#### 4th Workshop on Reachability Problems Brno

28th August 2010

#### Behavioral Cartography of Timed Automata

#### Étienne André, Laurent Fribourg

Laboratoire Spécification et Vérification LSV, ENS de Cachan & CNRS, France

ELE NOR

周 ト イ ヨ ト イ ヨ ト

### The Good Parameters Problem

- Context: Verification of Timed Systems
- Good parameters problem
  - Synthesize a set of values of the timing parameters guaranteeing that the system behaves well (e.g., avoids any bad state)
- Classical approaches
  - Computation of all the reachable states, and intersection with the set of bad states [Alur et al., 1995]
  - Approach based on CEGAR (Counter-Example Guided Abstraction Refinement [Clarke et al., 2000, Frehse et al., 2008])
- New approach: method of behavioral cartography

### An Example: Flip-Flop Circuit (1/2)

• Schematics [Clarisó and Cortadella, 2007]



- ▶ 4 elements:  $G_1$ ,  $G_2$ ,  $G_3$ ,  $G_4$  with internal signals  $g_1$  to  $g_4$
- ▶ 2 input signals (*D* and *CK*), 1 output signal (*Q*)
- Timing parameters
  - Traversal delays of the gates by the electric current
    - ★ Parametric interval; example for  $G_1$ :  $[\delta_1^-, \delta_1^+]$
  - Durations of low  $(T_{LO})$  and high  $(T_{HI})$  levels of CK
  - Stabilization time of D: T<sub>Setup</sub>, T<sub>Hold</sub>

b 4 = b

## An Example: Flip-Flop Circuit (2/2)

• We suppose given a valuation  $\pi_0$  of the parameters (called point)

| T <sub>HI</sub> = 24 | $T_{LO} = 15$    | $T_{Setup} = 10$ | $T_{Hold} = 17$  |
|----------------------|------------------|------------------|------------------|
| $\delta_{1}^{-} = 7$ | $\delta_1^+ = 7$ | $\delta_2^- = 5$ | $\delta_2^+ = 6$ |
| $\delta_{3}^{-} = 8$ | $\delta^+_3=10$  | $\delta_4^- = 3$ | $\delta_4^+ = 7$ |

This point guarantees a good behavior:

- ★  $Q^{\uparrow}$  occurs before  $CK^{\downarrow}$
- We are looking for a set of points (containing π<sub>0</sub>) for which the system behaves well

向下 イヨト イヨト ヨヨ つくつ

We consider a system modeled by a parametric timed automaton.

- The good parameters problem:
  - "Given a bounded parameter domain V<sub>0</sub>, find a set of points of good behavior in V<sub>0</sub> (ideally the largest one)"

| ` <b>-</b> | _ | _ | _ | _ | _ |               |
|------------|---|---|---|---|---|---------------|
| Т          |   |   |   |   |   | i.            |
| 1          |   |   |   |   |   | ۰.            |
| li         |   |   |   |   |   | 1             |
| Т          | V | 6 |   |   |   | Ξ.            |
| ι          | - | - | - | - | - | ÷.            |
| _          | _ | _ | _ | _ | _ | $\rightarrow$ |

We consider a system modeled by a parametric timed automaton.

- The good parameters problem:
  - "Given a bounded parameter domain V<sub>0</sub>, find a set of points of good behavior in V<sub>0</sub> (ideally the largest one)"



We consider a system modeled by a parametric timed automaton.

- The good parameters problem:
  - "Given a bounded parameter domain  $V_0$ , find a set of points of good behavior in  $V_0$  (ideally the largest one)"



- This problem reduces to the inverse problem:
  - "Given a reference point  $\pi_0$ , find other points around  $\pi_0$  of same behavior"



We consider a system modeled by a parametric timed automaton.

