Learning Assumptions for Compositional
Verification of Timed Systems

Shang-Wei Lin, Etienne André, Yang Liu, Jun Sun, and Jin Song Dong

Abstract —Compositional techniques such as assume-guarantee reasoning (AGR) can help to alleviate the state space
explosion problem associated with model checking. However, compositional verification is difficult to be automated, especially
for timed systems, because constructing appropriate assumptions for AGR usually requires human creativity and experience.
To automate compositional verification of timed systems, we propose a compositional verification framework using a learning
algorithm for automatic construction of timed assumptions for AGR. We prove the correctness and termination of the proposed
learning-based framework, and experimental results show that our method performs significantly better than traditional monolithic
timed model checking.

Index Terms —automatic assume-guarantee reasoning, model checking, timed systems

O

1 INTRODUCTION Given a system with two components modeled My

Model checking [10], [32] is one of the most successfind M2 and a property, the AG-NC proof rule tells us that
formal verification techniques because it can be automdt-!1 can satisfy a property under an assumptiod and
ically applied if the following two inputs are given: a2 can guarantee the assumptidnthen we can conclude
system modelescribing the system behavior anpraperty that My || M, satisfies. However, the assumption
specifying what the system should satisfy. However, modé AGR usually requires nontrivial human creativity and
checking suffers from thetate space explosioproblem €Xperience. T_hus, practical impact of AGR is limited if the
[10], [32] because the number of states increases expon@gsumptiond is not automatically constructed.
tially with the number of components involved. Cobleigh et al. [13] proposed a framework that can
To alleviate the state space explosion problessume- 9enerate assumptions for AGR automatically using the L
guarantee reasoningAGR) [12], [17], [31], a well-known algorithm [5]. .ThIS. framework is guaranteed to terminate
compositional technique, has been applied to model che¥den the verification problend/, | M, = ¢ is either
ing. The most common proof rule used in AGR is th@roved or disproved with a counterexample. To infer the

following non-circular assume-guarantee (AG-NC) rule: assumption needed by AGR, the lalgorithm is not the
only solution. Bobaru et al. [7] adopted tlabstraction-

M ||A E o refinemenparadigm [11]. The assumptiot is constructed
M, E A as an abstraction oM,. If M; | A E ¢ holds, then
M| My E o M; || M3 = ¢ can be concluded. IM; || A = ¢ does not

hold, A is refined by the counterexample given by model
e This article is a revised and substantially extended versibthe paper Checking until a conclusive result can be concluded.
presented at the 9th International Symposium on Automagelariblogy However, these frameworks are only applicable to un-

for Verification and Analysis (ATVA 2011) [25]. This work poses a .
compositional framework for timed systems, which uses arde timed systems. The demand for composmonal model

. . . . g 1 1 1
the learning algorithm proposed in [25] to automatically rgeate Checking of timed systems is even greater than that of
timed assumptions needed by AGR. The tool paper [29] abaut tiintimed systems because the state space explosion problem

implementation of the proposed framework has been predesit¢he PR ; : .
18th International Symposium on Formal Methods (FM 2012). IS graver in timed model CheCkmg‘ As a solution, we pro

e Shang-Wei Lin, the corresponding author, is with Temasedbotato- [POS€ an automatic learning-based compositional verifioati
ries, National University of Singapore. E-mail: tsllsw@nedu.sg framework for timed systemsWe focus on timed systems

e FEtienne André is with Universite Parig3, Sorbonne Paris Cité, _ ; ;
LIPN, CNRS, UMR 7030, F-93430, Villetaneuse, France. B:mail'0d€led byevent-recording automatéERAS) [3], which

Etienne.Andre@lipn.univ-paris13.fr is a determinizable class of timed automata. ERAs are
e Yang Liu is with the School of Computer Engineering, Nanyangs powerful as timed transition systems [3], [19] and are

Technological University. E-mail: yangliu@ntu.edu.sg -
o Jun Sun is with Singapore University of Technology and Desig sufficiently expressive to model many interesting timed sys

mail: sunjun@sutd.edu.sg tems. The proposed framework consists of a compositional
e Jin Song Dong is with the School of Computing, National Usite verification flow based on the AG-NC proof rule and uses a
of Singapore. E-mail: dongjs@comp.nus.edu.sg
e This work was supported by the TRF project R394-000-063r2i3tlae
seed project R394-000-068-232 in Temasek Laboratoriesatibhal
University of Singapore, and partially supported by the GN&TIC-
Asie project “Compositional Analysis of Timed Systems.”

1. In [7], the comparison between the learning-based anttaation-
refinement-based approaches for generating untimed atsus\;n AGR
did not indicate a clear winner. Therefore, it would be iagting as well to
study a similar abstraction-refinement-based approachtimed setting.

learning algorithm to automatically generate timed assumgock x,, is reset. We us&s. = {z, | a € X} to denote
tions for AGR. The verification flow is designed as a twothe set of event-recording clocks over A clock valuation
phase process. It generates untimed assumptions firshwhjc: Cyx, — RT is a function assigning a nonnegative real
guarantees the sequence of events on assumptions is corraghber to an event-recording clock.

Then it refines untimed assumptions into timed ones, whichA clocked wordover ¥ is a finite sequencev. =
guarantees that the occurrences of events on assumpti@ns~yi)(az,v2) ... (an,yn) Of symbolsa; € X for i €
satisfy time constraints. We prove theorrectnessand {1,2,...,n} that are paired with clock valuations such
terminationof the learning-based compositional verificatiothat v, (z,) = ~vi(xp) for all a,b € ¥ and v;(z,) =
framework for timed systems. Experimental results show_1(z,) + vi(za,_,) Whenl < ¢ < n anda # a;—1.
that the proposed framework performs significantly bett&ach timed wordw; = (a1,t1)(az2,t2)...(an,t,) €an
than traditional monolithic timed model checking [3] thabe naturally transformed into a clocked wotd(w;) =
constructs the timed global state space based on zone @h;v1)(az,72) - .. (an,vn) Where;(z,) = t; if a; # a
straction. Our contributions can be summarized as followar 1 < j < ¢ v(z,) = t;, — t; if there existsq;

« We propose a learning-based compositional verificguch thata; = a for 1 < j < i andax # a for
tion framework for timed systems. To the best of ouf < k& < 4. For example, the timed worth, 1)(b, 3)(a, 7)
knowledge, this is the first work of fully automatedcan be transformed into a clocked ward v1)(b, v2)(a, v3)
compositional verification for timed systems. such thatyi (za) = () = 1, 12(za) = 2, 72(28) = 3,

« Our compositional verification framework is based of3(za) = 6, andys(zy) = 4.

a novel algorithm that we proposed for learning ERAs. An atomic clock constraint is defined as) = z, ~
This algorithm is particularly efficient in the context? | o — 2y ~ n Wherezq, z, € Cx, ~€ {<, <, >, >},
of our framework where the models of the Systerﬁndn € N. A clock constraint is a conjunction of atomic

components are available. clock constraints. We say € ¢ if is one of the conjuncts
« We prove the correctness of the proposed framewo®k ¢- An atomic clock guardr is defined asr = z, ~ n
and show that it is always terminating. wherez, € Cs, ~€ {<,<,>,>}, andn € N. A clock

« We implement the proposed framework as a selguard g is a conjunction of atomic clock guards. We say

contained toolkit and evaluate its scalability, usefult € g if 7 is one of the conjuncts of. _
ness, and reliability via a variety of systems. A clock constrainty identifies a|X|-dimensional poly-

+/2 ; o
The rest of this paper is organized as follows. Sectionl?dron[[(bﬂ < (R*)I™], whereas a clock guarglidentifies

introduces background knowledge. Section 3 presents fh [-dimensional hypercubfy] C (R*)II. We useGs,

TL* algorithm for learning ERAs. The proposed Iearningt-0 denote the set of clock guar_ds OVES.

based compositional verification framework is described i A guarded word over X is a sequencew, =

Section 4. The experiment results are given in Section (@.1’91)(,“2’92) - (an, gn) Wherea; € T andg; € Gz
all i € {1,2,...,n}. The sub word ofw,, denoted

Related works are discussed in Section 6. The conclusioh .
by [w,]!, is the sequencéa;,g:)(ait1,gi+1)---(aj,g;j)
for 1 < i < j < n. Given a clocked wordw, =
(a1,m)(az2,72) ... (an,vn) and a guarded wordv, =
2 PRELIMINARIES (a1,91)(az,g2) ... (an,gn), We usew, = w, to denote

We give some background knowledge about timed lafs = gi for alli € {1,2,...,n}.

guages and event-recording automata in Section 2.1. Th&iven a clock constraing, if ¢ is satisfiable, there is

proposed algorithm for learning ERAs is inspired by th@ unique canonical clock constraint, denoted @yn(¢),

L* algorithm, which we recall in Section 2.2. among all the clock constraints identifying the polyhedron
[¢], obtained by closing under all consequences of pairs

of conjuncts ing. For example, given a constraipt : 0 <
2.1 Background Knowledge Tq <3N0 < 2 <2, its canonical form igCan(¢r) : 0 <
Let ¥ be a finite alphabet. We usa to denote the z, <3A0<x, <2A -3 <z, — 2, < 2.
empty word. Atimed wordover X is a finite sequence For a clock constrainy, we define thereset of an
wy = (a1,t1)(az,t2). .. (an,t,) of symbolsa; € ¥ for event-recording clock,, in ¢, denoted bygp[z, — 0], as
i € {1,2,...,n} that are paired with nonnegative reaCan(¢’) where¢' is obtained fromCan(¢) by removing
numberg; € R such that the sequentgs . .. t, oftimed all conjunctions wherex, is included, and adding the
stamps is nondecreasing. For a timed warg we can conjunctz, < 0. For exampleg; [z, — 0] : 2, =0A0 <
obtain itsuntimed word denoted byut(w;), by discarding z, <2A0 <z, —z, < 2.
all the time stamps, i.e.wt(w;) = aias...a,. Given For a clock constrainp, we define theaime elapsingof
another alphabek’, we usew;lss to denote the timed ¢, denoted by)t, asCan(¢”) whereg” is obtained from
word obtained by removing fromy; all pairs(a;,¢;) such Can(¢) by removing all clock upper bounds. For example,
thata; & X'. time elapsing ofp; is 11 : 0 < 2, A0 < 2 A =3 <

For every symbok € 3, we user, to denote theevent- x, — z, < 2.

recording clock[3] of a. Intuitively, x, records the time Given a guarded wordv, and a clock constrain®,
elapsed since the last occurrencenpi.e., oncea occurs, the strongest postconditionf w, given a preconditior,

and the future work are given in Section 7.

