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Primitive recursion

A first order structure for unary numbers
I Nat = 〈0, suc 〉

is a set of data objects defined by
I O is a number of Nat
I if n is a number, then suc (n) is a number of Nat

Semantics

JNatK = N

Primitive recursion over Nat

f (0, x) = g(x)

f (suc (n), x) = h(n, x , f (n, x))
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Primitive recursion on Words

A first order structure for binary words

Word = 〈ε, 0, 1〉

is a set of data objects defined by
I ε is a word of Word
I if u is a word, then 0(u) and 1(u) are words of Word

Semantics

JWord K = {0, 1}∗
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Primitive recursive functions on Words
The class of primitive recursive functions over Word
contains

I Constructors of Word

x 7→ ε x 7→ 0(x) x 7→ 1(x)

I Projections : πi(x1, . . . , xn) = xi

is closed under
I Composition

f (x) = h(g1(x), . . . , gk (x))

where x = x1, . . . , xn
I and Primitive recursion over Word

f (ε, x) = g(x)

f (0(w), x) = h0(w , x , f (w , x))

f (1(w), x) = h1(w , x , f (w , x)) x = x1, . . . , xn

I recurrence parameter : w
I recursive call : f (w , x)
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Word concatenation or addition

Example

add (ε, x) = x

add (0(w), x) = 0(add (w , x))

add (1(w), x) = 1(add (w , x))

Jadd K : ({0, 1}∗)2 7→ {0, 1}∗

add (1(0(ε)), v) = 1(0(v))
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Primitive recursion on an arbitrary structure Σ

A first order structure Σ = 〈a1, . . . , an, b1, . . . , bm〉
Primitive recursion over Σ

f (ai , x) = gi(x) i = 1, n

f (bj(w1, . . . , wn), x) = hj(w , x , f (w1, x), . . .

. . . , f (wn, x)) j = 1, m

Theorem
The class of primitive recursive functions over Σ is exactly
the set of primitive recursive functions over natural
numbers.
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Bounded recursion

I G0 is the class containing zero, suc., projections and
closed under composition and bounded recursion:

f (0, x) = g(x)

f (suc (t), x) = h(t , x , f (t , x))

f (t , x) ≤ k(t , x) for k is in G0
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Grzegorczyk Hierarchy

E0(x , y) = x + y E1(x) = x2 + 1

En+2(0) = 2 En+2(x + 1) = En+1(En+2(x))

I Gn+1 is the class containing zero, suc , projections,
En and closed under composition and bounded
recursion:

f (0, x) = g(x)

f (suc (t), x) = h(t , x , f (t , x))

f (t , x) ≤ k(t , x) for k is in Gn+1

Theorem
The union ∪nGn is the class of P.R. functions.

I G3 is the class of elementary functions (Kalmar)
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PTIME

Definition
PTIME is the set of functions which are computed in
polynomial time with a Turing machine.

I PTIME computationally tractable problems, Cook’s
thesis

I All reasonable formalizations of the intuitive notion of
tractable computability are equivalent within a
polynomial bounded overhead

I Polynomial-time Turing machines computability
capture all tractable functions.
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Bounded recursion overs words
The class L contains

I Constructors of Word

x 7→ ε x 7→ 0(x) x 7→ 1(x)

I Projections : πi(x1, . . . , xn) = xi

I The smash function x#y = 2|x |·|y | where |x | is the
length of x .

and is closed under
I composition
I and bounded recursion

f (ε, x) = g(x)

f (0(t), x) = h(t , x , f (t , x))

f (1(t), x) = h(t , x , f (t , x))

f (t , x) ≤ k(t , x) k is in L
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Cobham’s Characterization of Ptime

f (ε, x) = g(x)

f (0(t), x) = h(t , x , f (t , x))

f (1(t), x) = h(t , x , f (t , x))

f (t , x) ≤ k(t , x) k is in L

Based on Ritchies’s work:

Theorem (Cobham (65))
The class L is exactly the class of PTIME of functions
which are computable in Polynomial time.
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Bounded recursion as a complexity model

I A lof of characterizations of complexity classes follow
the Cobham’s idea. See the survey of Clote.

