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Context and Related Work

Context: Verification of Timed Probabilistic Systems

Verification of timed systems with stochastic behaviour
▶ Need to express probabilities
▶ Use of Probabilistic Timed Automata [Jen96, KNSS02]

Need for adjusting some delays of the system
▶ Use of parameters (unknown constants)
▶ Definition of a zone of good behaviour for the parameters
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Context and Related Work

Motivation: Model reduction

Model checking Probabilistic Timed Automata
▶ Use of the Prism model checker [HKNP06, wp]
▶ Difficult to model-check systems with large constants

Use rescaling of constants
▶ Consider smaller values for all the constants of the system
▶ Problem of discrete time
▶ No formal justification for correctness

Require a formal justification for rescaling of constants
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The CSMA/CD Protocol Description

The CSMA/CD Protocol (1/2)

Protocol of communication between 2 stations through 1 medium
▶ Carrier Sense Multiple Access with Collision

Detection [CSM02, KNSW07]

Sender 1 Sender 2
Medium

Overall principle: Sender 1 tries to communicate
1 Sender 1 listens to the medium
2 If the medium is free, Sender 1 starts to communicate (duration �)
3 Since there is a non-null delay for a signal to go through the medium

(duration �), Sender 2 may have started to communicate in the
meanwhile, which leads to a collision

4 Both senders then wait a random number of time slots (duration slot)
before trying again
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The CSMA/CD Protocol Description

Timed Parameters of the System

Parameters of the system
▶ �: propagation time between 2 stations
▶ �: time to send a data
▶ slot: time unit for the random time to wait before retransmitting

Classical problem: Computation of minimum and maximum
probabilities of reaching a certain state

▶ P1: Minimum probability that sender 1 transmits its message after
exactly 1 collision.

▶ P≤3: Minimum probability that sender 1 transmits its message after 3
collisions or less.

▶ Depend on the values of the parameters
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The CSMA/CD Protocol The Model of Probabilistic Timed Automata

Probabilistic Timed Automaton (PTA)

Timed Automaton (TA) [AD94]
▶ Set of locations

, set of actions
▶ Set of clocks (real-valued variables increasing at the same linear rate)

★ Operations: Location invariant

, transition guard, clock reset

Augmented with probabilities [Jen96, KNSS02]
▶ The sum of the probabilities leaving a given location through a given

action is equal to 1

TRANSMIT

x ≤ 808

INIT

true

DONE

true

COLLIDE

x = 0

WAIT1

x ≤ 52

WAIT2

x ≤ 104

x := 0
x = 808

cd
x := 0

x = 52
send
x := 0

x = 52
busy
x := 0

x = 104
send
x := 0

x = 104
busy
x := 0

wait
(1/2)

wait
(1/2)
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The CSMA/CD Protocol The Problem

Problem (1/2)

Model CSMA/CD with Probabilistic Timed Automata

Instantiation of the parameters
▶ IEEE standard 802.3 for 10 Mbps Ethernet
�0 := {� = 808�s , slot = 52�s , � = 26�s}

▶ Values too large for Prism (state-space explosion)
▶ Use a set of rescaled values
�1 := {� = 95�s , slot = 6�s , � = 3�s}

Computation of min/max probabilities using Prism with �1

▶ P1: Minimum probability that sender 1 transmits its message after
exactly 1 collision. P1 = 0.5

▶ P≤3: Minimum probability that sender 1 transmits its message after 3
collisions or less. P≤3 = 0.96875
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The CSMA/CD Protocol The Problem

Problem (2/2)

Prism does not formally guarantee that the rescaling does not affect
the probabilities

▶ Are the probabilities for �1 the same as for �0?
▶ Need for a formal justification for rescaling

More generally:

Goal

Given an instantiation �0, compute a constraint K0 on the parameters s.t.

1 �0 ∣= K0, and

2 for all � ∣= K0, the minimum and maximum probabilities for
reachability properties are the same for �0 and �.