Ve = 1] blew < 3]ii _,“[mb - 1] M, respectively, and their parallel compositiodd] || M2
./—\;. is shown in Fig. 1 (c).
—> _
blza = 2] blea =21 < 3] In this work, we assume timed models and properties are

@M (b) Mz (© My || Mo all represented using ERAs. Given two ERAS and M,
Fig. 1. Event-recording automata and timed language whose alphabets a®; and X, respectivelyM/; satisfies
M, denoted byM; = Mo, if L(M;)ls, C L(Ms) where
. , . . L(Mi)ls, = {wils, | w € L(M1)}. Figs. 1 (a) and (b)
denoted bysp(¢,w,), is defined inductively as follows: give two ERAsM; and M, such thatM; = M.
sp(p, A) = &) sp(d,wg(a, g)) = ((sp(d,wg) A g)lxa =
0])) 1. We often omit the initial clock constraingy, =)
/\a,beZ('ra = 1), i.e., sp(wy) = sp(do, wy). 2.2 The L* Algorithm
The target model in this work, event-recording automatehe L* algorithm [5], [34] is a formal method to learn
(ERASs), is formulated in Definition 1, and the parallel coma minimal DFA (with the minimal number of locations)
position between two ERAs is formulated in Definition 2that accepts an unknown languatjeover an alphabek.
Definition 1: (ERA). An event-recording automaton During the learning process, thé hlgorithm interacts with
(ERA) M = (%,L,L°% 4, L) consists of a finite input a Minimal Adequate TeachgfTeacher for short) to make
alphabet, a finite setl of locations, a set of initial loca- two types of queries: membership queries and candidate
tions L° C L, a set of accepting locations’ C L , and a queries. Amembership querfor a stringo is a function

transition function: LxSx Gy, — 2°. We usd %5 ['to Qm Such that ifo € U, then Q,,(0) = 1; otherwise,
denotel’ € §(1,a,g) for I,I' € L, a € , andg € Gx. An Qm(0) = 0. A candidate queryor a DFA M is a function
ERA is deterministicif |L°| < 1 and |3(l,a,g)| < 1, and Qe such that ifL(M) = U, then Q.(M) = 1; otherwise,
if both 6(1,a,¢1) and 8(1, a, g) are defined and; # gs, Q.(M) = 0. During the learning process, thé hlgorithm
then [g1] N [g2] = 0 wheregy, g» € Gx. A deterministic Stores the membership query results iro@iservation table
ERA is completeif U, . ,15(1.a.0)203[9i] = [true] for all (S, E,T) whereS C ¥* is a set of prefixesf C ¥* is a
leLanda e X. ' Y [setof suffixes, and : (SUS-X)x E — {0,1} is a mapping
Note that in ERAs each event-recording clocke Cy; function such thatik-c € U, thenT (s, e) = 1; otherwise,
is implicitly and automatically reset when a transitio€. s - € ¢ U, thenT(s,e) = 0, wheres € (SU S - %)
with eventa is taken. Fig. 1 (a) shows an example of &1d ¢ € E. In the observation table, the*Lalgorithm
deterministic ERAM;. categorizes strings based on Myhill-Nerode Congruence
Given an ERAM = (3, L,1y,6,L7), a clocked word [21], as formulated in Definition 3.

we = (a1,7)(az,¥2) - .. (an,7n) is acceptedby M if Definition 3: (Myhill-Nerode Congruence) For any

. , »)
there exists a sequence of transitidg a1lg1] I azlg2] tWO stnngsmci e/ Z , we say that tf)ey arequivalent
denoted byo = o', if 0-p € U & o - p € U, for all

an[gn]
- —— Iy on M such thatly € L I, € L/, and p € ¥*. Under the equivalence relation, we can sagnd

Vi = ogi foralli e {1,2,...,n}. A timed word w; 4 are therepresenting string®f each other with respect
is accepted byM, if its clocked wordw,. is accepted g (7, denoted by = o], ando’ = [o],..

by M. The timed languageaccepted byM, denoted by The |* algorithm always keeps the observation table

L(M), is the set of timed words accepted By. We closedandconsistentAn observation table islosedif for

give in Fig. 1 (a) an ERAM; that accepts the timed 5 s ¢ § anda € 3, there always exists’ € S such that

language(a, t1)(b, 12)(a, t3)(b,t4) . .. such thatt; = 1, ¢, = & An observation table isonsistentf for every two

toi = l2i-1 = 2 @ndigiy1 —ty; = 1, and we give in glementss, s’ € S such thats = s/, then(s - a) = (s’ - a)

Fig. 1 (b) an ERAM, that accepts the timed languaggor a|| o € 3. If the observation tablésS, E, T) is closed

(b t1)(b,2) ... such thatt; < 3 andt;1, —#; < 3. FOr ang consistent, the*Lalgorithm constructs a correspond-

a timed languagd., we can obtain itauntimed language ing candidate DFAC' = (Zc,Lc,l%,5c,Lé) such that

denoted byut(L), by collecting all the untimed words of So =%, Le = 8,1% = {A\}, c(s,a) = [s - al, for

L, ie,ut(L) = {ut(w) | w, € L}. _ seSanda e X, and Ll = {s € S| T(s,\) = 1}.
Definition 2: (Parallel Composition). Given two ERAs Subsequently, t. makes a candidate query f6r.

M; = (i, Li, LY, 6;, L]) for i € {1,2}, their parallel ¢ Qc(M) = 0, i.e., L(C) # U, then Teacher gives a

compositionis the ERA M, || My = (¥, U %y, L1 x counterexampler... The counterexample.. is positive

Lo, L9 x LY,6, LY x L) where the set of event-recordings , ¢ [/ \ £(C), or negativeif o € L(C)\ U.

clocks becomeg’s;, U Cs, and the transition relatiof is The | algorithm then analyzes the counterexample

defined as follows whery:] N [g2] # 0. to find the witness suffix. For two strings that are classified

by L* into an equivalence class, witness suffixis a

alg1Ag2] : alg1] alga]
(1, 12) »(lsly) i b=l andl; == 15 gping that when appended to the two strings provides

(I1,12) o], (11,12) if Iy alg1] Iy anda ¢ 3 enough evidence for the two strings to be classified into
(11, 1s) alge] (11, 13) it 1, a[ﬁ; I, anda ¢ 5, two different equivalence classes under the Myhill-Nerode

Congruence. Given an observation talilé, £, 7)) and
Fig. 1 (a) and (b) give two deterministic ERAY; and a counterexampler.. given by Teacher, we define an

Algorithm 1: L* Algorithm
input : X: alphabet
output: a DFA accepting the unknown language

1letS=FE={\};

2 UpdateT by Q,,(A) and Q,,(A -), forall a € ¥ ;
3 while true do

4 while there is(s-a) s.t. (s-a) £ s forall s € S

do
S+— SuU{s-a};
UpdateT by Q,,((s-«)-B), forall g € X ;

Construct candidate DFA{ from (S, E, T) ;

if Q.(M)=1then return M ;

else
o <— the counterexample given by Teacher ;
v— WS(oce) ;
E «+— FU{v};
UpdateT by Q,,(s-v) and Q,,(s - a - v), for
all se Sanda € ¥ ;

10
11
12
13

i-decomposition querpf .., denoted byQ! (o..), as
follows: Q! (0ce) = Qm([ui], - vi) whereo.e = u; - v;
is a decomposition ob.. such that|u;| = 4, and [u],
is the representing string af; in S with respective to
L(C). The witness suffixof .., denoted byWS(o..),
is the suffix v; of the decomposition ofr.. such that
Qi (0ce) # QY (0ce). Once the witness suffixV S (o..)

A
a 1
b
c

CORRRROy

(b)
Fig. 2. L* Observation Table and Candidate DFA M,

A c a
) 0 100
|)\ | < a 1 0(81) * a.b.c
> 10 | 1Go) . 11 b,
a 1 | 0(s1) c 11o
IZ i 8 a-a 1 0 b, c
a-b 0 | 0(s2)
a-a 1 0 a 0 0 @
a-b 8 8 ab-a | 0 |0
a-c ab-b |0 |0
@ ab-c | 0|0 b e

(b) (]
Fig. 3. L* Observation Table and Candidate DFA M,

is nos € S such thatab = s. So, ab is added intoS,
and then the membership queriesadhx, abb, abe, abac,
abbe, andabce are performed. At this point, the observation
table with S = {\,a,ab}, E = {A, ¢} is closed as shown
in Fig. 3 (b). The corresponding DFA/, is shown in
Fig. 3 (c) andL(M3) =U.

AssumeX is the alphabet of the unknown regular lan-
guageU and the number of states of the minimal DFA
is n. The L* algorithm needsn — 1 candidate queries
and O(|X|n? 4+ nlogm) membership queries to learn the

is obtained, ¥ usesWS(o..) to refine the candidate DFA minimal DFA, wherem is the length of the longest coun-

C until £L(C) = U. The pseudo-code of the*Lalgorithm
is given in Algorithm 1.

terexample returned by Teacher. Angluin [5] proved that
as long as the unknown languad@é is regular, the E

We use an example to illustrate how thé &lgorithm @lgorithm will learn a complete minimal DFAZ such that
works to learn a minimal DFA accepting an unknowr (M) = U in at mostn — 1 iterations.

language. Suppose the unknown languége (a|blc) - a*
overY. = {a,b,c} needs to be learned. Initiallyy and £

are initialized to{\} and then the membership queries o{_
A, a, b, andc are performed. At this point, the observatiort1

table with S = {A}, E = {A} is shown in Fig. 2 (a).

The observation table now is not closed because theretimed languages. An example for illustrating the *TL

no s € S such thata = s. Therefore,a is added intoS,
and then the membership queries @f, ab, and ac are

performed respectively. At this point, the observatioridab
with S = {\,a}, F = {\} is closed as shown in Fig. 2 (b).

The corresponding DFAV/; is shown in Fig. 2 (c). The
candidate query of\/; is performed.

However, Teacher gives a negative counterexampie
that is accepted by/; but not inU. The L* algorithm

3 A LEARNING ALGORITHM FOR ERAS

his section is devoted to the Tlalgorithm. Inspired by
he L* algorithm, we develop a TLalgorithm, introduced
ir}SSection 3.1, to learn event-recording automata thatgcce
algorithm is given in Section 3.2. Further discussions are
given in Section 3.3. The correctness and termination of

TL* are proved in Section 3.4.

3.1 The TL* Algorithm

In order to infer an ERA accepting an unknown timed
language, the proposed Tlalgorithm deals with guarded

analyzes the negative counterexamyleto get the witness words. Before we get into the details, let us define the

suffix as follows: Q% (abc) = 0. QL (abc) = Q.. (la).
be) = Qn(abe) 0, Q2 (abc) = Qu([ab], - ¢) =

acceptance of a guarded word by an ERA.
Given a guarded worad,, we useL(w,) to denote the

Om(X) = Qu(c) =1 # QY (abc). After analyzing set of timed wordsw, that are contained im,. That is,
the counterexamplebe, the witness suffix is. So,cis L(wg) = {wy | cw(w) E wy}, €.0., L((a,z, > 2))

added intoF, and the membership queries af ac, bc,

represents the timed languagg:, t) | t > 2}.

ce, aac, abe, andacc are performed. The observation table Definition 4: (Acceptance of Guarded Words) Given
now with S = {\,a}, E = {\,c} is shown in Fig. 3 (a). an ERAM = (%,L,ly,,L7), a guarded wordw, =
However, the observation table is not closed because théde, g1)(az, g2) - . . (an, gr) is acceptecby M, denoted by

version, i.e., an ERA. Although the timed refinement may
sometimes only add constraints on the transitions, it sual
changes the structure @ff by adding more locations and
transitions. Indeed, it is well-known that adding consttsi
on the transitions of/ is not sufficient in general to accept

: the timed languag&,. However, we still consider a two-

: phase algorithm consisting of amtimed learning phase

i and atimed learning phaseThe reasons are as follows:
|

|

|

|

|

|

|

"C alze < 2]

alre > 2]
(b) M’

"C altrue]

(a) M

Fig. 4. Acceptance of Guarded Words

leacher (1) not all events are restricted by time conditions, and

(2) if an event is restricted by time conditions, we do
not want to actively guess all the possible time conditions
for the event, which increases the number of membership
gueries exponentially and slows down the learning process.
Instead, we passively assume the event is not restricted
if there exists a sequence of transition@Y any time condition and deduce the conditions from
the counterexamples given by the Teacher. Algorithm 2
shows the pseudo-code of the Thlgorithm. The details

candidate query

<——————————— =
yes/no, counterexample |

Fig. 5. Interaction between TL* and Teacher

ﬁ(wg) C L(M),

a1g1] I az(gz] an[gn]
1 e

lo 1, on M such thatl, € L,
In € LY, and[g;] € [sp([wy)i)] N{g:l forall 1 <i<n, e gescribed in the following.
where[w]? = A. Untimed Learning. In this phase, the L algorithm is
Fig. 4 gives an example of the acceptance of guardgded to learn a DFAV accepting the untimed language
words. The guarded wor(d, true) is accepted by the ERA ith respect td/; (Line 1 of Algorithm 2). The observation
M as shown in Fig. 4 (a), and the two guarded wordgpje (S, £, T) constructed in the learning process ofis
(a,2z4 <2)and(a, z, > 2) are accepted by the ERN’" as preserved before starting the timed learning phase (2jne
shown in Fig. 4 (b). Note that the guarded woidz, < 3) Timed Learning. In this phase, the TLalgorithm tries
is not accepted by’ becausez, < 3] Z [z, < 2] and 1o refine the DFAM learned in the untimed learning phase
[za < 3] € [z > 2], while the guardeda,z, < 1) iS into an ERA. The untimed alphab&t is extended into a
accepted by’ becausefz, < 1] C [z, < 2]. timed alphabet>; C ¥ x Gy such that the observation
One may find that according to Definition 4, there mightable obtained from the untimed learning phase becomes a
be a situation where we can construct two equivalent ERAighed one. The results of membership queries for guarded
such that there exists a guarded word accepted by one Wdkds are stored in the timed observation table. This phase
not the other. Fig. 4 shows such a case whdrand M’ are consists of the following steps.

equivalent, anda, true) is accepted by but notaccepted 1) perform a candidate query for the ERA (Line 4).

by M’. This situation is not a problem because we define
timed language on timed words instead of guarded words.
Although M and M’ accept different guarded words, they 2)
accept the same timed langua@et) wheret > 0.

