
Ramification

Jean-Yves Marion

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Ramification

Jean-Yves Marion

Ecole nationale supérieure des Mines de Nancy
Loria-INPL

February, 6th 2006

Ramification

Jean-Yves Marion

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Outline

Primitive recursion over arbitrary first order structures
Bounded recursion

Polynomial time computation

Data Ramification
Safe recursion
Tiering as a recursion technique
Church numeral as a tiered numeration

What’s about space ?

Other classes

Computing over an arbitrary structures

A first conclusion

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Primitive recursion

A first order structure for unary numbers
I Nat = 〈0, suc 〉

is a set of data objects defined by
I O is a number of Nat
I if n is a number, then suc (n) is a number of Nat

Semantics

JNatK = N

Primitive recursion over Nat

f (0, x) = g(x)

f (suc (n), x) = h(n, x , f (n, x))

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Primitive recursion on Words

A first order structure for binary words

Word = 〈ε, 0, 1〉

is a set of data objects defined by
I ε is a word of Word
I if u is a word, then 0(u) and 1(u) are words of Word

Semantics

JWord K = {0, 1}∗

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Primitive recursive functions on Words
The class of primitive recursive functions over Word
contains

I Constructors of Word

x 7→ ε x 7→ 0(x) x 7→ 1(x)

I Projections : πi(x1, . . . , xn) = xi

is closed under
I Composition

f (x) = h(g1(x), . . . , gk (x))

where x = x1, . . . , xn
I and Primitive recursion over Word

f (ε, x) = g(x)

f (0(w), x) = h0(w , x , f (w , x))

f (1(w), x) = h1(w , x , f (w , x)) x = x1, . . . , xn

I recurrence parameter : w
I recursive call : f (w , x)

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Word concatenation or addition

Example

add (ε, x) = x

add (0(w), x) = 0(add (w , x))

add (1(w), x) = 1(add (w , x))

Jadd K : ({0, 1}∗)2 7→ {0, 1}∗

add (1(0(ε)), v) = 1(0(v))

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Primitive recursion on an arbitrary structure Σ

A first order structure Σ = 〈a1, . . . , an, b1, . . . , bm〉
Primitive recursion over Σ

f (ai , x) = gi(x) i = 1, n

f (bj(w1, . . . , wn), x) = hj(w , x , f (w1, x), . . .

. . . , f (wn, x)) j = 1, m

Theorem
The class of primitive recursive functions over Σ is exactly
the set of primitive recursive functions over natural
numbers.

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Bounded recursion

I G0 is the class containing zero, suc., projections and
closed under composition and bounded recursion:

f (0, x) = g(x)

f (suc (t), x) = h(t , x , f (t , x))

f (t , x) ≤ k(t , x) for k is in G0

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Grzegorczyk Hierarchy

E0(x , y) = x + y E1(x) = x2 + 1

En+2(0) = 2 En+2(x + 1) = En+1(En+2(x))

I Gn+1 is the class containing zero, suc , projections,
En and closed under composition and bounded
recursion:

f (0, x) = g(x)

f (suc (t), x) = h(t , x , f (t , x))

f (t , x) ≤ k(t , x) for k is in Gn+1

Theorem
The union ∪nGn is the class of P.R. functions.

I G3 is the class of elementary functions (Kalmar)

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

PTIME

Definition
PTIME is the set of functions which are computed in
polynomial time with a Turing machine.

I PTIME computationally tractable problems, Cook’s
thesis

I All reasonable formalizations of the intuitive notion of
tractable computability are equivalent within a
polynomial bounded overhead

I Polynomial-time Turing machines computability
capture all tractable functions.

