Ramification

Jean-Yves Marion

Ecole nationale supérieure des Mines de Nancy Loria-INPL

February, 6th 2006

Polynomial time computation

Data Ramification
Safe recursion
Tiering as a recursion lechnique
Church numeral as a tiered numeration

Outline

Primitive recursion over arbitrary first order structures Bounded recursion

Polynomial time computation
Data Ramification
Safe recursion
Tiering as a recursion technique
Church numeral as a tiered numeration
What's about space ?
Other classes
Computing over an arbitrary structures
A first conclusion

Primitive recursion

A first order structure for unary numbers

- $\mathbf{N a t}=\langle 0, \mathbf{s u c}\rangle$
is a set of data objects defined by
- O is a number of Nat
- if n is a number, then $\operatorname{suc}(n)$ is a number of Nat

Semantics

$$
\llbracket \text { Nat } \rrbracket=\mathbb{N}
$$

Primitive recursion over Nat

$$
\begin{aligned}
f(0, \bar{x}) & =g(\bar{x}) \\
f(\mathbf{s u c}(n), \bar{x}) & =h(n, \bar{x}, f(n, \bar{x}))
\end{aligned}
$$

Primitive recursion over arbitrary first order structures
Bounded recursion

Primitive recursion on Words

A first order structure for binary words

$$
\text { Word }=\langle\epsilon, \mathbf{0}, \mathbf{1}\rangle
$$

is a set of data objects defined by

- ϵ is a word of Word
- if u is a word, then $\mathbf{0}(u)$ and $\mathbf{1}(u)$ are words of Word

Semantics

$$
\llbracket \text { Word } \rrbracket=\{0,1\}^{*}
$$

Primitive recursion over arbitrary first order structures
Bounded recursion

Primitive recursive functions on Words

The class of primitive recursive functions over Word contains

- Constructors of Word

$$
x \mapsto \epsilon \quad x \mapsto \mathbf{0}(x) \quad x \mapsto \mathbf{1}(x)
$$

- Projections: $\pi_{i}\left(x_{1}, \ldots, x_{n}\right)=x_{i}$
is closed under
- Composition

$$
f(\bar{x})=h\left(g_{1}(\bar{x}), \ldots, g_{k}(\bar{x})\right)
$$

where $\bar{x}=x_{1}, \ldots, x_{n}$

- and Primitive recursion over Word

$$
\begin{aligned}
f(\epsilon, \bar{x}) & =g(\bar{x}) \\
f(\mathbf{0}(w), \bar{x}) & =h_{0}(w, \bar{x}, f(w, \bar{x})) \\
f(\mathbf{1}(w), \bar{x}) & =h_{1}(w, \bar{x}, f(w, \bar{x})) \quad \bar{x}=x_{1}, \ldots, x_{n}
\end{aligned}
$$

- recurrence parameter : w
- recursive call : $f(w, \bar{x})$

Word concatenation or addition

Example

$$
\begin{gathered}
\operatorname{add}(\boldsymbol{\epsilon}, \boldsymbol{x})=x \\
\operatorname{add}(\mathbf{0}(w), x)=\mathbf{0}(\operatorname{add}(w, x)) \\
\operatorname{add}(\mathbf{1}(w), x)=\mathbf{1}(\operatorname{add}(w, x)) \\
\llbracket \operatorname{add} \rrbracket:\left(\{0,1\}^{*}\right)^{2} \mapsto\{0,1\}^{*} \\
\operatorname{add}(\mathbf{1}(\mathbf{0}(\boldsymbol{\epsilon})), v)=\mathbf{1}(\mathbf{0}(v))
\end{gathered}
$$

Primitive recursion over arbitrary first order structures

Bounded recursion

Polynomial time

computation
Data Ramification
Safe recursion
Tiering as a recursion technique
Church numeral as a tiered numeration

Primitive recursion on an arbitrary structure Σ

A first order structure $\Sigma=\left\langle a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right\rangle$ Primitive recursion over Σ

$$
\begin{array}{cc}
f\left(a_{i}, \bar{x}\right)=g_{i}(\bar{x}) & i=1, n \\
f\left(b_{j}\left(w_{1}, \ldots, w_{n}\right), \bar{x}\right)=h_{j}\left(\bar{w}, \bar{x}, f\left(w_{1}, \bar{x}\right), \ldots\right. & \\
\left.\ldots, f\left(w_{n}, \bar{x}\right)\right) & j=1, m
\end{array}
$$

Theorem
The class of primitive recursive functions over Σ is exactly the set of primitive recursive functions over natural numbers.