- The good parameters problem:
  - ► "Given a bounded parameter domain V<sub>0</sub>, find a set of points of good behavior in V<sub>0</sub> (ideally the largest one)"



- This problem reduces to the inverse problem:
  - Given a reference point π<sub>0</sub>, find other points around π<sub>0</sub> of same behavior"



#### Outline

#### Outline

#### The Modeling Framework of Parametric Timed Automata

#### 2 The Inverse Method

- The General Idea
- Application to the Example
- Discussion

#### 3 A Cartography Method

- The Behavioral Cartography Algorithm
- Application to the Example

#### 4 Extension to Probabilistic Systems

Implementation and Case Studies

#### Final Remarks

ELE NOR

4 E b

#### Outline

#### The Modeling Framework of Parametric Timed Automata

#### The Inverse Method

- The General Idea
- Application to the Example
- Discussion

#### 3 A Cartography Method

- The Behavioral Cartography Algorithm
- Application to the Example
- 4 Extension to Probabilistic Systems
- 5 Implementation and Case Studies

#### Final Remarks

고나님

글 > - + 글 >

• Finite state automaton (sets of locations)





Étienne ANDRÉ (LSV)

三日 のへの

∃ → < ∃</p>

47 ▶

• Finite state automaton (sets of locations and actions)



-

ELE NOR

- T

- Finite state automaton (sets of locations and actions) augmented with
  - A set X of clocks (i.e., real-valued variables evolving linearly at the same rate)



1.5

- Finite state automaton (sets of locations and actions) augmented with
  - ► A set X of clocks (i.e., real-valued variables evolving linearly at the same rate)

- Features
  - Location invariant: property to be verified by the clocks to stay at a location



ELE NOR

- Finite state automaton (sets of locations and actions) augmented with
  - ► A set X of clocks (i.e., real-valued variables evolving linearly at the same rate)

- Features
  - Location invariant: property to be verified by the clocks to stay at a location
  - Transition guard: property to be verified by the clocks to enable a transition



ELE SQC

글 > - + 글 >

- Finite state automaton (sets of locations and actions) augmented with
  - ► A set X of clocks (i.e., real-valued variables evolving linearly at the same rate)

- Features
  - Location invariant: property to be verified by the clocks to stay at a location
  - Transition guard: property to be verified by the clocks to enable a transition
  - Clock reset: clocks can be set to 0 at each transition



### Parametric Timed Automaton (PTA)

- Finite state automaton (sets of locations and actions) augmented with
  - A set X of clocks (i.e., real-valued variables evolving linearly at the same rate)
  - A set P of M parameters (i.e., unknown constants), used in guards and invariants
- Features
  - Location invariant: property to be verified by the clocks and the parameters to stay at a location
  - Transition guard: property to be verified by the clocks and the parameters to enable a transition
  - Clock reset: clocks can be set to 0 at each transition



#### States and Traces

 Given a PTA A and a point π, we denote by A[π] the (non-parametric) timed automaton where all parameters are instantiated by π

#### States and Traces

- Given a PTA A and a point π, we denote by A[π] the (non-parametric) timed automaton where all parameters are instantiated by π
- (Parametric) state of a PTA: couple (q, C), where
  - q is a location,
  - C is a constraint (conjunction of inequalities) over the parameters

#### States and Traces

- Given a PTA A and a point π, we denote by A[π] the (non-parametric) timed automaton where all parameters are instantiated by π
- (Parametric) state of a PTA: couple (q, C), where
  - q is a location,
  - C is a constraint (conjunction of inequalities) over the parameters
- Trace over a PTA: finite alternating sequence of locations and actions



< 回 > < 三 > < 三 > 三 三 < つ Q (P)

#### Good and Bad Traces w.r.t. a Given Property

• A trace is said to be a good trace if it verifies a given property

• Example of good trace for the flip-flop ( $Q^{\uparrow}$  occurs before  $CK^{\downarrow}$ )



Example of bad trace for the flip-flop



### Outline

#### The Modeling Framework of Parametric Timed Automata

#### The Inverse Method

- The General Idea
- Application to the Example
- Discussion

#### A Cartography Method

- The Behavioral Cartography Algorithm
- Application to the Example
- 4 Extension to Probabilistic Systems
- 5 Implementation and Case Studies

#### Final Remarks

ELE NOR

E 5 4 E

### The Inverse Problem (1/2)



<□> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回< の< ○

# The Inverse Problem (2/2)

- Input
  - ► A PTA A
  - A reference valuation  $\pi_0$  of all the parameters of  $\mathcal{A}$ 
    - \* Exemplifying a good behavior (all traces of  $\mathcal{A}[\pi_0]$  correspond to good behaviors)



< 回 > < 三 > < 三 > 三 三 < つ Q (P)

