
1

Learning Assumptions for Compositional
Verification of Timed Systems

Shang-Wei Lin, Étienne André, Yang Liu, Jun Sun, and Jin Song Dong

Abstract —Compositional techniques such as assume-guarantee reasoning (AGR) can help to alleviate the state space
explosion problem associated with model checking. However, compositional verification is difficult to be automated, especially
for timed systems, because constructing appropriate assumptions for AGR usually requires human creativity and experience.
To automate compositional verification of timed systems, we propose a compositional verification framework using a learning
algorithm for automatic construction of timed assumptions for AGR. We prove the correctness and termination of the proposed
learning-based framework, and experimental results show that our method performs significantly better than traditional monolithic
timed model checking.

Index Terms —automatic assume-guarantee reasoning, model checking, timed systems

✦

1 INTRODUCTION

Model checking [10], [32] is one of the most successful
formal verification techniques because it can be automat-
ically applied if the following two inputs are given: a
system modeldescribing the system behavior and aproperty
specifying what the system should satisfy. However, model
checking suffers from thestate space explosionproblem
[10], [32] because the number of states increases exponen-
tially with the number of components involved.

To alleviate the state space explosion problem,assume-
guarantee reasoning(AGR) [12], [17], [31], a well-known
compositional technique, has been applied to model check-
ing. The most common proof rule used in AGR is the
following non-circular assume-guarantee (AG-NC) rule:

M1 ‖ A |= ϕ
M2 |= A

M1 ‖M2 |= ϕ

• This article is a revised and substantially extended version of the paper
presented at the 9th International Symposium on Automated Technology
for Verification and Analysis (ATVA 2011) [25]. This work proposes a
compositional framework for timed systems, which uses and guides
the learning algorithm proposed in [25] to automatically generate
timed assumptions needed by AGR. The tool paper [29] about the
implementation of the proposed framework has been presented at the
18th International Symposium on Formal Methods (FM 2012).

• Shang-Wei Lin, the corresponding author, is with Temasek Laborato-
ries, National University of Singapore. E-mail: tsllsw@nus.edu.sg

• Étienne André is with Université Paris13, Sorbonne Paris Cité,
LIPN, CNRS, UMR 7030, F-93430, Villetaneuse, France. E-mail:
Etienne.Andre@lipn.univ-paris13.fr

• Yang Liu is with the School of Computer Engineering, Nanyang
Technological University. E-mail: yangliu@ntu.edu.sg

• Jun Sun is with Singapore University of Technology and Design. E-
mail: sunjun@sutd.edu.sg

• Jin Song Dong is with the School of Computing, National University
of Singapore. E-mail: dongjs@comp.nus.edu.sg

• This work was supported by the TRF project R394-000-063-23 and the
seed project R394-000-068-232 in Temasek Laboratories at National
University of Singapore, and partially supported by the CNRS STIC-
Asie project “Compositional Analysis of Timed Systems.”

Given a system with two components modeled byM1

andM2 and a propertyϕ, the AG-NC proof rule tells us that
if M1 can satisfy a propertyϕ under an assumptionA and
M2 can guarantee the assumptionA, then we can conclude
that M1 ‖ M2 satisfiesϕ. However, the assumptionA
in AGR usually requires nontrivial human creativity and
experience. Thus, practical impact of AGR is limited if the
assumptionA is not automatically constructed.

Cobleigh et al. [13] proposed a framework that can
generate assumptions for AGR automatically using the L∗

algorithm [5]. This framework is guaranteed to terminate
when the verification problemM1 ‖ M2 |= ϕ is either
proved or disproved with a counterexample. To infer the
assumption needed by AGR, the L∗ algorithm is not the
only solution. Bobaru et al. [7] adopted theabstraction-
refinementparadigm [11]. The assumptionA is constructed
as an abstraction ofM2. If M1 ‖ A |= ϕ holds, then
M1 ‖M2 |= ϕ can be concluded. IfM1 ‖ A |= ϕ does not
hold, A is refined by the counterexample given by model
checking until a conclusive result can be concluded.

However, these frameworks are only applicable to un-
timed systems. The demand for compositional model
checking of timed systems is even greater than that of
untimed systems because the state space explosion problem
is graver in timed model checking. As a solution, we pro-
pose an automatic learning-based compositional verification
framework for timed systems1. We focus on timed systems
modeled byevent-recording automata(ERAs) [3], which
is a determinizable class of timed automata. ERAs are
as powerful as timed transition systems [3], [19] and are
sufficiently expressive to model many interesting timed sys-
tems. The proposed framework consists of a compositional
verification flow based on the AG-NC proof rule and uses a

1. In [7], the comparison between the learning-based and abstraction-
refinement-based approaches for generating untimed assumptions in AGR
did not indicate a clear winner. Therefore, it would be interesting as well to
study a similar abstraction-refinement-based approach in atimed setting.

2

learning algorithm to automatically generate timed assump-
tions for AGR. The verification flow is designed as a two-
phase process. It generates untimed assumptions first, which
guarantees the sequence of events on assumptions is correct.
Then it refines untimed assumptions into timed ones, which
guarantees that the occurrences of events on assumptions
satisfy time constraints. We prove thecorrectnessand
terminationof the learning-based compositional verification
framework for timed systems. Experimental results show
that the proposed framework performs significantly better
than traditional monolithic timed model checking [3] that
constructs the timed global state space based on zone ab-
straction. Our contributions can be summarized as follows.

• We propose a learning-based compositional verifica-
tion framework for timed systems. To the best of our
knowledge, this is the first work of fully automated
compositional verification for timed systems.

• Our compositional verification framework is based on
a novel algorithm that we proposed for learning ERAs.
This algorithm is particularly efficient in the context
of our framework where the models of the system
components are available.

• We prove the correctness of the proposed framework
and show that it is always terminating.

• We implement the proposed framework as a self-
contained toolkit and evaluate its scalability, useful-
ness, and reliability via a variety of systems.

The rest of this paper is organized as follows. Section 2
introduces background knowledge. Section 3 presents the
TL∗ algorithm for learning ERAs. The proposed learning-
based compositional verification framework is described in
Section 4. The experiment results are given in Section 5.
Related works are discussed in Section 6. The conclusion
and the future work are given in Section 7.

2 PRELIMINARIES

We give some background knowledge about timed lan-
guages and event-recording automata in Section 2.1. The
proposed algorithm for learning ERAs is inspired by the
L∗ algorithm, which we recall in Section 2.2.

2.1 Background Knowledge

Let Σ be a finite alphabet. We useλ to denote the
empty word. A timed word over Σ is a finite sequence
wt = (a1, t1)(a2, t2) . . . (an, tn) of symbolsai ∈ Σ for
i ∈ {1, 2, . . . , n} that are paired with nonnegative real
numbersti ∈ R

+ such that the sequencet1t2 . . . tn of timed
stamps is nondecreasing. For a timed wordwt, we can
obtain itsuntimed word, denoted byut(wt), by discarding
all the time stamps, i.e.,ut(wt) = a1a2 . . . an. Given
another alphabetΣ′, we usewt↓Σ′ to denote the timed
word obtained by removing fromwt all pairs(ai, ti) such
that ai 6∈ Σ′.

For every symbola ∈ Σ, we usexa to denote theevent-
recording clock[3] of a. Intuitively, xa records the time
elapsed since the last occurrence ofa, i.e., oncea occurs,

clock xa is reset. We useCΣ = {xa | a ∈ Σ} to denote
the set of event-recording clocks overΣ. A clock valuation
γ : CΣ 7→ R

+ is a function assigning a nonnegative real
number to an event-recording clock.

A clocked word over Σ is a finite sequencewc =
(a1, γ1)(a2, γ2) . . . (an, γn) of symbolsai ∈ Σ for i ∈
{1, 2, . . . , n} that are paired with clock valuationsγi such
that γ1(xa) = γ1(xb) for all a, b ∈ Σ and γi(xa) =
γi−1(xa) + γi(xai−1

) when 1 < i ≤ n and a 6= ai−1.
Each timed wordwt = (a1, t1)(a2, t2) . . . (an, tn) can
be naturally transformed into a clocked wordcw(wt) =
(a1, γ1)(a2, γ2) . . . (an, γn) whereγi(xa) = ti if aj 6= a
for 1 ≤ j < i; γi(xa) = ti − tj if there existsaj
such thataj = a for 1 ≤ j < i and ak 6= a for
j < k < i. For example, the timed word(a, 1)(b, 3)(a, 7)
can be transformed into a clocked word(a, γ1)(b, γ2)(a, γ3)
such thatγ1(xa) = γ1(xb) = 1, γ2(xa) = 2, γ2(xb) = 3,
γ3(xa) = 6, andγ3(xb) = 4.

An atomic clock constraintη is defined asη = xa ∼
n | xa − xb ∼ n wherexa, xb ∈ CΣ, ∼∈ {<,≤,≥, >},
andn ∈ N. A clock constraintφ is a conjunction of atomic
clock constraints. We sayη ∈ φ if η is one of the conjuncts
of φ. An atomic clock guardτ is defined asτ = xa ∼ n
wherexa ∈ CΣ, ∼∈ {<,≤, >,≥}, andn ∈ N. A clock
guard g is a conjunction of atomic clock guards. We say
τ ∈ g if τ is one of the conjuncts ofg.

A clock constraintφ identifies a|Σ|-dimensional poly-
hedronJφK ⊆ (R+)|Σ|, whereas a clock guardg identifies
a |Σ|-dimensional hypercubeJgK ⊆ (R+)|Σ|. We useGΣ

to denote the set of clock guards overCΣ.
A guarded word over Σ is a sequencewg =

(a1, g1)(a2, g2) . . . (an, gn) where ai ∈ Σ and gi ∈ GΣ

for all i ∈ {1, 2, . . . , n}. The sub word ofwg, denoted
by [wg]

j
i , is the sequence(ai, gi)(ai+1, gi+1) . . . (aj , gj)

for 1 ≤ i ≤ j ≤ n. Given a clocked wordwc =
(a1, γ1)(a2, γ2) . . . (an, γn) and a guarded wordwg =
(a1, g1)(a2, g2) . . . (an, gn), we usewc |= wg to denote
γi |= gi for all i ∈ {1, 2, . . . , n}.

Given a clock constraintφ, if φ is satisfiable, there is
a unique canonical clock constraint, denoted byCan(φ),
among all the clock constraints identifying the polyhedron
JφK, obtained by closingφ under all consequences of pairs
of conjuncts inφ. For example, given a constraintφ1 : 0 ≤
xa ≤ 3∧ 0 ≤ xb ≤ 2, its canonical form isCan(φ1) : 0 ≤
xa ≤ 3 ∧ 0 ≤ xb ≤ 2 ∧ −3 ≤ xb − xa ≤ 2.

For a clock constraintφ, we define thereset of an
event-recording clockxa in φ, denoted byφ[xa 7→ 0], as
Can(φ′) whereφ′ is obtained fromCan(φ) by removing
all conjunctions wherexa is included, and adding the
conjunctxa ≤ 0. For example,φ1[xa 7→ 0] : xa = 0∧ 0 ≤
xb ≤ 2 ∧ 0 ≤ xb − xa ≤ 2.

For a clock constraintφ, we define thetime elapsingof
φ, denoted byφ↑, asCan(φ′′) whereφ′′ is obtained from
Can(φ) by removing all clock upper bounds. For example,
time elapsing ofφ1 is φ1↑ : 0 ≤ xa ∧ 0 ≤ xb ∧ −3 ≤
xb − xa ≤ 2.

Given a guarded wordwg and a clock constraintφ,
the strongest postconditionof wg given a preconditionφ,

3

l1 l2

a[xb = 1]

b[xa = 2]

(a) M1

l′
1

b[xb ≤ 3]

(b) M2

l1l
′

1
l2l

′

1

a[xb = 1]

b[xa = 2 ∧ xb ≤ 3]

(c) M1 ‖ M2

Fig. 1. Event-recording automata and timed language

denoted bysp(φ,wg), is defined inductively as follows:
sp(φ, λ) = φ; sp(φ,wg(a, g)) = ((sp(φ,wg) ∧ g)[xa 7→
0]) ↑. We often omit the initial clock constraintφ0 =
∧

a,b∈Σ(xa = xb), i.e., sp(wg) = sp(φ0, wg).
The target model in this work, event-recording automata

(ERAs), is formulated in Definition 1, and the parallel com-
position between two ERAs is formulated in Definition 2.

Definition 1: (ERA). An event-recording automaton
(ERA) M = (Σ, L, L0, δ, Lf) consists of a finite input
alphabetΣ, a finite setL of locations, a set of initial loca-
tionsL0 ⊆ L, a set of accepting locationsLf ⊆ L , and a

transition functionδ : L×Σ×GΣ 7→ 2L. We usel
a[g]
−−→ l′ to

denotel′ ∈ δ(l, a, g) for l, l′ ∈ L, a ∈ Σ, andg ∈ GΣ. An
ERA is deterministicif |L0| ≤ 1 and |δ(l, a, g)| ≤ 1, and
if both δ(l, a, g1) and δ(l, a, g2) are defined andg1 6= g2,
then Jg1K ∩ Jg2K = ∅ whereg1, g2 ∈ GΣ. A deterministic
ERA is completeif

⋃

gi∈{g|δ(l,a,g) 6=∅}
JgiK = JtrueK for all

l ∈ L anda ∈ Σ. �

Note that in ERAs each event-recording clockxa ∈ CΣ

is implicitly and automatically reset when a transition
with eventa is taken. Fig. 1 (a) shows an example of a
deterministic ERAM1.