Given a timed languag€ accepted by an ERA{y,.,
the proposed Tt algorithm interacts with a timed Teacher
to make two types of queriesimed membership queries
for guarded words antimed candidate querie®r ERAs.

Fig. 5 shows the interaction between the*Talgorithm

and the timed Teacher. Note that our*Thalgorithm is a
black-box learning algorithm since only the Teacher knows
about the timed languadér to be learned. Tt views the
Teacher as a black box and constructs an ERA according
to the query results from the Teacher.

A timed membership querfpr a guarded wordy, is a
function Q,,,r such thatQ,,,r (wy) = 1if w, is accepted by
My, ; otherwise@,,r(wy) = 0. A timed candidate query
for an ERA M is a functionQ.r such thatQ.r (M) =1
if L(M) = Ur; otherwise,Q.r(M) = 0 and a guarded
word as a counterexample will be given by the Teacher. A
guarded word counterexample, is negativeif L(w,) C
L(M) and L(w,) Ur. A guarded word counterexample
wy is positiveif L(wy) C Ur and L(wy) € L(M).

The idea behind the TL algorithm is to first learn a
DFA M acceptingU, the untimed language dfr, i.e.,

U = ut(Ur), and then to refine the DFA/ into a timed

3)

If the answer is “yes” M accepts the languagér

to be learned, and/ is returned (Line21).

If the answer to the candidate query fbf is “no”
with a counterexamplday, g1)(az,g2) - - - (an, gn),
TL* splits prefixes (rows) and suffixes (columns) in
the observation table as follows. If a prefix or

a suffix e in the observation table has a substring
of the form (a;,g) for somei € {1,2,...,n} and
[g:] N [g] # 0, then[g] is partitioned usingy; such
that [¢g] = [¢:] U G whereG = {d1,62,...,9m} IS
obtained by[g] — [g:] using DBM subtraction [27],
[28]. The prefixp is split into {po, p1,D2,---,Pm}
where (a;,g;) is a substring ofpgy, and (a;, g;)

is a substring ofg; for all j € {1,2,...,m}
(Line 10). Similarly, the suffixe is also split into
{€v, €1, €2, ..., e} where(a;,g;) is a substring of
€o and (a;,g;) is a substring ofé; for all j €
{1,2,...,m} (Line 11). Then the observation table
is updated by performing timed membership queries
Q.1 (p; - €;) forall j €{0,1,2,...,m} (Line 12).

If the observation tabl¢S, E,T') is not closed, i.e.,
there is a prefixs - o with no s’ € X7 such that
(s-a) = ¢, thens - « is added intoS (Lines 13-
14). The observation table is updated by performing
the timed membership queri€g,,» (s - « - 8) for all

B8 € Yr (Line 15).

Algorithm 2: TL* Algorithm
input : X: alphabet
output: an deterministic ERAV

1 Use L* to learn a DFAM acceptingU;

2 Let (S, E,T) be the observation table during thé learning process;

3 a < (a,true); s « (s,true); e « (e, true) for eacha € ¥, s € S ande € E;

4 while Q.r (M) =0 do

5 Let (a1,91)(az,g2) - (an, g») be the counterexample given by the Teacher ;

6 foreach (a;, ¢:), i € {1,2,...,n} do

7 if (a;,9) is a substring op or e for somep € SU (S - Xr) ande € E such that[g;] N [g] # 0 then

8 Let G = {d1, 4z, .-, gm} Obtained by[g] — [g:];

9 Yr=Xr \ {(aiag)} U {(Gi,gi), (aiagAl)7 (aiagAQ)a B (a’ivg;n)};

10 Split p into {go, p1, P2, - .., Pm} Where(a;, g;) is a substring ofjy and(a;, g;) is a substring ofy; for
all je{1,2,...,m};

11 Split e into {€p, €1, €, ..., en} Where(a;, g;) is a substring o€, and (a;, ¢;) is a substring o€; for
all j e {1,2,...,m};

12 UpdateT by Q,,r(p; - €;) for all j € {0,1,2,...,m};

13 while there existys - o) such that(s - a) # s’ for all s’ € S do

14 S+— Su{s-a};

15 UpdateT by Q,,,((s- «) - 8) for all 8 € Xr;

16 | v WS((a1,91)(az,92) - (an, gn));

17 if |v| > 0 then

18 E «+— FEuU{v};

19 L UpdateT by Q,,r(s-v) andQ,,r(s-a-v) forall s € S anda € Zp;

20 Construct candidatd/ from (S, E,T);

21 return M;

4) Analyze the counterexampte to find the witness A\
suffix (Line 16). We define an- decomposmon query 4'W (
of m, denoted byQ’ -(r), as follows: Q' ! (a, ”“6)
Qr(5;-v;) wherer = u; -v; is a decomposmon of “)["”E“R;jl (OR! o (d) 7>
m such thatju;| = ¢ andu; = s; for somes; € S.)))
The witness suffix ofr, denoted byiVS(r), is the T9: 6. Untimed Learning Phase

suffix v; of w such thatQ? . () # QP . (r). If there
is a witness suffix;, i.e., [v;| > 0, thenv; is added

2

into the set of suffixes® (Lines 17-18). Then the A 5 | i(SO) @
observation table is updated by the timed membership * 1 (s0) (a;za < 1) 0 (s1)
queries,,r (s-v;) and@,,,r (s-a-v;) for eachs € S gZ:ij S B 0 (ayza(‘i’ ”{‘)’(i 2 <1 0 §
anda € Y7 (Line 19). @7Ts (a,2q <1)(a,20 > 1) | O

5) Construct the ERAM = (Xar, Las, 19, 60, L-]’il) (b) Ty a
corresponding to the observation tabt £, T') such (©) M

that Sy = ¢, Ly = 5, 19, = {)\} om(s,a) = Fig. 7. Timed Refinement 1
[s-a], forse S anda € Xy, andLM_{seS|
T(s,\) =1}. Go to Stepl (Line 20).

In the timed refinement phase, Tlfirst modifies the
alphabet and the observation table into a timed version, i.e
Yr = {(a,true)}, S = {(\, true)}, andE = {(A, true)}.

We use an example to illustrate the Talgorithm. Suppose The current timed observation tabl& is shown in
the timed languagé/r to be learned is accepted by therig. 6 (d). Then, TE performs the timed candidate query
ERA A; as shown in Fig. 6 (a). In the untimed learnindor the first candidate ERA/;. However, the answer to the
phase, I is used to learn the DFAV/;, as shown in candidate query is “no” with a negative counterexample
Fig. 6 (c), accepting the untimed languagé, and the (a,z, < 1). Because there is a prefifa, true) in the
observation tablg.S, £, T) obtained by [is shown in observation such thdt:, < 1] N [true] # @, the prefix
Fig. 6 (b). At this time,.X = {a}, S = {\}, andE = {A}. (a,true) is split into (a,z, < 1) and(a,z, > 1), and the

3.2 An Example

| A A (a,zq =1)
A 1 (s0) _ A 1 [1(s0)
(4,20 < 1) 0 (s1) alze =11 a (4,20 < 1) 0 | 0(s1)
(a,zq = 1) 1 (a,zq = 1) 1 | 0(s2)
(a,q4 > 1) 0 alzq # 1] (a,1 < zq < 3) 0|0
(a,zq < 1)(a,zq < 1) 0 g (a,zq = 3) 0 0
(a,zq < 1)(a,zq=1) | O (a,zq > 3) 0 0
(a,zq < 1)(a,zq >1) | O (b) M3 (a,zq < 1)(a,zq < 1) 0 0
(@) Ts (a,zq < 1)(a,zqe =1) 0 0
])) (a,zq <1)(a,1<z2,<3) |0 |0
Fig. 8. Timed Refinement 2 (a,2q < 1)(a,®q = 3) 010
(a,zq < 1)(a,zq > 3) 0|0
(a,zq = 1)(a,zq < 1) 0|0
A (a, 2z, =1) (a,2q = 1)(a,xqa = 1) 0 0
) T 1(s0) v (a,20 =1)(a,1 < 2q<3) | 0 | O
(a,zq < 1) 0 0 (s1) (a,zq = 1)(a,zq = 3) 1 1
Ea,ma = B é 8 (s2) (a,zq = 1)(a,xzq > 3) 0|0
a,Tq >
(a,zq < 1)(a,zqa <1) | O 0 . . @ T.s
(a,za <1)(a,za=1) | 0 | O Fig. 10. Timed Refinement 4
(a,zq < 1)(a,zq >1) | O 0
(a,zq =1)(a,z, <1) | O | O
(a,zq =1)(a,z, =1) | O | O afz, < 3]
(a,2q =1)(a,zq >1) | O | O

(b) T~ (c) My
Fig. 9. Timed Refinement 3

alze < 3],
alzq > 3]

©Q -
O R

(@) Az (b) As

timed membership queries féa, z, < 1) and (a, 7 > 1) Fig. 11. Learning Guided by a Friendly Teacher

are performed, respectively. The current observatioretabl

T5 is shown in Fig. 7 (a). However]s is not closed . _ _

because there iga,z, < 1) with no s € S such that g,mi’ >)_t {(a,7a < 1)’§a’$“ N i)’l(a’w“ gEl)i

s = (a,z, < 1), 0 (a,z, < 1) is added intoS and {()_trii)’(gu;)’@’fﬁ < Di(aze = 1} and B =
the membership queries fdr, z, < 1)(a,z, < 1) and In the fourth iteration of the timed refinement phase,

(a,2, < 1)(a,z, > 1) are performed, respectively. The_ ", . :
closed observation tablg; and its corresponding ERA{; L .pe:j"orms thetﬂmed cand@atet_lthl.‘l‘er){’ for.t:]he EMt.
are shown in Fig. 7 (b) and (c), respectively. At this timegain. HOwever, the answer is stfl "no™ with a positive
Y = {(a,70 < 1), (0,70 > D)}, S = {(\ true), (a, 74 < dour_nerexamplezr = (a,z, = 1)(a,z, = 3). Three
1)}, andE = {(/\Jme)}'— prefixes (a,x, > 1),_ (a,2q < 1)(_a,:ca > 1), and

In the second iteration of the timed refinement phas a’z"l.: 1)(3’;1;“ > 1) ml_the ofk.Jservatlonhtabl@ ha.\ve tg
TL* performs the timed candidate query fof,. However e Sp.'t’ and the new sP it PrEYIXES are shown in F_|g. L _(a).
the answer is still “no” with a positive cc?l'mterexam’ Ighe timed membership queries for the new split prefixes
(0,7, — 1). Because there are thwo prefixés z, > 1) P'®oncatenated witk for all ¢ € £ are performed. Then

. . the TL* algorithm analyzes the counterexample. Since
and(a,z, < 1)(z, > 1) in the observation tablésS, E, T') 0 (r) :g QL (x) :yQ2 +(x), there is no F\)/vitness

such that[z, = 1] N [z, > 1] # 0, the prefix(a,z, > 1) mT k : i
is split into (a,z, = 1) and (¢, 2, > 1), and the prefix suffix for w. The closed observation tablg is shown in