# The Inverse Problem (2/2)

- Input
  - A PTA  $\mathcal{A}$
  - A reference valuation  $\pi_0$  of all the parameters of A
    - ★ Exemplifying a good behavior (all traces of A[π₀] correspond to good behaviors)
- Output: tile K<sub>0</sub>
  - Convex constraint on the parameters such that
    - $\star \pi_0 \models K_0$
    - ★ For all point  $\pi \models K_0$ ,  $\mathcal{A}[\pi]$  and  $\mathcal{A}[\pi_0]$  have the same trace sets



三日 のへの

通 ト イヨト イヨト

The Inverse Method: General Idea [André et al., 2009a]

Start with  $K_0 = True$ 

REPEAT

**(**) Compute the set S of reachable parametric states under  $K_0$ 

**2** Refine  $K_0$  by removing a  $\pi_0$ -incompatible state from *S* 

- ▶ Select a  $\pi_0$ -incompatible state (q, C) within S (i.e.,  $\pi_0 \not\models C$ )
- ▶ Select a  $\pi_0$ -incompatible inequality J within C (i.e.,  $\pi_0 \not\models J$ )
- ► Add ¬J to K<sub>0</sub>

UNTIL no more  $\pi_0$ -incompatible state in S

• Input:  $\pi_0$   $T_{HI} = 24$   $T_{LO} = 15$   $T_{Setup} = 10$   $T_{Hold} = 17$   $\delta_1^- = 7$   $\delta_1^+ = 7$   $\delta_2^- = 5$   $\delta_2^+ = 6$   $\delta_3^- = 8$   $\delta_3^+ = 10$   $\delta_4^- = 3$   $\delta_4^+ = 7$ • Output:  $K_0$   $T_{Setup} > \delta_1^+ \land \delta_3^+ + \delta_4^+ \ge T_{Hold}$   $\land T_{Hold} > \delta_3^+ \land \delta_3^+ + \delta_4^+ \le T_{Hold}$   $\land T_{Setup} \le T_{LO} \land \delta_3^- + \delta_4^- \le T_{Hold}$  $\land \delta_1^- > 0$ 

Corresponding trace set



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 ののの

$$\begin{array}{ll} \pi_0: \\ \delta_1^- = 7 & \delta_1^+ = 7 & T_{HI} = 24 \\ \delta_2^- = 5 & \delta_2^+ = 6 & T_{LO} = 15 \\ \delta_3^- = 8 & \delta_3^+ = 10 & T_{Setup} = 10 \\ \delta_4^- = 3 & \delta_4^+ = 7 & T_{Hold} = 17 \end{array}$$



Étienne ANDRÉ (LSV)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ■ □ ● ○ ○ ○

$$\begin{array}{ll} \pi_0: \\ \delta_1^- = 7 & \delta_1^+ = 7 & T_{HI} = 24 \\ \delta_2^- = 5 & \delta_2^+ = 6 & T_{LO} = 15 \\ \delta_3^- = 8 & \delta_3^+ = 10 & T_{Setup} = 10 \\ \delta_4^- = 3 & \delta_4^+ = 7 & T_{Hold} = 17 \end{array}$$

$$K_0 = True$$



(日本)



Étienne ANDRÉ (LSV)

▲母 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ ヨ ● の ○ ○



Étienne ANDRÉ (LSV)

▲母 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ ヨ ● の ○ ○

$$\begin{array}{ll} \pi_0:\\ \delta_1^-=7 & \delta_1^+=7 & T_{HI}=24\\ \delta_2^-=5 & \delta_2^+=6 & T_{LO}=15\\ \delta_3^-=8 & \delta_3^+=10 & T_{Setup}=10\\ \delta_4^-=3 & \delta_4^+=7 & T_{Hold}=17 \end{array}$$

$$\begin{array}{l} \mathcal{K}_{0} = \\ \mathcal{T}_{Setup} > \delta_{1}^{+} \end{array}$$



ELE SOC

E + 4 E +

< 4 → <

$$\begin{array}{ll} \pi_0:\\ \delta_1^-=7 & \delta_1^+=7 & T_{HI}=24\\ \delta_2^-=5 & \delta_2^+=6 & T_{LO}=15\\ \delta_3^-=8 & \delta_3^+=10 & T_{Setup}=10\\ \delta_4^-=3 & \delta_4^+=7 & T_{Hold}=17 \end{array}$$

$$\begin{aligned} 
\mathcal{K}_0 &= \\ 
\mathcal{T}_{Setup} > \delta_1^+
\end{aligned}$$