Given an ERAM = (Σ, L, l0, δ, L
f), a clocked word

wc = (a1, γ1)(a2, γ2) . . . (an, γn) is acceptedby M if

there exists a sequence of transitionsl0
a1[g1]
−−−−→ l1

a2[g2]
−−−−→

· · ·
an[gn]
−−−−→ ln on M such thatl0 ∈ L0, ln ∈ Lf , and

γi |= gi for all i ∈ {1, 2, . . . , n}. A timed word wt

is accepted byM , if its clocked wordwc is accepted
by M . The timed languageaccepted byM , denoted by
L(M), is the set of timed words accepted byM . We
give in Fig. 1 (a) an ERAM1 that accepts the timed
language(a, t1)(b, t2)(a, t3)(b, t4) . . . such thatt1 = 1,
t2i − t2i−1 = 2 and t2i+1 − t2i = 1, and we give in
Fig. 1 (b) an ERAM2 that accepts the timed language
(b, t1)(b, t2) . . . such thatt1 ≤ 3 and ti+1 − ti ≤ 3. For
a timed languageL, we can obtain itsuntimed language,
denoted byut(L), by collecting all the untimed words of
L, i.e., ut(L) = {ut(wt) | wt ∈ L}.

Definition 2: (Parallel Composition). Given two ERAs
Mi = (Σi, Li, L

0
i , δi, L

f
i) for i ∈ {1, 2}, their parallel

compositionis the ERA M1 ‖ M2 = (Σ1 ∪ Σ2, L1 ×
L2, L

0
1 × L0

2, δ, L
f
1 × Lf

2) where the set of event-recording
clocks becomesCΣ1

∪CΣ2
and the transition relationδ is

defined as follows whereJg1K ∩ Jg2K 6= ∅.

(l1, l2)
a[g1∧g2]
−−−−−→ (l′1, l

′
2) if l1

a[g1]
−→ l′1 and l2

a[g2]
−→ l′2

(l1, l2)
a[g1]
−−−→ (l′1, l2) if l1

a[g1]
−→ l′1 anda /∈ Σ2

(l1, l2)
a[g2]
−−−→ (l1, l

′
2) if l2

a[g2]
−→ l′2 anda /∈ Σ1

Fig. 1 (a) and (b) give two deterministic ERAsM1 and

M2, respectively, and their parallel compositionalM1 ‖M2

is shown in Fig. 1 (c).
In this work, we assume timed models and properties are

all represented using ERAs. Given two ERAsM1 andM2

whose alphabets areΣ1 andΣ2, respectively,M1 satisfies
M2, denoted byM1 |= M2, if L(M1)↓Σ2

⊆ L(M2) where
L(M1)↓Σ2

= {wt↓Σ2
| wt ∈ L(M1)}. Figs. 1 (a) and (b)

give two ERAsM1 andM2 such thatM1 |= M2.

2.2 The L∗ Algorithm

The L∗ algorithm [5], [34] is a formal method to learn
a minimal DFA (with the minimal number of locations)
that accepts an unknown languageU over an alphabetΣ.
During the learning process, the L∗ algorithm interacts with
a Minimal Adequate Teacher(Teacher for short) to make
two types of queries: membership queries and candidate
queries. Amembership queryfor a stringσ is a function
Qm such that if σ ∈ U , then Qm(σ) = 1; otherwise,
Qm(σ) = 0. A candidate queryfor a DFAM is a function
Qc such that ifL(M) = U , thenQc(M) = 1; otherwise,
Qc(M) = 0. During the learning process, the L∗ algorithm
stores the membership query results in anobservation table
(S,E, T) whereS ⊆ Σ∗ is a set of prefixes,E ⊆ Σ∗ is a
set of suffixes, andT : (S∪S·Σ)×E 7→ {0, 1} is a mapping
function such that ifs ·e ∈ U , thenT (s, e) = 1; otherwise,
i.e., s · e /∈ U , thenT (s, e) = 0, wheres ∈ (S ∪ S · Σ)
and e ∈ E. In the observation table, the L∗ algorithm
categorizes strings based on Myhill-Nerode Congruence
[21], as formulated in Definition 3.

Definition 3: (Myhill-Nerode Congruence). For any
two stringsσ, σ′ ∈ Σ∗, we say that they areequivalent,
denoted byσ ≡ σ′, if σ · ρ ∈ U ⇔ σ′ · ρ ∈ U , for all
ρ ∈ Σ∗. Under the equivalence relation, we can sayσ and
σ′ are therepresenting stringsof each other with respect
to U , denoted byσ = [σ′]r andσ′ = [σ]r .

The L∗ algorithm always keeps the observation table
closedandconsistent. An observation table isclosedif for
all s ∈ S andα ∈ Σ, there always existss′ ∈ S such that
s·α ≡ s′. An observation table isconsistentif for every two
elementss, s′ ∈ S such thats ≡ s′, then(s · α) ≡ (s′ · α)
for all α ∈ Σ. If the observation table(S,E, T) is closed
and consistent, the L∗ algorithm constructs a correspond-
ing candidate DFAC = (ΣC , LC , l

0
C , δC , L

f
C) such that

ΣC = Σ, LC = S, l0C = {λ}, δC(s, α) = [s · α]r for
s ∈ S and α ∈ Σ, andLf

C = {s ∈ S | T (s, λ) = 1}.
Subsequently, L∗ makes a candidate query forC.

If QC(M) = 0, i.e., L(C) 6= U , then Teacher gives a
counterexampleσce. The counterexampleσce is positive
if σce ∈ U \ L(C), or negative if σce ∈ L(C) \ U .
The L∗ algorithm then analyzes the counterexampleσce

to find the witness suffix. For two strings that are classified
by L∗ into an equivalence class, awitness suffixis a
string that when appended to the two strings provides
enough evidence for the two strings to be classified into
two different equivalence classes under the Myhill-Nerode
Congruence. Given an observation table(S,E, T) and
a counterexampleσce given by Teacher, we define an

4

Algorithm 1: L∗ Algorithm
input : Σ: alphabet
output: a DFA accepting the unknown languageU

1 Let S = E = {λ} ;
2 UpdateT by Qm(λ) andQm(λ · α), for all α ∈ Σ ;
3 while true do
4 while there is(s · α) s.t. (s · α) 6≡ s′ for all s′ ∈ S

do
5 S ←− S ∪ {s · α} ;
6 UpdateT by Qm((s · α) · β), for all β ∈ Σ ;

7 Construct candidate DFAM from (S,E, T) ;
8 if Qc(M) = 1 then return M ;
9 else

10 σce ←− the counterexample given by Teacher ;
11 v ←− WS(σce) ;
12 E ←− E ∪ {v} ;
13 UpdateT by Qm(s · v) andQm(s · α · v), for

all s ∈ S andα ∈ Σ ;

i-decomposition queryof σce, denoted byQi
m(σce), as

follows: Qi
m(σce) = Qm([ui]r · vi) whereσce = ui · vi

is a decomposition ofσce such that|ui| = i, and [ui]r
is the representing string ofui in S with respective to
L(C). The witness suffixof σce, denoted byWS(σce),
is the suffix vi of the decomposition ofσce such that
Qi

m(σce) 6= Q0
m(σce). Once the witness suffixWS(σce)

is obtained, L∗ usesWS(σce) to refine the candidate DFA
C until L(C) = U . The pseudo-code of the L∗ algorithm
is given in Algorithm 1.

We use an example to illustrate how the L∗ algorithm
works to learn a minimal DFA accepting an unknown
language. Suppose the unknown languageU = (a|b|c) · a∗

overΣ = {a, b, c} needs to be learned. Initially,S andE
are initialized to{λ} and then the membership queries of
λ, a, b, andc are performed. At this point, the observation
table with S = {λ}, E = {λ} is shown in Fig. 2 (a).
The observation table now is not closed because there is
no s ∈ S such thata ≡ s. Therefore,a is added intoS,
and then the membership queries ofaa, ab, and ac are
performed respectively. At this point, the observation table
with S = {λ, a}, E = {λ} is closed as shown in Fig. 2 (b).
The corresponding DFAM1 is shown in Fig. 2 (c). The
candidate query ofM1 is performed.

However, Teacher gives a negative counterexampleabc
that is accepted byM1 but not in U . The L∗ algorithm
analyzes the negative counterexampleabc to get the witness
suffix as follows:Q0

m(abc) = 0. Q1
m(abc) = Qm([a]r ·

bc) = Qm(abc) = 0, Q2
m(abc) = Qm([ab]r · c) =

Qm(λ · c) = Qm(c) = 1 6= Q0
m(abc). After analyzing

the counterexampleabc, the witness suffix isc. So, c is
added intoE, and the membership queries ofc, ac, bc,
cc, aac, abc, andacc are performed. The observation table
now with S = {λ, a}, E = {λ, c} is shown in Fig. 3 (a).
However, the observation table is not closed because there

λ

λ 0 (s0)
a 1
b 1
c 1

(a)

λ

λ 0 (s0)
a 1 (s1)
b 1
c 1

a · a 1
a · b 0
a · c 0

(b)

0 1
a, b, c

a

b, c

(c)

Fig. 2. L∗ Observation Table and Candidate DFA M1

λ c

λ 0 1 (s0)
a 1 0 (s1)
b 1 0
c 1 0

a · a 1 0
a · b 0 0
a · c 0 0

(a)

λ c

λ 0 1 (s0)
a 1 0 (s1)
b 1 0
c 1 0

a · a 1 0
a · b 0 0 (s2)
a · c 0 0
ab · a 0 0
ab · b 0 0
ab · c 0 0

(b)

01 10

00

a, b, c

a

b, c

a, b, c
(c)

Fig. 3. L∗ Observation Table and Candidate DFA M2

is no s ∈ S such thatab ≡ s. So, ab is added intoS,
and then the membership queries ofaba, abb, abc, abac,
abbc, andabcc are performed. At this point, the observation
table withS = {λ, a, ab}, E = {λ, c} is closed as shown
in Fig. 3 (b). The corresponding DFAM2 is shown in
Fig. 3 (c) andL(M2) = U .

AssumeΣ is the alphabet of the unknown regular lan-
guageU and the number of states of the minimal DFA
is n. The L∗ algorithm needsn − 1 candidate queries
andO(|Σ|n2 + n logm) membership queries to learn the
minimal DFA, wherem is the length of the longest coun-
terexample returned by Teacher. Angluin [5] proved that
as long as the unknown languageU is regular, the L∗

algorithm will learn a complete minimal DFAM such that
L(M) = U in at mostn− 1 iterations.

3 A L EARNING ALGORITHM FOR ERAS

This section is devoted to the TL∗ algorithm. Inspired by
the L∗ algorithm, we develop a TL∗ algorithm, introduced
in Section 3.1, to learn event-recording automata that accept
timed languages. An example for illustrating the TL∗

algorithm is given in Section 3.2. Further discussions are
given in Section 3.3. The correctness and termination of
TL∗ are proved in Section 3.4.

3.1 The TL∗ Algorithm

In order to infer an ERA accepting an unknown timed
language, the proposed TL∗ algorithm deals with guarded
words. Before we get into the details, let us define the
acceptance of a guarded word by an ERA.

Given a guarded wordwg, we useL(wg) to denote the
set of timed wordswt that are contained inwg . That is,
L(wg) = {wt | cw(wt) |= wg}, e.g., L((a, xa ≥ 2))
represents the timed language{(a, t) | t ≥ 2}.

Definition 4: (Acceptance of Guarded Words). Given
an ERA M = (Σ, L, l0, δ, L

f), a guarded wordwg =
(a1, ĝ1)(a2, ĝ2) . . . (an, ĝn) is acceptedby M , denoted by

5

l1 l2
a[true]

(a) M

l1 l2
a[xa ≤ 2]

a[xa > 2]

(b) M ′

Fig. 4. Acceptance of Guarded Words

TL* Teacher

membership query

candidate query

yes/no

yes/no, counterexample

black-box

Fig. 5. Interaction between TL∗ and Teacher

L(wg) ⊆ L(M), if there exists a sequence of transitions

l0
a1[g1]
−−−−→ l1

a2[g2]
−−−−→ · · ·

an[gn]
−−−−→ ln on M such thatl0 ∈ L0,

ln ∈ Lf , andJĝiK ⊆ Jsp([wg]
i−1
1)K∩JgiK for all 1 ≤ i ≤ n,

where[wg]
0
1 = λ.

Fig. 4 gives an example of the acceptance of guarded
words. The guarded word(a, true) is accepted by the ERA
M as shown in Fig. 4 (a), and the two guarded words
(a, xa ≤ 2) and(a, xa > 2) are accepted by the ERAM ′ as
shown in Fig. 4 (b). Note that the guarded word(a, xa ≤ 3)
is not accepted byM ′ becauseJxa ≤ 3K 6⊆ Jxa ≤ 2K and
Jxa ≤ 3K 6⊆ Jxa > 2K, while the guarded(a, xa ≤ 1) is
accepted byM ′ becauseJxa ≤ 1K ⊆ Jxa ≤ 2K.

One may find that according to Definition 4, there might
be a situation where we can construct two equivalent ERAs
such that there exists a guarded word accepted by one but
not the other. Fig. 4 shows such a case whereM andM ′ are
equivalent, and(a, true) is accepted byM but not accepted
by M ′. This situation is not a problem because we define
timed language on timed words instead of guarded words.
AlthoughM andM ′ accept different guarded words, they
accept the same timed language(a, t) wheret ≥ 0.