. L Fig. 10 (a), and its corresponding ERAj is constructed
(a,zq < 1)(zq > 1) is split into (a,z, < 1)(z, = 1) and - 2 -
(a,zq < 1)(z4 > 1), respectively. The timed membershi s (Sah?cer'T) ':('3'112 Jfb)'< 'g; t(r;'sx“rie?) ?a {I(a’j“g)f
queries for the new prefixes are performed. The curreﬁt’ VY {‘E)_tm’e) ’(a - "< 1) ’(a ’I“ - 13} ’arl;d > i
closed observation tabl@; and its corresponding ERA | | ’ AN P Te ’ o
é()\,true), (a,zqa = 1)}

Mg are shown in Fig. 8 (a) and (b), respectively. At thi In the fifth iteration of the timed refinement, Tlper-

time, 3 = {(a,2a < 1),(a;2a = 1),(a,7a > D} o1cthe timed candidate query fdfs. This time, Teacher

§=1{ tm.e)’ (.a’ x“.< D} andE N {(/\’t?aue)}' says that(M5) = Up, and the learning process of the TL
In the third iteration of the timed refinement phasealgorithm is finished

TL* performs the timed candidate query for the ERA
Ms. However, the answer is still “no” with a negative)) _

counterexampler = (a,z, = 1)(a,z, = 1). This 3.3 Discussion Regarding the Teacher

time, no prefix or suffix in the observation table has t8ince TL* is a black-box learning algorithm, one may
be split. TL* analyzes the counterexample as followdind that the guidance of the Teacher affects the learning

O (1) = Qur((a,2q =1)(a,2, =1)) =0. Q! ,(7) = of TL*. Thus, we give a discussion for the guidance of
Le(l(a,xq = D]p(a,24 = 1)) = Qpr((a,z, = 1)) = the Teacher in this section. Note that the reason for the
1# Q?nT (7). Thus, we have a witness suffix= (a,xz, = discussion here is that the proposed*Tls a generic

1), andv is added into the seE. Then the membership algorithm, which is not limited to our setting and might
queries fors - (a,z, = 1) for all s € S are performed. be used in different contexts for learning ERAs. Let us
The closed observation takble and its corresponding ERA consider a timed language accepting timed wofdst)
M, are shown in Fig. 9 (a) and (b), respectively. At thigsvheret < 3. In the untimed learning phase, Tlperforms

a[f[iaf i]é] Ur. After the untimed learning phase, each untimed alpha-

alza < 1], a2 < z4 < 3], bet (o, true), o € X, may be split according to the guard
all <zq <2, af3 < @ < 5], alza < 1 , condition of the counterexamples returned by Teacher. With

v
al2 < x4 <3 Tg > 5 all < zq < 2],) : .
h erzd @ oo 2) @’;) a2 <z, <3], a friendly Teacher, each untimed wofd, true) will be
al3 < za < 5l split into |G 4| guarded words, wher@ 4 is the set of clock

al3 < xq < 5], alrq > 5] alza > 5] o . .
zones partitioned by the clock guards appearinglinFor
Fig. 12. Learning Guided by a Bad Teacher example, the clock guard appearing Jy, as shown in
Fig. 11 (b), isz, > 3, SOG4, = {z, < 3,2, > 3}.

With a bad Teacher, the number of alphabet split is more
the L* algorithm to learn a DFAV/ accepting the untimed than |G 4|. For each event € ¥, if («, true) needs to be
word a, as shown in Fig. 11 (a). When the Teacher answesglit, Teacher will give a negative counterexampie g)
the timed candidate query fod,, if it returns a beautiful and g is of the form (a,z5 ~ 7) or (a,z5 ~' %),
negative counterexample, z, > 3), the alphabet is split where € &, ~e {<,<}, ~'e {>,>},and @, ¢ € N.
into (a, 7, < 3) and(a, z, > 3), and the final learned ERA Basically, @ and ¢ are the upper and lower bounds of the
As is as shown in Fig. 11 (b). clock z, respectively. We can construct a set of regions

What if the Teacher is not friendly? That is, Teachegith respect to and‘c, denoted byR<:. For example,
always gives counterexamples whose time constraints gigen @ = 3 and‘c = 1, R = {25 = 1,1 < 25 <
not exactly the boundary guards. Let us consider thgzs = 2,2 < 25 < 3,25 = 3,25 > 3}. Thus, with
above example again. Suppose Teacher gives a negaéivead Teacher, each evemtc X might be split at most
counterexampléa, z, > 5) instead of(a,z, > 3) when |Cy|-|R«| times.
answering the timed candidate query &f. The alphabet Let ¢ = max{|G4|,|Cs| - |R«|}. In general, each
a is split into (a,z, < 5) and (a,z, > 5), and both of membership query of untimed wor@, true) gives rise
them are not accepted. After this, Teacher can only retui® at mosto timed membership queries. In total, TL
positive counterexamples of the forfa,z, ~ c) where needs to performO(|X| - o - |L|*> + |L|log|x|) timed
~€ {<,<} andc < 3. Let us suppose that Teacher givemembership queries, whereis the counterexample given
the positive counterexamples in the worst way. It givasy the Teacher. We will show in Theorem 1 that*Theeds
a positive counterexamplg:, z, < 1) which causes the to performO(|L| + ¢ - |X|) candidate queries.
split of the alphabet. into (a,z, < 1), (a,1 < z, < 5) Lemma 1:Given a closed and consistent observation
and (a,z, > 5) where only(a,z, < 1) is accepted. And table (S, E,T), any deterministic ERA consistent with
Teacher gives another positive counterexaniple:, < 2), has at leastS| locations.
which causes the split of the alphabet &s;z, < 1), Proof: We first define a row in the observation table. If
(a,1 < 24 £ 2), (0,2 < 2, < 5) and (a,z, > 5), pe SU(S-X) is a prefix (row) of the table, we usew(p)
where(a,r, < 1) and(a,1 < z, < 2) are accepted. Thento denote the functiorf : £+ {0, 1} which is defined by
Teacher gives the final positive counterexanpler, < 3), f(e) = T(p-e¢) fore € E. Let M = (%,L,1°, 6, LY)
which causes the split of the alphabet &s;7, < 1), be an ERA consistent witl". We then definef’(s) =
(a,1 < g £2), (6,2 < 2o < 3), (a,3 < g < 5) §(1°s) for everys € S. For any twos;, sy € S, we have
and (a,z, > 5), where(a,r, < 1), (a,1 <z, <2) and row(s;) # row(sy) implying that there exists € E such
(a,2 <z, < 3) are accepted. The final learned ERA is aghat T'(s; - €) # T(s2 - €). Since M is consistent withT",
shown in Fig. 12. exactly one ofi(1°, s1-¢) and§(1°, so-€) is in L implying

We can observe that with a friendly Teacher, unnecessayats(1°, s;) andd (1, s2) are distinct locations. Thug!(s)
alphabet split can be avoided, while with a bad Teachegkes on at leastS| values implying thatd/ has at least
unnecessary split might occur, but they are always in thg| locations. O
same class (leading to the same state), as shown in Fig. 12Theorem 1:The TL* algorithm is correct and terminates
However, even with the worst Teacher, the alphabet spiit a finite number of iterations.
will be approaching the boundary as illustrated in the above Proof: The correctness is based on the fact that the TL
example and in Fig. 12. Recall from Section 2.1 that th&lgorithm returns an ERA only if it accepts the unknown
constant in a clock constraint is necessarily an integer. timed languagd/r. Let A = (%, L,1° 6, L) be an ERA

In our setting of compositional verification based on thacceptingUr. In each iteration, the TLalgorithm either
TL* algorithm (c.f. Section 4), we implement the Teacheadds a row intoS in the observation tablé¢S, F,T') or
by model checking, and the boundary time constraint splits a clock guard of an evemt € X into at least two
specified either in the models or in the property, i.e., disjoint clock guards. Since the observation table should
friendly Teacher, which avoids unnecessary split — this e consistent with4 (otherwise, the Teacher must have
also confirmed by our experiments. given wrong answers to the membership queries), ddds
at most|L| rows into S. Lastly, each untimed alphabet
(a, true) splits at moste times. Thus, the Tt algorithm
terminates afte©O(|L| + ¢ - |X]|) iterations. O
Given a timed languagé&r accepted by a deterministic Theorem 2:The ERA learned by the TLalgorithm has
ERA A = (%, L,ly,6, L), TL* learns an ERA to acceptthe minimal number of locations.

3.4 Termination and Correctness

fffffffffffffff e iwhim-box Algorithm 3: Untimed Candidate Quer§.

black-box 4~

. == Teacher | model § input : C: an untimed ERA
= [checking f output: (0/1, a counterexample)
I\ ‘ $ $ ‘ i ut ut —
| [(models] ["propery | | 1 if /J.((Ml) [(Mz)"* || C) =0 then
Ve : 2 L it L((Ma)"* || C)=0then return (1,)) ;
ut || Y -
Fig. 13. Model Checking Plays the Teacher Role 3 else return (0,), = € L((M2)* [| €) ;

4 else return (0,7), m € L((Mq)" || (Mz)" || C) ;

Proof: Given a closed and consistent observation table

(S,E,T), TL* constructs an ERAM exactly with |S]| @ —> ﬂ>

locations. By Lemma 1, we can conclude thdt has the

minimal number of locations. O ®) _)@ aig1] fl\ azlgs] anlgn] @

From the above arguments, we can conclude the follow- A\
ings: even if the teacher is bad, i.e., it gives on purposgy. 15. Prefix-Accepting Automata
counterexamples as little helpful as possible, as longeas th
it answers the membership and candidate queries correctly,
our TL* algorithm can learn an ERA with the minimalby TL*. Although the target ERA for Tt is the weakest
number of locations to accept the unknown timed languagesumptiom,,, the proposed framework terminates as soon
and terminate in a finite number of iterations. as compositional verification gets conclusive results,civhi

is often before the weakest assumptidp, is learned.

4 AN AUTOMATIC COMPOSITIONAL VERIFI- The details of the learning-based compositional veriftzati
CATION FRAMEWORK FOR TIMED SYSTEMS framework are described as follows. Note that the alphabet

. of the assumption ranges ovEl = (X, UX,) N Xay,.
This section is devoted to an automatic Iearnlng—baseduntimed Verification Phase.In this phase, the 1 algo-

compositional verification framework for timed systemsmhm [5] is used to learn an untimed assumption according

The prop_osegl frar_nework_ is introduc_ed in Section 4.1. Al% the AG-NC proof rule such thath;) || (M)t
example is given in Section 4.2 f.or |I_Iustrat|ng the frameﬁf)ut is proved or disproved. We usél,)" to denote
work. The gorrectr)ess and termination of the framewo e untimed version of\/y, i.e., all the time constraints
are proved in Section 4.3. on transitions are ignored. The* Lalgorithm constructs
a candidate DFAA after several untimed membership

4.1 Automatic Verification Framework queries. The answer to an untimed membership query for
To learn an ERA accepting a timed language, the* Tlan untimed behavios is positive only if the behavioe
algorithm needs the guidance of the Teacher to answdges not violate the property)“ when interacting with
membership and candidate queries. Thus, to usé L (M7)",i.e.,0 & L((M1)"" || (Mz)“"). This is basically an
automatically generate the assumption for AGR, the premptiness problem of (M, || (M1)“ || (Mz)*) where
posed framework has to play the Teacher role to answer thg, is a DFA accepting all the prefixes of For an untimed
membership and candidate queries needed by Th.the behavioroc = ajasz...a,, we can easily construct/,
proposed compositional verification framework, we adopts shown in Fig. 15 (a). The emptiness problem can be
model checking to answer the queries from*TFig. 13 checked by model checking.
shows the big picture of the FLalgorithm, the Teacher, The candidate query ford is answered by the&).
and model checking. Note that the Teacher itself, played bigorithm, as given in Algorithm 3. IfM;)“! || (M2)“ =
model checking, is a white-box setting since it knows thgp)“! is disproved in this phase with a untimed counterex-
component models and the property. However, the Teaclanple 7, we have to check whether it is a real timed
is still a black box to the Tt algorithm. counterexample, i.ex € L(M; || Mg) andw € L(M,). If

