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Introduction

The Good Parameters Problem

Context: Verification of Timed Systems

Good parameters problem
Synthesize a set of values of the timing parameters guaranteeing
that the system behaves well (e.g., avoids any bad state)

Classical approaches
Computation of all the reachable states, and intersection with the
set of bad states [Alur et al., 1995]
Approach based on CEGAR [Clarke et al., 2000, Frehse et al., 2008]

Our approach: inverse method
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Introduction

An Example: Flip-Flop Circuit (1/2)
An asynchronous circuit [Clarisó and Cortadella, 2007]
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Concurrent behavior
4 elements: G1, G2, G3, G4
2 input signals (D and CK), 1 output signal (Q)

Timing parameters
Traversal delays of the gates: one interval per gate
4 environment parameters: TLO, THI, TSetup and THold

Question: for which values of the parameters does the rise of Q
always occur before the fall of CK?
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Introduction

An Example: Flip-Flop Circuit (2/2)

We suppose given a valuation π0 of the parameters (called point)
THI = 24 TLO = 15 TSetup = 10 THold = 17

δ−1 = 7 δ+1 = 7 δ−2 = 5 δ+2 = 6

δ−3 = 8 δ+3 = 10 δ−4 = 3 δ+4 = 7

This point guarantees a good behavior:
Q↑ occurs before CK ↓

We are looking for a set of points (containing π0) for which the
system behaves well
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Introduction

Problems

The good parameters problem

“Given a bounded parameter domain V0, find a set of parameter
valuations of good behavior in V0”

V0

The inverse problem
“Given a reference parameter valuation π0, find other valuations
around π0 of same behavior”

·π0
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Outline

Outline

1 Parametric Timed Automata

2 The Inverse Method

3 Optimized Algorithms Based on the Inverse Method

4 Implementation and Case Studies

5 Conclusions and Future Work
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Parametric Timed Automata

Outline

1 Parametric Timed Automata

2 The Inverse Method

3 Optimized Algorithms Based on the Inverse Method

4 Implementation and Case Studies
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Parametric Timed Automata Timed Automata

Parametric

Timed Automaton

(PTA)

Finite state automaton (sets of locations)

and actions) augmented
with

A set X of clocks (i.e., real-valued variables evolving linearly at the
same rate [Alur and Dill, 1994])

A set P of parameters (i.e., unknown constants), used in guards and
invariants [Alur et al., 1993]

Features

Location invariant: property to be verified to stay at a location
Transition guard: property to be verified to enable a transition
Clock reset: some of the clocks can be set to 0 at each transition
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a
b

y≥ 2.5
c
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Parametric Timed Automata Timed Automata

Parametric

Timed Automaton

(PTA)

Finite state automaton (sets of locations and actions) augmented
with

A set X of clocks (i.e., real-valued variables evolving linearly at the
same rate [Alur and Dill, 1994])

A set P of parameters (i.e., unknown constants), used in guards and
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x≤ 3 x≤ 4
x ≥ 1

a

y := 0

b

x := 0

y≥ 2.5
c
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Parametric Timed Automata Timed Automata

Parametric Timed Automaton (PTA)
Finite state automaton (sets of locations and actions) augmented
with

A set X of clocks (i.e., real-valued variables evolving linearly at the
same rate [Alur and Dill, 1994])
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Features
Location invariant: property to be verified to stay at a location
Transition guard: property to be verified to enable a transition
Clock reset: some of the clocks can be set to 0 at each transition

x≤p1 x≤p3

x ≥ p2
a

y := 0

b

x := 0

y≥p4
c
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Parametric Timed Automata Timed Automata

Semantics of Parametric Timed Automata

State of a PTA: couple (q,C), where

q is a location,
C is a constraint (conjunction of inequalities) over X and P

Run: alternating sequence of states and actions

Example
x≤p1 x≤p3

Possible run for this PTA

x= y

x≤ p1
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Semantics of Parametric Timed Automata
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Parametric Timed Automata Traces

Good and Bad Traces

Trace over a PTA: time-abstract run
Finite alternating sequence of locations and actions

x= y

x≤ p1
x − y≤ p1
x − y≥ p2

x≤ p3

p1≥ p2
y≥ x

y − x≤ p3

a b

A trace is said to be good if it verifies a given property
Example of good trace for the flip-flop (Q↑ occurs before CK↓)