Given a timed languageUT accepted by an ERAMUT
,

the proposed TL∗ algorithm interacts with a timed Teacher
to make two types of queries:timed membership queries
for guarded words andtimed candidate queriesfor ERAs.
Fig. 5 shows the interaction between the TL∗ algorithm
and the timed Teacher. Note that our TL∗ algorithm is a
black-box learning algorithm since only the Teacher knows
about the timed languageUT to be learned. TL∗ views the
Teacher as a black box and constructs an ERA according
to the query results from the Teacher.

A timed membership queryfor a guarded wordwg is a
functionQmT such thatQmT (wg) = 1 if wg is accepted by
MUT

; otherwiseQmT (wg) = 0. A timed candidate query
for an ERAM is a functionQcT such thatQcT (M) = 1
if L(M) = UT ; otherwise,QcT (M) = 0 and a guarded
word as a counterexample will be given by the Teacher. A
guarded word counterexamplewg is negativeif L(wg) ⊆
L(M) andL(wg) 6⊆ UT . A guarded word counterexample
wg is positiveif L(wg) ⊆ UT andL(wg) 6⊆ L(M).

The idea behind the TL∗ algorithm is to first learn a
DFA M acceptingU , the untimed language ofUT , i.e.,
U = ut(UT), and then to refine the DFAM into a timed

version, i.e., an ERA. Although the timed refinement may
sometimes only add constraints on the transitions, it usually
changes the structure ofM by adding more locations and
transitions. Indeed, it is well-known that adding constraints
on the transitions ofM is not sufficient in general to accept
the timed languageUT . However, we still consider a two-
phase algorithm consisting of anuntimed learning phase
and a timed learning phase. The reasons are as follows:
(1) not all events are restricted by time conditions, and
(2) if an event is restricted by time conditions, we do
not want to actively guess all the possible time conditions
for the event, which increases the number of membership
queries exponentially and slows down the learning process.
Instead, we passively assume the event is not restricted
by any time condition and deduce the conditions from
the counterexamples given by the Teacher. Algorithm 2
shows the pseudo-code of the TL∗ algorithm. The details
are described in the following.

Untimed Learning. In this phase, the L∗ algorithm is
used to learn a DFAM accepting the untimed languageU
with respect toUT (Line 1 of Algorithm 2). The observation
table(S,E, T) constructed in the learning process of L∗ is
preserved before starting the timed learning phase (Line2).

Timed Learning. In this phase, the TL∗ algorithm tries
to refine the DFAM learned in the untimed learning phase
into an ERA. The untimed alphabetΣ is extended into a
timed alphabetΣT ⊆ Σ × GΣ such that the observation
table obtained from the untimed learning phase becomes a
timed one. The results of membership queries for guarded
words are stored in the timed observation table. This phase
consists of the following steps.

1) Perform a candidate query for the ERAM (Line 4).
If the answer is “yes”,M accepts the languageUT

to be learned, andM is returned (Line21).
2) If the answer to the candidate query forM is “no”

with a counterexample(a1, g1)(a2, g2) · · · (an, gn),
TL∗ splits prefixes (rows) and suffixes (columns) in
the observation table as follows. If a prefixp or
a suffix e in the observation table has a substring
of the form (ai, g) for somei ∈ {1, 2, . . . , n} and
JgiK ∩ JgK 6= ∅, thenJgK is partitioned usinggi such
that JgK = JgiK ∪ G whereG = {ĝ1, ĝ2, . . . , ĝm} is
obtained byJgK− JgiK using DBM subtraction [27],
[28]. The prefixp is split into {p̂0, p̂1, p̂2, . . . , p̂m}
where (ai, gi) is a substring of p̂0 and (ai, ĝj)
is a substring of p̂j for all j ∈ {1, 2, . . . ,m}
(Line 10). Similarly, the suffix e is also split into
{ê0, ê1, ê2, . . . , êm} where (ai, gi) is a substring of
ê0 and (ai, ĝj) is a substring ofêj for all j ∈
{1, 2, . . . ,m} (Line 11). Then the observation table
is updated by performing timed membership queries
QmT (p̂j · êj) for all j ∈ {0, 1, 2, . . . ,m} (Line 12).

3) If the observation table(S,E, T) is not closed, i.e.,
there is a prefixs · α with no s′ ∈ ΣT such that
(s · α) ≡ s′, then s · α is added intoS (Lines 13-
14). The observation table is updated by performing
the timed membership queriesQmT (s · α · β) for all
β ∈ ΣT (Line 15).

6

Algorithm 2: TL∗ Algorithm
input : Σ: alphabet
output: an deterministic ERAM

1 UseL∗ to learn a DFAM acceptingU ;
2 Let (S,E, T) be the observation table during the L∗ learning process;
3 α← (α, true); s← (s, true); e← (e, true) for eachα ∈ Σ, s ∈ S ande ∈ E;
4 while QcT (M) = 0 do
5 Let (a1, g1)(a2, g2) · · · (an, gn) be the counterexample given by the Teacher ;
6 foreach (ai, gi), i ∈ {1, 2, . . . , n} do
7 if (ai, g) is a substring ofp or e for somep ∈ S ∪ (S · ΣT) ande ∈ E such thatJgiK ∩ JgK 6= ∅ then
8 Let G = {ĝ1, ĝ2, . . . , ĝm} obtained byJgK− JgiK;
9 ΣT = ΣT \ {(ai, g)} ∪ {(ai, gi), (ai, ĝ1), (ai, ĝ2), . . . , (ai, ĝm)};

10 Split p into {p̂0, p̂1, p̂2, . . . , p̂m} where(ai, gi) is a substring ofp̂0 and (ai, ĝj) is a substring ofp̂j for
all j ∈ {1, 2, . . . ,m};

11 Split e into {ê0, ê1, ê2, . . . , êm} where(ai, gi) is a substring ofê0 and (ai, ĝj) is a substring ofêj for
all j ∈ {1, 2, . . . ,m};

12 UpdateT by QmT (p̂j · êj) for all j ∈ {0, 1, 2, . . . ,m};

13 while there exists(s · α) such that(s · α) 6≡ s′ for all s′ ∈ S do
14 S ←− S ∪ {s · α} ;
15 UpdateT by QmT ((s · α) · β) for all β ∈ ΣT ;

16 v ←−WS((a1, g1)(a2, g2) · · · (an, gn));
17 if |v| > 0 then
18 E ←− E ∪ {v};
19 UpdateT by QmT (s · v) andQmT (s · α · v) for all s ∈ S andα ∈ ΣT ;

20 Construct candidateM from (S,E, T);

21 return M;

4) Analyze the counterexampleπ to find the witness
suffix (Line 16). We define ani-decomposition query
of π, denoted byQi

mT (π), as follows:Qi
mT (π) =

QmT (si · vi) whereπ = ui · vi is a decomposition of
π such that|ui| = i andui ≡ si for somesi ∈ S.
The witness suffix ofπ, denoted byWS(π), is the
suffix vi of π such thatQi

mT (π) 6= Q0
mT (π). If there

is a witness suffixvi, i.e., |vi| > 0, thenvi is added
into the set of suffixesE (Lines 17-18). Then the
observation table is updated by the timed membership
queriesQmT (s·vi) andQmT (s·α·vi) for eachs ∈ S
andα ∈ ΣT (Line 19).

5) Construct the ERAM = (ΣM , LM , l0M , δM , Lf
M)

corresponding to the observation table(S,E, T) such
that ΣM = ΣT , LM = S, l0M = {λ}, δM (s, α) =
[s · α]r for s ∈ S andα ∈ ΣT , andLf

M = {s ∈ S |
T (s, λ) = 1}. Go to Step1 (Line 20).

3.2 An Example

We use an example to illustrate the TL∗ algorithm. Suppose
the timed languageUT to be learned is accepted by the
ERA A1 as shown in Fig. 6 (a). In the untimed learning
phase, L∗ is used to learn the DFAM1, as shown in
Fig. 6 (c), accepting the untimed languagea∗, and the
observation table(S,E, T) obtained by L∗ is shown in
Fig. 6 (b). At this time,Σ = {a}, S = {λ}, andE = {λ}.

l1 l2

a
[xa = 1]

a
[xa = 3]

(a) ERAA1

λ

λ 1 (s0)
a 1

(b) T1

1

a

(c) M1

λ

λ 1 (s0)
(a, true) 1

(d) T2

Fig. 6. Untimed Learning Phase

λ

λ 1 (s0)
(a, xa < 1) 0
(a, xa ≥ 1) 0

(a) T3

λ

λ 1 (s0)
(a, xa < 1) 0 (s1)
(a, xa ≥ 1) 0

(a, xa < 1)(a, xa < 1) 0
(a, xa < 1)(a, xa ≥ 1) 0

(b) T4

1

0

a

a

(c) M2

Fig. 7. Timed Refinement 1

In the timed refinement phase, TL∗ first modifies the
alphabet and the observation table into a timed version, i.e.,
ΣT = {(a, true)}, S = {(λ, true)}, andE = {(λ, true)}.
The current timed observation tableT2 is shown in
Fig. 6 (d). Then, TL∗ performs the timed candidate query
for the first candidate ERAM1. However, the answer to the
candidate query is “no” with a negative counterexample
(a, xa < 1). Because there is a prefix(a, true) in the
observation such thatJxa < 1K ∩ JtrueK 6= ∅, the prefix
(a, true) is split into (a, xa < 1) and (a, xa ≥ 1), and the

7

λ

λ 1 (s0)
(a, xa < 1) 0 (s1)
(a, xa = 1) 1
(a, xa > 1) 0

(a, xa < 1)(a, xa < 1) 0
(a, xa < 1)(a, xa = 1) 0
(a, xa < 1)(a, xa > 1) 0

(a) T5

1 0

a[xa = 1]

a[xa 6= 1]

a

(b) M3

Fig. 8. Timed Refinement 2

λ (a, xa = 1)
λ 1 1 (s0)

(a, xa < 1) 0 0 (s1)
(a, xa = 1) 1 0 (s2)
(a, xa > 1) 0 0

(a, xa < 1)(a, xa < 1) 0 0
(a, xa < 1)(a, xa = 1) 0 0
(a, xa < 1)(a, xa > 1) 0 0
(a, xa = 1)(a, xa < 1) 0 0
(a, xa = 1)(a, xa = 1) 0 0
(a, xa = 1)(a, xa > 1) 0 0

(b) T7

11 10

00

a[xa = 1]

a
a[xa 6= 1]

a
(c) M4

Fig. 9. Timed Refinement 3

timed membership queries for(a, xa < 1) and(a, xa ≥ 1)
are performed, respectively. The current observation table
T3 is shown in Fig. 7 (a). However,T3 is not closed
because there is(a, xa < 1) with no s ∈ S such that
s ≡ (a, xa < 1), so (a, xa < 1) is added intoS and
the membership queries for(a, xa < 1)(a, xa < 1) and
(a, xa < 1)(a, xa ≥ 1) are performed, respectively. The
closed observation tableT4 and its corresponding ERAM2

are shown in Fig. 7 (b) and (c), respectively. At this time,
Σ = {(a, xa < 1), (a, xa ≥ 1)}, S = {(λ, true), (a, xa <
1)}, andE = {(λ, true)}.

In the second iteration of the timed refinement phase,
TL∗ performs the timed candidate query forM2. However,
the answer is still “no” with a positive counterexample
(a, xa = 1). Because there are two prefixes(a, xa ≥ 1)
and(a, xa < 1)(xa ≥ 1) in the observation table(S,E, T)
such thatJxa = 1K ∩ Jxa ≥ 1K 6= ∅, the prefix(a, xa ≥ 1)
is split into (a, xa = 1) and (a, xa > 1), and the prefix
(a, xa < 1)(xa ≥ 1) is split into (a, xa < 1)(xa = 1) and
(a, xa < 1)(xa > 1), respectively. The timed membership
queries for the new prefixes are performed. The current
closed observation tableT5 and its corresponding ERA
M3 are shown in Fig. 8 (a) and (b), respectively. At this
time, Σ = {(a, xa < 1), (a, xa = 1), (a, xa > 1)},
S = {(λ, true), (a, xa < 1)}, andE = {(λ, true)}.