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Bounded recursion overs words
The class L contains

I Constructors of Word

x 7→ ε x 7→ 0(x) x 7→ 1(x)

I Projections : πi(x1, . . . , xn) = xi

I The smash function x#y = 2|x |·|y | where |x | is the
length of x .

and is closed under
I composition
I and bounded recursion

f (ε, x) = g(x)

f (0(t), x) = h(t , x , f (t , x))

f (1(t), x) = h(t , x , f (t , x))

f (t , x) ≤ k(t , x) k is in L

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Cobham’s Characterization of Ptime

f (ε, x) = g(x)

f (0(t), x) = h(t , x , f (t , x))

f (1(t), x) = h(t , x , f (t , x))

f (t , x) ≤ k(t , x) k is in L

Based on Ritchies’s work:

Theorem (Cobham (65))
The class L is exactly the class of PTIME of functions
which are computable in Polynomial time.

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Bounded recursion as a complexity model

I A lof of characterizations of complexity classes follow
the Cobham’s idea. See the survey of Clote.

I Polynomial resource bound is inside the L’s
formalization

I Not intrinsic : Separate resources from algorithms
I Applications

I Difficult to show that a program is PTIME
I Difficult to extract complexity bounds

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

References

A. Cobham.
The intrinsic computational difficulty of functions.
In Y. Bar-Hillel, editor, Proc of the Int. Conf. on Logic,
Methodology, and Philosophy of Science, pages
24–30. North-Holland, 1962.

R. Péter.
Recursive Functions,
1966.
Academic Press

R. Ritchie.
Classes of recursive functions based on Ackermann’s
function.
Pacific journal of mathematics, 15(3), 1965.

H.E. Rose.
Subrecursion.
Oxford university press, 1984.

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

P.R. Global functions

I Interpret JNatK = {0, . . . , n}
I See f is a primitive recursive schema
I Define Jf Kn as the interpretation of f over {0, . . . , n}

where

suc (m) =

{
m + 1 if m < n

n if n = m

A global function F is defined from a primitive recursive
schema f

F (n, x) = Jf Kn(x) xi ≤ n

Theorem (Gurevich)
The set of global functions is exactly the set of
LOGSPACE functions

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

P.R. Global functions and PTIME

I Sazonov and Gurevich characterize PTIME using
the Herbrand-Gödel equations over finite structures.

I Jones characterizes PTIME using cons-free while
language.

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

reference
Y. Gurevich.
Algebras of feasible functions.
In FOCS, pages 210–214, 1983.

N. Jones.
LOGSPACE and PTIME characterized by
programming languages.
Theoretical Computer Science, 228:151–174, 1999.

N. Jones.
The expressive power of higher order types or, life
without cons.
Journal of Functional Programming, 11(1):55–94,
2000.

V. Sazonov.
Polynomial computability and recursivity in finite
domains.
Elektronische Informationsverarbeitung und
Kybernetik, 7:319–323, 1980.

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Domains with two colors

Two first order structures for binary words

Word = 〈ε, 0, 1〉 Normal

Word = 〈ε, 0, 1〉 Safe

Functions over domains with colors :

Jf K : JWord Kp × JWord Kq → JWord K
x , y → f (x ; y)

Note the semicolon ; separates arguments

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Safe Composition and Recursion

I safe composition

f (x ; y) = g(h1(x ;); h2(x ; y))

I safe recursion

f (ε, x ; y) = g(x ; y)

f (0(z), x ; y) = h0(z, x ; f (z, x ; y), y)

f (1(z), x ; y) = h1(z, x ; f (z, x ; y), y)

Recursive calls are safe !!

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Data ramification

Data Ramification implies

Word > Word

because

f (x ;) = g(; I(x ;)) Safe comp

I(x ;) = x projection

But the converse does not hold !!

