexical layer we describe in the next section.

3.3 Lexical layer

We introduce a lexical layer along with the on-
tology, in which we define relevant semantic fea-

Figure 3: Exemple of a text representation

tures. In figure 3, the concept of “regulation” (and
in the example, its instance “stimulate”), and the
concept of “dependence” (and its instance “use”),
are obviously required. Inference rules do not
only need semantic features, but also syntactic
ones. To specify them, we introduce syntactico-
semantic classes and relations in the lexical layer.
Following our conception about ontologies, these
classes and relations will define normalizations of
text in intermediate states of abstraction, between
raw text and conceptual level. They are specified
in the ontology shown in figure 4, and will be in-
stantiated by a parser and a terminological mod-
ule. The layer also allows to introduce classes

Figure 4: Sample of the lexical layer (elements in dot-
ted line) along with the domain ontology.

which may be semantically irrelevant from a do-
main ontology point of view but factorize con-
cepts that share common properties, and thus, fac-
torize together otherwise multiple inference rules.
This is exemplified in figure 5, which shows the
definition of a “biological actor” (bioactor) class,
where a “gene”, a “protein” and a “gene family”
share common syntactical contexts in biological
articles. Figure 3 illustrates a final representation
combining semantic features (a protein instance
“GerE”), and syntactic ones (a subject “subj:V-
N” relation between “GerE” and “stimulate”, an

Figure 5: Definition of a syntactico-semantic feature
(dotted line) in the ontology.



instance of the “regulation” concept).

4 Acquisition of inference rules

As opposed to previous approaches (see sec-
tion 2), learning takes place in the ontology lan-
guage to produce deductive rules which hold in
the domain ontology and in the lexical layer. A
domain expert has to provide learning examples
defined as instantiations of the ontology. He cre-
ates instances of concepts and relations of the on-
tology from a corpus, some instances being out-
put by NLP modules. Target relations are speci-
fied to be logically implied by the inference rules.
Figure 6 exemplifies such annotation, the dashed
lines corresponding to relations to learn.

Figure 6: Learning example provided by a semantic
annotation.

Learning from such a relational language is
known as Inductive Logic Programming (ILP)
(Muggleton and Raedt, 1994), where the hypothe-
sis and the example languages are subsets of first-
order logic. Most learners handle learning in Dat-
alog which is expressive enough for the task. In
Datalog, examples are represented as closed Horn
clauses, where the head of the clause is the tar-
get relation to learn. For instance, the example of
the “t by” relation in figure 6 will be equivalently
represented as the following (relation names have
been shorten for presentation):

t by(id1, id2) ← subj(id2, id3), obj(id1, id3),

tra(id1, transcription),

pro(id2, ”GerE”),

reg(id3, stimulate).

As several relations have to be learnt, learning is
set into the multi-class setting where each target
relation is learnt in turn, using the other ones as
negative examples. Note that all the ontological
knowledge is given as background knowledge to
the ILP algorithm, like the generalisation relation
between concepts. For instance, specifying that
a protein complex is a protein, and a protein or a
RNA are a gene product, will be represented by a
clausal theory:

protein(A)← protein complex(A).

gene product(A)← protein(A).

gene product(A)← rna(A).

Processing an example involving a protein com-
plex or a RNA, the learning algorithm now have
the opportunity to choose the most relevant gen-
erality level (e.g. “protein complex”, “protein” or
“gene product”) to learn the rules.

5 Results

We validate our architecture by designing an on-
tology of transcription in bacteria, used to learn
inference rules from aBacillus subtiliscorpus.

5.1 Ontology encoding biological knowledge

The ontology includes some forty concepts,
mainly about biological objects (gene, promoter,
binding site, RNA, operon, protein, protein com-
plex, gene and protein families, etc.), and biolog-
ical events (transcription, expression, regulation,
binding, etc.). In the following, we will focus on
the ten relations of the ontology.