In the third iteration of the timed refinement phase,
TL∗ performs the timed candidate query for the ERA
M3. However, the answer is still “no” with a negative
counterexampleπ = (a, xa = 1)(a, xa = 1). This
time, no prefix or suffix in the observation table has to
be split. TL∗ analyzes the counterexample as follows.
Q0

mT (π) = QmT ((a, xa = 1)(a, xa = 1)) = 0. Q1
mT (π) =

Q1
mT ([(a, xa = 1)]r(a, xa = 1)) = QmT ((a, xa = 1)) =

1 6= Q0
mT (π). Thus, we have a witness suffixv = (a, xa =

1), and v is added into the setE. Then the membership
queries fors · (a, xa = 1) for all s ∈ S are performed.
The closed observation tableT7 and its corresponding ERA
M4 are shown in Fig. 9 (a) and (b), respectively. At this

λ (a, xa = 1)
λ 1 1 (s0)

(a, xa < 1) 0 0 (s1)
(a, xa = 1) 1 0 (s2)

(a, 1 < xa < 3) 0 0
(a, xa = 3) 0 0
(a, xa > 3) 0 0

(a, xa < 1)(a, xa < 1) 0 0
(a, xa < 1)(a, xa = 1) 0 0

(a, xa < 1)(a, 1 < xa < 3) 0 0
(a, xa < 1)(a, xa = 3) 0 0
(a, xa < 1)(a, xa > 3) 0 0
(a, xa = 1)(a, xa < 1) 0 0
(a, xa = 1)(a, xa = 1) 0 0

(a, xa = 1)(a, 1 < xa < 3) 0 0
(a, xa = 1)(a, xa = 3) 1 1
(a, xa = 1)(a, xa > 3) 0 0

(a) T8

11 10

00

a[xa = 1]

a[xa 6= 3]

a[xa = 3]

a[xa 6= 1]

a

(b) M5

Fig. 10. Timed Refinement 4

l1 l2

l3

a

a

a

(a)A2

l1 l2

l3

a[xa ≤ 3]

a[xa > 3]

a[xa ≤ 3],
a[xa > 3]

a[xa ≤ 3],
a[xa > 3]

(b) A3

Fig. 11. Learning Guided by a Friendly Teacher

time, Σ = {(a, xa < 1), (a, xa = 1), (a, xa > 1)},
S = {(λ, true), (a, xa < 1), (a, xa = 1)}, and E =
{(λ, true), (a, xa = 1)}.

In the fourth iteration of the timed refinement phase,
TL∗ performs the timed candidate query for the ERAM4

again. However, the answer is still “no” with a positive
counterexampleπ = (a, xa = 1)(a, xa = 3). Three
prefixes (a, xa > 1), (a, xa < 1)(a, xa > 1), and
(a, xa = 1)(a, xa > 1) in the observation tableT7 have to
be split, and the new split prefixes are shown in Fig. 10 (a).
The timed membership queries for the new split prefixes
concatenated withe for all e ∈ E are performed. Then
the TL∗ algorithm analyzes the counterexample. Since
Q0

mT (π) = Q1
mT (π) = Q2

mT (π), there is no witness
suffix for π. The closed observation tableT8 is shown in
Fig. 10 (a), and its corresponding ERAM5 is constructed
as shown in Fig. 10 (b). At this time,Σ = {(a, xa <
1), (a, xa = 1), (a, 1 < xa < 3), (a, xa = 3), (a, xa > 3)},
E = {(λ, true), (a, xa < 1), (a, xa = 1)}, and E =
{(λ, true), (a, xa = 1)}.

In the fifth iteration of the timed refinement, TL∗ per-
forms the timed candidate query forM5. This time, Teacher
says thatL(M5) = UT , and the learning process of the TL∗

algorithm is finished.

3.3 Discussion Regarding the Teacher

Since TL∗ is a black-box learning algorithm, one may
find that the guidance of the Teacher affects the learning
of TL∗. Thus, we give a discussion for the guidance of
the Teacher in this section. Note that the reason for the
discussion here is that the proposed TL∗ is a generic
algorithm, which is not limited to our setting and might
be used in different contexts for learning ERAs. Let us
consider a timed language accepting timed words(a, t)
wheret ≤ 3. In the untimed learning phase, TL∗ performs

8

l1 l2 l3

a[xa ≤ 1],
a[1 < xa ≤ 2],
a[2 < xa ≤ 3]

a[3 < xa ≤ 5], a[xa > 5]

a[xa ≤ 1],
a[1 < xa ≤ 2],
a[2 < xa ≤ 3],
a[3 < xa ≤ 5],

a[xa > 5]

a[xa ≤ 1],
a[1 < xa ≤ 2],
a[2 < xa ≤ 3],
a[3 < xa ≤ 5],

a[xa > 5]

Fig. 12. Learning Guided by a Bad Teacher

the L∗ algorithm to learn a DFAM accepting the untimed
word a, as shown in Fig. 11 (a). When the Teacher answers
the timed candidate query forA2, if it returns a beautiful
negative counterexample(a, xa > 3), the alphabeta is split
into (a, xa ≤ 3) and(a, xa > 3), and the final learned ERA
A3 is as shown in Fig. 11 (b).

What if the Teacher is not friendly? That is, Teacher
always gives counterexamples whose time constraints are
not exactly the boundary guards. Let us consider the
above example again. Suppose Teacher gives a negative
counterexample(a, xa > 5) instead of(a, xa > 3) when
answering the timed candidate query ofM . The alphabet
a is split into (a, xa ≤ 5) and (a, xa > 5), and both of
them are not accepted. After this, Teacher can only return
positive counterexamples of the form(a, xa ∼ c) where
∼∈ {<,≤} and c ≤ 3. Let us suppose that Teacher gives
the positive counterexamples in the worst way. It gives
a positive counterexample(a, xa ≤ 1) which causes the
split of the alphabeta into (a, xa ≤ 1), (a, 1 < xa ≤ 5)
and (a, xa > 5) where only(a, xa ≤ 1) is accepted. And
Teacher gives another positive counterexample(a, xa ≤ 2),
which causes the split of the alphabet as:(a, xa ≤ 1),
(a, 1 < xa ≤ 2), (a, 2 < xa ≤ 5) and (a, xa > 5),
where(a, xa ≤ 1) and(a, 1 < xa ≤ 2) are accepted. Then
Teacher gives the final positive counterexample(a, xa ≤ 3),
which causes the split of the alphabet as:(a, xa ≤ 1),
(a, 1 < xa ≤ 2), (a, 2 < xa ≤ 3), (a, 3 < xa ≤ 5)
and (a, xa > 5), where(a, xa ≤ 1), (a, 1 < xa ≤ 2) and
(a, 2 < xa ≤ 3) are accepted. The final learned ERA is as
shown in Fig. 12.

We can observe that with a friendly Teacher, unnecessary
alphabet split can be avoided, while with a bad Teacher,
unnecessary split might occur, but they are always in the
same class (leading to the same state), as shown in Fig. 12.
However, even with the worst Teacher, the alphabet split
will be approaching the boundary as illustrated in the above
example and in Fig. 12. Recall from Section 2.1 that the
constant in a clock constraint is necessarily an integer.

In our setting of compositional verification based on the
TL∗ algorithm (c.f. Section 4), we implement the Teacher
by model checking, and the boundary time constraint is
specified either in the models or in the property, i.e., a
friendly Teacher, which avoids unnecessary split – this is
also confirmed by our experiments.

3.4 Termination and Correctness

Given a timed languageUT accepted by a deterministic
ERA A = (Σ, L, l0, δ, L

f), TL∗ learns an ERA to accept

UT . After the untimed learning phase, each untimed alpha-
bet (α, true), α ∈ Σ, may be split according to the guard
condition of the counterexamples returned by Teacher. With
a friendly Teacher, each untimed word(α, true) will be
split into |GA| guarded words, whereGA is the set of clock
zones partitioned by the clock guards appearing inA. For
example, the clock guard appearing inA3, as shown in
Fig. 11 (b), isxa > 3, soGA3

= {xa ≤ 3, xa > 3}.
With a bad Teacher, the number of alphabet split is more

than |GA|. For each eventα ∈ Σ, if (α, true) needs to be
split, Teacher will give a negative counterexample(α, g)
and g is of the form (α, xβ ∼

−→c) or (α, xβ ∼′
←−c),

whereβ ∈ Σ, ∼∈ {<,≤}, ∼′∈ {>,≥}, and−→c ,←−c ∈ N .
Basically,−→c and←−c are the upper and lower bounds of the
clock xβ , respectively. We can construct a set of regions
with respect to−→c and←−c , denoted byR←→c . For example,
given −→c = 3 and←−c = 1, R←→c = {xβ = 1, 1 < xβ <
2, xβ = 2, 2 < xβ < 3, xβ = 3, xβ > 3}. Thus, with
a bad Teacher, each eventα ∈ Σ might be split at most
|CΣ| · |R←→c | times.

Let ̺ = max{|GA|, |CΣ| · |R←→c |}. In general, each
membership query of untimed word(α, true) gives rise
to at most ̺ timed membership queries. In total, TL∗

needs to performO(|Σ| · ̺ · |L|2 + |L| log |π|) timed
membership queries, whereπ is the counterexample given
by the Teacher. We will show in Theorem 1 that TL∗ needs
to performO(|L|+ ̺ · |Σ|) candidate queries.

Lemma 1:Given a closed and consistent observation
table (S,E, T), any deterministic ERA consistent withT
has at least|S| locations.

Proof: We first define a row in the observation table. If
p ∈ S∪(S ·Σ) is a prefix (row) of the table, we userow(p)
to denote the functionf : E 7→ {0, 1} which is defined by
f(e) = T (p · e) for e ∈ E. Let M = (Σ, L, l0, δ, Lf)
be an ERA consistent withT . We then definef ′(s) =
δ(l0, s) for everys ∈ S. For any twos1, s2 ∈ S, we have
row(s1) 6= row(s2) implying that there existse ∈ E such
that T (s1 · e) 6= T (s2 · e). SinceM is consistent withT ,
exactly one ofδ(l0, s1 ·e) andδ(l0, s2 ·e) is in Lf implying
thatδ(l0, s1) andδ(l0, s2) are distinct locations. Thus,f ′(s)
takes on at least|S| values implying thatM has at least
|S| locations.

Theorem 1:The TL∗ algorithm is correct and terminates
in a finite number of iterations.

Proof: The correctness is based on the fact that the TL∗

algorithm returns an ERA only if it accepts the unknown
timed languageUT . Let A = (Σ, L, l0, δ, Lf) be an ERA
acceptingUT . In each iteration, the TL∗ algorithm either
adds a row intoS in the observation table(S,E, T) or
splits a clock guard of an eventα ∈ Σ into at least two
disjoint clock guards. Since the observation table should
be consistent withA (otherwise, the Teacher must have
given wrong answers to the membership queries), TL∗ adds
at most |L| rows into S. Lastly, each untimed alphabet
(α, true) splits at most̺ times. Thus, the TL∗ algorithm
terminates afterO(|L|+ ̺ · |Σ|) iterations.

Theorem 2:The ERA learned by the TL∗ algorithm has
the minimal number of locations.

9

TL*

black-box

Teacher

models property

model

checking

white-box

Fig. 13. Model Checking Plays the Teacher Role

Proof: Given a closed and consistent observation table
(S,E, T), TL∗ constructs an ERAM exactly with |S|
locations. By Lemma 1, we can conclude thatM has the
minimal number of locations.

From the above arguments, we can conclude the follow-
ings: even if the teacher is bad, i.e., it gives on purpose
counterexamples as little helpful as possible, as long as the
it answers the membership and candidate queries correctly,
our TL∗ algorithm can learn an ERA with the minimal
number of locations to accept the unknown timed language
and terminate in a finite number of iterations.

4 AN AUTOMATIC COMPOSITIONAL VERIFI-
CATION FRAMEWORK FOR TIMED SYSTEMS

This section is devoted to an automatic learning-based
compositional verification framework for timed systems.
The proposed framework is introduced in Section 4.1. An
example is given in Section 4.2 for illustrating the frame-
work. The correctness and termination of the framework
are proved in Section 4.3.

4.1 Automatic Verification Framework

To learn an ERA accepting a timed language, the TL∗

algorithm needs the guidance of the Teacher to answer
membership and candidate queries. Thus, to use TL∗ to
automatically generate the assumption for AGR, the pro-
posed framework has to play the Teacher role to answer the
membership and candidate queries needed by TL∗. In the
proposed compositional verification framework, we adopt
model checking to answer the queries from TL∗. Fig. 13
shows the big picture of the TL∗ algorithm, the Teacher,
and model checking. Note that the Teacher itself, played by
model checking, is a white-box setting since it knows the
component models and the property. However, the Teacher
is still a black box to the TL∗ algorithm.

Fig. 14 shows the overall flow of the learning-based
compositional verification for timed systems based on the
AG-NC proof rule. It consists of two phases, namely
untimed verification phasefor constructing the untimed
assumption (environment) forM1 to satisfy the property,
and timed verification phasefor refining the untimed as-
sumption into a timed one and concluding the result of the
timed verification.

The target ERA to be learned by TL∗ is the weakest
assumptionAw under whichM1 satisfiesϕ, i.e., for any
environmentE, M1 ‖ E |= ϕ iff E |= Aw. To guide TL∗ to
learn the weakest assumptionAw, model checking is used
to answer the membership and candidate queries needed

Algorithm 3: Untimed Candidate QueryQc

input : C: an untimed ERA
output: (0/1, a counterexampleπ)

1 if L((M1)
ut ‖ (Mϕ)

ut ‖ C) = ∅ then
2 if L((M2)

ut ‖ C) = ∅ then return (1, λ) ;
3 else return (0, π), π ∈ L((M2)

ut ‖ C) ;

4 else return (0, π), π ∈ L((M1)
ut ‖ (Mϕ)

ut ‖ C) ;

(a) 0 1 . . . n
a1 a2 an

(b) 0 1 . . . n
a1[g1] a2[g2] an[gn]

Fig. 15. Prefix-Accepting Automata

by TL∗. Although the target ERA for TL∗ is the weakest
assumptionAw, the proposed framework terminates as soon
as compositional verification gets conclusive results, which
is often before the weakest assumptionAw is learned.
The details of the learning-based compositional verification
framework are described as follows. Note that the alphabet
of the assumption ranges overΣA = (ΣM1

∪ Σϕ) ∩ΣM2
.