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Safe Recursive functions

The class B of safe recursive functions contains
Safe basic functions

I Constructors : x 7→ ε, x 7→ 0(; x), and x 7→ 1(; x)

I Predecessor : p(; ε) = ε, p(; i(; x)) = x

I Conditional : C(; x , y , z) =

{
y if x = 0(x ′)

z otherwise

I Projections : πi(x1, . . . , xn; xn+1, . . . , xn+m) = xi

and is closed
I safe composition
I safe recursion

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Examples

Concatenation or addition :

add (ε; x) = x

add (0(w); x) = 0(; add (w ; x))

add (1(w); x) = 1(; add (w ; x))

Multiplication by iterating addition

mul (ε, y ;) = ε

mul (0(v), y ;) = add (y ; mul (v , y ;))

mul (1(v), y ;) = add (y ; mul (v , y ;))

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Characterizations of PTIME

Theorem (Bellantoni-Cook)
The set PTIME of functions which are computable in
polynomial time is exactly the class B of safe recursive
functions.

I Simmons (88) was the first to suggest this
data-separation for primitive recursion.

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Exponential is not safe !

Double length function is safe

double (ε;) = ε

double (0(w);) = 1(; 1(; double (w ;)))

double (1(w);) = 1(; 1(; double (w ;)))

Exponential by doubling is not safe

exp (ε;) = 1(ε)

exp (0(v);) = double (exp (v ;))

exp (1(v);) = double (exp (v ;))

The recursive call exp (v ;) should be safe. But double
requires a normal argument.

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

A well-known Escher drawing to make a break

f : Word (n + 1)→Word (n)
Analysis of the energy of arguments in recursive

definitions

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Domains is stratified by tiers

Word (k)

Word (1) Recursion
0, 1 : Word (1)→Word (1) and ε : Word (1)

Word (0)

Domain of words of tier k
0, 1 : Word (k)→Word (k) and ε : Word (k)

No recursion - flat domain
0, 1 : Word (0)→Word (0) and ε : Word (0)

Refer to the same set of words, JWord (k)K = {0, 1}∗

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Tiered recursion

f (ε, y) = g(y)

f (0(x), y) = h0(x , y , f (x , y))

f (1(x), y) = h1(x , y , f (x , y))

g : Word (m)→Word (n)

hi : Word (n + 1)→Word (m)→Word (n)→Word (n)

f : Word (n + 1), Word (m)→Word (n)

Tier of Recurrence param. > Tier of the recursive calls

Now the inputs and outputs have colors.

Keep that in mind !!!

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Addition and Multiplication

Concatenation or addition :

add (ε, x) = x

add (0(w), x) = 0(add (w , x))

add (1(w), x) = 1(add (w , x))

add : Word (n + 1)→Word (n)→Word (n)

Multiplication by iterating addition

mul (ε, y) = ε

mul (0(v), y) = add (y , mul (v , y))

mul (1(v), y) = add (y , mul (v , y))

mul : Word (n + 1)→Word (n + 1)→Word (n)

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Down casting

cast (ε) = ε

cast (0(w)) = 0(cast (w))

cast (1(w)) = 1(cast (w))

cast : Word (n + 1)→Word (n)

But up-casting is forbidden !
⇒ strict data ramification

. . . > Word (k+1) > Word (k) > . . . > Word (1) > Word (0)

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Flat recurrence
Special case of tiered recursion where there is no
recursive call

f (ε, y) = g(y)

g : Word (n)→Word (n)

f (0(x), y) = h0(x , y)

hi : Word (n)→Word (n)→Word (n)

f (1(x)), y) = h1(x , y)

f : Word (n)→Word (n)→Word (n)

pred (ε) = ε pred (0(x), y) = x

pred (1(x), y) = x

cond (ε, y , z, w) = w cond (0(x), y , z, w) = y

cond (1(x), y , z, w) = z

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Simultaneous tiered recursion

f0(ε, y) = g0(y) . . . fp(ε, y) = gp(y)

f0(0(x), y) = h0(x , y , f0(x , y), . . . , fp(x , y))

f0(1(x), y) = h′
0(x , y , f0(x , y), . . . , fp(x , y))

. . .

fp(0(x), y) = h0(x , y , f0(x , y), . . . , fp(x , y))

fp(1(x), y) = h′
0(x , y , f0(x , y), . . . , fp(x , y))

where

gi : Word (i)→Word (j)

hi , h′
i : Word (k + 1)→Word (i)→Word (j)p →Word (j)

fi : Word (k + 1)→Word (i)→Word (j)

Tiering condition implies

k + 1 ≥ i > j

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Characterization of PTIME

Definition
The class TRec∗(Word) is the set of functions defined by
simultaneous tiered recursion and explicit definitions
(projections and composition well typed).