Fig. 14 shows the overall flow of the learning-baseges, we can conclud@d/, || My £~ ¢. If not, we cannot
compositional verification for timed systems based on tle®nclude anything here and the flow goes to the timed
AG-NC proof rule. It consists of two phases, namelyerification phase.
untimed verification phaséor constructing the untimed Timed Verification Phase.In this phase, the TLalgo-
assumption (environment) fa¥/; to satisfy the property, rithm is used to learn the timed assumptidnaccording
and timed verification phaséor refining the untimed as- to the AG-NC proof rule such thabf; | Ms E ¢
sumption into a timed one and concluding the result of the proved or disproved. The TLalgorithm constructs
timed verification. a timed assumptiond after several timed membership

The target ERA to be learned by Tlis the weakest queries. The answer to the timed membership query for
assumptionA,, under whichM; satisfiesy, i.e., for any a guarded wordr is positive only if the behavios does
environment®, M; || E | ¢ iff E = A,,. To guide TL* to not violate the property when interacting withiM, i.e.,
learn the weakest assumptieh,, model checking is used £(c) € L(M: || Msg). Basically, this is an emptiness
to answer the membership and candidate queries neegesblem of L(M, || M, || M) where M, is an ERA

10

Untimed Compositional Verification
‘ negative counterexample 7

positive counterexample 7

refine A g refine A
No y A No
. NO’ i ut\
e L((M)" || (Mz)"H)? (My)“ || A = ()2 > e L((My)Hh)?
l Yes Yes Yes
o\t \ut S\ut N M ut M. ut A\ ut
(A[l) H (AIQ) l# (9’) WU (A‘M‘Z)m |: A? (1) H (2) \# (Kf’)
Yes L(m) C LM, | M) and |= -
L(n) C L(My)? o
© Timed Compositional Verification o0y
: positive counterexample 7 TL* negative counterexample m
refine A "| Timed Refinement | refine A
No VA No
No, 7
L(m) CL(M; || My)? = M || Ak p? > L(m) C L(M,)?
l Yes Yes l Yes
A
No

l Yes

Fig. 14. Flow of compositional verification framework for timed systems

such that all the prefixes aof are accepted by/,. For

a guarded wordr = (a1, g1)(az,gn) - .- (an, gs), We can
easily construcfl/, as shown in Fig. 15 (b). The emptiness 3)
problem can be checked by timed model checking.

The candidate query of the timed assumptidn is
answered by th&) .~ algorithm, as given in Algorithm 4.
The details are described in the following.

1)

2)

ple (a1,91)(az, 92) - - (am,Tq,,_, ~ c) is returned

to the TL* algorithm (Lines15-19).

If My || C E ¢ but M, £ C, a counterexample is
given. We check whethef(r) C L(M; || Mz). If
yes, we can conclud&f; || Mz [~ ¢ (Line 5). If not,

m is a positive counterexample. Note that each time
a counterexample is returned to TLsome events in
the alphabet: might be split. We want to reduce

If My || C = ¢ and My = C, we can conclude
M, || My = ¢ (Lines 1-2 of Algorithm 4).

If My || C £ ¢, a counterexampler is given
(Line 12). We check whether the untimed trace
(m)“t is also an untimed counterexample. If yes, the
sequence of events is wrong no matter how it is
restricted by time constraints and the projected coun-
terexampler|y. is returned as a negative counterex-
ample (Linesl3-14). If not, the sequence of events is
allowed but the time constraints of events lead to an
error. The strategy of refining the time constraints is
as follows. Given any clock constraintin sp(r), if
any event of the counterexample makgesinsatisfi-

the split as much as possible. Thus, before directly
returningz to TL*, we try to find a counterexample
7' similar to = but with less split of events irt.
First, we obtain a normalized behaviet w.r.t. X by
replacing each event/guard péir, g) appearing inr
with (a,¢’) € ¥ and[g¢] C [¢'] (Line 7). We consider
a behaviolo, - 0o whereo; = (')} is a prefix ofr’
andoy = (m)7,, is a suffix ofr for i fromn—1to 1
andn = |r|. If L(o1 - 02) € L(M, | M) for some

1 <i<n-—1,theno; -0y is a better candidate than
7 (Lines 8-9). Otherwise,r is returned (Linel0).

Theorem 3:Let 7 = (a1,91)(az,92) - (an,g9,) be a

able, thenr will not violate the property, anymore 9guarded word. Given any clock constraine sp(r) of the
(see Theorem 3). Suppose the projected counterd®M Za, — Za;, ~ c for somei andj, 1 < i < j < n,

ample is7ls = (a1,91)(a2,92) - (am,gm). FOr

we can obtaint’ = (a1,61)- - (a;,zq,~¢) - (an, Gn)

simplicity, we always select the clock constrain@nd ai # a; # ax forall k, j < k < n such that

N = ZTay,_1
ference between the occurrencesa@f_; and a,,.
If a,, is not performed inz,,, ,~ c], thenn be-

— x,,, ~ c representing the time dif- [sp(m)] N [sp(x)] = 0.
Proof: Let =~ be the complement of where the com-
plementof<, <, >,>is >, >, <, <, respectivelyz,, —x,;

comes unsatisfiable. Thus, the negative counterexarapresents the time difference between the occurrencgs of

11

Algorithm 4: Timed Candidate Querg) .r input send output

input : C: the candidate ERAY: the alphabet of TE Of\iT/q]O w
output: (0/1, a counterexample)

acklz, < 1]

1if L(My || Mz || C) = 0 then (a) INPUT (b) OUTPUT
2 if ‘C(]\/‘[Q ” C) = 0 then return (1’ /\) ; input output, input[z, > 5]
3 | else [s] —->(Po @
4 Let 7 be a trace inC(M, || C) and|n| = n ; [(;“tgug] input[z, < 5] A
5 if £(m) C L(M, || M) then return (0,7) ; [‘;’jtﬁug] o o
6 else '
(¢) Property o) My
7 7’ +— NORM(m, X) ; . ’ o
8 fori=n—1to 1 do Fig. 16. Models and property of the I/O system
. it L((x); - ()7y) € LO || M) o
then return (0, (7')} - (m)241) ; X T [1(s0)
10 return (0, 7) ; w0 |00 ack
L - ack 1 1 send
output - send 0 0
11 else outpzt - output 0 0 _> send,
12 | Letw be atrace inC(M; | Mz || C) ; output - ack 1 0 0 output
13 if (W)Ut € E((Ml)Ut || (MG)Ut) then send - output 1 1 (b) A2
14 | return (0,7ls) ; send - ack 0o
| (a) T

15 | else . . .
16 e wls and = (a1, 1) - - - (o, Gon): Fig. 17. Untimed assumption A,
17 Letn € sp(m) andn = x4, , — Za,, ~C;

/ PR ~ * . . . o .
12 ;Tetﬁ Egl’%’)l)_(“?’g?) (am, Tm—1 ~ €) 5 We skip the details on the untimed verification phase,

B T which can be found in [13]. After the untimed verification

phase, the untimed assumptidg, as shown in Fig. 17 (b),

is learned by E to prove (INPUT)“! || (OUTPUT)* =
(p)“t. We remark the assumption a$, instead of A;
because it is the second assumption generated in the
untimed verification phase. For simplicity, we omit non-
accepting locations of ERAs in the following. The untimed
observation table of4d, is shown in Fig. 17 (a). The
flow goes to the timed verification phase, and the untimed

anda; for somei andj, 1 <1i < j < n. If a; is performed
when x,,~c in ©’ such thata; # a; anda, # a; for
all k, j <k <n, thenz,, — ., is not changed aftes;
and a; are performed and,, — z,,~c € sp(n’). Since
[0, = 2a;,~] N [2a, — Ta;~ c] = 0 @nda,, —zq;~ c €

sp(m), we can concludgsp(m)] N [sp(7)] = 0. U observation table is modified into a timed version.

In the first iteration, the timed candidate query fég
4.2 An Example is performed and the result is negative because INFUT
We use an example to illustrate the proposed frameworkz [~ ¢ with a counterexampler = (input,z, <

Fig. 16 shows an I/O system [13] consisting of twd)(send,z; < 1)(output,z; > 5). The counterexample
components, INPUT and OUTPUT. There are four eventgrojected toX 4 is 7’ = (send, true)(output,true). The
input, send, output, andack in the system. The pairs of strongest post conditionsp(w) are as follows:z, = 0,
event-recording clocks and their corresponding events ame > 4, z; > 4,2, >5,0<z;—2, < 1,0 <z —75 < 2,

x; © input, xs : send, x, : output, andx, : ack. The 0<x,—x; <1, 25—2, > 4, 2;—1, > 5, andz, —x, > 5.
model of the INPUT component is shown in Fig. 16 (a)We selectr, — x, > 4, and (send, true)(output, s > 4)
INPUT performs annput event within one time unit once is returned to TE. The observation table is split according
it receives anuck event from OUTPUT. Subsequently, itto the returned counterexample as shown in Fig. 18 (a) and
performs asend event to notify OUTPUT that annput its corresponding ERAd3 is shown in Fig. 18 (b).

event has been performed and waits anotlaérevent from In the second iteration, the timed candidate queryAgr
OUTPUT. The model of the OUTPUT component is showis performed and the result is negative because INJUT
in Fig. 16 (b). After receiving asend event, OUTPUT As [~ ¢ with a counterexampler = (input,z, <
performs anoutput event within one time unit and thenl)(send, z; < 1)(output,zs < 4)(output,zs < 4) whose
performs aruck event within one time unit after theitput projection to X4 is «# = (send,true)(output,z, <
event. The system property, as shown in Fig. 16 (c), is 4)(output,z, < 4). Because(m)“* € L((Mp)"* ||
thatinput andoutput events should alternate and the tim¢Mz)“!), the negative counterexamptg is returned to
difference between every two consecutive events should Adt*. After analyzingz’, TL* adds the witness suffix, =
exceed five time units. The negation of the property is givéputput, z, < 4) into the setE as shown in Fig. 19 (a).
in Fig. 16 (d) wherer is the error location, and we assuméhe corresponding ERA, is shown in Fig. 19 (b).

that the negation of the property is specified by users. In the third iteration, the timed candidate query for