Untimed Verification Phase.In this phase, the L∗ algo-
rithm [5] is used to learn an untimed assumption according
to the AG-NC proof rule such that(M1)

ut ‖ (M2)
ut |=

(ϕ)ut is proved or disproved. We use(M1)
ut to denote

the untimed version ofM1, i.e., all the time constraints
on transitions are ignored. The L∗ algorithm constructs
a candidate DFAA after several untimed membership
queries. The answer to an untimed membership query for
an untimed behaviorσ is positive only if the behaviorσ
does not violate the property(ϕ)ut when interacting with
(M1)

ut, i.e.,σ 6∈ L((M1)
ut ‖ (Mϕ)

ut). This is basically an
emptiness problem ofL(Mσ ‖ (M1)

ut ‖ (Mϕ)
ut) where

Mσ is a DFA accepting all the prefixes ofσ. For an untimed
behaviorσ = a1a2 . . . an, we can easily constructMσ

as shown in Fig. 15 (a). The emptiness problem can be
checked by model checking.

The candidate query forA is answered by theQc

algorithm, as given in Algorithm 3. If(M1)
ut ‖ (M2)

ut |=
(ϕ)ut is disproved in this phase with a untimed counterex-
ample π, we have to check whether it is a real timed
counterexample, i.e.,π ∈ L(M1 ‖Mϕ) andπ ∈ L(M2). If
yes, we can concludeM1 ‖ M2 6|= ϕ. If not, we cannot
conclude anything here and the flow goes to the timed
verification phase.

Timed Verification Phase. In this phase, the TL∗ algo-
rithm is used to learn the timed assumptionA according
to the AG-NC proof rule such thatM1 ‖ M2 |= ϕ
is proved or disproved. The TL∗ algorithm constructs
a timed assumptionA after several timed membership
queries. The answer to the timed membership query for
a guarded wordσ is positive only if the behaviorσ does
not violate the propertyϕ when interacting withM1, i.e.,
L(σ) 6⊆ L(M1 ‖ Mϕ). Basically, this is an emptiness
problem ofL(Mσ ‖ M1 ‖ Mϕ) whereMσ is an ERA

10

(M1)
ut ‖ A |= (ϕ)ut?

A

π ∈ L((M2)
ut)?

(M2)
ut |= A?

π ∈ L((M1)
ut ‖ (Mϕ)

ut)?

(M1)
ut ‖ (M2)

ut 6|= (ϕ)ut

No, π

L∗

M1 ‖ A |= ϕ?

M2 |= A?

TL∗

L(π) ⊆ L(M1 ‖ Mϕ)?

Yes

Yes

Yes

A

No No

NoNo
No, π

M1 ‖ M2 |= ϕ

(M1)
ut ‖ (M2)

ut 6|= (ϕ)ut No
π

M1 ‖ M2 6|= ϕM1 ‖ M2 6|= ϕ
No
π

Yes

YesYes

Yes

Timed Refinement

negative counterexample πpositive counterexample π

refine Arefine A

refine Arefine A

negative counterexample πpositive counterexample π

Yes

Untimed Compositional Verification

Timed Compositional Verification

L(π) ⊆ L(M2)?

L(π) ⊆ L(M1 ‖ Mϕ) and
L(π) ⊆ L(M2)?

π

π

Yes

No

Fig. 14. Flow of compositional verification framework for timed systems

such that all the prefixes ofσ are accepted byMσ. For
a guarded wordσ = (a1, g1)(a2, gn) . . . (an, gn), we can
easily constructMσ as shown in Fig. 15 (b). The emptiness
problem can be checked by timed model checking.

The candidate query of the timed assumptionA is
answered by theQcT algorithm, as given in Algorithm 4.
The details are described in the following.

1) If M1 ‖ C |= ϕ and M2 |= C, we can conclude
M1 ‖M2 |= ϕ (Lines 1-2 of Algorithm 4).

2) If M1 ‖ C 6|= ϕ, a counterexampleπ is given
(Line 12). We check whether the untimed trace
(π)ut is also an untimed counterexample. If yes, the
sequence of events is wrong no matter how it is
restricted by time constraints and the projected coun-
terexampleπ↓Σ is returned as a negative counterex-
ample (Lines13-14). If not, the sequence of events is
allowed but the time constraints of events lead to an
error. The strategy of refining the time constraints is
as follows. Given any clock constraintη in sp(π), if
any event of the counterexample makesη unsatisfi-
able, thenπ will not violate the propertyϕ anymore
(see Theorem 3). Suppose the projected counterex-
ample is π↓Σ = (a1, g1)(a2, g2) · · · (am, gm). For
simplicity, we always select the clock constraint
η = xam−1

− xam
∼ c representing the time dif-

ference between the occurrences ofam−1 and am.
If am is not performed inJxam−1

∼ c K, then η be-
comes unsatisfiable. Thus, the negative counterexam-

ple (a1, g1)(a2, g2) · · · (am, xam−1
∼ c) is returned

to the TL∗ algorithm (Lines15-19).
3) If M1 ‖ C |= ϕ but M2 6|= C, a counterexampleπ is

given. We check whetherL(π) ⊆ L(M1 ‖ Mϕ). If
yes, we can concludeM1 ‖M2 6|= ϕ (Line 5). If not,
π is a positive counterexample. Note that each time
a counterexample is returned to TL∗, some events in
the alphabetΣ might be split. We want to reduce
the split as much as possible. Thus, before directly
returningπ to TL∗, we try to find a counterexample
π′ similar to π but with less split of events inΣ.
First, we obtain a normalized behaviorπ′ w.r.t. Σ by
replacing each event/guard pair(a, g) appearing inπ
with (a, g′) ∈ Σ andJgK ⊆ Jg′K (Line 7). We consider
a behaviorσ1 ·σ2 whereσ1 = (π′)i1 is a prefix ofπ′

andσ2 = (π)ni+1 is a suffix ofπ for i from n−1 to 1
andn = |π|. If L(σ1 · σ2) 6⊆ L(M1 ‖Mϕ) for some
1 ≤ i ≤ n− 1, thenσ1 · σ2 is a better candidate than
π (Lines 8-9). Otherwise,π is returned (Line10).

Theorem 3:Let π = (a1, g1)(a2, g2) · · · (an, gn) be a
guarded word. Given any clock constraintη ∈ sp(π) of the
form xai

− xaj
∼ c for somei and j, 1 ≤ i < j ≤ n,

we can obtainπ′ = (a1, g1) · · · (aj , xai
∼c) · · · (an, gn)

and ai 6= aj 6= ak for all k, j < k ≤ n such that
Jsp(π)K ∩ Jsp(π′)K = ∅.

Proof: Let∼ be the complement of∼ where the com-
plement of<,≤,≥, > is≥, >,<,≤, respectively.xai

−xaj

represents the time difference between the occurrences ofai

11

Algorithm 4: Timed Candidate QueryQcT

input : C: the candidate ERA;Σ: the alphabet of TL∗

output: (0/1, a counterexampleπ)

1 if L(M1 ‖Mϕ ‖ C) = ∅ then
2 if L(M2 ‖ C) = ∅ then return (1, λ) ;
3 else
4 Let π be a trace inL(M2 ‖ C) and |π| = n ;
5 if L(π) ⊆ L(M1 ‖Mϕ) then return (0, π) ;
6 else
7 π′ ←− NORM(π,Σ) ;
8 for i = n− 1 to 1 do
9 if L((π′)i1 · (π)

n
i+1) 6⊆ L(M1 ‖Mϕ)

then return (0, (π′)i1 · (π)
n
i+1) ;

10 return (0, π) ;

11 else
12 Let π be a trace inL(M1 ‖Mϕ ‖ C) ;
13 if (π)ut ∈ L((M1)

ut ‖ (Mϕ)
ut) then

14 return (0, π↓Σ) ;

15 else
16 π′ ←− π↓Σ andπ′ = (a1, g1) · · · (am, gm);
17 Let η ∈ sp(π) andη = xam−1

− xam
∼ c ;

18 π′ ←− (a1, g1)(a2, g2) · · · (am, xm−1 ∼ c) ;
19 return (0, π′) ;

andaj for somei andj, 1 ≤ i < j ≤ n. If aj is performed
when xai

∼c in π′ such thatak 6= ai and ak 6= aj for
all k, j < k ≤ n, thenxai

− xaj
is not changed afterai

and aj are performed andxai
− xaj

∼c ∈ sp(π′). Since
Jxai
− xaj

∼ cK∩ Jxai
− xaj

∼ cK = ∅ andxai
− xaj

∼ c ∈
sp(π), we can concludeJsp(π′)K ∩ Jsp(π)K = ∅.

4.2 An Example

We use an example to illustrate the proposed framework.
Fig. 16 shows an I/O system [13] consisting of two
components, INPUT and OUTPUT. There are four events,
input, send, output, andack in the system. The pairs of
event-recording clocks and their corresponding events are:
xi : input, xs : send, xo : output, and xa : ack. The
model of the INPUT component is shown in Fig. 16 (a).
INPUT performs aninput event within one time unit once
it receives anack event from OUTPUT. Subsequently, it
performs asend event to notify OUTPUT that aninput
event has been performed and waits anotherack event from
OUTPUT. The model of the OUTPUT component is shown
in Fig. 16 (b). After receiving asend event, OUTPUT
performs anoutput event within one time unit and then
performs anack event within one time unit after theoutput
event. The system propertyϕ, as shown in Fig. 16 (c), is
that input andoutput events should alternate and the time
difference between every two consecutive events should not
exceed five time units. The negation of the property is given
in Fig. 16 (d) whereτ is the error location, and we assume
that the negation of the property is specified by users.

I0 I1 I2

input
[xa ≤ 1]

send
[xi ≤ 1]

ack

(a) INPUT

O0 O1 O2

send

output
[xs ≤ 1]

ack[xo ≤ 1]

(b) OUTPUT

P0 P1

input
[xo ≤ 5]

output
[xi ≤ 5]

(c) Propertyϕ

P0

P1

τ

input[xo ≤ 5]
output
[xi ≤ 5]

input,
output[xi > 5]

output, input[xo > 5]

(d) Mϕ

Fig. 16. Models and property of the I/O system

λ ack

λ 1 1 (s0)
send 1 0 (s2)
output 0 0 (s1)
ack 1 1

output · send 0 0
output · output 0 0
output · ack 0 0
send · send 1 1
send · output 1 1
send · ack 0 0

(a) T2

11 10

ack

send

send,
output

(b) A2

Fig. 17. Untimed assumption A2

We skip the details on the untimed verification phase,
which can be found in [13]. After the untimed verification
phase, the untimed assumptionA2, as shown in Fig. 17 (b),
is learned by L∗ to prove (INPUT)ut ‖ (OUTPUT)ut |=
(ϕ)ut. We remark the assumption asA2 instead ofA1

because it is the second assumption generated in the
untimed verification phase. For simplicity, we omit non-
accepting locations of ERAs in the following. The untimed
observation table ofA2 is shown in Fig. 17 (a). The
flow goes to the timed verification phase, and the untimed
observation table is modified into a timed version.

In the first iteration, the timed candidate query forA2

is performed and the result is negative because INPUT‖
A2 6|= ϕ with a counterexampleπ = (input, xa ≤
1)(send, xi ≤ 1)(output, xi > 5). The counterexample
projected toΣA is π′ = (send, true)(output, true). The
strongest post conditionssp(π) are as follows:xo = 0,
xs > 4, xi > 4, xa > 5, 0 ≤ xi−xs ≤ 1, 0 ≤ xa−xs ≤ 2,
0 ≤ xa−xi ≤ 1, xs−xo > 4, xi−xo > 5, andxa−xo > 5.
We selectxs − xo > 4, and(send, true)(output, xs > 4)
is returned to TL∗. The observation table is split according
to the returned counterexample as shown in Fig. 18 (a) and
its corresponding ERAA3 is shown in Fig. 18 (b).

In the second iteration, the timed candidate query forA3

is performed and the result is negative because INPUT‖
A3 6|= ϕ with a counterexampleπ = (input, xa ≤
1)(send, xi ≤ 1)(output, xs ≤ 4)(output, xs ≤ 4) whose
projection to ΣA is π′ = (send, true)(output, xs ≤
4)(output, xs ≤ 4). Because(π)ut ∈ L((M1)

ut ‖
(Mϕ)

ut), the negative counterexampleπ′ is returned to
TL∗. After analyzingπ′, TL∗ adds the witness suffixσ2 =
(output, xs ≤ 4) into the setE as shown in Fig. 19 (a).
The corresponding ERAA4 is shown in Fig. 19 (b).