I Polynomial resource bound is inside the L’s
formalization

I Not intrinsic : Separate resources from algorithms
I Applications

I Difficult to show that a program is PTIME
I Difficult to extract complexity bounds
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P.R. Global functions

I Interpret JNatK = {0, . . . , n}
I See f is a primitive recursive schema
I Define Jf Kn as the interpretation of f over {0, . . . , n}

where

suc (m) =

{
m + 1 if m < n

n if n = m

A global function F is defined from a primitive recursive
schema f

F (n, x) = Jf Kn(x) xi ≤ n

Theorem (Gurevich)
The set of global functions is exactly the set of
LOGSPACE functions
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P.R. Global functions and PTIME

I Sazonov and Gurevich characterize PTIME using
the Herbrand-Gödel equations over finite structures.

I Jones characterizes PTIME using cons-free while
language.
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Domains with two colors

Two first order structures for binary words

Word = 〈ε, 0, 1〉 Normal

Word = 〈ε, 0, 1〉 Safe

Functions over domains with colors :

Jf K : JWord Kp × JWord Kq → JWord K
x , y → f (x ; y)

Note the semicolon ; separates arguments
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Safe Composition and Recursion

I safe composition

f (x ; y) = g(h1(x ; ); h2(x ; y))

I safe recursion

f (ε, x ; y) = g(x ; y)

f (0(z), x ; y) = h0(z, x ; f (z, x ; y), y)

f (1(z), x ; y) = h1(z, x ; f (z, x ; y), y)

Recursive calls are safe !!
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Data ramification

Data Ramification implies

Word > Word

because

f (x ; ) = g(; I(x ; )) Safe comp

I(x ; ) = x projection

But the converse does not hold !!
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Safe Recursive functions

The class B of safe recursive functions contains
Safe basic functions

I Constructors : x 7→ ε, x 7→ 0(; x), and x 7→ 1(; x)

I Predecessor : p(; ε) = ε, p(; i(; x)) = x

I Conditional : C(; x , y , z) =

{
y if x = 0(x ′)

z otherwise

I Projections : πi(x1, . . . , xn; xn+1, . . . , xn+m) = xi

and is closed
I safe composition
I safe recursion
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Examples

Concatenation or addition :

add (ε; x) = x

add (0(w); x) = 0(; add (w ; x))

add (1(w); x) = 1(; add (w ; x))

Multiplication by iterating addition

mul (ε, y ; ) = ε

mul (0(v), y ; ) = add (y ; mul (v , y ; ))

mul (1(v), y ; ) = add (y ; mul (v , y ; ))
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Characterizations of PTIME

Theorem (Bellantoni-Cook)
The set PTIME of functions which are computable in
polynomial time is exactly the class B of safe recursive
functions.

I Simmons (88) was the first to suggest this
data-separation for primitive recursion.
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Exponential is not safe !

Double length function is safe

double (ε; ) = ε

double (0(w); ) = 1(; 1(; double (w ; )))

double (1(w); ) = 1(; 1(; double (w ; )))

Exponential by doubling is not safe

exp (ε; ) = 1(ε)

exp (0(v); ) = double (exp (v ; ))

exp (1(v); ) = double (exp (v ; ))

The recursive call exp (v ; ) should be safe. But double
requires a normal argument.
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A well-known Escher drawing to make a break

f : Word (n + 1)→Word (n)
Analysis of the energy of arguments in recursive

definitions



Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Domains is stratified by tiers

Word (k)

Word (1) Recursion
0, 1 : Word (1)→Word (1) and ε : Word (1)

Word (0)

Domain of words of tier k
0, 1 : Word (k)→Word (k) and ε : Word (k)

No recursion - flat domain
0, 1 : Word (0)→Word (0) and ε : Word (0)

Refer to the same set of words, JWord (k)K = {0, 1}∗
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Tiered recursion

f (ε, y) = g(y)

f (0(x), y) = h0(x , y , f (x , y))

f (1(x), y) = h1(x , y , f (x , y))

g : Word (m)→Word (n)

hi : Word (n + 1)→Word (m)→Word (n)→Word (n)

f : Word (n + 1), Word (m)→Word (n)

Tier of Recurrence param. > Tier of the recursive calls

Now the inputs and outputs have colors.