12

A | o1 Aloi | oz | o3
) T 1 (s0) Py T 11T [0 |1G0)
(send, true) 1 | 0(s2) (send, true) 110 1 0 (s2)
(output, zs < 4) 0 | 0(s1) (output, x5 < 4) 010 0 0 (s1)
(output, zs > 4) 0|0 (output, zs > 4) 0|0 0 0
(ack, true) 1 1 (ack,z, < 1) 1 1 1 1 (s3)
(output, s < 4)(send, true) 0 0 output (ack,zq > 1) 1 1 1 1
(output, zs > 4)(send, true) 0|0 & [zs < 4] (output,xzs < 4)(send, true) 0|0 0 0
(output, zs < 4)(output,zs <4) | 0 | O ac N (output, zs > 4)(send, true) 0|0 0 0
(output, zs < 4)(output,zs >4) | 0 | 0 d (output, zs < 4)(output,zs <4) | 0 | O 0 0
(output, zs > 4)(output,zs <4) | 0 0 sen (output, zs < 4)(output, xs > 4) 0 0 0 0
(output,zs > 4)(output,zs >4) | 0 0o > send (output, zs > 4)(output, xs < 4) 0 0 0 0
(output, zs < 4)(ack, true) 0|0 (output, zs > 4)(output,zs >4) | 0 | 0 0 0
(output, zs > 4)(ack, true) 0|0 (b) A5 (output, zs < 4)(ack,z, < 1) 0|0 0 0
(send, true)(send, true) 1 1 (output, zs < 4)(ack,zo, > 1) 0|0 0 0
(send, true)(output, x5 < 4) 1 0 (output, zs > 4)(ack,z, < 1) 0 0 0 0
(send, true)(output, x5 > 4) 0|0 (output, xs > 4)(ack,x, > 1) 0|0 0 0
(send, true)(ack, true) 0|0 (send, true)(send, true) 1 1 1 1
@ (ack, true) (send, true)(output, s < 4) 1 1 0 0 (s4)
o1 = \ack, true (send, true)(output, zs > 4) 010 0 0
R ; ; ; (send, true)(ack, z, < 1) 0|0 0 0
Fig. 18. First timed assumption (send. true)(ack. 2o > 1) olo 1o lo
(ack,z, < 1)(send, true) 1 1 1 1
1| oo (ack, z, > 1)(send, true) 1 1 1 1
Y 0 (50) (ack,z, < 1)(output, s < 4) 1 1 1 1
(ack,z, > 1)(output, xs < 4) 1 1 1 1
(send, true) 1 (s2) (ack,z, < 1)(output, zs > 4) 1 1 1 1
(output, zs < 4) 0 (1) (ack,zo > 1)(output, zs > 4) 1|1 1 1
(O“(Z’cf’;jl; 4 (55) (ack, x, < 1)(ack, zo < 1) 11 |1 |1
(output, zs < 4)(send, true) (ack,zo < 1)(ack, 0 > 1) 1 1 1 1
(ack,zo > 1)(ack,z, < 1) 1 1 1 1
(output, xs > 4)(send, true)
(ack,zo > 1)(ack,z, > 1) 1 1 1 1
(output, zs < 4)(output, xzs < 4)
(output, zs < 4)(output, xs > 4) (s4)(send, true) 1 1 1 1
vz ? (s4)(output, zs < 4) [0] 0 0
(output, zs > 4)(output, zs < 4)
(output,xzs > 4)(output, xs > 4) (s4)(output, zs > 4) 010 0 0
(o’u,tp)'u,t7 rs < 4)(ack,7trﬁe) (s4)(ack,zo < 1) 1 1 0 1
(output, zs > 4)(ack, true) (s4)(ack, 2o > 1) 010 0 0
(send, true)(send, true) (@) o1 = (ack,z, < 1), 02 = (output,zs < 4) andos = (ack,z, > 1)

(send, true)(output, zs < 4)
(send, true)(output, x5 > 4)
(send, true)(ack, true)
(ack, true)(send, true)
(ack, true)(output, zs < 4)
(ack, true)(output, x5 > 4)
(ack, true)(ack, true)

(send, true)(output, zs < 4)(send, true)
(send, true)(output, zs < 4)(output, zs < 4)
(send, true)(output, zs < 4)(output, xs > 4)

(send, true)(output, x5 < 4)(ack, true)

ack send, output, ack

1111

send @ output[zs < 4] @ send
_/ _/

ack[z, < 1] send
(b) A5

Fig. 20. Third Timed Assumption

COORFRFHRHEEFEFOORFEFOOODODODODOORH OO Y

COORHHEHRERRFRFOOOROOODOOOOORO
—~
»
N
~

g
1
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
1
1
1
1
1
0
0
0
<4

)

(@) o1 = (ack, true) andos = (output, s

ack send, output, ack
v small example, our experiments in Section 5 shows that the
@ Send @ outputlzs < 4] @ sendx /" proposed framework performs well in large scale systems.
U\%’
(b) A4 4.3 Correctness and Termination
Fig. 19. Second timed assumption Theorem 4:AG-NC for ERAs is sound and complete.

Proof: Given two system models/;, M, and a
propertyp represented by ERAS, to establish the soundness,
Ay is performed and the result is still negative with ave want to prove thatM; || A = ¢) A (My = A) —
positive counterexample = (send, true)(output,xs < (M; || M2 | ¢). Let us prove this by contradiction.
1)(ack,z, < 1). The normalized counterexample w.bla ~ AssumeM, || M, (¢, which implies that there exists
is ' = (send, true)(output, x5 < 4)(ack, true). A better a guarded wordr such thatl(m) C L(M;), L(r) C
counterexamplén’); - (7)3 = (send, true)(output,zs < L(M,), and L(r) C L(). BecauselM, |= A, therefore
4)(ack,z, < 1) is returned to TE. The observation table £(M,) C £(A), which implies£(7) C L£(A). Thus we
is split according to the positive counterexample as showan conclude thad/; || A = ¢ becausel(r) C L(M;),
in Fig. 20 (a), and the third timed assumptiofy is L(7) C L£(A), and £L(7) C L(®), which contradicts to
constructed as shown in Fig. 20 (b). the promiseM; || A = ¢. To establish the completeness,
In the fourth iteration, the result of the timed candidatgiven any two ERAsM; and M> and a propertyy such
query for A; is positive since INPUT|| A5 &= ¢ and that M; | Ms = ¢, we can always choosé/, as the
OUTPUT E As. By the AG-NC proof rule, the I/O assumptionA to satisfy the rule becauskl; | Ms = ¢
system satisfies the timed propertyis concluded, and and Ms = M. O
the verification framework is finished. Although the size Theorem 5:The proposed learning-based compositional
of the assumptionds is bigger than OUTPUT in this verification is sound and complete.

13

Proof: Our framework answers candidate queriegood performance in most of the cases in our experiments.
needed by TE according to the AG-NC proof rule, i.e.,
M> E A hold. By Theorem 4, the AG-NC proof rule is

sound for ERAs, which implies our framework is sound. OfN€ Proposed leaming-based compositional verification
the other hand, our framework returns a counterexampld’@mework for timed systems has been implemented in the

only if £(r) C L(M, | M) and £(x) C £(Msz), which PAT model checker [36] such that PAT can automatically
implies that]_41 | M, b&iﬁ- Given an;/ two EI,?Ale generate the assumptions for assume-guarantee reasoning

and M, and a propertyy such thatM; | M k= ¢, our when verifying timed systems modeled by ERAs. To
framework learns an assumption A% in the worst case demonstrate the feasibility and benefits of the framework,

three applications were modeled and verified.

which implies our framework is complete. a _ _ _
Theorem 6:The proposed learning-based compositional + GSS A gas station system [18] consists of five com-

Proof: The proposed framework consists of two customers. Two customers can fill gas at this gas
phases. The overall framework is terminating because both Station. Properties require that customers should be
phases are terminating. In [13], it has been already proven Served in order and that each customer can start filling
that the untimed verification phase is terminating. Here, ~9as within three time units after payment.
we only have to prove that the timed verification phase is* FMS. A flexible manufacturing system (FMS) [33]
terminating. In any iteration of the timed verification pbas produces blocks with a cylindrical painted pin from
our framework either concludes whethgf, || M, = ¢ raw blocks and raw pegs. It consists of fourtegn
holds and then terminates, or continues by providing coun- devices: three conveyors, two mills, a lathe, a painting
terexamples to the TLalgorithm. Since the target ERA ~ device, six robots, and an assembly machine. The

to be learned by Tt is the weakest assumptias,,, by devices are connected through nine buffers, and the
the correctness and termination of Tin Theorem 1, it capacity of each buffer is one. We modeled the FMS
eventually constructd,, in some iteration. In this iteration, system in a constructive way such that four versions
A, will pass the checkM; || A, E ¢ according to of models have been obtained, namely FMS-1 (the
the definition of the weakest assumption. We then check Simplest one), FMS-2 (the medium one), FMS-3 (a
whether M, = A, holds. If My = A,, then M; || complex one), and FMS-4 (the most complex one).

M, k= ¢ is concluded, and the framework terminates. If Properties require that each buffer should not overflow
M, [~ Ay, thenM; | My £ ¢ is concluded, and the or underflow and that output of each buffer should be

framework also terminates and returns a counterexample Within three time units after its input.
L(m) € L(M)\ L(Ay). 0 o AIP. The AIP manufacturing system [24] produces

Generalization. The proposed compositional framework WO products from two different materials. It consists

for verifying timed systems is presented in the context of ~©Of ten components: an I/O station, three transport units,

two components. If a system consists @fcomponents two assembly stations, three external loops, and a
modeled byM = {M;, Ms,,...,M,} wheren > 3 central loop. Properties require that the routes of the

one intuitive approach to generalize our framework is to WO materials should be opposite and output of each
partition the components into two higher level components 100P should be within three time units after its input.
to fit the AG-NC proof rule, e.g., i = 4, we can obtain The ERA models of the applications, the verified prop-
H, = M, || My and H, = Ms || M, and apply our erties, and the PAT model checker can be found in [1].
approach orH; and H,. Another way is to recursively ap- Tables 1-6 show the detailed verification results for each
ply the AG-NC proof rule, which constitutes the followingproperty of the three timed systems using the proposed

generalized AG-NC proof rule far components for, > 2. approach and traditional monolithic timed model checking
that constructs the timed global state space based on zone

M ||A1 E ¢ abstraction, respectively. The experimental results were
My || A2 E A obtained by running the PAT model checker or64bit
. Windows 7 machine with a23.4 GHz Intel(R) Core(TM)
My_1 || Apei B Anes i7-2600 processor and GB RAM. _ .
M, E A, As mentioned in the end of Section 4.3, for g_sys_,tem with
M Mal .. M., E ¢ more than two components, the way of partitioning them

into two groups {/; and M5) affects the verification result

Currently, we adopt the first approach to partition consignificantly. Thus, we also compare the results of applying
ponents into two groups. However, we found that the wayair partition heuristic (c.f. Section 4.3) with those witho
of partitioning components affect the verification resukiny heuristic. We randomly generdtalifferent partitions,
significantly. An investigation [14] reported that findingand calculate the average results for the compositional
the best partition is hard. In our implementation, we useapproaches with and without our partition heuristic. The
heuristic that collects iti{; the components containing therandomly generated partitions and the detailed verifioatio
events specified in the property, and the heuristic yieldeesults for each partition can be found in [1].

14

TABLE 1
Verification Results of GSS

Monolithic Compositional Compositional+ Partition Heuristiqd UPPAAL

Spec | |Cx| | Valid? | [Llmaz Time Mem | [Limaz [La] Time Mem | [Limaz [La] Time Mem Time
(secs) (MB) (secs) (MB) (secs) (MB) (secs)
1 3 NO 16 0.01 0.1 55 1 0.01 0.8 56 1 0.01 0.8 0.03
2 3 NO 17 0.01 0.1 55 1 0.01 0.8 56 1 0.01 0.8 0.03
3 3 YES 29 0.01 0.2 97 19 0.25 2.0 33 1 0.01 0.8 0.02
Total 0.03 0.27 0.03 0.08

|Cx|: number of event-recording clockEl|maqz: average of the maximum number of locations among all pamstduring verification;
|L al: average number of locations of the learned assumption grathrpartitions

TABLE 2
Verification Results of FMS-1
Monolithic Compositional Compositional+ Partition Heuristiq¢ UPPAAL
Spec | |Cx| | Valid? | [Llmaz Time Mem | [Limaz [La] Time Mem | [Limaz [La] Time Mem Time
(secs) (MB) (secs) (MB) (secs) (MB) (secs)
1 3 YES 193 0.01 1.6 50 1 0.01 1.0 50 1 0.04 0.8 0.02
2 3 NO 9 0.01 0.1 108 2 0.01 1.7 8 1 0.01 0.4 0.02
3 3 YES 193 0.01 1.6 295 12 0.18 0.7 51 1 0.01 0.8 0.03
Total 0.03 0.20 0.05 0.07
TABLE 3
Verification Results of FMS-2
Monolithic Compositional Compositional+ Partition Heuristiq UPPAAL
Spec | |Cx| | Valid? | |Llmaz Time Mem | |Llmaz |La| Time Mem | |Llmaz |La] Time Mem Time
(secs) (MB) (secs) (MB) (secs) (MB) (secs)
1 6 YES 76,769 4.64 163.1 2,047 1 0.15 4.7 2,047 1 0.11 4.8 0.87
2 6 YES 76,769 4.64 165.2 5,621 8 13.10 25.7 2,252 1 0.16 5.7 0.27
3 6 NO 34 0.01 0.4 187 2 0.02 1.1 12 1 0.01 0.5 0.03
4 6 NO 48 0.01 0.6 1,462 2 0.06 2.3 17 1 0.01 0.9 0.03
5 6 YES 76,769 4.51 1594 2,047 1 0.12 4.7 2,047 1 0.12 4.3 0.26
6 6 NO 4,270 0.21 7.6 2,347 3 1.00 3.5 4,815 4 0.50 13.3 0.63
Total 14.02 14.45 0.91 2.06
TABLE 4
Verification Results of FMS-3
Monolithic Compositional Compositional+ Partition Heuristiq UPPAAL
Spec | |Cx]| | Valid? |Llmaz Time Mem | [Llmaz |La] Time Mem | [Llmaz |La] Time Mem Time
(secs) (MB) (secs) (MB) (secs) (MB) (secs)
1 6 YES 480, 481 36.05 1052.1 2,265 1 0.15 7.4 2,265 1 0.15 5.9 5.02
2 6 YES | 480,481 40.88 1065.4 6,801 6 13.61 26.2 2,211 1 0.17 4.1 5.19
3 6 NO 36 0.01 0.3 392 2 0.03 1.4 11 1 0.01 0.5 0.03
4 6 NO 52 0.01 0.7 1,679 2 0.09 5.6 16 1 0.01 0.9 0.04
5 6 YES | 480,481 39.73 1051.7 2,864 3 0.49 8.3 2,472 1 0.16 6.4 1.53
6 6 YES 480, 481 43.39 1065.1 6,624 16 15.01 19.8 | 11,789 1 0.95 24.1 0.06
7 6 YES | 480,481 33.44 1065.0 6,624 16 7.81 14.3 5,400 1 0.41 11.8 0.05
Total 193.51 37.19 1.86 11.92