< (T) > <

$$T_{Setup} \leq T_{LO}$$

$$T_{Setup} \geq \delta_{1}^{+}$$

$$T_{Setup} \leq T_{LO}$$

$$T_{Setup} \geq \delta_{1}^{+}$$

Étienne ANDRÉ (LSV)

EL OQO

E + 4 E +

$$\begin{array}{ll} \pi_0:\\ \delta_1^-=7 & \delta_1^+=7 & T_{HI}=24\\ \delta_2^-=5 & \delta_2^+=6 & T_{LO}=15\\ \delta_3^-=8 & \delta_3^+=10 & T_{Setup}=10\\ \delta_4^-=3 & \delta_4^+=7 & T_{Hold}=17 \end{array}$$

$$\begin{aligned} &\mathcal{K}_0 = \\ & \mathcal{T}_{Setup} > \delta_1^+ \end{aligned}$$

A 🖓 h



$$\begin{array}{ll} \pi_0: \\ \delta_1^- = 7 & \delta_1^+ = 7 & T_{HI} = 24 \\ \delta_2^- = 5 & \delta_2^+ = 6 & T_{LO} = 15 \\ \delta_3^- = 8 & \delta_3^+ = 10 & T_{Setup} = 10 \\ \delta_4^- = 3 & \delta_4^+ = 7 & T_{Hold} = 17 \end{array}$$

$$\begin{aligned}
\mathcal{K}_0 &= \\
\mathcal{T}_{Setup} > \delta_1^+
\end{aligned}$$





Étienne ANDRÉ (LSV)


$$\begin{array}{ccccc} \pi_0: & & \\ \delta_1^- = 7 & \delta_1^+ = 7 & T_{HI} = 24 \\ \delta_2^- = 5 & \delta_2^+ = 6 & T_{LO} = 15 \\ \delta_3^- = 8 & \delta_3^+ = 10 & T_{Setup} = 10 \\ \delta_4^- = 3 & \delta_4^+ = 7 & T_{Hold} = 17 \end{array}$$

$$\begin{array}{l} \mathcal{K}_{0} = \\ \mathcal{T}_{Setup} > \delta_{1}^{+} \\ \wedge \mathcal{T}_{Hold} > \delta_{3}^{+} \end{array}$$



JIN NOR

글 제 제 글 제

< 47 ▶ <

$$\begin{array}{ll} \pi_0:\\ \delta_1^-=7 & \delta_1^+=7 & T_{HI}=24\\ \delta_2^-=5 & \delta_2^+=6 & T_{LO}=15\\ \delta_3^-=8 & \delta_3^+=10 & T_{Setup}=10\\ \delta_4^-=3 & \delta_4^+=7 & T_{Hold}=17 \end{array}$$

$$\begin{aligned} \mathcal{K}_{0} &= \\ T_{Setup} > \delta_{1}^{+} \\ \wedge & \mathcal{T}_{Hold} > \delta_{3}^{+} \end{aligned}$$

< (T) > <

$$T_{Setup} \leq T_{LO}$$

$$\land T_{Setup} > \delta_{1}^{+}$$

$$\land T_{Hold} > \delta_{3}^{+}$$

$$T_{Setup} \leq T_{LO}$$

$$T_{Setup} > \delta_{1}^{+}$$

$$T_{Hold} > \delta_{3}^{+}$$

EL OQO

E + 4 E +

$$\begin{array}{ll} \pi_0:\\ \delta_1^-=7 & \delta_1^+=7 & T_{HI}=24\\ \delta_2^-=5 & \delta_2^+=6 & T_{LO}=15\\ \delta_3^-=8 & \delta_3^+=10 & T_{Setup}=10\\ \delta_4^-=3 & \delta_4^+=7 & T_{Hold}=17 \end{array}$$

$$\begin{aligned} &\mathcal{K}_{0} = \\ & \mathcal{T}_{Setup} > \delta_{1}^{+} \\ & \wedge & \mathcal{T}_{Hold} > \delta_{3}^{+} \end{aligned}$$