Keep that in mind !!!
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Addition and Multiplication

Concatenation or addition :

add (ε, x) = x

add (0(w), x) = 0(add (w , x))

add (1(w), x) = 1(add (w , x))

add : Word (n + 1)→Word (n)→Word (n)

Multiplication by iterating addition

mul (ε, y) = ε

mul (0(v), y) = add (y , mul (v , y))

mul (1(v), y) = add (y , mul (v , y))

mul : Word (n + 1)→Word (n + 1)→Word (n)
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Down casting

cast (ε) = ε

cast (0(w)) = 0(cast (w))

cast (1(w)) = 1(cast (w))

cast : Word (n + 1)→Word (n)

But up-casting is forbidden !
⇒ strict data ramification

. . . > Word (k+1) > Word (k) > . . . > Word (1) > Word (0)
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Flat recurrence
Special case of tiered recursion where there is no
recursive call

f (ε, y) = g(y)

g : Word (n)→Word (n)

f (0(x), y) = h0(x , y)

hi : Word (n)→Word (n)→Word (n)

f (1(x)), y) = h1(x , y)

f : Word (n)→Word (n)→Word (n)

pred (ε) = ε pred (0(x), y) = x

pred (1(x), y) = x

cond (ε, y , z, w) = w cond (0(x), y , z, w) = y

cond (1(x), y , z, w) = z
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Simultaneous tiered recursion

f0(ε, y) = g0(y) . . . fp(ε, y) = gp(y)

f0(0(x), y) = h0(x , y , f0(x , y), . . . , fp(x , y))

f0(1(x), y) = h′
0(x , y , f0(x , y), . . . , fp(x , y))

. . .

fp(0(x), y) = h0(x , y , f0(x , y), . . . , fp(x , y))

fp(1(x), y) = h′
0(x , y , f0(x , y), . . . , fp(x , y))

where

gi : Word (i)→Word (j)

hi , h′
i : Word (k + 1)→Word (i)→Word (j)p →Word (j)

fi : Word (k + 1)→Word (i)→Word (j)

Tiering condition implies

k + 1 ≥ i > j
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Characterization of PTIME

Definition
The class TRec∗(Word ) is the set of functions defined by
simultaneous tiered recursion and explicit definitions
(projections and composition well typed).

Theorem (Leivant 94)
The three sets are identical

I The set PTIME of functions computable in
polynomial time.

I The set TRec∗(Word ) using any tiers
I The set TRec∗(Word ) using 2 tiers only

Proof.
We are going to sketch it shortly.
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Another look at the exponential

Double the length

double (ε) = ε

double (0(w)) = 1(1(double (w)))

double (1(w)) = 1(1(double (w)))

double : Word (n + 1)→Word (n)

Exponential by doubling

exp (ε) = 1(ε)

exp (0(w)) = double (exp (w))

exp (1(w)) = double (exp (w))

exp : Word (k + 1)→Word (k)

No solution, this definition is circular !!!
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Tiered recursion captures PTIME

Take a Turing Machine M,
I q is a state
I u the left tape
I v the right tape
I the head is scanning the first letter of u

state (q, u, v) = next state

left (q, u, v) = left side of the tape

right (q, u, v) = right side of the tape

build by explicit definitions

state , left , right : Word (0)3 →Word (0)
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Linear length Iteration

T S
1 (ε, q, u, v) = q

T L
1 (ε, q, u, v) = u

T R
1 (ε, q, u, v) = v

T S
1 (i(t), q, u, v) = state (T S

1 (t , q, u, v),

T L
1 (t , q, u, v), T R

1 (t , q, u, v))

T L
1 (i(t), q, u, v) = left (T S

1 (t , q, u, v),

T L
1 (t , q, u, v), T R

1 (t , q, u, v))

T R
1 (i(t), q, u, v) = right (T S

1 (t , q, u, v),

T L
1 (t , q, u, v), T R

1 (t , q, u, v))
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Linear length Iteration

T S
1 , T L

1 , T R
1 : Word (1)→Word (0)3 →Word (0)

JT S
1 (t , q, u, v)K = state after t steps

JT L
1 (t , q, u, v)K = left tape after t steps

JT R
1 (t , q, u, v)K = right tape after t steps

We make k nested simultaneous recursion to iterate nk

times
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Polynomial length iteration

T S
k+1(ε, q, u, v) = q T L

k+1(ε, q, u, v) = u T R
k+1(ε, q, u, v) = v

T S
k+1(i(t), t , q, u, v) = T S

k (t , T S
k (t , q, u, v , ),

T L
k (t , q, u, v), T R

k (t , q, u, v))

T L
k+1(i(t), t , q, u, v) = T L

k (t , T S
k (t , q, u, v , ),

T L
k (t , q, u, v), T R

k (t , q, u, v))

T R
k+1(i(t), t , q, u, v) = T R

k (t , T S
k (t , q, u, v , ),

T L
k (t , q, u, v), T R

k (t , q, u, v))

where t = t , tk , . . . , t1

T S
k+1, T L

k+1, T R
k+1 : Word (1)k+1 →Word (0)3 →Word (0)
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Simulation of PTIME computation

Lemma
A polynomial time computable function
φ : {0, 1}∗ → {0, 1}∗ is captured by a function in
TRec∗(Word ) using 2 tiers only

Proof.
Suppose that Φ is computed by a TM in time nk .