D↑ g↓1 CK↑ g↓3 Q↑
D↓ CK↓

Example of bad trace for the flip-flop

D↑ g↓1 CK↑ g↓3 D↓ CK↓ Q↑
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Parametric Timed Automata Traces

Notation

Given a PTA A and a point π, we denote by A[π] the
(non-parametric) timed automaton where all parameters are
instantiated by π

Trace set: set of all traces of a PTA

Example: trace set for the flip-flop instantiated with π0

D↑ G↓
1 CK↑ G↓

3 D↓Q↑
Q↑
D↓

CK↓
CK↓
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The Inverse Method

Outline

1 Parametric Timed Automata

2 The Inverse Method

3 Optimized Algorithms Based on the Inverse Method

4 Implementation and Case Studies

5 Conclusions and Future Work
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The Inverse Method General Idea

The Inverse Problem

Input
A PTA A
A reference valuation π0 of all the parameters of A

Output: tile K0
Convex constraint on the parameters such that

π0 |= K0
For all points π |= K0, A[π] and A[π0] have the same trace sets

·π0
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The Inverse Method General Idea

The Inverse Method IM : General Idea

Our idea [André et al., 2009]
CEGAR-like approach
Instead of negating bad states, we remove π0-incompatible states

p1≤ p2 p1≤ p2
p1≤ p3 + p4

p1≤ p2
p1≤ p3 + p4
p3≥ p4

p1≤ p2
p1≤ p3 + p4
p3 < p4

a b

c
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The Inverse Method General Idea

The Inverse Method IM : Simplified Algorithm

Start with K0 = true

REPEAT

1 Compute a set S of new reachable states under K0
2 Project the constraints onto the parameters

3 Refine K0 by removing π0-incompatible states from S

Select a π0-incompatible state (q,C) within S (i.e., π0 6|= C)
Select a π0-incompatible inequality J within C (i.e., π0 6|= J)
Add ¬J to K0
UNTIL all states are π0-compatible in S

UNTIL all new states computed in S are equal to previous states

RETURN the intersection of the projection onto the parameters of
all reachable states
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The Inverse Method Application to the Example

Application to the Flip-Flop Circuit
π0 :
δ−1 = 7 δ+1 = 7 THI = 24

δ−2 = 5 δ+2 = 6 TLO = 15

δ−3 = 8 δ+3 = 10 TSetup = 10

δ−4 = 3 δ+4 = 7 THold = 17

K0 = true

TSetup >δ
+
1 ∧ δ+3 + δ+4 ≥ THold

∧ THold >δ
+
3 ∧ δ+3 + δ+4 < THI

∧ TSetup ≤ TLO ∧ δ−3 + δ−4 ≤ THold
∧ δ−1 > 0

TSetup ≤ TLO

∧ TSetup >δ
+
1

∧ THold >δ
+
3

∧ . . .
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δ−3 = 8 δ+3 = 10 TSetup = 10

δ−4 = 3 δ+4 = 7 THold = 17

K0 =
TSetup >δ

+
1

∧ δ+3 + δ+4 ≥ THold

∧ THold >δ
+
3

∧ δ+3 + δ+4 < THI
∧ TSetup ≤ TLO ∧ δ−3 + δ−4 ≤ THold
∧ δ−1 > 0

D↑

TSetup ≤ TLO
∧ TSetup >δ

+
1

∧ THold >δ
+
3

∧ . . .

TSetup ≤ TLO
∧ TSetup >δ

+
1

∧ THold >δ
+
3

∧ . . .

g↓1
TSetup ≤ TLO

∧ TSetup >δ
+
1

∧ THold >δ
+
3

∧ . . .