We defined ten relations: a general interaction
relation (“i”), and nine relations specific to some
aspects of the transcription (binding, regulons and
promoters). Table 1 lists the set of relation names
with an example of term. For instance, the third
line in the table states that, in the sentence “GerE

Name Example of related term

p dep sigmaArecognizespromoter elements
p of thearaE promoter
b to GerE binds near the sigKtranscriptional

start site
s of -35 sequenceof thepromoter
rm yvyD is a member of sigmaBregulon
r dep sigmaBregulon
t from transcription from the Spo0A-depend-

entpromoter
t by transcription by final sigma(A)-RNA

polymerase
et expressionof yvyD
i KinC was responsible for Spo0A˜Ppro-

duction

Table 1: List of relations defined in the ontology, and
the corresponding examples of term. Arguments of
the relation are shown in italic and bold fonts. The
relations are: promoter dependence (pdep), promoter
of (p of), bind to (bto), site of (sof), regulon member
(rm), regulon dependence (rdep), transcription from
(t from), transcription by (tby), event target (et). “i”
is a general interaction relation.



Figure 7: Extracted network from: (1) SpoIIID binds
strongly to two sites in the cotC promoter region;
(2) SpoIIID represses cotC transcription by sigma(K)
RNA polymerase; (3) Transcription of cotC by sig-
maK RNA polymerase is activated by GerE; (4)
GerE represses transcription from the sigK promoter.
Dashed lines represent domain knowledge relations,
and bold lines infered ones.

binds near the sigK transcriptional start site”, the
protein “GerE” (in bold font) binds to (bto) the
site “transcriptional start site” (in italics).

Using an ontology including inference rules, to
describe some aspects of the transcription, allows
to model biological knowledge more accurately.
This is exemplified in figure 7, which shows the
instances extracted from four sentences. From
the first sentence, inference rules provide the fol-
lowing normalization: SpoIIID binds to (bto) a
site of (sof) the promoter of (pof) cotC. The
well-defined nature of the involved relations al-
lows to deduce that the cotC promoter is depen-
dent (pdep) of SpoIIID, as the latter binds to
one of its sites. Inferences are not restricted to
a sentence: for instance, as the sentence 3 as-
serts that cotC transcription is activated by GerE,
it is possible to deduce that it happens from
the cotC promoter (tfrom). This latter deduc-
tion permits to conclude that the cotC promoter
is dependent (pdep) of GerE. Implicit knowl-
edge distributed into two sentences is therefore
made explicit. If less descriptive knowledge is
needed, it is easy, by defining a general transi-
tive relation, to provide a database with the genic
interacting couples (spoIIID,cotC), (gerE,cotC),
(gerE,sigK) and (sigK,cotC). Relations between
interacting entities and genes are provided by do-
main knowledge, as illustrated in the figure with
“sigmaK RNA polymerase”. The protein com-
plex is known to include protein sigmaK, which
is the product of the sigK gene.

5.2 Ontology to learn inference rules

We want to validate the interest of using multiple
relations, defined with an ontology, to learn infer-
ence rules by ML. In order to test the ontology
relevance, we reused the corpus of the LLL05
challenge (Nédellec, 2005), containing 160 sen-
tences, in which we annotated terms, concepts
and relations. 541 relations were labeled. Out-
put of NLP tools is complex and heavily noisy,
making errors difficult to trace. Thus, to focus
exclusively on the rules acquisition task, we only
chose to allow as parameters the representation
choice and the learning algorithm, the remaining
having to be constants and as noiseless as possi-
ble. Hence, we enriched and manually curated
the linguistic annotations of the LLL05 corpus
(parse trees, syntactic categories, lemmas). The
representation of the examples was defined fol-
lowing the procedure described in 3.3. We in-
troduced syntactic relations between classes, and
syntactico-semantic classes, meant for factoriz-
ing entities which may share the same syntacti-
cal context: namely, gene and protein, gene fam-
ily and protein family, transcription and expres-
sion events. Eventually, the annotated corpus was
used to produce the learning set. To help learn-
ing, we added a class of non-interacting biologi-
cal entities which was generated using the closed-
world assumption. We applied the multi-class ILP
learner PROPAL (Alphonse and Rouveirol, 2006)
to acquire a set of rules for each relation; the non-
interacting class was used as negative examples
each time but was not learnt. Currently, we only
automatically acquire rules involving syntactico-
semantic attributes. We will remove this lim-
itation by stratification learning. We provided
PROPAL with 541 examples from ten classes, and
10155 from the non-interacting class, and used
ten-fold cross-validation, averaged ten times, to
evaluate recall and precision of the extraction pro-
cess. The results are shown in table 2.