φ(w) = T R
k (w , . . . , w , q0, w , ε)

where

JT S
k (w , q, u, v)K = state after |w |k steps

JT L
k (w , q, u, v)K = left tape after |w |k steps

JT R
k (w , q, u, v)K = right tape after |w |k steps
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Computation of tiered recursion

Lemma
For any tier 1 arguments u1, . . . , up, and tier 0 arguments
v1, . . . , vq, the computation of f (u1, . . . , up, v1, . . . , vq) runs
in time bounded by c × (

∑
i=1,p |ui |)k .
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Proof

f (ε, y ; z) = g(y ; z)

f (0(x), y ; z) = h0(x , y ; z, f (x , y ; z))

f (1(x), y ; z) = h1(x , y ; z, f (x , y ; z))

f : Word (1), Word (1), Word (0)→Word (0)

I Ind. Hyp applies to g and hi

I So, g runs within a time bounded by a polynomial in tier 1
inputs

Time(g(v ; w)) ≤ |v |k
′

I So, the run time of hi is polynomial in tier 1 inputs

Time(hi(u′, v ; w , w ′)) ≤ (|u′|+ |v |)k ′′

I f (u, v , w) is computed by iterating |u| times hi ’s

Time(f (u, v , w)) ≤ |u| × (|u|+ |v |)k ′′
+ |v |k

′

≤ (|u|+ |v |)k ′+k ′′
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Church-numerals

n = λf :α→ α λx :α, f n(x)

where f 0(x) = x and f k+1(x) = f (f k (x))

n :N(α) = (α→ α)→ (α→ α)

Successor :

suc = λn :N(α) λf :α→ α λx :α, f (n f x)

0 = λfλx , x n + 1 = (suc n)
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Church numeral arithmetic

(add n m) = λfλx , (n f (m f x))

add :N(α)→ N(α)→ N(α)

Jadd K(n, m) = n + m

(mul n m) = λfλx , (n (m f ) x)

mul :N(α)→ N(α)→ N(α)

Jmul K(n, m) = n ×m

But

(exp n) = (n 2)

exp :N(α→ α)→ N(α)

Jexp K(n) = 2n
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Extended polynomials

Definition
A function φ :N→ N is Church-representable if there is a
λ-term F such that

(Fn) = φ(n)

F : N(α)→ N(α)

I Exponential is not Church-representable

Theorem (Schwichtenberg)
The set of Church-representable functions is the set of
extended polynomials ( = polynomials + test if n = 0).
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Church representation of first order structures

W(α) = (α→ α)→ (α→ α)→ (α→ α)

ε = λf0λf1λx , x

1 = λuλf0λf1λx , f0(uf0f1x)

0 = λuλf0λf1λx , f1(uf0f1x)

0(u) = (0 u) 1(u) = (1 u)

W(α) = (α→ α)→ (α→ α)→ (α→ α)

u : W(α)

Böhm and Berarducci (85)
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Two levels of data representations

Abstract level : λuλf0λf1λx , f0(f0(f1x))

Data level : 0(0(1(ε)))

I Abstract level⇒ Data Level
I But the converse does not hold
I Data ramification principle !
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λ-calculus over Word ∗

Atomic types : Word and Word ∗

Constructors :

ε :Word 0 , 1 :Word →Word

nil :Word ∗ cons :Word →Word ∗ →Word ∗
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λ-calculus over Word ∗
Destructors:

pred (ε) = ε pred (0(u)) = u pred (1(u)) = u

cond (u, a, b, c) =


a u = ε

b u = 0(u)

c u = 1(u)

hd(nil ) = nil hd(cons (u, L)) = u

tl(nil ) = nil tl(cons (u, L)) = L

cond (L, a, b) =

{
a u = nil

b otherwise
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Church representation of algebra terms

Definition
1λp(Word ∗) is the class of terms of simply typed
λ-calculus with constructors and destructors over Word ∗

Definition
A function Φ:{0, 1}∗ → {0, 1}∗ is computed by a λ-term F
of 1λp(Word ∗) if F (w) = φ(w) where
f :W(Word ∗)→Word ∗.