For the results of GSS and FMS-1 in Tables 1-2, theorse than the monolithic approach. With our partition
system size in terms of the number of locations is smalkuristic, it only takesl candidate query to learn the
and our compositional approach does not outperform thesumption, which significantly speeds up the verification
monolithic approach and even consumes more memasocess. In Specé and 6, the properties are violated. If
because of the overhead of learning iterations. the verified property is violated, the monolithic verificati
|§1ight find a counterexample faster than the compositional

For the results of the FMS-2 system, as shown in Tableap roach because of the on-the-fly technique. which ter-
the compositional approach without the partition heuwristi P y que,

outperforms the monolithic in most of the cases expe[:r}mates the verification once a counterexample is found to

Specs2, 4, and 6. In Spec2, the randomly generatedavoId constructing the whole state space.
partitions are not good, and it tak&stimes of candidate For the results of the FMS-3 system as shown in Table 4,
gueries in average to learn the assumption, which is evd/e compositional approach without the partition heuristi

15

TABLE 5
Verification Results of FMS-4 (ROM: run out of memory)

Monolithic Compositional Compositional+ Partition Heuristiq UPPAAL
Spec | |Cx] | Valid? | [Llmaz Time Mem | [Limaz |LAl Time Mem | [Llmaz |La] Time Mem Time
(secs) (MB) (secs) (MB) (secs) (MB) (secs)
1 8 YES — — ROM 34,008 1 4.46 70.9 | 34,008 1 4.18 74.8 ROM
2 8 YES — — ROM 34,008 1 4.32 72.7 | 34,008 1 4.54 81.1 ROM
3 8 NO 62 0.01 1.0 2,276 2 0.20 8.2 17 1 0.01 0.9 0.04
4 8 NO 96 0.01 1.6 12,499 2 1.29 36.7 20 1 0.01 1.1 0.05
5 8 YES - — ROM 78,955 31 476.84 158.5 | 36,680 1 5.19 77.8 ROM
6 8 NO — — ROM 44,196 18 33.13 145.8 4,405 7 13.55 12.0 ROM
7 8 YES — — ROM — — — ROM | 30,144 1 4.78 71.2 ROM
8 8 NO 111 0.01 2.0 | 116,748 2 14.24 2709 27 1 0.01 1.3 0.04
9 8 YES — — ROM 59,410 37 1419.83 1509 | 31,656 1 3.39 66.4 ROM
Total N/A N/A 35.66 N/A
TABLE 6
Verification Results of AIP
Monolithic Compositional Compositional+ Partition Heuristig

Spec | |Cx] | Valid? [Llmaz Time Mem | [Llmaz [La] Time Mem | [Limaz |La|] Time Mem

(secs) (MB) (secs) (MB) (secs) (MB)

1 4 NO 137 0.01 1.7 211 1 0.02 1.2 210 1 0.02 1.1

2 4 NO 368 0.02 0.4 680 2 0.05 1.8 680 2 0.05 2.0

3 4 NO 651 0.03 1.0 474 1 0.03 1.6 435 1 0.03 1.4

4 4 NO 63 0.01 0.8 636 5 1.05 4.5 345 2 0.02 3.0

5 4 YES 104, 651 29.59 2314 2,301 1 0.15 6.2 2,301 1 0.15 6.0

6 4 YES 104, 651 33.21 229.2 2,561 4 0.70 7.6 2,512 1 0.16 6.7

7 4 YES 86,051 22.03 190.9 2,088 3 0.25 6.3 2,189 1 0.15 5.8

8 4 YES 86,051 20.81 188.2 1,948 1 0.12 5.5 2,733 1 0.19 7.6

9 4 YES 104, 651 26.50 227.7 | 15,538 45 87.70 54.0 2,605 1 0.25 8.2

10 4 NO 14 0.01 0.2 25 2 0.01 1.1 15 1 0.01 1.0

Total 132.22 89.03 1.03

outperforms the monolithic one in all cases where the prop-We also compared the verification time between our

erties are satisfied because the learning iterations compapproach and UPPAAL [2]; however, we do not list the

sate for the large global state space such that the verificatverification time of UPPAAL for the AIP system because

time and the memory usage are significantly reduced. UPPAAL does not support events on transitions so that the

addition, with the partition heuristic, the verificatiom& AIP system cannot be modeled in UPPAAL. Our compo-

and memory usage are even further reduced dramaticallitional approach with the partition heuristic outperferm
UPPAAL in all cases. For FMS-4, UPPAAL cannot even

For the results of the FMS-4 system as shown in Table ﬁgrify the satisfied properties usirggGB memory.

the monolithic approach cannot even finish the verification

for each_ _satlsfled propert|e_s usifg:B memory, Whll_e '_che 6 RELATED WORK

compositional approach without the partition heuristia ca

finish the verification for all properties except for Spedn Model checking [10], [32] suffers from thetate space ex-

the case of Spe€, two randomly generated partitions arddlosionproblem, especially for timed systems. To alleviate

not good and cannot be verified by the compositional afhe problem, Pnueli firstly proposed the assume-guarantee

proach without the partition heuristic usisgGB memory. paradigm [31] to verify system components individually

With the partition heuristic, the total verification timelpn and use the individual verification results to deduce ad-

takes less thaB6 seconds, and the maximal memory usagdtional properties of the system. Clarke et al. [12] used

is less thar82 MB, which is a significant improvement. interface processes to model the abstract environment for a
component, which is much smaller than the real one, such

The verification results for AIP are shown in Table 6. Fothat the state space is reduced. For formal verification that
Spec9, the compositional approach without the partitiofis not based on model checking, Xu et al. [37] proposed a
heuristic performs seriously worse than the monolithic orgroof system based on the assume-guarantee paradigm for
because some generated partitions are very bad, which needfying shared variable concurrent programs. Henzinger
45 candidate queries in average (each of which requiret al. [20] reported several case studies about applying
model checking). Again, the partition heuristic improves t assume-guarantee reasoning on real world systems.
performance significantly. We can observe that the way of For model checking of timed systems, Laroussinie et
partitioning components really dominates the performanaé [23] proposed a technique to transform the property
of the learning-based compositional verification. w.r.t. individual components one by one using quotient

M 1 H A M,): 2 membership query membership query : black-box :

. (guarded word) (timed word) | :

A R ——— 2] |

M. H A): N yes/no < yes/no : :
el AM, F P Learner | o aue Assistant candidate query I'| Teacher | |
Amy | An, || - [A, E o guary i e - !
M, || Moy || || M, ': © yes/no, yes/no, ! :
counterexample counterexample | }

(guarded word) (timed word)

Fig. 21. The AGC proof rule
Fig. 22. Interaction between TL; and Teacher

construction such that the global state space need not

be generated, but the minimization for the transformeﬂ_zg and TL* perform in the context of the goal of this
property is needed because repeated quotient constrsctig@rk, compositional verification. Grinchstein et al.’s TL
lead to an explosion on the transformed property. algorithm consists of two components, namely a learner
Cobleigh et al. [13] proposed a framework that geneand an assistant, as shown in Fig. 22. The learner acts
ates the abstract environment of components automaticallynost like the I* algorithm except that it interacts with
using the L algorithm [5]. This work is a pioneer of the assistant instead of the Teacher and asks membership
automating the untimed compositional verification based equeries for guarded words instead of untimed words. The
learning techniques. Consequently, several improvemeatssistant translates a membership query for a guarded word
[9], [15], [35] have been proposed to further reduce thato several membership queries of timed words and for-
complexity. These improvements focus on reducing the sia&rds these translated membership queries to the Teacher.
of the alphabet during learning, which dominates the tim&fter getting the results of membership queries of timed
complexity of the membership query in the algorithm. words from the Teacher, the assistant returns the result of
Inspired by [13], Lin and Hsiung [26] proposed a comthe membership query for the guarded word to the learner
positional synthesis framework which can help a systeatcording to the results from the Teacher.
designer to automatically synthesize component models to et us use the example in Section 3.2 for illustration.
satisfy the given property based on thé algorithm and Suppose the timed language to be learned is accepted by
causality semantics. the ERA as shown in Fig. 6 (a). The T} algorithm
Barringer et al. [6] also used the* lalgorithm to learn assumes that the maximum constant of the clock gusrd,
assumptions automatically for AGR with the circular anié known (here K = 3). Note that our TE algorithm does
symmetric (AGC) proof rule as shown in Fig. 21. Imot make this assumption. For each event; Thctively
contrast to the AG-NC proof rule, the components of thguesses all possible guards for the event. In this example,
system do not have to be grouped when applying the AGHl the possible guards for evemtare as shown in the first
proof rule. However, the number of premises to be proved11 rows in Fig. 23. For the membership query of the
in the AGC proof rule and the number of assumptions fuarded worda,1 < z, < 3), the assistant performs the
be learned increase linearly with the number of the compmembership queries for the following timed words; 0),
nents. To reduce the number of premises and assumptiaws.l), (a,2), (a,3), and (a,4). According to the results
Nam and Alur [30] proposed a method to automaticallfrom the Teacher, the assistant finds that< z, < 3
group then components inton groups, wheren < n, by is not the sharpest guard [16] for evemt(the sharpest
reducing the problem to thieypergraph partition problem guard isz, = 1). Thus, the assistant answers “no” to the
Alur et al. [4] proposed a symbolic implementation of AGRearner for the guarded worgh, 1 < x, < 3). The final
for the AGC proof rule. They useBinary Decision Dia- closed observation table is as shown in Fig. 23, and the
grams (BDD) [8] to symbolically encode the observatiorfinal learned ERA is as shown in Fig. 10 (b).
table maintained by theLalgorithm. From the example, we can observe that the number
However, the works based on thé &lgorithm mentioned of membership queries increases exponentiallyktothe
above are only applicable for untimed systems. To infenaximum constant [16]. If we chang& from 3 to 1000
timed assumptions for AGR, a learning algorithm for timeth this example, Grinchstein et al.’s T} algorithm requires
models is needed. Grinchtein et al. [16] proposed threehuge number of membership queries, which makes it
algorithms TL; , TL;,,,, and TL; for learning ERAs. Their unsuitable to be used in compositional verification setting
learning algorithms deal with timed words, while our *TL This is because the learning problem in the context of
algorithm deals with guarded words. Theoretically, theyy acompositional verification is not as difficult as that in [16]
not comparable since the target words to be dealt with dreour setting of using Tt to learn timed assumptions for
different. More specifically, the learning problem handleAGR, the Teacher can be the most friendly one since the
by Grinchtein et al. [16] is more difficult because th&omponent models are transparent to model checking.
interface between the learning algorithm and the TeacherGheorghiu et al. [15] used the abstraction-refinement
is based on timed words and the learning algorithm has garadigm [11] to infer the necessary alphabet of the un-
actively infer the time condition of each event. timed assumptiond for AGR. Howar et al. [22] also
We briefly introduce the Tt algorithm here to see how used the paradigm on the alphabet for inferring abstract

2 8

2

N2 N NN

0)(‘17 0 g Za
0)(a.1 <
0)(a.0 <

IN @ @ = SIAIAINININIA ©@ © N = ©
W WK WN
SESESD

NN A
[eNelocloNoNoNol NeololejloloNolojooloNeoooloNoNolololoNoloNoNoN ol BV

[ejejoojojooojoNoojooNoooooNoooNoNoooNoNoNooNoNo)

AAAAA
°
8
2
T T

Fig. 23. Observation Table Constructed by TL;,

17

REFERENCES

(1]
[2]
(3]

(4]

9]

[10]

[11]

[12]

automata with respect to given concrete behavior such that

determinism is preserved. Our Tlalgorithm may benefit

from the abstraction refinement paradigm if the alphabet %13]

the ERA to be learned can be smaller.