CK↑

TSetup ≤ TLO
∧ TSetup > δ

+
1

∧ THold >δ
+
3

∧ . . .

g↓3
TSetup ≤ TLO

∧ TSetup > δ
+
1

∧ THold >δ
+
3

∧ . . .
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CK↓
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The Inverse Method Discussion

Summary of IM (1/2)

Advantages
Useful to optimize timing delays in concurrent systems

Guarantees the preservation of LTL properties

Gives a criterion of robustness to the system

Independent of the property one wants to check

Efficient: allows to handle dozens of parameters
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The Inverse Method Discussion

Summary of IM (2/2)

Termination
Parameter synthesis undecidable in general for PTAs
Sufficient condition for the termination of IM for subclasses of PTA
Does not terminate in the general case

Remarks
The constraint K0 synthesized is not maximal: there are points
π /∈ K0 which give the same trace set as π0

There are good points which correspond to a different behavior
from π0

For a given property ϕ, there may be different trace sets
satisfying ϕ
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Optimized Algorithms Based on the Inverse Method

Outline

1 Parametric Timed Automata

2 The Inverse Method

3 Optimized Algorithms Based on the Inverse Method

4 Implementation and Case Studies

5 Conclusions and Future Work
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Optimized Algorithms Based on the Inverse Method Beyond the Inverse Method

Beyond the Inverse Method
IM guarantees the equality of trace sets

Can be seen as too strong in practice
One is often interested in the (non-)reachability of certain states
only

Key points of the algorithm
Iterative negation of π0-incompatible inequalities: prevents
behaviors absent from A[π0]

Essential for safety

State equality in the fixpoint condition: guarantees the same size
for all traces

Non-essential for safety

Final intersection of the constraints associated to all reachable
states: guarantees that all behaviors in A[π0] are available in A[π ′],
for π ′ |= IM (A, π0)

Non-essential for safety
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Optimized Algorithms Based on the Inverse Method First Variant

Variant with State Inclusion in the Fixpoint (1/2)

Fixpoint condition of the standard inverse method IM
Termination when each new state is equal to a state encountered
before
Exact cyclicity of the system

Variant of the fixpoint: algorithm IM⊆
Termination when each new state is included into a state
encountered before

State inclusion: equality of locations, inclusion of constraints

Non-diverging loops
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Optimized Algorithms Based on the Inverse Method First Variant

Variant with State Inclusion in the Fixpoint (2/2)

States are merged more often than IM
Termination earlier and more often than IM
State space smaller than IM

Properties
Equality of trace sets not preserved
Property: the trace sets are equal up to depth n, where n is the
number of iterations of IM⊆(A, π0)
More interested property: non-reachability preserved

If a location is not reachable in A[π0], then it is also not reachable
in A[π], for π |= IM⊆(A, π0)

Comparison of the constraint
Weaker constraint than IM (i.e., a larger set of parameter
valuations)
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Optimized Algorithms Based on the Inverse Method Second Variant

Variant with Union of Constraints (1/2)

Constraint returned by IM
Return the intersection of the constraints on the parameters
associated to all the reachable states

Variant of the returned constraint: algorithm IM∪

Return the union of the constraints on the parameters associated to
some of the reachable states

Last state of each run
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Optimized Algorithms Based on the Inverse Method Second Variant

Variant with Union of Constraints (2/2)

Same termination and memory consumption than IM

Properties
Equality of trace sets not preserved
The trace set of A[π] is included into the trace set of A[π0], for
π |= IM⊆(A, π0)
Corollary: non-reachability preserved
Furthermore: At least one trace of A[π0] is present in A[π]

Comparison of the constraint
Weaker than IM
Incomparable with IM⊆
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Optimized Algorithms Based on the Inverse Method Third Variant

Variant with Simple Return (1/2)

Constraint returned by IM
Return the intersection of the constraints on the parameters
associated to all the reachable states

Variant of the returned constraint: algorithm IM K

Return the constraint associated to the first state only
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Optimized Algorithms Based on the Inverse Method Third Variant

Variant with Simple Return (2/2)

Same termination and memory consumption than IM

Properties
Equality of trace sets not preserved
Only non-reachability is preserved

Comparison of the constraint
Weaker than IM and IM∪

Incomparable with IM⊆
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Optimized Algorithms Based on the Inverse Method Comparison of the Variants

Comparison of the Constraints

Combined variants
One can combine the fixpoint variant (IM⊆) with the two return
variants (IM∪ and IMK)

 IM∪⊆ and IMK
⊆ respectively

Comparison of the constraints output

IM

IM⊆

IM∪ IMK

IM∪⊆ IMK
⊆

⊆

⊆ ⊆

⊆

⊆

⊆

⊆

All variants improve the size of the set of parameter valuations
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Optimized Algorithms Based on the Inverse Method Comparison of the Variants