Inst. � slot � ∣= K0 P1 P≤3

�0 808 52 26 yes 0.5 0.96875
�1 95 6 3 yes 0.5 0.96875
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Étienne ANDRÉ (LSV) AVoCS ’09 September 23rd 2009 10 / 28



The Extension of the Inverse Method

Outline

1 The CSMA/CD Protocol
Description
The Model of Probabilistic Timed Automata
The Problem

2 The Extension of the Inverse Method
Probabilistic Parametric Timed Automata
Our Method
Correctness

3 Implementation and Case Studies

4 Final Remarks
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The Extension of the Inverse Method Probabilistic Parametric Timed Automata

Probabilistic

Parametric

Timed Automaton

(PPTA)

Probabilistic Timed Automaton [Jen96, KNSS02]
▶ Set of locations, set of actions, set of clocks
▶ probabilities

▶ Set of parameters (unknown constants) [AFS09]

TRANSMIT
x ≤ 808

INIT
true

DONE
true

COLLIDE
x = 0

WAIT1
x ≤ 52

WAIT2
x ≤ 104

send
x := 0

x = 808
end

cd
x := 0

x = 52
send
x := 0

x = 52
busy
x := 0

x = 104
send
x := 0

x = 104
busy
x := 0

wait
(1/2)

wait
(1/2)

▶ Given a PPTA A and an instantiation � of the parameters, we denote
by A[�] the (non-parametric) PTA where all parameters where
replaced by their value as defined by �
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The Extension of the Inverse Method Our Method

The Inverse Problem for PPTAs

Inputs
▶ A Probabilistic Parametric Timed Automaton A
▶ A reference instantiation �0 of all the parameters of A

Output: generalisation
▶ A constraint K0 on the parameters such that

★ �0 ∣= K0

★ For all instantiation � ∣= K0, the sets of probabilistic traces (alternating
sequences of locations with probabilities, and actions) of A[�] and
A[�0] are equal

⋅�0

As a consequence, the minimum and maximum probabilities for
reachability properties in A[�] are the same as in A[�0]
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Étienne ANDRÉ (LSV) AVoCS ’09 September 23rd 2009 13 / 28



The Extension of the Inverse Method Our Method

Our Method: Overall Principle

Starting with a PPTA A, and an instantiation �0 of the parameters:

1 Construct a non-probabilistic version A∗ of A

2 Compute a constraint K ∗0 by applying the inverse method for classical
parametric timed automata to A∗ and �0

Then, K ∗0 also solves the inverse problem for A
(K0 = K ∗0 ).
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The Extension of the Inverse Method Our Method

Non-probabilistic version A∗ of a PPTA A

Replace stochastic distributions by non-determinism

TRANSMIT
x ≤ �

INIT
true

DONE
true

COLLIDE
x = 0

WAIT1
x ≤ slot

WAIT2
x ≤ 2× slot

send
x := 0

x = �
end

cd
x := 0

x = slot
send
x := 0

x = slot
busy
x := 0

x = 2× slot
send
x := 0

x = 2× slot
busy
x := 0

wait
(1/2)

wait
(1/2)
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The Extension of the Inverse Method Our Method

Overview of the Inverse Method for Classical TAs

Algorithm InverseMethod [ACEF09]

Inputs
▶ A Parametric Timed Automaton A∗

▶ A reference instantiation �0 of all the parameters of A∗

Output: generalisation
▶ A constraint K0 on the parameters such that

★ �0 ∣= K0

★ For all instantiation � ∣= K0, the set of traces (alternating sequences of
locations and actions) under � is the same as the set of traces under �0

⋅�0
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The Extension of the Inverse Method Correctness

Correctness of our Method

Theorem (Correctness)

Let A be a PPTA, and �0 be an instantiation of the parameters of A. Let
K0 =InverseMethod(A∗, �0).
Then, for all � ∣= K0, the sets of probabilistic traces (alternating sequences
of locations with probabilities, and actions) of A[�] and A[�0] are equal.
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The Extension of the Inverse Method Correctness

Idea of the Proof

Given � ∣= K0:

A[�0] A∗[�0]

A[�] A∗[�]

Justification

▶ Prop. 1: The sets of non-probabilistic traces of A[�0] and A∗[�0] are
equal [AFS09]

▶ Th. 1: The sets of (non-probabilistic) traces of A∗[�0] and A∗[�] are
equal [ACEF09]

▶ Prop. 2: If the sets of non-probabilistic traces of A[�] and A[�0] are
equal, then the sets of probabilistic traces of A[�] and A[�0] are equal
[KNS02, KNS03]

Étienne ANDRÉ (LSV) AVoCS ’09 September 23rd 2009 18 / 28



The Extension of the Inverse Method Correctness

Idea of the Proof

Given � ∣= K0:

A[�0] A∗[�0]

A[�] A∗[�]

Prop. 1

Justification
▶ Prop. 1: The sets of non-probabilistic traces of A[�0] and A∗[�0] are

equal [AFS09]