Theorem (Leivant-Marion)
The set of functions computed by 1λp(Word ∗)-terms is
exactly the set PTIME of polynomial time functions.
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Parallel Register Machines (PRM)

1. a finite set S = {s0, s1, . . . , sk} of states

2. a finite list Π = {π1, . . . , πm} of registers
3. and commands

I [Succ (π = i(π), s′)], [Pred(π = p(π), s′)],
I [Branch (π, s′, s′′)],
I [Fork min(s′, s′′)], [Fork max(s′, s′′)],
I [End ].
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(PRM)

eval (0, s,Π) =⊥

cmd(s) = πj = i(πj) and the next state is s′

eval (t + 1, s,Π) = eval (t , s′, {π ← i(π)}Π)

cmd(s) = pred (π)

eval (t + 1, s,Π) = eval (t , s′, {π ← p(π)}Π)

cmd(s) = Branch (π, s′, s′′)

eval (t + 1, s,Π) =

{
eval (t , s′,Π) if π = 0(w)

eval (t , s′′,Π) if π = 1(w)
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PRM

And the Fork
cmd(s) = Fork min(s′, s′′)

eval (t + 1, s,Π) = min
J

(eval (t , s′,Π), eval (t , s′′,Π))

cmd(s) = Fork max(s′, s′′)

eval (t + 1, s′,Π) = max
J

(eval (t , s′,Π), eval (t , s′′,Π))

where J is the lexicographic order on words.

eval (t + 1, End ,Π) =Π(OUTPUT)
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PRM

A function φ : {0, 1}∗ → {0, 1}∗ is PRM-computable in
time T : N→ N if there is a PRM M such that for each
(w1, · · · , wk ) ∈Wk , we have

eval (T (|w |), BEGIN, F0) = φ(w)

Time-bound semantics

eval : N× S ×Wm 7→W
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Trade-off between time and space

Theorem
The following are equivalent

1. φ is computable in polynomial space

2. φ is computable in non-deterministic polynomial
space

3. φ is computable in polynomial time on Alternating
Turing Machine

4. φ is computable in polynomial time on PRM

Proof.
See Chandra, Kozen, Stockmeyer and Savitch
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Tiered recursion with substitutions

f (ε, y) = g(y)

f (0(x), y) = h0(x , y , f (x , σ1(y)), . . . , f (x , σk (y)))

f (1(x), y) = h1(x , y , f (x , σ′
1(y)), . . . , f (x , σ′

k (y)))

σi , σ
′
i : Word (m)→Word (n)

g : Word (m)→Word (n)

hi : Word (n + 1)→Word (m)→Word (n)→Word (n)

σj , σ
′j : Word (m)→Word (m)

f : Word (n + 1), Word (m)→Word (n)
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Characterization of PSPACE

Definition
The class Sub(Word ) is the set of functions defined by
tiered recursion with substitutions and explicit definitions
(projections and composition).

Theorem (LM95)
The three sets are identical

I The set PSPACE of functions computable in
polynomial space

I The set Sub(Word ) using any tiers
I The set Sub(Word ) using 3 tiers only

Proof.
We are going to sketch it shortly.
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Simulating PSPACE
Lemma
A polynomial time PRM computable function
φ : {0, 1}∗ → {0, 1}∗ is captured by a function in
Sub(Word ) using 3 tiers only

Proof.
eval is defined by rec. with substitution of parameters:
cmd(s) = Fork min(s′, s′′)

eval (t + 1, s,Π) = min
J

(eval (t , δ0(s),Π), eval (t , δ1(s),Π))

where

δ0(s) = s′

δ1(s) = s′′

eval : Word (1)→Word (0)m →Word (0)
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Simulating PSPACE

Define a polynomial time clock T : Word (2)→Word (1)
by composing tiered addition and multiplication that we
have already seen.