Theorem (Leivant 94)
The three sets are identical

I The set PTIME of functions computable in
polynomial time.

I The set TRec∗(Word) using any tiers
I The set TRec∗(Word) using 2 tiers only

Proof.
We are going to sketch it shortly.

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Another look at the exponential

Double the length

double (ε) = ε

double (0(w)) = 1(1(double (w)))

double (1(w)) = 1(1(double (w)))

double : Word (n + 1)→Word (n)

Exponential by doubling

exp (ε) = 1(ε)

exp (0(w)) = double (exp (w))

exp (1(w)) = double (exp (w))

exp : Word (k + 1)→Word (k)

No solution, this definition is circular !!!

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Tiered recursion captures PTIME

Take a Turing Machine M,
I q is a state
I u the left tape
I v the right tape
I the head is scanning the first letter of u

state (q, u, v) = next state

left (q, u, v) = left side of the tape

right (q, u, v) = right side of the tape

build by explicit definitions

state , left , right : Word (0)3 →Word (0)

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Linear length Iteration

T S
1 (ε, q, u, v) = q

T L
1 (ε, q, u, v) = u

T R
1 (ε, q, u, v) = v

T S
1 (i(t), q, u, v) = state (T S

1 (t , q, u, v),

T L
1 (t , q, u, v), T R

1 (t , q, u, v))

T L
1 (i(t), q, u, v) = left (T S

1 (t , q, u, v),

T L
1 (t , q, u, v), T R

1 (t , q, u, v))

T R
1 (i(t), q, u, v) = right (T S

1 (t , q, u, v),

T L
1 (t , q, u, v), T R

1 (t , q, u, v))

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Linear length Iteration

T S
1 , T L

1 , T R
1 : Word (1)→Word (0)3 →Word (0)

JT S
1 (t , q, u, v)K = state after t steps

JT L
1 (t , q, u, v)K = left tape after t steps

JT R
1 (t , q, u, v)K = right tape after t steps

We make k nested simultaneous recursion to iterate nk

times

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Polynomial length iteration

T S
k+1(ε, q, u, v) = q T L

k+1(ε, q, u, v) = u T R
k+1(ε, q, u, v) = v

T S
k+1(i(t), t , q, u, v) = T S

k (t , T S
k (t , q, u, v ,),

T L
k (t , q, u, v), T R

k (t , q, u, v))

T L
k+1(i(t), t , q, u, v) = T L

k (t , T S
k (t , q, u, v ,),

T L
k (t , q, u, v), T R

k (t , q, u, v))

T R
k+1(i(t), t , q, u, v) = T R

k (t , T S
k (t , q, u, v ,),

T L
k (t , q, u, v), T R

k (t , q, u, v))

where t = t , tk , . . . , t1

T S
k+1, T L

k+1, T R
k+1 : Word (1)k+1 →Word (0)3 →Word (0)

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Simulation of PTIME computation

Lemma
A polynomial time computable function
φ : {0, 1}∗ → {0, 1}∗ is captured by a function in
TRec∗(Word) using 2 tiers only

Proof.
Suppose that Φ is computed by a TM in time nk .

φ(w) = T R
k (w , . . . , w , q0, w , ε)

where

JT S
k (w , q, u, v)K = state after |w |k steps

JT L
k (w , q, u, v)K = left tape after |w |k steps

JT R
k (w , q, u, v)K = right tape after |w |k steps

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Computation of tiered recursion

Lemma
For any tier 1 arguments u1, . . . , up, and tier 0 arguments
v1, . . . , vq, the computation of f (u1, . . . , up, v1, . . . , vq) runs
in time bounded by c × (

∑
i=1,p |ui |)k .