As expected, the more specific relations (et,
r dep, rm), assumed to have little lexical vari-
ability, are rather trivial to learn, and reach es-
pecially high scores. On the contrary, more gen-
eral ones (i, tby), exhibiting greater variability,
are noticeably harder to learn. We also exper-
iment the two-class case, merging the ten con-
ceptual relations into a positive label, and as
shown in table 3, we obtain good recall and pre-
cision. Scores are much better than in prelimi-



Relation Recall Prec. Numb.

i 76.4 73.5 161
rm 90.0 90.0 17
r dep 95.0 100.0 12
b to 75.0 90.0 14
p dep 91.5 94.3 47
p of 87.5 85.2 39
s of 61.7 80.7 21
et 95.8 99.4 168
t from 85.0 96.7 18
t by 65.5 82.6 44

Table 2: Multi-class learning results, for ten fold cross
validation averaged ten times, with Recall and Preci-
sion in %, and the Number of examples by relation.

nary experiments implying the unique and general
“genic interaction” relation from the LLL05 chal-
lenge. This corroborates the benefit of using mul-
tiple specific relations to model biological knowl-
edge, which involves less complex rules. For in-
stance, in the unique “genic interaction” relation
case, the sentences “sigma(H)-dependent expres-
sion of spo0A” and “sigma(K)-dependent cwlH
gene” would need two rules to be matched (typi-
cally, patterns like “A-dependent expression of B”
and “A-dependent B”); however, in the multiple
relation case, the first sentence would be matched
by the patterns “A-dependent B” (“i” relation) and
“B of C” (“et” relation), and the second sentence
by “A-dependent B” (“i” relation). Thus, in the
second case, the “i” rule matches two sentences,
where two “genic interaction” rules were needed.
By allowing more general rules, the ontology-
based approach decreases the required number of
examples to be used by the ML algorithm, im-
proving its results.

6 Conclusion and Perspectives

Ontology is a well-motivated formalism to model
biological knowledge, and we showed how a do-
main ontology allows access to knowledge, be-
yond the capability of current IE systems. How-
ever, complex ontologies are not yet fully ex-
ploitable in IE systems, which often limit their
use to enrich textual data. In this paper, we pro-
posed an original integration of ontology into IE
systems. We use the ontology as a language to
make inferences on the semantic level, as well as
the syntactico-semantic level, thanks to the addi-
tion of a lexical layer. IE is performed by first
extracting a set of instances from NLP modules,

Recall (%) Prec. (%)

89.3 89.6

Table 3: Results for two classes learning, using ten
fold cross validation averaged ten times.

then deductive inferences on the ontology lan-
guage are performed, to complete the extraction
process. We validated the approach by designing
an ontology of genic interactions, and used Ma-
chine Learning techniques to learn inference rules
from aBacillus subtiliscorpus. From a ML point
of view, we use the ontology as hypothesis lan-
guage, and instances of this ontology as example
language.

We are currently extending the ontology to
handle more phenomenons, especially inhibi-
tion/activation distinction, and non-genic actors
(e.g. environmental factors). Also, from an oper-
ational perspective, we aim at fully automatizing
our system by linking the lexical layer to an avail-
able NLP pipeline. Notably, as the representation
choice is a crucial step in ML, its declarative defi-
nition through the ontology is a significant contri-
bution. We then plan to work on text representa-
tion, through a comparative study of several lexi-
cal layers.
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