ELE SOC

→ < Ξ →</p>

$$\begin{array}{ll} \pi_0:\\ \delta_1^-=7 & \delta_1^+=7 & T_{HI}=24\\ \delta_2^-=5 & \delta_2^+=6 & T_{LO}=15\\ \delta_3^-=8 & \delta_3^+=10 & T_{Setup}=10\\ \delta_4^-=3 & \delta_4^+=7 & T_{Hold}=17 \end{array}$$

$$\begin{aligned} & \mathcal{K}_{0} = \\ & \mathcal{T}_{Setup} > \delta_{1}^{+} \\ & \wedge \quad \mathcal{T}_{Hold} > \delta_{3}^{+} \end{aligned}$$

47 ▶





$$\begin{aligned} \mathcal{K}_{0} &= \\ \mathcal{T}_{Setup} > \delta_{1}^{+} \\ \wedge \quad \mathcal{T}_{Hold} > \delta_{3}^{+} \end{aligned}$$

\_\_\_ ▶







Étienne ANDRÉ (LSV)

▲圖▶ ▲ 필▶ ▲ 필▶ · 포] = · · 이 Q ()

## Advantages and Drawbacks of the Inverse Method

#### Advantages

- Useful to optimize timing bounds of systems
- ► Terminates often in practice (unlike a brute reachability analysis, e.g., using HYTECH)
- Allows to handle dozens of parameters
- Drawbacks
  - ► The generated constraint K<sub>0</sub> is not maximal: there are points π ∉ K<sub>0</sub> which give the same trace sets as π<sub>0</sub>
  - The criterion of equality of trace sets may be too restrictive: for a given property φ, there may be different trace sets satisfying φ

## Outline

## The Modeling Framework of Parametric Timed Automata

#### 2 The Inverse Method

- The General Idea
- Application to the Example
- Discussion

### 3 A Cartography Method

- The Behavioral Cartography Algorithm
- Application to the Example

#### 4 Extension to Probabilistic Systems

5 Implementation and Case Studies

## Final Remarks

-

## Beyond the Inverse Method

- Goal: Find the maximal set of points corresponding to a good behavior
- Method: Iterate the inverse method for all the integer points of a given rectangle  $V_0$
- Output: set of tiles for all the integer points of  $V_0$ 
  - ► ~→ behavioral cartography of the parameter space

EL OQO

**EN 4 EN** 

# The Behavioral Cartography Algorithm



## 1 repeat 2 select an integer point $\pi \in V_0$ ; 3 if $\pi \notin Cover$ then 4 $\Box Cover \leftarrow Cover \cup IM(\mathcal{A}, \pi)$ ;

5 **until** *Cover* contains all the integer points of the rectangle;

(日本)

## Partition into Good and Bad Tiles

- A tile is said to be a good tile if all its corresponding traces are good traces
- According to the nature of the trace sets, we can partition the tiles into good and bad ones

ELE NOR

E 5 4 E 5

## Application to our Flip-Flop Example

- We consider only parameters  $\delta_3^+$  and  $\delta_4^+$ 
  - The other parameters are instantiated
- Goal: Perform the behavioral cartography of the flip-flop circuit according to  $\delta_3^+$  and  $\delta_4^+$ 
  - $\blacktriangleright$  Find the values for  $\delta_3^+$  and  $\delta_4^+$  such that the flip-flop has a good behavior



















## Example of good and bad tiles

• Good tile 3



• Bad tile 7



-

## Behavioral Cartography of the Flip-flop: Remarks

- Remarks on the cartography
  - ► For this example, all the real-valued part of the parametric space within and outside V<sub>0</sub> is covered
- The set of good tiles (in blue) corresponds to the maximal set of good values for  $\delta_3^+$  and  $\delta_4^+$ 
  - $\blacktriangleright \ \delta^+_3 + \delta^+_4 \geq 24 \ \land \ \delta^+_3 \geq 8 \ \land \ \delta^+_4 \geq 3$

## Outline

## The Modeling Framework of Parametric Timed Automata

#### 2 The Inverse Method

- The General Idea
- Application to the Example
- Discussion

### 3 A Cartography Method

- The Behavioral Cartography Algorithm
- Application to the Example

#### 4 Extension to Probabilistic Systems

Implementation and Case Studies

## 5 Final Remarks

315

프 > - 4 프

# Probabilistic Timed Automaton

- Parametric Timed Automaton
  - Set of locations



## Probabilistic Timed Automaton

- Parametric Timed Automaton
  - Set of locations, set of actions



EL OQA

#### Presentation

# Probabilistic Timed Automaton

- Parametric Timed Automaton
  - Set of locations, set of actions
  - Set of clocks (real-valued variables increasing at the same linear rate) ★ Features: Location invariant