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Proof

f (ε, y ; z) = g(y ; z)

f (0(x), y ; z) = h0(x , y ; z, f (x , y ; z))

f (1(x), y ; z) = h1(x , y ; z, f (x , y ; z))

f : Word (1), Word (1), Word (0)→Word (0)

I Ind. Hyp applies to g and hi

I So, g runs within a time bounded by a polynomial in tier 1
inputs

Time(g(v ; w)) ≤ |v |k
′

I So, the run time of hi is polynomial in tier 1 inputs

Time(hi(u′, v ; w , w ′)) ≤ (|u′|+ |v |)k ′′

I f (u, v , w) is computed by iterating |u| times hi ’s

Time(f (u, v , w)) ≤ |u| × (|u|+ |v |)k ′′
+ |v |k

′

≤ (|u|+ |v |)k ′+k ′′

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Church-numerals

n = λf :α→ α λx :α, f n(x)

where f 0(x) = x and f k+1(x) = f (f k (x))

n :N(α) = (α→ α)→ (α→ α)

Successor :

suc = λn :N(α) λf :α→ α λx :α, f (n f x)

0 = λfλx , x n + 1 = (suc n)

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Church numeral arithmetic

(add n m) = λfλx , (n f (m f x))

add :N(α)→ N(α)→ N(α)

Jadd K(n, m) = n + m

(mul n m) = λfλx , (n (m f) x)

mul :N(α)→ N(α)→ N(α)

Jmul K(n, m) = n ×m

But

(exp n) = (n 2)

exp :N(α→ α)→ N(α)

Jexp K(n) = 2n

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Extended polynomials

Definition
A function φ :N→ N is Church-representable if there is a
λ-term F such that

(Fn) = φ(n)

F : N(α)→ N(α)

I Exponential is not Church-representable

Theorem (Schwichtenberg)
The set of Church-representable functions is the set of
extended polynomials (= polynomials + test if n = 0).

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Church representation of first order structures

W(α) = (α→ α)→ (α→ α)→ (α→ α)

ε = λf0λf1λx , x

1 = λuλf0λf1λx , f0(uf0f1x)

0 = λuλf0λf1λx , f1(uf0f1x)

0(u) = (0 u) 1(u) = (1 u)

W(α) = (α→ α)→ (α→ α)→ (α→ α)

u : W(α)

Böhm and Berarducci (85)

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Two levels of data representations

Abstract level : λuλf0λf1λx , f0(f0(f1x))

Data level : 0(0(1(ε)))

I Abstract level⇒ Data Level
I But the converse does not hold
I Data ramification principle !

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

λ-calculus over Word ∗

Atomic types : Word and Word ∗

Constructors :

ε :Word 0 , 1 :Word →Word

nil :Word ∗ cons :Word →Word ∗ →Word ∗

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

λ-calculus over Word ∗
Destructors:

pred (ε) = ε pred (0(u)) = u pred (1(u)) = u

cond (u, a, b, c) =

a u = ε

b u = 0(u)

c u = 1(u)

hd(nil) = nil hd(cons (u, L)) = u

tl(nil) = nil tl(cons (u, L)) = L

cond (L, a, b) =

{
a u = nil

b otherwise

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Church representation of algebra terms

Definition
1λp(Word ∗) is the class of terms of simply typed
λ-calculus with constructors and destructors over Word ∗

Definition
A function Φ:{0, 1}∗ → {0, 1}∗ is computed by a λ-term F
of 1λp(Word ∗) if F (w) = φ(w) where
f :W(Word ∗)→Word ∗.

Theorem (Leivant-Marion)
The set of functions computed by 1λp(Word ∗)-terms is
exactly the set PTIME of polynomial time functions.