In the third iteration, the timed candidate query for

12

λ σ1

λ 1 1 (s0)
(send, true) 1 0 (s2)

(output, xs ≤ 4) 0 0 (s1)
(output, xs > 4) 0 0

(ack, true) 1 1
(output, xs ≤ 4)(send, true) 0 0
(output, xs > 4)(send, true) 0 0

(output, xs ≤ 4)(output, xs ≤ 4) 0 0
(output, xs ≤ 4)(output, xs > 4) 0 0
(output, xs > 4)(output, xs ≤ 4) 0 0
(output, xs > 4)(output, xs > 4) 0 0

(output, xs ≤ 4)(ack, true) 0 0
(output, xs > 4)(ack, true) 0 0
(send, true)(send, true) 1 1

(send, true)(output, xs ≤ 4) 1 0
(send, true)(output, xs > 4) 0 0

(send, true)(ack, true) 0 0

(a) σ1 = (ack, true)

11 10

ack

send

send

output
[xs ≤ 4]

(b) A3

Fig. 18. First timed assumption

λ σ1 σ2

λ 1 1 0 (s0)
(send, true) 1 0 1 (s2)

(output, xs ≤ 4) 0 0 0 (s1)
(output, xs > 4) 0 0 0

(ack, true) 1 1 1 (s3)
(output, xs ≤ 4)(send, true) 0 0 0
(output, xs > 4)(send, true) 0 0 0

(output, xs ≤ 4)(output, xs ≤ 4) 0 0 0
(output, xs ≤ 4)(output, xs > 4) 0 0 0
(output, xs > 4)(output, xs ≤ 4) 0 0 0
(output, xs > 4)(output, xs > 4) 0 0 0

(output, xs ≤ 4)(ack, true) 0 0 0
(output, xs > 4)(ack, true) 0 0 0
(send, true)(send, true) 1 1 1

(send, true)(output, xs ≤ 4) 1 0 0 (s4)
(send, true)(output, xs > 4) 0 0 0

(send, true)(ack, true) 0 0 0
(ack, true)(send, true) 1 1 1

(ack, true)(output, xs ≤ 4) 1 1 1
(ack, true)(output, xs > 4) 1 1 1

(ack, true)(ack, true) 1 1 1
(send, true)(output, xs ≤ 4)(send, true) 1 1 1

(send, true)(output, xs ≤ 4)(output, xs ≤ 4) 0 0 0
(send, true)(output, xs ≤ 4)(output, xs > 4) 0 0 0

(send, true)(output, xs ≤ 4)(ack, true) 0 0 0

(a) σ1 = (ack, true) andσ2 = (output, xs ≤ 4)

110 101 100 111
send

ack

output[xs ≤ 4]

send

send

send, output, ack

(b) A4

Fig. 19. Second timed assumption

A4 is performed and the result is still negative with a
positive counterexampleπ = (send, true)(output, xs ≤
1)(ack, xo ≤ 1). The normalized counterexample w.r.t.ΣA

is π′ = (send, true)(output, xs ≤ 4)(ack, true). A better
counterexample(π′)21 · (π)

3
3 = (send, true)(output, xs ≤

4)(ack, xo ≤ 1) is returned to TL∗. The observation table
is split according to the positive counterexample as shown
in Fig. 20 (a), and the third timed assumptionA5 is
constructed as shown in Fig. 20 (b).

In the fourth iteration, the result of the timed candidate
query for A5 is positive since INPUT‖ A5 |= ϕ and
OUTPUT |= A5. By the AG-NC proof rule, the I/O
system satisfies the timed propertyϕ is concluded, and
the verification framework is finished. Although the size
of the assumptionA5 is bigger than OUTPUT in this

λ σ1 σ2 σ3

λ 1 1 0 1 (s0)
(send, true) 1 0 1 0 (s2)

(output, xs ≤ 4) 0 0 0 0 (s1)
(output, xs > 4) 0 0 0 0
(ack, xo ≤ 1) 1 1 1 1 (s3)
(ack, x0 > 1) 1 1 1 1

(output, xs ≤ 4)(send, true) 0 0 0 0
(output, xs > 4)(send, true) 0 0 0 0

(output, xs ≤ 4)(output, xs ≤ 4) 0 0 0 0
(output, xs ≤ 4)(output, xs > 4) 0 0 0 0
(output, xs > 4)(output, xs ≤ 4) 0 0 0 0
(output, xs > 4)(output, xs > 4) 0 0 0 0
(output, xs ≤ 4)(ack, xo ≤ 1) 0 0 0 0
(output, xs ≤ 4)(ack, xo > 1) 0 0 0 0
(output, xs > 4)(ack, xo ≤ 1) 0 0 0 0
(output, xs > 4)(ack, xo > 1) 0 0 0 0

(send, true)(send, true) 1 1 1 1
(send, true)(output, xs ≤ 4) 1 1 0 0 (s4)
(send, true)(output, xs > 4) 0 0 0 0
(send, true)(ack, xo ≤ 1) 0 0 0 0
(send, true)(ack, xo > 1) 0 0 0 0
(ack, xo ≤ 1)(send, true) 1 1 1 1
(ack, xo > 1)(send, true) 1 1 1 1

(ack, xo ≤ 1)(output, xs ≤ 4) 1 1 1 1
(ack, xo > 1)(output, xs ≤ 4) 1 1 1 1
(ack, xo ≤ 1)(output, xs > 4) 1 1 1 1
(ack, xo > 1)(output, xs > 4) 1 1 1 1
(ack, xo ≤ 1)(ack, xo ≤ 1) 1 1 1 1
(ack, xo ≤ 1)(ack, xo > 1) 1 1 1 1
(ack, xo > 1)(ack, xo ≤ 1) 1 1 1 1
(ack, xo > 1)(ack, xo > 1) 1 1 1 1

(s4)(send, true) 1 1 1 1
(s4)(output, xs ≤ 4) 0 0 0 0
(s4)(output, xs > 4) 0 0 0 0
(s4)(ack, xo ≤ 1) 1 1 0 1
(s4)(ack, xo > 1) 0 0 0 0

(a) σ1 = (ack, xo ≤ 1), σ2 = (output, xs ≤ 4) andσ3 = (ack, xo > 1)

1101 1010 1100 1111
send

ack

output[xs ≤ 4]

send

send

ack[xo ≤ 1]

send, output, ack

(b) A5

Fig. 20. Third Timed Assumption

small example, our experiments in Section 5 shows that the
proposed framework performs well in large scale systems.

4.3 Correctness and Termination

Theorem 4:AG-NC for ERAs is sound and complete.
Proof: Given two system modelsM1, M2 and a

propertyϕ represented by ERAs, to establish the soundness,
we want to prove that(M1 ‖ A |= ϕ) ∧ (M2 |= A) →
(M1 ‖ M2 |= ϕ). Let us prove this by contradiction.
AssumeM1 ‖ M2 6|= ϕ, which implies that there exists
a guarded wordπ such thatL(π) ⊆ L(M1), L(π) ⊆
L(M2), andL(π) ⊆ L(ϕ). BecauseM2 |= A, therefore
L(M2) ⊆ L(A), which impliesL(π) ⊆ L(A). Thus we
can conclude thatM1 ‖ A 6|= ϕ becauseL(π) ⊆ L(M1),
L(π) ⊆ L(A), and L(π) ⊆ L(ϕ), which contradicts to
the promiseM1 ‖ A |= ϕ. To establish the completeness,
given any two ERAsM1 andM2 and a propertyϕ such
that M1 ‖ M2 |= ϕ, we can always chooseM2 as the
assumptionA to satisfy the rule becauseM1 ‖ M2 |= ϕ
andM2 |= M2.

Theorem 5:The proposed learning-based compositional
verification is sound and complete.

13

Proof: Our framework answers candidate queries
needed by TL∗ according to the AG-NC proof rule, i.e.,
it concludesM1 ‖ M2 |= ϕ when bothM1 ‖ A |= ϕ and
M2 |= A hold. By Theorem 4, the AG-NC proof rule is
sound for ERAs, which implies our framework is sound. On
the other hand, our framework returns a counterexampleπ
only if L(π) ⊆ L(M1 ‖ Mϕ) andL(π) ⊆ L(M2), which
implies thatM1 ‖ M2 6|= ϕ. Given any two ERAsM1

andM2 and a propertyϕ such thatM1 ‖ M2 |= ϕ, our
framework learns an assumption asM2 in the worst case,
which implies our framework is complete.

Theorem 6:The proposed learning-based compositional
verification terminates.

Proof: The proposed framework consists of two
phases. The overall framework is terminating because both
phases are terminating. In [13], it has been already proven
that the untimed verification phase is terminating. Here,
we only have to prove that the timed verification phase is
terminating. In any iteration of the timed verification phase,
our framework either concludes whetherM1 ‖ M2 |= ϕ
holds and then terminates, or continues by providing coun-
terexamples to the TL∗ algorithm. Since the target ERA
to be learned by TL∗ is the weakest assumptionAw, by
the correctness and termination of TL∗ in Theorem 1, it
eventually constructsAw in some iteration. In this iteration,
Aw will pass the checkM1 ‖ Aw |= ϕ according to
the definition of the weakest assumption. We then check
whetherM2 |= Aw holds. If M2 |= Aw, then M1 ‖
M2 |= ϕ is concluded, and the framework terminates. If
M2 6|= Aw, then M1 ‖ M2 6|= ϕ is concluded, and the
framework also terminates and returns a counterexample
L(π) ⊆ L(M2) \ L(Aw).

Generalization. The proposed compositional framework
for verifying timed systems is presented in the context of
two components. If a system consists ofn components
modeled byM = {M1,M2, . . . ,Mn} where n ≥ 3,
one intuitive approach to generalize our framework is to
partition the components into two higher level components
to fit the AG-NC proof rule, e.g., ifn = 4, we can obtain
H1 = M1 ‖ M2 and H2 = M3 ‖ M4 and apply our
approach onH1 andH2. Another way is to recursively ap-
ply the AG-NC proof rule, which constitutes the following
generalized AG-NC proof rule forn components forn ≥ 2.

M1 ‖ A1 |= ϕ
M2 ‖ A2 |= A1

...
Mn−1 ‖ An−1 |= An−2

Mn |= An−1

M1 ‖M2 ‖ . . . ‖Mn |= ϕ

Currently, we adopt the first approach to partition com-
ponents into two groups. However, we found that the ways
of partitioning components affect the verification result
significantly. An investigation [14] reported that finding
the best partition is hard. In our implementation, we use a
heuristic that collects inH1 the components containing the
events specified in the property, and the heuristic yielded

good performance in most of the cases in our experiments.

5 EXPERIMENTAL RESULTS

The proposed learning-based compositional verification
framework for timed systems has been implemented in the
PAT model checker [36] such that PAT can automatically
generate the assumptions for assume-guarantee reasoning
when verifying timed systems modeled by ERAs. To
demonstrate the feasibility and benefits of the framework,
three applications were modeled and verified.

• GSS. A gas station system [18] consists of five com-
ponents: one operator, one queue, one pump, and two
customers. Two customers can fill gas at this gas
station. Properties require that customers should be
served in order and that each customer can start filling
gas within three time units after payment.

• FMS. A flexible manufacturing system (FMS) [33]
produces blocks with a cylindrical painted pin from
raw blocks and raw pegs. It consists of fourteen
devices: three conveyors, two mills, a lathe, a painting
device, six robots, and an assembly machine. The
devices are connected through nine buffers, and the
capacity of each buffer is one. We modeled the FMS
system in a constructive way such that four versions
of models have been obtained, namely FMS-1 (the
simplest one), FMS-2 (the medium one), FMS-3 (a
complex one), and FMS-4 (the most complex one).
Properties require that each buffer should not overflow
or underflow and that output of each buffer should be
within three time units after its input.

• AIP . The AIP manufacturing system [24] produces
two products from two different materials. It consists
of ten components: an I/O station, three transport units,
two assembly stations, three external loops, and a
central loop. Properties require that the routes of the
two materials should be opposite and output of each
loop should be within three time units after its input.

The ERA models of the applications, the verified prop-
erties, and the PAT model checker can be found in [1].
Tables 1-6 show the detailed verification results for each
property of the three timed systems using the proposed
approach and traditional monolithic timed model checking
that constructs the timed global state space based on zone
abstraction, respectively. The experimental results were
obtained by running the PAT model checker on a64-bit
Windows 7 machine with a23.4 GHz Intel(R) Core(TM)
i7-2600 processor and8GB RAM.

As mentioned in the end of Section 4.3, for a system with
more than two components, the way of partitioning them
into two groups (M1 andM2) affects the verification result
significantly. Thus, we also compare the results of applying
our partition heuristic (c.f. Section 4.3) with those without
any heuristic. We randomly generate5 different partitions,
and calculate the average results for the compositional
approaches with and without our partition heuristic. The
randomly generated partitions and the detailed verification
results for each partition can be found in [1].