ELE DOG

#### Presentation

# Probabilistic Timed Automaton

- Parametric Timed Automaton
  - Set of locations, set of actions
  - Set of clocks (real-valued variables increasing at the same linear rate)

★ Features: Location invariant, transition guard



Étienne ANDRÉ (LSV)

28th August 2010 27 / 45

#### Presentation

# Probabilistic Timed Automaton

- Parametric Timed Automaton
  - Set of locations, set of actions
  - Set of clocks (real-valued variables increasing at the same linear rate)
    - \* Features: Location invariant, transition guard, clock reset



# Probabilistic Timed Automaton

- Parametric Timed Automaton
  - Set of locations, set of actions
  - Set of clocks (real-valued variables increasing at the same linear rate)
     \* Features: Location invariant, transition guard, clock reset
- Augmented with probabilities [Kwiatkowska et al., 2002]
  - ► The sum of the probabilities leaving a given location through a given action is equal to 1



# Parametric Probabilistic Timed Automaton (PPTA)

- Parametric Timed Automaton
  - Set of locations, set of actions, set of parameters (unknown constants) [André et al., 2009b]
  - Set of clocks (real-valued variables increasing at the same linear rate)
    - ★ Features: Location invariant, transition guard, clock reset
- Augmented with probabilities [Kwiatkowska et al., 2002]
  - The sum of the probabilities leaving a given location through a given action is equal to 1



## Semantics

- Semantics for timed automata
  - Time elapsing in a location, and
  - Discrete actions: instantaneous transition from a location to another one
- Semantics for probabilistic timed automata
  - Time elapsing in a location, and
  - Discrete actions: instantaneous transition from a location to a distribution of locations

#### Probabilistic traces

Finite alternating sequence of locations and actions with probabilities



프 > - 4 프

## Minimum and Maximum Probabilities of Reaching a State

- A scheduler s associates to every state one output distribution
  - Denoted by A<sup>s</sup>
- Given a scheduler, one can define the probability of reaching a location
- Minimum and maximum probabilities of reaching a given location
   Minimum and maximum for all possible schedulers
- Derandomized form  $\mathcal{A}^*$  of a PPTA  $\mathcal{A}$ : replace distributions by non-determinism:  $\mathcal{A}^*$  becomes a PTA
  - Given some  $\pi$ , we have:

$$Traces(\mathcal{A}^*[\pi]) = \bigcup_{s \in Sched} Traces(\mathcal{A}^s[\pi])$$

## The Inverse Problem for PPTAs

#### • Inputs

- A PPTA  $\mathcal{A}$
- A reference valuation  $\pi_0$  of  $\mathcal{A}$



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 ののの

## The Inverse Problem for PPTAs

#### Inputs

- A PPTA  $\mathcal{A}$
- A reference valuation  $\pi_0$  of  $\mathcal{A}$
- Output: tile  $K_0$ 
  - Convex constraint on the parameters such that
    - $\star \ \pi_0 \models K_0$
    - ★ For all  $\pi \models K_0$ , the sets of probabilistic traces of  $\mathcal{A}[\pi]$  and  $\mathcal{A}[\pi_0]$  are equal


### The Inverse Problem for PPTAs

#### • Inputs

- A PPTA  $\mathcal{A}$
- A reference valuation  $\pi_0$  of  $\mathcal{A}$
- Output: tile  $K_0$ 
  - Convex constraint on the parameters such that
    - $\star \ \pi_0 \models K_0$
    - \* For all  $\pi \models K_0$ , the sets of probabilistic traces of  $\mathcal{A}[\pi]$  and  $\mathcal{A}[\pi_0]$  are equal

As a consequence, the minimum and maximum probabilities for reachability properties are the same in  $\mathcal{A}[\pi]$  and  $\mathcal{A}[\pi_0]$ 

JOC ELE

通 ト イヨト イヨト

### Extension of the Inverse Method to Probabilistic Systems

- **①** Construct a derandomized (non-probabilistic) version  $\mathcal{A}^*$  of  $\mathcal{A}$

Then the minimum (resp. maximum) probability of reaching a given location of A is the same for all  $\pi \in K_0$ .