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

References

S. Bellantoni and S. Cook.
A new recursion-theoretic characterization of the
poly-time functions.
Computational Complexity, 2:97–110, 1992.

D. Leivant.
A foundational delineation of poly-time.
Information and Computation, 110(2):391–420, 1994.

D. Leivant and J-Y Marion.
Lambda calculus characterizations of poly-time.
Fundamenta Informaticae, 19(1,2):167,184,
September 1993.

H. Simmons.
The realm of primitive recursion.
Archive for Mathematical Logic, 27:177–188, 1988.

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Parallel Register Machines (PRM)

1. a finite set S = {s0, s1, . . . , sk} of states

2. a finite list Π = {π1, . . . , πm} of registers
3. and commands

I [Succ (π = i(π), s′)], [Pred(π = p(π), s′)],
I [Branch (π, s′, s′′)],
I [Fork min(s′, s′′)], [Fork max(s′, s′′)],
I [End].

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

(PRM)

eval (0, s,Π) =⊥

cmd(s) = πj = i(πj) and the next state is s′

eval (t + 1, s,Π) = eval (t , s′, {π ← i(π)}Π)

cmd(s) = pred (π)

eval (t + 1, s,Π) = eval (t , s′, {π ← p(π)}Π)

cmd(s) = Branch (π, s′, s′′)

eval (t + 1, s,Π) =

{
eval (t , s′,Π) if π = 0(w)

eval (t , s′′,Π) if π = 1(w)

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

PRM

And the Fork
cmd(s) = Fork min(s′, s′′)

eval (t + 1, s,Π) = min
J

(eval (t , s′,Π), eval (t , s′′,Π))

cmd(s) = Fork max(s′, s′′)

eval (t + 1, s′,Π) = max
J

(eval (t , s′,Π), eval (t , s′′,Π))

where J is the lexicographic order on words.

eval (t + 1, End ,Π) =Π(OUTPUT)

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

PRM

A function φ : {0, 1}∗ → {0, 1}∗ is PRM-computable in
time T : N→ N if there is a PRM M such that for each
(w1, · · · , wk) ∈Wk , we have

eval (T (|w |), BEGIN, F0) = φ(w)

Time-bound semantics

eval : N× S ×Wm 7→W

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Trade-off between time and space

Theorem
The following are equivalent

1. φ is computable in polynomial space

2. φ is computable in non-deterministic polynomial
space

3. φ is computable in polynomial time on Alternating
Turing Machine

4. φ is computable in polynomial time on PRM

Proof.
See Chandra, Kozen, Stockmeyer and Savitch

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Tiered recursion with substitutions

f (ε, y) = g(y)

f (0(x), y) = h0(x , y , f (x , σ1(y)), . . . , f (x , σk (y)))

f (1(x), y) = h1(x , y , f (x , σ′
1(y)), . . . , f (x , σ′

k (y)))

σi , σ
′
i : Word (m)→Word (n)

g : Word (m)→Word (n)

hi : Word (n + 1)→Word (m)→Word (n)→Word (n)

σj , σ
′j : Word (m)→Word (m)

f : Word (n + 1), Word (m)→Word (n)

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Characterization of PSPACE

Definition
The class Sub(Word) is the set of functions defined by
tiered recursion with substitutions and explicit definitions
(projections and composition).

Theorem (LM95)
The three sets are identical

I The set PSPACE of functions computable in
polynomial space

I The set Sub(Word) using any tiers
I The set Sub(Word) using 3 tiers only

Proof.
We are going to sketch it shortly.

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Simulating PSPACE
Lemma
A polynomial time PRM computable function
φ : {0, 1}∗ → {0, 1}∗ is captured by a function in
Sub(Word) using 3 tiers only

Proof.
eval is defined by rec. with substitution of parameters:
cmd(s) = Fork min(s′, s′′)

eval (t + 1, s,Π) = min
J

(eval (t , δ0(s),Π), eval (t , δ1(s),Π))

where

δ0(s) = s′

δ1(s) = s′′

eval : Word (1)→Word (0)m →Word (0)

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Simulating PSPACE

Define a polynomial time clock T : Word (2)→Word (1)
by composing tiered addition and multiplication that we
have already seen.