▶ Th. 1: The sets of (non-probabilistic) traces of A∗[�0] and A∗[�] are
equal [ACEF09]

▶ Prop. 2: If the sets of non-probabilistic traces of A[�] and A[�0] are
equal, then the sets of probabilistic traces of A[�] and A[�0] are equal
[KNS02, KNS03]
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Étienne ANDRÉ (LSV) AVoCS ’09 September 23rd 2009 19 / 28



Implementation and Case Studies

Implementation

Inverse method implemented in Imitator [And09]

▶ Imitator: “Inverse Method for Inferring Time AbstracT BehaviOR”
▶ 1500 lines of code in Python
▶ 4 man-months of work
▶ Calls the parametric model checker HyTech [HHWT95]

★ Used by Imitator for the computation of the Post operation

▶ Web page: http://www.lsv.ens-cachan.fr/∼andre/IMITATOR

Some case studies

Example # of loc. per # of # of # of ∣Post∗∣ ∣K0∣ CPU
PTAs PTA clocks param. iter. time

CSMA/CD [CSM02, KNSW07, wp] 3 [3, 8] 3 3 17 218 3 44 s
RCP [SS01] 5 [6, 11] 6 5 18 154 2 70 s

WLAN [wp, KNS02] 3 [1, 15] 2 8 21 294 13 108 s
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Implementation and Case Studies

Case Studies (1/2)

CSMA/CD Protocol [CSM02, KNSW07, wp]

▶ IEEE standard 802.3 for 10 Mbps Ethernet
�0 := {� = 808�s , slot = 52�s , � = 26�s}

▶ Constraint computed by Imitator:
K0 : � < slot ∧ 15slot < � < 16slot

▶ Recall that �1 ∣= K0

�1 := {� = 95�s , slot = 6�s , � = 3�s}

▶ We can thus compute P1 and P≤3 using �1, and apply the result to �0

(by correction of our method)
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Implementation and Case Studies

Case Studies (2/2)

Root Contention Protocol [SS01]
▶ Reference instantiation �0:

rc fast max = 85ns rc fast min = 76ns rc slow max = 167ns
rc slow min = 159ns delay = 30ns

▶ Constraint output by our method
K0 : 2delay < rc fast min ∧ rc fast max + 2delay < rc slow min

Wireless Local Area Network Protocol [wp, KNS02]
▶ Reference instantiation �0:

ASLOTTIME = 1�s DIFS = 2�s VULN = 1�s TTMAX = 315�s
TTMIN = 4�s ACK TO = 6�s ACK = 4�s SIFS = 1�s

▶ Constraint output by our method

VULN > 0 ∧ SIFS > 0 ∧ ACK TO + DIFS < 15ASLOTTIME
∧ DIFS > 0 ∧ ASLOTTIME > 0 ∧ TTMIN + DIFS ≤ TTMAX
∧ ACK ≤ 2DIFS ∧ DIFS < TTMIN ∧ ACK TO + DIFS ≤ ACK + TTMIN
∧ SIFS < TTMIN ∧ TTMIN ≥ ACK ∧ TTMIN ≤ ACK TO
∧ VULN < ACK
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Final Remarks

Outline
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4 Final Remarks

Étienne ANDRÉ (LSV) AVoCS ’09 September 23rd 2009 23 / 28



Final Remarks

Conclusion

Generalisation method
▶ Model a system with a probabilistic parametric timed automaton A
▶ Starting with an instantiation �0 of the parameters, we synthesise a

constraint K0 on the parameters guaranteeing that, for any � ∣= K0,
the min/max probabilities of reaching some state are equal for A[�]
and A[�0]

Advantages
▶ Useful to determine probabilities (e.g., using Prism) for systems with

large constants
▶ Avoid the repeated computation of probabilities for many different

values of the parameters

Applications: Probabilistic systems
▶ Protocols of communication
▶ Hardware verification
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Final Remarks

Future Works

Deal with soft deadline properties
▶ E.g., probability of reaching some state within some deadline
▶ Fall beyond the class of properties considered here

Consider methods to enlarge our constraint
▶ The constraint output by the inverse method for classical parametric

timed automata is not maximal
★ Not the weakest constraint solving the inverse problem

▶ Consider iterative methods [ACEF09]

Consider continuous probabilities
▶ For now, we considered continuous time with discrete probabilities
▶ Allow to model more classes of systems
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