ELE SOC

Extension to Probabilistic Systems

Presentation

### Application to The Root Contention Protocol



Extension to Probabilistic Systems

Presentation

### Application to The Root Contention Protocol



### Application to The Root Contention Protocol



### Extension of the Cartography to Probabilistic Systems

Construct a derandomized (non-probabilistic) version A\* of A
Apply the cartography algorithm to A\* and V<sub>0</sub>

Then the minimum (resp. maximum) probability of reaching a given location of A is uniform within each tile of the cartography.

JOC ELE

## The Root Contention Protocol: Cartography (1/2)



• We consider the following  $V_0$ :  $rc\_slow\_min \in [140; 200]$ , and  $delay \in [1; 50]$ 

#### Remarks

- Tiles 1 and 6 are infinite towards one dimension
- The cartography does not cover the whole real-valued space within V<sub>0</sub> (holes in the lower right corner
  - of  $V_0$ )

28th August 2010 34 / 45

E 5 4 E

### The Root Contention Protocol: Cartography (2/2)



- *Prop*<sub>3</sub>: "The minimum probability that a leader is elected after three rounds or less is equal to p"
  - Tile 1: p = 0.75
  - Tiles 2, 3, 6: p = 0.625
  - Other tiles: : p = 0.5
  - Good tile if  $p \ge 0.75$

-

### The Root Contention Protocol: Cartography (2/2)



- *Prop*<sub>3</sub>: "The minimum probability that a leader is elected after three rounds or less is equal to p"
  - Tile 1: p = 0.75
  - Tiles 2, 3, 6: p = 0.625
  - Other tiles: : *p* = 0.5
  - Good tile if  $p \ge 0.75$
- *Prop*<sub>5</sub>: "The minimum probability that a leader is elected after five rounds or less is equal to *p*"
  - Tile 1: p = 0.94
  - Tiles 2 and 3: p = 0.79
  - Tile 6: p = 0.66
  - Other tiles: : *p* = 0.5
  - Good tile if  $p \ge 0.75$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 ののの

## Advantages of the Probabilistic Cartography

- Quantitative refinement of the good parameters problem
  - Instead of a partition with a binary criterion (good / bad), we have a partition according to various probabilities
- The cartography is independent from the probabilistic property
  - Only the probability associated to each tile depends on the property
  - No need to compute a cartography for each property

#### Implementation

#### • Tool IMITATOR II [André, 2010]

- IMITATOR: "Inverse Method for Inferring Time AbstracT BehaviOR"
- 8000 lines of code
- 6 man-months of work
- Program written in OCaml
- Makes use of the PPL library
- IMITATOR II is available on its Web page
  - http://www.lsv.ens-cachan.fr/~andre/IMITATOR2

EL OQA

• • = • • = •

### **Case Studies**

- Implementation in IMITATOR II
  - outputs a list of tiles with their corresponding trace set under a graphical form
  - outputs the cartography under a graphical form (for 2 parameter dimensions)
- Computation times of various case studies
  - Experiments conducted on an Intel Core2 Duo 2.4 GHz with 2 Gb

| Example       | PTAs | loc./PTA | X  | P | $ V_0 $ | tiles | states | trans. | Time |
|---------------|------|----------|----|---|---------|-------|--------|--------|------|
| SR-latch      | 3    | [3, 8]   | 3  | 3 | 1331    | 6     | 5      | 4      | 0.3  |
| Flip-flop     | 5    | [4, 16]  | 5  | 2 | 644     | 8     | 15     | 14     | 3    |
| Latch circuit | 7    | [2, 5]   | 8  | 4 | 73062   | 5     | 21     | 20     | 96.3 |
| And–Or        | 3    | [4, 8]   | 4  | 6 | 75600   | 4     | 64     | 72     | 118  |
| CSMA/CD       | 3    | [3, 8]   | 3  | 3 | 2000    | 140   | 349    | 545    | 269  |
| SPSMALL       | 10   | [3, 8]   | 10 | 2 | 3149    | 259   | 60     | 61     | 1194 |
| RCP           | 5    | [6, 11]  | 6  | 3 | 186050  | 19    | 5688   | 9312   | 7018 |

### Outline

#### The Modeling Framework of Parametric Timed Automata

#### 2 The Inverse Method

- The General Idea
- Application to the Example
- Discussion

#### 3 A Cartography Method

- The Behavioral Cartography Algorithm
- Application to the Example
- 4 Extension to Probabilistic Systems
- Implementation and Case Studies