φ(w) = eval (T (|w |), BEGIN, F0)

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Computation in PSPACE

Lemma
A function φ in Sub(Word) using 3 tiers only is computed
in space O(nk) + m for some k

I n is the size of tier 2 and 1 arguments
I m is the size of tier 0 arguments

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Other tiered characterizations of low
complexity classes

I NC1 ≡ A-LOG-TIME
I Bloch (94),
I Leivant-Marion (00)

I NCk

I Bonfante, Kähle, Marion, Oitavem (06),
I NC

I Leivant (98),
I Oitavem (04)

I NP
I Bellantoni (94)

I FPSPACE ≡ A-POLY-TIME
I Leivant-Marion (95)

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Computing over a structure K

A computational structure

K = 〈K, {opi}i∈I , rel1 . . . , rel`,=, 0, 1〉

I A domain K
I operators {opi}i∈I over K
I relations rel1, . . . , rell
I the equality over K
I two particular constants 0 and 1

K∗ denotes lists of elements of K.

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Reference
S. Bellantoni.
Predicative recursion and the polytime hierarchy.
In Peter Clote and Jeffery Remmel, editors, Feasible
Mathematics II, Perspectives in Computer Science.
Birkhäuser, 1994.

S. Bloch.
Function-algebraic characterizations of log and
polylog parallel time.
Computational complexity, 4(2):175–205, 1994.

D. Leivant.
A characterization of NC by tree recurrence.
In 39th Annual Symposium on Foundations of
Computer Science, FOCS’98, pages 716–724, 1998.

D. Leivant and J-Y Marion.
Ramified recurrence and computational complexity II:
substitution and poly-space.
In L. Pacholski and J. Tiuryn, editors, Computer
Science Logic, 8th Workshop, CSL ’94, volume 933
of Lecture Notes in Computer Science, pages
486–500, Kazimierz,Poland, 1995. Springer.

D. Leivant and J-Y Marion.
Predicative functional recurrence and poly-space.
In M. Bidoit and M. Dauchet, editors, TAPSOFT’97,
Theory and Practice of Software Development,
volume 1214 of Lecture Notes in Computer Science,
pages 369–380. Springer, Apr 1997.

D. Leivant and J-Y Marion.
A characterization of alternating log time by ramified
recurrence.
Theoretical Computer Science, 236(1-2):192–208,
Apr 2000.

Isabel Oitavem.
Characterizing NC with tier 0 pointers.
Math. Log. Q., 50(1):9–17, 2004.

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Blum-Shub-Smale machine over K

Similar to a Turing machine, with the properties:
I Its tape cells hold arbitrary elements of K.
I It has Computation nodes for computing the

operations {opi}i∈I with unit cost.
I It has Branch nodes for computing the relations

rel1, . . . , rell with unit cost.
I It has Shift nodes for moving the head.
I Inputs and outputs are vectors in K∗

A TM computes a function from K∗ to K∗.

K∗ denotes lists of elements of K.

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Polynomial time functions over K

Definition
A function f : (K∗)n → (K∗)m is in class PTIMEK
iff
f is computable in polynomial time.
That is,
there is a polynomial p and a BSS-TM M, such that

I M computes f
I M stops in p(|w |) steps on each input w of K∗.

|w | is the length of the list w ∈ K∗.

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Complexity Theory over K

I Over the structure B = ({0, 1},=, 0, 1),
we compute f : {0, 1}∗ → {0, 1}∗,
corresponds to classical complexity and
PTIMEB = PTIME.

I Over the structure R = (R,+,−, ∗, /, >,=, 0, 1)
corresponds to the original Blum Shub and Smale
(89) paper.