7 CONCLUSION AND FUTURE WORK

[14]

Assume-guarantee reasoning (AGR) can help to allevi-

ate the state explosion problem. However, constructi
assumptions for AGR usually requires human creativi

E&]

and experience. To automate compositional verification for
timed systems, we propose a framework consisting of a
learning algorithm and a timed teacher. The algorithrg;
TL*, automatically learns the timed assumption by asking

membership and candidate queries, and the timed teac
answers the queries based on the AG-NC proof rule

AGR. With the proposed framework, compositional ver-
ification for timed systems is fully automated, and th&®l
state explosion problem can be effectively alleviated. I[Qg]

the future, we plan to extend the Tlalgorithm with one-

i

https://sites.google.com/site/shangweilin/era-pa
http://www.uppaal.org/.

R. Alur, L. Fix, and T. A. Henzinger. Event-clock autoraat
A determinizable class of timed automat&heoretical Computer
Science 211(1-2):253-273, 1999.

R. Alur, P. Madhusudan, and W. Nam. Symbolic composdlon
verification by learning assumptions. Rtoceedings of International
Conference on Computer Aided Verification (CAWIume 3576 of
LNCS pages 548-562, 2005.

D. Angluin. Learning regular sets from queries and ceoexamples.
Information and Computatiqn75(2):87-106, 1987.

H. Barringer, D. Giannakopoulou, and C. S. Pasarearfroof
rules for automated compositional verification throughriesy.

In Proceedings of Workshop on Specification and Verification of
Component-Based Systerpsges 14-21, 2003.

M. G. Bobaru, C. S. Pasareanu, and D. Giannakopoulattorated
assume-guarantee reasoning by abstraction refinemefroteed-
ings of International Conference on Computer Aided Vettiiza
(CAV), volume 5123 ofLNCS pages 135-148, 2008.

R. E. Bryant. Graph-based algorithms for Boolean fumctmanip-
ulation. IEEE Transactions on Computer85(8):677—691, 1986.

S. Chaki and O. Strichman. Optimized‘ibased assume-guarantee
reasoning. IrProceedings of International Conference on Tools and
Algorithms for the Construction and Analysis of System<C@A3)
volume 4424 ofLNCS pages 276291, 2007.

E. M. Clarke and E. A. Emerson. Design and sythesis otlsso+
nization skeletons using branching time temporal logicheLogics
of Programs Workshgpvolume 131, pages 52-71, 1981.

E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. Ptaceedings of
International Conference on Computer Aided VerificationAY(;
volume 1855 ofLNCS pages 154-169, 2000.

E. M. Clarke, D. E. Long, and K. L. McMillan. Compositiah
model checking. IfProceedings of Symposium on Logic in Computer
Science (LICS)pages 353-362, 1989.

J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasare&earning
assumptions for compositional verification. Pmoceedings of Inter-
national Conference on Tools and Algorithms for the Cortiom
and Analysis of Systems (TACASplume 2619 ofLNCS pages
331-346, 2003.

J.M. Cobleigh, G. S. Avrunin, and L. A. Clarke. Breakingp is
hard to do: An investigation of decomposition for assumargntee
reasoning. InProceedings of the ACM/SIGSOFT International
Symposium on Software Testing and Analysis (ISSpdges 97—
108, 2006.

M. Gheorghiu, D Giannakopoulou, and C. S. Pasaredrefining
interface alphabets for compositional verification. Rroceeding of
International Conference on Tools and Algorithms for then§teuc-
tion and Analysis of Systems (TACA®)lume 4424 oL NCS pages
292-307, 2007.

O. Grinchtein, B. Jonsson, and M. Leucker. Learning oéng-
recording automataTheoretical Computer Sciencé11(47):4029—
4054, 2010.

O. Grumberg and D. E. Long. Model checking and modular
verification. INCONCUR 1991 volume 527 ofLNCS pages 250-
265, 1991.

D. Helmbold and D. Luckhan. Debugging Ada tasking peogs.
IEEE Software 2(2):47-57, 1985.

T. A. Henzinger, Z. Manna, and A. Pnueli. Temporal prawéthod-
ologies for timed transition systemmformation and Computation

phase learning instead of two phases and to investigate the 112:273-337, 1994.

differences between them. We also plan to use differ

] T. A. Henzinger, S. Qadeer, and S. K. Rajamani.

You assum
we guarantee: Methodology and case studies.Pioceedings of

techniques to generate the assumptions as well as to extend international Conference on Computer Aided VerificationA\g;

the framework using other proof rules of AGR.

ACKNOWLEDGMENT

[21]

[22]

We thank Dr. Dimitra Giannakopoulou for her helpful and
constructive suggestions and the anonymous reviewers ffgj

their detailed review comments.

volume 1427 ofLNCS pages 440-451, 1998.

J. E. Hopcroft and J. D. Ullimanintroduction to Automata Theory,
Languages, and Computatiofddison-Wesley, 1979.

F. Howar, B. Steffen, and M. Merten. Automata learningthw
automated alphabet abstraction refinementPtaceeding of Inter-
national Conference on Verification, Model Checking, andtédrt
Interpretation (VMCAI) volume 6538 ofLNCS pages 263-277,
2011.

F. Laroussinie and K. G. Larsen. Compositional modetaing
of real time systems. IfProceedings of International Conference

on Concurrency Theory (CONCURyolume 962 ofLNCS pages
27-41, 1995.

R. J. Leduc, M. Lawford, and P. C. Dai. Hierarchical nfidee-
based supervisory control of a flexible manufacturing syst&EE
Transactions on Control Systems Technolap#(4):654-668, 2006.
S.-W. Lin, E. André, J. S. Dong, J. Sun, and Y. Liu. An efficient
algorithm for learning event-recording automata.Proceedings of
International Symposium on Automated Technology for Watifin
and Analysis (ATVANolume 6996 olLNCS pages 463-472, 2011.
S.-W. Lin and P.-A. Hsiung. Counterexample-guided uass-
guarantee synthesis through learnin&EE Transactions on Com-
puters 60(5):734-750, 2011.

S.-W. Lin and P.-A. Hsiung. Model checking prioritizettmed
systems.|[EEE Transactions on Computer§1(5):843-856, 2012.
S.-W. Lin, P.-A. Hsiung, C. H. Huang, and Y. R Chen.
checking prioritized timed automata. Rroceedings of International
Symposium on Automated Technology for Verification andyAisal
(ATVA) volume 3707 ofLNCS pages 370-384, 2005.

S.-W. Lin, Y. Liu, J. Sun, J. S. Dong, and. André. Automatic
compositional verification of timed systems. Proceedings of
International Symposium on Formal Methods (FMplume 7436
of LNCS pages 272-276, 2012.

W. Nam and R. Alur. Learning-based symbolic assumeantae
reasoning with automatic decomposition. Pnoceedings of Inter-
national Symposium on Automated Technology for Verifinaéind
Analysis (ATVA)volume 4218 ofLNCS pages 170-185, 2006.

A. Pnueli. In transition from global to modular tempbraasoning
about programs. lhogics and Models of Concurrent Systempages
123-144, 1985.

J. P. Queille and J. Sifakis. Specification and verifarat of
concurrent systems in CESAR. the International Symposium on
Programming volume 137, pages 337-351, 1982.

M. H. Queiroz, J. E. R. Cury, and W. M. Wonham. Multitasfisu-
pervisory control of discrete-event systerisscrete Event Dynamic
Systems15(4), 2005.

R. L. Rivest and R. E. Schapire. Inference of finite awdtanusing
homing sequencednformation and Computatignl03(2):299-347,
1993.

N. Sinha and E. M. Clarke. SAT-based compositional figiion
using lazy learning. IrProceedings of International Conference on
Computer Aided Verification (CAVyolume 4590 ofLNCS pages
39-54, 2007.

J. Sun, Y Liu, J. S. Dong, and J. Pang. PAT: Towards flexitarifi-
cation under fairness. IRroceedings of International Conference on
Computer Aided Verification (CAVyolume 5643 ofLNCS pages
709-714, 2009.

Q. Xu, W. P de Roever, and J. He. The rely-guarantee rdetbio
verifying shared variable concurrent program@rmal Aspects of
Computing 9(2):149-174, 1997.

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

(36]

[37]

Shang-Wei Lin received his Bachelor de-
gree in management information system
from National Chung Cheng University (Tai-
wan) in 2003, and his Ph.D. degree in Com-
puter Science and Information Engineering
from National Chung Cheng University in
2010. From 2011 to 2012, he was a research
fellow in School of Computing, National Uni-
versity of Singapore (NUS). Currently, he is
a research scientist in Temasek Laboratories
at NUS. His research interests include formal
verification, formal synthesis, scheduling, embedded software syn-
thesis and verification, and component-based object-oriented appli-
cation frameworks for real-time embedded systems. More details can
be found at https://www.sites.google.com/site/shangweilin/.

18

Etienne Andr & received his Master de-
gree (with honors) from the Université de
Rennes 1 (France) in 2007, and his Ph.D.
degree in computer science from Ecole Nor-
male Supérieure de Cachan (France) in
2010. He was then a research fellow in
Prof. Dong Jin Song’s team in the National
University of Singapore for 9 months. Since
September 2011, he has been an Associate
Professor in the Laboratoire d’Informatique
de Paris Nord, in the University of Paris 13
(Sorbonne Paris Cité) in France. His current research interests
include the specification and verification of real-time concurrent sys-
tems. More details about his information and research background

o

—

Modelcan be found at http:/lipn.univ-paris13.fr/~andre/.

Yang Liu graduated in 2005 with a Bachelor
of Computing in the National University of
Singapore (NUS). In 2010, he obtained his
Ph.D. and continued with his post doctoral
work in NUS. Since 2012, he joined Nanyang
Technological University as an Assistant Pro-
fessor. His research focuses on software en-
gineering, formal methods and security. Par-
ticularly, he specializes in software verifica-
tion using model checking techniques. This
work led to the development of a state-of-the-
art model checker, Process Analysis Toolkit.

Jun Sun received Bachelor and Ph.D. de-
grees in computing science from National
University of Singapore (NUS) in 2002 and
2006. In 2007, he received the prestigious
LEE KUAN YEW postdoctoral fellowship in
School of Computing of NUS. Since 2010,
he joined Singapore University of Technol-
ogy and Design (SUTD) as an Assistant
Professor. He was a visiting scholar at MIT
from 2011-2012. Jun’s research focuses on
software engineering and formal methods, in
particular, system verification and model checking. He is the co-
founder of the PAT model checker.

oy

b

Jin Song Dong received Bachelor and Ph.D.
degrees in Computing from University of
Queensland in 1992 and 1996. From 1995-
1998, he was Research Scientist at CSIRO
in Australia. Since 1998 he has been in the
School of Computing at the National Univer-
sity of Singapore (NUS) where he is currently
Associate Professor and a member of PhD
supervisors at NUS Graduate School. He
is on the editorial board of Formal Aspects
of Computing and Innovations in Systems
and Software Engineering. His research interests include formal
methods, software engineering, pervasive computing and semantic
technologies.