Comparison of the Constraints: Example

A toy PTA for comparison

π0
p1= 1

∧ p2= 4

q0 q1 q2

q3

q4

x1 ≤ 2p1
∧ x1 ≤ 2 x2 ≤ p2

x1 ≤ p2

a
x1 := 0
x2 := 0

x1≥p2
c

a

x1≥ 3
b

x1 ≥ p1
a

x1 := 0

b

c

Comparison of the constraints output

p1

p2

012345678
0
1
2
3
4
5
6
7
8

IM

p1

p2

012345678
0
1
2
3
4
5
6
7
8

IM∪

p1

p2

012345678
0
1
2
3
4
5
6
7
8

IMK

p1

p2

012345678
0
1
2
3
4
5
6
7
8

IM⊆

p1

p2

012345678
0
1
2
3
4
5
6
7
8

IM∪⊆

p1

p2

012345678
0
1
2
3
4
5
6
7
8

IMK
⊆
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Optimized Algorithms Based on the Inverse Method Comparison of the Variants

Comparison of the Properties

Property IM IM⊆ IM∪ IMK IM∪⊆ IMK
⊆

Equality of trace sets
√

× × × × ×
Equality of trace sets up to n

√ √
× × × ×

Inclusion into the trace set of A[π0]
√

×
√ √

× ×
Preservation of at least one trace

√
×

√
× × ×

Equality of location sets
√ √

× × × ×
Convex output

√ √
×

√
×

√

Preservation of non-reachability
√ √ √ √ √ √

Most interesting variants
IM for the equality of trace sets
IM∪ for the preservation of at least one maximal trace
IMK
⊆ for the sole preservation of non-reachability
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Implementation and Case Studies

Outline

1 Parametric Timed Automata

2 The Inverse Method
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Implementation and Case Studies

Implementation

Imitator II [André, 2010]

Imitator: “Inverse Method for Inferring Time AbstracT
BehaviOR”
10 000 lines of code
Written in OCaml, using the PPL library

Available on the Web

http://www.lsv.ens-cachan.fr/Software/imitator/
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Implementation and Case Studies

Experiments: Method

In order to evaluate the size of the constraints, we use the
behavioral cartography algorithm [André and Fribourg, 2010]

Coverage of a rectangular parameter domain V0 with tiles
Tile: constraint output by IM

Full coverage of V0 under certain conditions

V0

The less tiles for a given V0, the larger the constraints are
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Implementation and Case Studies

Experiments: Comparison
Example Tiles Time (s)

Name |P| |V0| IM IM∪ IMK IM⊆ IM∪⊆ IMK
⊆ IM IM∪ IMK IM⊆ IM∪⊆ IMK

⊆
Toy PTA 2 72 14 10 10 7 5 5 0.101 0.079 0.073 0.036 0.028 0.026
Flip-flop 2 644 8 7 7 8 7 7 0.823 0.855 0.696 0.831 0.848 0.699
AND–OR 5 151 200 16 14 16 14 14 14 274 7154 105 199 551 68.4
Latch 4 73 062 5 3 3 5 3 3 16.2 25.2 9.2 15.9 25 9.1

CSMA/CD 3 2 000 139 57 57 139 57 57 112 276 76.0 46.7 88.0 22.6
SPSMALL 2 3 082 272 78 77 272 78 77 894 405 342 894 406 340

Size of the constraint
All experiments conform to the theory
In particular, IMK

⊆ outputs the largest constraints

Computation time
IM∪ is sometime slower than IM although it implies less tiles

Comes from the non-efficient implementation of the disjunction
Subject of future work
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Conclusions and Future Work
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Conclusions and Future Work Summary

Summary

Toolbox of algorithms based on the inverse method IM for the
synthesis of timing parameters

Relaxation of the strong criterion of trace set equality
Preservation of non-reachability
 Preservation of safety properties expressed in LTL

List of properties satisfied by some algorithms

Preservation of at least one trace
Inclusion into the original trace set
Equality of location sets

Advantages over IM
Better and faster termination
Larger sets of parameter valuations
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Conclusions and Future Work Future Work

Future Work

Consider partial orders
Consequence: state space reduction

D↑ G↓
1 CK↑ G↓

3

D↓
Q↑

Q↑
D↓

CK↓

Extend the variants of IM to probablistic systems
Study the properties preserved by the algorithms

Extend the inverse method to hybrid automata
Allow to consider continuous variables driven by differential
equations
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