14

TABLE 1
Verification Results of GSS

Monolithic Compositional Compositional+ Partition Heuristic UPPAAL
Spec |CΣ| Valid? |L|max Time Mem |L|max |LA| Time Mem |L|max |LA| Time Mem Time

(secs) (MB) (secs) (MB) (secs) (MB) (secs)
1 3 NO 16 0.01 0.1 55 1 0.01 0.8 56 1 0.01 0.8 0.03

2 3 NO 17 0.01 0.1 55 1 0.01 0.8 56 1 0.01 0.8 0.03
3 3 YES 29 0.01 0.2 97 19 0.25 2.0 33 1 0.01 0.8 0.02

Total 0.03 0.27 0.03 0.08

|CΣ|: number of event-recording clocks;|L|max: average of the maximum number of locations among all partitions during verification;
|LA|: average number of locations of the learned assumption among all partitions

TABLE 2
Verification Results of FMS-1

Monolithic Compositional Compositional+ Partition Heuristic UPPAAL
Spec |CΣ| Valid? |L|max Time Mem |L|max |LA| Time Mem |L|max |LA| Time Mem Time

(secs) (MB) (secs) (MB) (secs) (MB) (secs)
1 3 YES 193 0.01 1.6 50 1 0.01 1.0 50 1 0.04 0.8 0.02
2 3 NO 9 0.01 0.1 108 2 0.01 1.7 8 1 0.01 0.4 0.02

3 3 YES 193 0.01 1.6 295 12 0.18 0.7 51 1 0.01 0.8 0.03

Total 0.03 0.20 0.05 0.07

TABLE 3
Verification Results of FMS-2

Monolithic Compositional Compositional+ Partition Heuristic UPPAAL
Spec |CΣ| Valid? |L|max Time Mem |L|max |LA| Time Mem |L|max |LA| Time Mem Time

(secs) (MB) (secs) (MB) (secs) (MB) (secs)
1 6 YES 76, 769 4.64 163.1 2, 047 1 0.15 4.7 2, 047 1 0.11 4.8 0.87

2 6 YES 76, 769 4.64 165.2 5, 621 8 13.10 25.7 2, 252 1 0.16 5.7 0.27

3 6 NO 34 0.01 0.4 187 2 0.02 1.1 12 1 0.01 0.5 0.03
4 6 NO 48 0.01 0.6 1, 462 2 0.06 2.3 17 1 0.01 0.9 0.03

5 6 YES 76, 769 4.51 159.4 2, 047 1 0.12 4.7 2, 047 1 0.12 4.3 0.26

6 6 NO 4, 270 0.21 7.6 2, 347 3 1.00 3.5 4, 815 4 0.50 13.3 0.63

Total 14.02 14.45 0.91 2.06

TABLE 4
Verification Results of FMS-3

Monolithic Compositional Compositional+ Partition Heuristic UPPAAL
Spec |CΣ| Valid? |L|max Time Mem |L|max |LA| Time Mem |L|max |LA| Time Mem Time

(secs) (MB) (secs) (MB) (secs) (MB) (secs)
1 6 YES 480, 481 36.05 1052.1 2, 265 1 0.15 7.4 2, 265 1 0.15 5.9 5.02

2 6 YES 480, 481 40.88 1065.4 6, 801 6 13.61 26.2 2, 211 1 0.17 4.1 5.19

3 6 NO 36 0.01 0.3 392 2 0.03 1.4 11 1 0.01 0.5 0.03

4 6 NO 52 0.01 0.7 1, 679 2 0.09 5.6 16 1 0.01 0.9 0.04
5 6 YES 480, 481 39.73 1051.7 2, 864 3 0.49 8.3 2, 472 1 0.16 6.4 1.53

6 6 YES 480, 481 43.39 1065.1 6, 624 16 15.01 19.8 11, 789 1 0.95 24.1 0.06

7 6 YES 480, 481 33.44 1065.0 6, 624 16 7.81 14.3 5, 400 1 0.41 11.8 0.05

Total 193.51 37.19 1.86 11.92

For the results of GSS and FMS-1 in Tables 1–2, the
system size in terms of the number of locations is small
and our compositional approach does not outperform the
monolithic approach and even consumes more memory
because of the overhead of learning iterations.

For the results of the FMS-2 system, as shown in Table 3,
the compositional approach without the partition heuristic
outperforms the monolithic in most of the cases expect
Specs2, 4, and 6. In Spec 2, the randomly generated
partitions are not good, and it takes8 times of candidate
queries in average to learn the assumption, which is even

worse than the monolithic approach. With our partition
heuristic, it only takes1 candidate query to learn the
assumption, which significantly speeds up the verification
process. In Specs4 and 6, the properties are violated. If
the verified property is violated, the monolithic verification
might find a counterexample faster than the compositional
approach because of the on-the-fly technique, which ter-
minates the verification once a counterexample is found to
avoid constructing the whole state space.

For the results of the FMS-3 system as shown in Table 4,
the compositional approach without the partition heuristic

15

TABLE 5
Verification Results of FMS-4 (ROM: run out of memory)

Monolithic Compositional Compositional+ Partition Heuristic UPPAAL
Spec |CΣ| Valid? |L|max Time Mem |L|max |LA| Time Mem |L|max |LA| Time Mem Time

(secs) (MB) (secs) (MB) (secs) (MB) (secs)
1 8 YES − − ROM 34, 008 1 4.46 70.9 34, 008 1 4.18 74.8 ROM
2 8 YES − − ROM 34, 008 1 4.32 72.7 34, 008 1 4.54 81.1 ROM
3 8 NO 62 0.01 1.0 2, 276 2 0.20 8.2 17 1 0.01 0.9 0.04
4 8 NO 96 0.01 1.6 12, 499 2 1.29 36.7 20 1 0.01 1.1 0.05

5 8 YES − − ROM 78, 955 31 476.84 158.5 36, 680 1 5.19 77.8 ROM
6 8 NO − − ROM 44, 196 18 33.13 145.8 4, 405 7 13.55 12.0 ROM
7 8 YES − − ROM − − − ROM 30, 144 1 4.78 71.2 ROM
8 8 NO 111 0.01 2.0 116, 748 2 14.24 270.9 27 1 0.01 1.3 0.04

9 8 YES − − ROM 59, 410 37 1419.83 150.9 31, 656 1 3.39 66.4 ROM
Total N/A N/A 35.66 N/A

TABLE 6
Verification Results of AIP

Monolithic Compositional Compositional+ Partition Heuristic
Spec |CΣ| Valid? |L|max Time Mem |L|max |LA| Time Mem |L|max |LA| Time Mem

(secs) (MB) (secs) (MB) (secs) (MB)
1 4 NO 137 0.01 1.7 211 1 0.02 1.2 210 1 0.02 1.1

2 4 NO 368 0.02 0.4 680 2 0.05 1.8 680 2 0.05 2.0

3 4 NO 651 0.03 1.0 474 1 0.03 1.6 435 1 0.03 1.4
4 4 NO 63 0.01 0.8 636 5 1.05 4.5 345 2 0.02 3.0

5 4 YES 104, 651 29.59 231.4 2, 301 1 0.15 6.2 2, 301 1 0.15 6.0

6 4 YES 104, 651 33.21 229.2 2, 561 4 0.70 7.6 2, 512 1 0.16 6.7

7 4 YES 86, 051 22.03 190.9 2, 088 3 0.25 6.3 2, 189 1 0.15 5.8
8 4 YES 86, 051 20.81 188.2 1, 948 1 0.12 5.5 2, 733 1 0.19 7.6

9 4 YES 104, 651 26.50 227.7 15, 538 45 87.70 54.0 2, 605 1 0.25 8.2

10 4 NO 14 0.01 0.2 25 2 0.01 1.1 15 1 0.01 1.0

Total 132.22 89.03 1.03

outperforms the monolithic one in all cases where the prop-
erties are satisfied because the learning iterations compen-
sate for the large global state space such that the verification
time and the memory usage are significantly reduced. In
addition, with the partition heuristic, the verification time
and memory usage are even further reduced dramatically.

For the results of the FMS-4 system as shown in Table 5,
the monolithic approach cannot even finish the verification
for each satisfied properties using8GB memory, while the
compositional approach without the partition heuristic can
finish the verification for all properties except for Spec7. In
the case of Spec7, two randomly generated partitions are
not good and cannot be verified by the compositional ap-
proach without the partition heuristic using8GB memory.
With the partition heuristic, the total verification time only
takes less than36 seconds, and the maximal memory usage
is less than82MB, which is a significant improvement.

The verification results for AIP are shown in Table 6. For
Spec9, the compositional approach without the partition
heuristic performs seriously worse than the monolithic one
because some generated partitions are very bad, which need
45 candidate queries in average (each of which requires
model checking). Again, the partition heuristic improves the
performance significantly. We can observe that the way of
partitioning components really dominates the performance
of the learning-based compositional verification.

We also compared the verification time between our
approach and UPPAAL [2]; however, we do not list the
verification time of UPPAAL for the AIP system because
UPPAAL does not support events on transitions so that the
AIP system cannot be modeled in UPPAAL. Our compo-
sitional approach with the partition heuristic outperforms
UPPAAL in all cases. For FMS-4, UPPAAL cannot even
verify the satisfied properties using8GB memory.

6 RELATED WORK

Model checking [10], [32] suffers from thestate space ex-
plosionproblem, especially for timed systems. To alleviate
the problem, Pnueli firstly proposed the assume-guarantee
paradigm [31] to verify system components individually
and use the individual verification results to deduce ad-
ditional properties of the system. Clarke et al. [12] used
interface processes to model the abstract environment for a
component, which is much smaller than the real one, such
that the state space is reduced. For formal verification that
is not based on model checking, Xu et al. [37] proposed a
proof system based on the assume-guarantee paradigm for
verifying shared variable concurrent programs. Henzinger
et al. [20] reported several case studies about applying
assume-guarantee reasoning on real world systems.

For model checking of timed systems, Laroussinie et
al. [23] proposed a technique to transform the property
w.r.t. individual components one by one using quotient

16

M1 ‖ AM1
|= ϕ

...
Mn ‖ AMn

|= ϕ
AM1

‖ AM2
‖ · · · ‖ AMn

|= ϕ
M1 ‖M2 ‖ · · · ‖Mn |= ϕ

Fig. 21. The AGC proof rule

construction such that the global state space need not
be generated, but the minimization for the transformed
property is needed because repeated quotient constructions
lead to an explosion on the transformed property.

Cobleigh et al. [13] proposed a framework that gener-
ates the abstract environment of components automatically
using the L∗ algorithm [5]. This work is a pioneer of
automating the untimed compositional verification based on
learning techniques. Consequently, several improvements
[9], [15], [35] have been proposed to further reduce the
complexity. These improvements focus on reducing the size
of the alphabet during learning, which dominates the time
complexity of the membership query in the L∗ algorithm.
Inspired by [13], Lin and Hsiung [26] proposed a com-
positional synthesis framework which can help a system
designer to automatically synthesize component models to
satisfy the given property based on the L∗ algorithm and
causality semantics.

Barringer et al. [6] also used the L∗ algorithm to learn
assumptions automatically for AGR with the circular and
symmetric (AGC) proof rule as shown in Fig. 21. In
contrast to the AG-NC proof rule, the components of the
system do not have to be grouped when applying the AGC
proof rule. However, the number of premises to be proved
in the AGC proof rule and the number of assumptions to
be learned increase linearly with the number of the compo-
nents. To reduce the number of premises and assumptions,
Nam and Alur [30] proposed a method to automatically
group then components intom groups, wherem < n, by
reducing the problem to thehypergraph partition problem.
Alur et al. [4] proposed a symbolic implementation of AGR
for the AGC proof rule. They usedBinary Decision Dia-
grams (BDD) [8] to symbolically encode the observation
table maintained by the L∗ algorithm.

However, the works based on the L∗ algorithm mentioned
above are only applicable for untimed systems. To infer
timed assumptions for AGR, a learning algorithm for timed
models is needed. Grinchtein et al. [16] proposed three
algorithms TL∗sg, TL∗nsg, and TL∗s for learning ERAs. Their
learning algorithms deal with timed words, while our TL∗

algorithm deals with guarded words. Theoretically, they are
not comparable since the target words to be dealt with are
different. More specifically, the learning problem handled
by Grinchtein et al. [16] is more difficult because the
interface between the learning algorithm and the Teacher
is based on timed words and the learning algorithm has to
actively infer the time condition of each event.

We briefly introduce the TL∗sg algorithm here to see how

Learner Teacher

membership query

(guarded word)

candidate query

yes/no

yes/no,

counterexample

(guarded word)

black-box

Assistant

membership query

(timed word)

candidate query

yes/no

yes/no,

counterexample

(timed word)

Fig. 22. Interaction between TL∗sg and Teacher

TL∗sg and TL∗ perform in the context of the goal of this
work, compositional verification. Grinchstein et al.’s TL∗sg
algorithm consists of two components, namely a learner
and an assistant, as shown in Fig. 22. The learner acts
almost like the L∗ algorithm except that it interacts with
the assistant instead of the Teacher and asks membership
queries for guarded words instead of untimed words. The
assistant translates a membership query for a guarded word
into several membership queries of timed words and for-
wards these translated membership queries to the Teacher.
After getting the results of membership queries of timed
words from the Teacher, the assistant returns the result of
the membership query for the guarded word to the learner
according to the results from the Teacher.

Let us use the example in Section 3.2 for illustration.
Suppose the timed language to be learned is accepted by
the ERA as shown in Fig. 6 (a). The TL∗sg algorithm
assumes that the maximum constant of the clock guard,K,
is known (here,K = 3). Note that our TL∗ algorithm does
not make this assumption. For each event, TL∗

sg actively
guesses all possible guards for the event. In this example,
all the possible guards for eventa are as shown in the first
2–11 rows in Fig. 23. For the membership query of the
guarded word(a, 1 ≤ xa ≤ 3), the assistant performs the
membership queries for the following timed words:(a, 0),
(a, 1), (a, 2), (a, 3), and (a, 4). According to the results
from the Teacher, the assistant finds that1 ≤ xa ≤ 3
is not the sharpest guard [16] for eventa (the sharpest
guard isxa = 1). Thus, the assistant answers “no” to the
learner for the guarded word(a, 1 ≤ xa ≤ 3). The final
closed observation table is as shown in Fig. 23, and the
final learned ERA is as shown in Fig. 10 (b).

From the example, we can observe that the number
of membership queries increases exponentially toK, the
maximum constant [16]. If we changeK from 3 to 1000
in this example, Grinchstein et al.’s TL∗sg algorithm requires
a huge number of membership queries, which makes it
unsuitable to be used in compositional verification setting.
This is because the learning problem in the context of
compositional verification is not as difficult as that in [16].
In our setting of using TL∗ to learn timed assumptions for
AGR, the Teacher can be the most friendly one since the
component models are transparent to model checking.