#### Final Remarks

-

- K 🕀

# Summary (1/2)

#### • Inverse Method: Algorithm IM

- Modeling of a system with parametric timed automata
- Starting with a valuation  $\pi_0$  of the system, we generate a constraint  $K_0$  with the same trace set as  $\pi_0$

#### • Behavioral cartography: Algorithm BC

- Solves the good parameters problem: synthesizes the largest set of points within a rectangle V<sub>0</sub> corresponding to a given good behavior
- Under certain conditions, covers the whole real-valued parametric space

JIN NOR

通 ト イヨ ト イヨト

## Summary (2/2)

- Extension to probabilistic systems
  - Synthesizes a set of tiles, with uniform min/max reachability probabilities within each tile
  - Useful to compute probabilities (e.g., using Prism) for systems with large constants (notion of rescaling)
  - Avoid the repeated computation of probabilities for many different values of the parameters

#### Future Work

- Extend the behavioral cartography to hybrid automata
  - Allow to consider different clock rates
- Consider a weaker property than equality of trace sets
  - Reference trace with partial orders

ELE NOR

4 E b

#### References I

Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., and Yovine, S. (1995).
The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138:3–34.



André, É. (2010).

IMITATOR II: A tool for solving the good parameters problem in timed automata. In *INFINITY'10*.

To appear.



André, É., Chatain, T., Encrenaz, E., and Fribourg, L. (2009a). An inverse method for parametric timed automata. International Journal of Foundations of Computer Science, 20(5):819–836.



André, É., Fribourg, L., and Sproston, J. (2009b). An extension of the inverse method to probabilistic timed automata. In *AVoCS'09*, volume 23 of *Electronic Communications of the EASST*.

Clarisó, R. and Cortadella, J. (2007). The octahedron abstract domain. *Sci. Comput. Program.*, 64(1):115–139.

EL OQA

過 ト イヨト イヨト

#### References II



Clarke, E. M., Grumberg, O., Jha, S., Lu, Y., and Veith, H. (2000). Counterexample-guided abstraction refinement. In *CAV '00*, pages 154–169. Springer-Verlag.



Frehse, G., Jha, S., and Krogh, B. (2008).

A counterexample-guided approach to parameter synthesis for linear hybrid automata. In *HSCC '08*, volume 4981 of *LNCS*, pages 187–200. Springer.

Hune, T., Romijn, J., Stoelinga, M., and Vaandrager, F. (2002). Linear parametric model checking of timed automata. *Journal of Logic and Algebraic Programming.* 



Kwiatkowska, M., Norman, G., Segala, R., and Sproston, J. (2002). Automatic verification of real-time systems with discrete probability distributions. *Theoretical Computer Science*, 282:101–150.

5 1 SQC

・ 同 ト ・ ヨ ト ・ ヨ ト

### The Inverse Method: Algorithm

Algorithm 1:  $IM(\mathcal{A}, \pi_0)$ **input** : A PTA  $\mathcal{A}$  of initial state  $s_0$ **input** : Reference point  $\pi_0$  of the parameters **output**: Constraint  $K_0$  on the parameters 1  $i \leftarrow 0$ ;  $K_0 \leftarrow True$ ;  $S \leftarrow \{s_0\}$ 2 while True do while there are  $\pi_0$ -incompatible states in S do 3 Select a  $\pi_0$ -incompatible state (q, C) of S (i.e., s.t.  $\pi_0 \not\models C$ ); 4 Select a  $\pi_0$ -incompatible J in C (i.e., s.t.  $\pi \not\models J$ ); 5  $K_0 \leftarrow K_0 \wedge \neg J$ ; 6  $\int S \leftarrow \bigcup_{i=0}^{i} Post_{A(K_0)}^{i}(\{s_0\});$ 7 if  $Post_{\mathcal{A}(K_0)}(S) = \emptyset$  then return  $K_0 \leftarrow \bigcap_{(\sigma, C) \in S} (\exists X : C)$ 8  $i \leftarrow i + 1$ : 9  $// S = \bigcup_{i=0}^{i} Post_{A(K_0)}^{j}(\{s_0\})$  $S \leftarrow S \cup Post_{\mathcal{A}(K_0)}(S)$ ; 10

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 ののの