φ(w) = eval (T (|w |), BEGIN, F0)
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Computation in PSPACE

Lemma
A function φ in Sub(Word ) using 3 tiers only is computed
in space O(nk ) + m for some k

I n is the size of tier 2 and 1 arguments
I m is the size of tier 0 arguments
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Other tiered characterizations of low
complexity classes

I NC1 ≡ A-LOG-TIME
I Bloch (94),
I Leivant-Marion (00)

I NCk

I Bonfante, Kähle, Marion, Oitavem (06),
I NC

I Leivant (98),
I Oitavem (04)

I NP
I Bellantoni (94)

I FPSPACE ≡ A-POLY-TIME
I Leivant-Marion (95)
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Computing over a structure K

A computational structure

K = 〈K, {opi}i∈I , rel1 . . . , rel`,=, 0, 1〉

I A domain K
I operators {opi}i∈I over K
I relations rel1, . . . , rell
I the equality over K
I two particular constants 0 and 1

K∗ denotes lists of elements of K.
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Blum-Shub-Smale machine over K

Similar to a Turing machine, with the properties:
I Its tape cells hold arbitrary elements of K.
I It has Computation nodes for computing the

operations {opi}i∈I with unit cost.
I It has Branch nodes for computing the relations

rel1, . . . , rell with unit cost.
I It has Shift nodes for moving the head.
I Inputs and outputs are vectors in K∗

A TM computes a function from K∗ to K∗.

K∗ denotes lists of elements of K.
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Polynomial time functions over K

Definition
A function f : (K∗)n → (K∗)m is in class PTIMEK
iff
f is computable in polynomial time.
That is,
there is a polynomial p and a BSS-TM M, such that

I M computes f
I M stops in p(|w |) steps on each input w of K∗.

|w | is the length of the list w ∈ K∗.
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Complexity Theory over K

I Over the structure B = ({0, 1},=, 0, 1),
we compute f : {0, 1}∗ → {0, 1}∗,
corresponds to classical complexity and
PTIMEB = PTIME.

I Over the structure R = (R,+,−, ∗, /, >,=, 0, 1)
corresponds to the original Blum Shub and Smale
(89) paper.
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Safe Recursion over a structure K

Two types of arguments,“normal”and “safe”

f (x ; y)

The set of safe recursive functions over K is the smallest
set of functions containing basic safe functions

I structure operators and relations
I projections
I list destructors : hd and tl
I list constructor : cons
I Boolean selection : if x = 1 then y else z
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Basic functions

I hd(; a.x) = a, tl(; a.x) = x , cons(; a.x , y) = a.y
I Projections
I Application of operators and relations

Opı(; a1.x1, . . . , anı .xnı) = (opı(a1, . . . , anı)).xnı

Relı(; a1.x1, . . . , anı .xnı) =

{
1 if relı(a1, . . . , anı)
ε otherwise

I Test

Select(; x , y , z) =

{
y if hd(x) = 1
z otherwise
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Safe Recursive functions over K

and closed under both schemas
I safe composition

f (x ; y) = g(h1(x ; ); h2(x ; y))

I safe recursion

f (ε, x ; y) = g(x ; y)

f (a.z, x ; y) = g(z, x ; f (z, x ; y), y)
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Polynomial time functions PTIMEK

Theorem (Bournez-Cucker-de Naurois-Marion (03))
Over any structure K, the set of safe recursive functions
over K is exactly PTIMEK.

Proof.
This proof implies Bellantoni and Cook’s one and is more
direct.
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About space

A priori, there is no valid notion of space over arbitrary
structures.

Theorem (Michaux)
Over (R+, 0, 1,=,+,−, ∗, <), any computable function
can be computed in constant working space.

But, Paulin de Naurois gives a logarihmic cost, see his
talk at the ICC workshop next week !
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The class FPARK

FPARK is the set of functions computable in parallel
poly-time.
That is, by a P-uniform family of circuits of polynomial
depth.

Theorem (Bournez-Cucker-deNaurois-Marion (04))
A function: K∗ → K∗ is computed in FPARK if and only if
it is defined as a safe recursive function with substitutions
over K.
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What we’ve seen

I Data Ramification Principle
1. Normal/Safe recursions
2. Tiering
3. Simply typed λ-calculus

I Characterizations of PTIME and PSPACE
I Capture Turing Machine over arbitrary structures
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Conclusion

I Intrinsic characterizations
I “resource” is inside Data Ramification Principle
I Syntactic complexity characterization

I we may extract bound,
I but, low algorithmic expressiveness

I quite robust wrt model of computations

I Can we apply data ramification to other models of
computation ?

I Studying intentional characterization of complexity
classes.

I Developing automatic resource analysis by mean of
static analysis.
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