Gheorghiu et al. [15] used the abstraction-refinement
paradigm [11] to infer the necessary alphabet of the un-
timed assumptionA for AGR. Howar et al. [22] also
used the paradigm on the alphabet for inferring abstract

17

λ (a, xa = 3)
λ 1 0 (s0)

(a, xa = 0) 0 0 (s1)
(a, xa = 1) 1 1 (s2)
(a, xa = 2) 0 0
(a, xa = 3) 0 0
(a, xa ≥ 3) 0 0

(a, 0 ≤ xa ≤ 1) 0 0
(a, 1 ≤ xa ≤ 2) 0 0
(a, 2 ≤ xa ≤ 3) 0 0
(a, 0 ≤ xa ≤ 2) 0 0
(a, 1 ≤ xa ≤ 3) 0 0
(a, 0 ≤ xa ≤ 3) 0 0

(a, xa = 0)(a, xa = 0) 0 0
(a, xa = 0)(a, xa = 1) 0 0
(a, xa = 0)(a, xa = 2) 0 0
(a, xa = 0)(a, xa = 3) 0 0
(a, xa = 0)(a, xa ≥ 3) 0 0

(a, xa = 0)(a, 0 ≤ xa ≤ 1) 0 0
(a, xa = 0)(a, 1 ≤ xa ≤ 2) 0 0
(a, xa = 0)(a, 2 ≤ xa ≤ 3) 0 0
(a, xa = 0)(a, 0 ≤ xa ≤ 2) 0 0
(a, xa = 0)(a, 1 ≤ xa ≤ 3) 0 0
(a, xa = 0)(a, 0 ≤ xa ≤ 3) 0 0

(a, xa = 1)(a, xa = 0) 0 0
(a, xa = 1)(a, xa = 1) 0 0
(a, xa = 1)(a, xa = 2) 0 0
(a, xa = 1)(a, xa = 3) 1 0
(a, xa = 1)(a, xa ≥ 3) 0 0

(a, xa = 1)(a, 0 ≤ xa ≤ 1) 0 0
(a, xa = 1)(a, 1 ≤ xa ≤ 2) 0 0
(a, xa = 1)(a, 2 ≤ xa ≤ 3) 0 0
(a, xa = 1)(a, 0 ≤ xa ≤ 2) 0 0
(a, xa = 1)(a, 1 ≤ xa ≤ 3) 0 0
(a, xa = 1)(a, 0 ≤ xa ≤ 3) 0 0

Fig. 23. Observation Table Constructed by TL∗sg

automata with respect to given concrete behavior such that
determinism is preserved. Our TL∗ algorithm may benefit
from the abstraction refinement paradigm if the alphabet of
the ERA to be learned can be smaller.

7 CONCLUSION AND FUTURE WORK

Assume-guarantee reasoning (AGR) can help to allevi-
ate the state explosion problem. However, constructing
assumptions for AGR usually requires human creativity
and experience. To automate compositional verification for
timed systems, we propose a framework consisting of a
learning algorithm and a timed teacher. The algorithm,
TL∗, automatically learns the timed assumption by asking
membership and candidate queries, and the timed teacher
answers the queries based on the AG-NC proof rule of
AGR. With the proposed framework, compositional ver-
ification for timed systems is fully automated, and the
state explosion problem can be effectively alleviated. In
the future, we plan to extend the TL∗ algorithm with one-
phase learning instead of two phases and to investigate the
differences between them. We also plan to use different
techniques to generate the assumptions as well as to extend
the framework using other proof rules of AGR.

ACKNOWLEDGMENT

We thank Dr. Dimitra Giannakopoulou for her helpful and
constructive suggestions and the anonymous reviewers for
their detailed review comments.

REFERENCES

[1] https://sites.google.com/site/shangweilin/era-pat.
[2] http://www.uppaal.org/.
[3] R. Alur, L. Fix, and T. A. Henzinger. Event-clock automata:

A determinizable class of timed automata.Theoretical Computer
Science, 211(1-2):253–273, 1999.

[4] R. Alur, P. Madhusudan, and W. Nam. Symbolic compositional
verification by learning assumptions. InProceedings of International
Conference on Computer Aided Verification (CAV), volume 3576 of
LNCS, pages 548–562, 2005.

[5] D. Angluin. Learning regular sets from queries and counterexamples.
Information and Computation, 75(2):87–106, 1987.

[6] H. Barringer, D. Giannakopoulou, and C. S. Păsăreanu.Proof
rules for automated compositional verification through learning.
In Proceedings of Workshop on Specification and Verification of
Component-Based Systems, pages 14–21, 2003.

[7] M. G. Bobaru, C. S. Păsăreanu, and D. Giannakopoulou. Automated
assume-guarantee reasoning by abstraction refinement. InProceed-
ings of International Conference on Computer Aided Verification
(CAV), volume 5123 ofLNCS, pages 135–148, 2008.

[8] R. E. Bryant. Graph-based algorithms for Boolean function manip-
ulation. IEEE Transactions on Computers, 35(8):677–691, 1986.

[9] S. Chaki and O. Strichman. Optimized L∗-based assume-guarantee
reasoning. InProceedings of International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS),
volume 4424 ofLNCS, pages 276–291, 2007.

[10] E. M. Clarke and E. A. Emerson. Design and sythesis of synchro-
nization skeletons using branching time temporal logic. Inthe Logics
of Programs Workshop, volume 131, pages 52–71, 1981.

[11] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. InProceedings of
International Conference on Computer Aided Verification (CAV),
volume 1855 ofLNCS, pages 154–169, 2000.

[12] E. M. Clarke, D. E. Long, and K. L. McMillan. Compositional
model checking. InProceedings of Symposium on Logic in Computer
Science (LICS), pages 353–362, 1989.

[13] J. M. Cobleigh, D. Giannakopoulou, and C. S. Păsăreanu. Learning
assumptions for compositional verification. InProceedings of Inter-
national Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), volume 2619 ofLNCS, pages
331–346, 2003.

[14] J.M. Cobleigh, G. S. Avrunin, and L. A. Clarke. Breakingup is
hard to do: An investigation of decomposition for assume-guarantee
reasoning. InProceedings of the ACM/SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA), pages 97–
108, 2006.

[15] M. Gheorghiu, D Giannakopoulou, and C. S. Păsăreanu.Refining
interface alphabets for compositional verification. InProceeding of
International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS), volume 4424 ofLNCS, pages
292–307, 2007.

[16] O. Grinchtein, B. Jonsson, and M. Leucker. Learning of event-
recording automata.Theoretical Computer Science, 411(47):4029–
4054, 2010.

[17] O. Grumberg and D. E. Long. Model checking and modular
verification. InCONCUR 1991, volume 527 ofLNCS, pages 250–
265, 1991.

[18] D. Helmbold and D. Luckhan. Debugging Ada tasking programs.
IEEE Software, 2(2):47–57, 1985.

[19] T. A. Henzinger, Z. Manna, and A. Pnueli. Temporal proofmethod-
ologies for timed transition systems.Information and Computation,
112:273–337, 1994.

[20] T. A. Henzinger, S. Qadeer, and S. K. Rajamani. You assume,
we guarantee: Methodology and case studies. InProceedings of
International Conference on Computer Aided Verification (CAV),
volume 1427 ofLNCS, pages 440–451, 1998.

[21] J. E. Hopcroft and J. D. Ullman.Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

[22] F. Howar, B. Steffen, and M. Merten. Automata learning with
automated alphabet abstraction refinement. InProceeding of Inter-
national Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI), volume 6538 ofLNCS, pages 263–277,
2011.

[23] F. Laroussinie and K. G. Larsen. Compositional model checking
of real time systems. InProceedings of International Conference

18

on Concurrency Theory (CONCUR), volume 962 ofLNCS, pages
27–41, 1995.

[24] R. J. Leduc, M. Lawford, and P. C. Dai. Hierarchical interface-
based supervisory control of a flexible manufacturing system. IEEE
Transactions on Control Systems Technology, 14(4):654–668, 2006.

[25] S.-W. Lin, É. André, J. S. Dong, J. Sun, and Y. Liu. An efficient
algorithm for learning event-recording automata. InProceedings of
International Symposium on Automated Technology for Verification
and Analysis (ATVA), volume 6996 ofLNCS, pages 463–472, 2011.

[26] S.-W. Lin and P.-A. Hsiung. Counterexample-guided assume-
guarantee synthesis through learning.IEEE Transactions on Com-
puters, 60(5):734–750, 2011.

[27] S.-W. Lin and P.-A. Hsiung. Model checking prioritizedtimed
systems.IEEE Transactions on Computers, 61(5):843–856, 2012.

[28] S.-W. Lin, P.-A. Hsiung, C. H. Huang, and Y. R Chen. Model
checking prioritized timed automata. InProceedings of International
Symposium on Automated Technology for Verification and Analysis
(ATVA), volume 3707 ofLNCS, pages 370–384, 2005.

[29] S.-W. Lin, Y. Liu, J. Sun, J. S. Dong, and́E. André. Automatic
compositional verification of timed systems. InProceedings of
International Symposium on Formal Methods (FM), volume 7436
of LNCS, pages 272–276, 2012.

[30] W. Nam and R. Alur. Learning-based symbolic assume-guarantee
reasoning with automatic decomposition. InProceedings of Inter-
national Symposium on Automated Technology for Verification and
Analysis (ATVA), volume 4218 ofLNCS, pages 170–185, 2006.

[31] A. Pnueli. In transition from global to modular temporal reasoning
about programs. InLogics and Models of Concurrent Systems, pages
123–144, 1985.

[32] J. P. Queille and J. Sifakis. Specification and verification of
concurrent systems in CESAR. Inthe International Symposium on
Programming, volume 137, pages 337–351, 1982.

[33] M. H. Queiroz, J. E. R. Cury, and W. M. Wonham. Multitasking su-
pervisory control of discrete-event systems.Discrete Event Dynamic
Systems, 15(4), 2005.

[34] R. L. Rivest and R. E. Schapire. Inference of finite automata using
homing sequences.Information and Computation, 103(2):299–347,
1993.

[35] N. Sinha and E. M. Clarke. SAT-based compositional verification
using lazy learning. InProceedings of International Conference on
Computer Aided Verification (CAV), volume 4590 ofLNCS, pages
39–54, 2007.

[36] J. Sun, Y Liu, J. S. Dong, and J. Pang. PAT: Towards flexible verifi-
cation under fairness. InProceedings of International Conference on
Computer Aided Verification (CAV), volume 5643 ofLNCS, pages
709–714, 2009.

[37] Q. Xu, W. P de Roever, and J. He. The rely-guarantee method for
verifying shared variable concurrent programs.Formal Aspects of
Computing, 9(2):149–174, 1997.

Shang-Wei Lin received his Bachelor de-
gree in management information system
from National Chung Cheng University (Tai-
wan) in 2003, and his Ph.D. degree in Com-
puter Science and Information Engineering
from National Chung Cheng University in
2010. From 2011 to 2012, he was a research
fellow in School of Computing, National Uni-
versity of Singapore (NUS). Currently, he is
a research scientist in Temasek Laboratories
at NUS. His research interests include formal

verification, formal synthesis, scheduling, embedded software syn-
thesis and verification, and component-based object-oriented appli-
cation frameworks for real-time embedded systems. More details can
be found at https://www.sites.google.com/site/shangweilin/.

Étienne Andr é received his Master de-
gree (with honors) from the Université de
Rennes 1 (France) in 2007, and his Ph.D.
degree in computer science from École Nor-
male Supérieure de Cachan (France) in
2010. He was then a research fellow in
Prof. Dong Jin Song’s team in the National
University of Singapore for 9 months. Since
September 2011, he has been an Associate
Professor in the Laboratoire d’Informatique
de Paris Nord, in the University of Paris 13

(Sorbonne Paris Cité) in France. His current research interests
include the specification and verification of real-time concurrent sys-
tems. More details about his information and research background
can be found at http://lipn.univ-paris13.fr/∼andre/.

Yang Liu graduated in 2005 with a Bachelor
of Computing in the National University of
Singapore (NUS). In 2010, he obtained his
Ph.D. and continued with his post doctoral
work in NUS. Since 2012, he joined Nanyang
Technological University as an Assistant Pro-
fessor. His research focuses on software en-
gineering, formal methods and security. Par-
ticularly, he specializes in software verifica-
tion using model checking techniques. This
work led to the development of a state-of-the-

art model checker, Process Analysis Toolkit.

Jun Sun received Bachelor and Ph.D. de-
grees in computing science from National
University of Singapore (NUS) in 2002 and
2006. In 2007, he received the prestigious
LEE KUAN YEW postdoctoral fellowship in
School of Computing of NUS. Since 2010,
he joined Singapore University of Technol-
ogy and Design (SUTD) as an Assistant
Professor. He was a visiting scholar at MIT
from 2011-2012. Jun’s research focuses on
software engineering and formal methods, in

particular, system verification and model checking. He is the co-
founder of the PAT model checker.

Jin Song Dong received Bachelor and Ph.D.
degrees in Computing from University of
Queensland in 1992 and 1996. From 1995-
1998, he was Research Scientist at CSIRO
in Australia. Since 1998 he has been in the
School of Computing at the National Univer-
sity of Singapore (NUS) where he is currently
Associate Professor and a member of PhD
supervisors at NUS Graduate School. He
is on the editorial board of Formal Aspects
of Computing and Innovations in Systems

and Software Engineering. His research interests include formal
methods, software engineering, pervasive computing and semantic
technologies.