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Safe Recursion over a structure K

Two types of arguments,“normal”and “safe”

f (x ; y)

The set of safe recursive functions over K is the smallest
set of functions containing basic safe functions

I structure operators and relations
I projections
I list destructors : hd and tl
I list constructor : cons
I Boolean selection : if x = 1 then y else z

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Basic functions

I hd(; a.x) = a, tl(; a.x) = x , cons(; a.x , y) = a.y
I Projections
I Application of operators and relations

Opı(; a1.x1, . . . , anı .xnı) = (opı(a1, . . . , anı)).xnı

Relı(; a1.x1, . . . , anı .xnı) =

{
1 if relı(a1, . . . , anı)
ε otherwise

I Test

Select(; x , y , z) =

{
y if hd(x) = 1
z otherwise

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Safe Recursive functions over K

and closed under both schemas
I safe composition

f (x ; y) = g(h1(x ;); h2(x ; y))

I safe recursion

f (ε, x ; y) = g(x ; y)

f (a.z, x ; y) = g(z, x ; f (z, x ; y), y)

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Polynomial time functions PTIMEK

Theorem (Bournez-Cucker-de Naurois-Marion (03))
Over any structure K, the set of safe recursive functions
over K is exactly PTIMEK.

Proof.
This proof implies Bellantoni and Cook’s one and is more
direct.

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

About space

A priori, there is no valid notion of space over arbitrary
structures.

Theorem (Michaux)
Over (R+, 0, 1,=,+,−, ∗, <), any computable function
can be computed in constant working space.

But, Paulin de Naurois gives a logarihmic cost, see his
talk at the ICC workshop next week !

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

The class FPARK

FPARK is the set of functions computable in parallel
poly-time.
That is, by a P-uniform family of circuits of polynomial
depth.

Theorem (Bournez-Cucker-deNaurois-Marion (04))
A function: K∗ → K∗ is computed in FPARK if and only if
it is defined as a safe recursive function with substitutions
over K.

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

What we’ve seen

I Data Ramification Principle
1. Normal/Safe recursions
2. Tiering
3. Simply typed λ-calculus

I Characterizations of PTIME and PSPACE
I Capture Turing Machine over arbitrary structures

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

References
O. Bournez, F. Cucker, P.J. de Naurois, and J.Y.
Marion.
Implicit complexity over an arbitrary structure:
Quantifier alternations.
Information and Computation, 204(2):210–230, Feb
2006.

Olivier Bournez, Felipe Cucker, Paulin Jacobé
de Naurois, and Jean-Yves Marion.
Implicit complexity over an arbitrary structure:
Sequential and parallel polynomial time.
Journal of Logic and Computation, 15(1):41–58,
2005.

Paulin Jacobé de Naurois.
Résultats de Complétude et Caractérisations
Syntaxiques de Classes de Complexité sur des
Structures Arbitraires.
PhD thesis, INPL and City university (Hong-Kong),
Dec 2004.
Joint thesis.

Ramification

Primitive recursion
over arbitrary first
order structures
Bounded recursion

Polynomial time
computation

Data Ramification
Safe recursion

Tiering as a recursion
technique

Church numeral as a tiered
numeration

What’s about
space ?

Other classes

Computing over an
arbitrary structures

A first conclusion

Conclusion

I Intrinsic characterizations
I “resource” is inside Data Ramification Principle
I Syntactic complexity characterization

I we may extract bound,
I but, low algorithmic expressiveness

I quite robust wrt model of computations

I Can we apply data ramification to other models of
computation ?

I Studying intentional characterization of complexity
classes.

I Developing automatic resource analysis by mean of
static analysis.

	Primitive recursion over arbitrary first order structures
	Bounded recursion

	Polynomial time computation
	Data Ramification
	Safe recursion
	Tiering as a recursion technique
	Church numeral as a tiered numeration

	What's about space ?
	Other classes
	Computing over an arbitrary structures
	A first conclusion