Primitive recursion over arbitrary first order structures

Bounded recursion

- G_{0} is the class containing zero, suc., projections and closed under composition and bounded recursion:

$$
\begin{aligned}
& f(0, \bar{x})=g(\bar{x}) \\
& f(\boldsymbol{\operatorname { s u c }}(t), \bar{x})=h(t, \bar{x}, f(t, \bar{x})) \\
& f(t, \bar{x}) \leq k(t, \bar{x}) \quad \text { for } k \text { is in } G_{0}
\end{aligned}
$$

Grzegorczyk Hierarchy

$$
\begin{aligned}
E_{0}(x, y) & =x+y & E_{1}(x) & =x^{2}+1 \\
E_{n+2}(0) & =2 & E_{n+2}(x+1) & =E_{n+1}\left(E_{n+2}(x)\right)
\end{aligned}
$$

- G_{n+1} is the class containing zero, suc, projections, E_{n} and closed under composition and bounded recursion:

$$
\begin{aligned}
& f(0, \bar{x})=g(\bar{x}) \\
& f(\boldsymbol{\operatorname { s u c }}(t), \bar{x})=h(t, \bar{x}, f(t, \bar{x})) \\
& f(t, \bar{x}) \leq k(t, \bar{x}) \quad \text { for } k \text { is in } G_{n+1}
\end{aligned}
$$

Theorem
The union $\cup_{n} G_{n}$ is the class of P.R. functions.

- G_{3} is the class of elementary functions (Kalmar)

PTIME

Definition
 PTIME is the set of functions which are computed in polynomial time with a Turing machine.

- PTIME computationally tractable problems, Cook's thesis
- All reasonable formalizations of the intuitive notion of tractable computability are equivalent within a polynomial bounded overhead
- Polynomial-time Turing machines computability capture all tractable functions.

Bounded recursion overs words

The class \mathcal{L} contains

- Constructors of Word

$$
x \mapsto \epsilon \quad x \mapsto \mathbf{0}(x) \quad x \mapsto \mathbf{1}(x)
$$

- Projections: $\pi_{i}\left(x_{1}, \ldots, x_{n}\right)=x_{i}$
- The smash function $x \# y=2^{|x| \cdot|y|}$ where $|x|$ is the length of x.
and is closed under
- composition
- and bounded recursion

$$
\begin{aligned}
& f(\epsilon, \bar{x})=g(\bar{x}) \\
& f(\mathbf{0}(t), \bar{x})=h(t, \bar{x}, f(t, \bar{x})) \\
& f(\mathbf{1}(t), \bar{x})=h(t, \bar{x}, f(t, \bar{x})) \\
& f(t, \bar{x}) \leq k(t, \bar{x}) \quad k \text { is in } \mathcal{L}
\end{aligned}
$$

Cobham's Characterization of Ptime

$$
\begin{aligned}
& f(\boldsymbol{\epsilon}, \bar{x})=g(\bar{x}) \\
& f(\mathbf{0}(t), \bar{x})=h(t, \bar{x}, f(t, \bar{x})) \\
& f(\mathbf{1}(t), \bar{x})=h(t, \bar{x}, f(t, \bar{x})) \\
& f(t, x) \leq k(t, \bar{x})
\end{aligned}
$$

$$
k \text { is in } \mathcal{L}
$$

Based on Ritchies's work:
Theorem (Cobham (65))
The class \mathcal{L} is exactly the class of PTIME of functions which are computable in Polynomial time.

Bounded recursion as a complexity model

- A lof of characterizations of complexity classes follow the Cobham's idea. See the survey of Clote.
- Polynomial resource bound is inside the \mathcal{L} 's formalization
- Not intrinsic : Separate resources from algorithms
- Applications
- Difficult to show that a program is PTIME
- Difficult to extract complexity bounds

Polynomial time computation

References

图 A．Cobham．
The intrinsic computational difficulty of functions．
In Y．Bar－Hillel，editor，Proc of the Int．Conf．on Logic， Methodology，and Philosophy of Science，pages 24－30．North－Holland， 1962.
图 R．Péter．
Recursive Functions， 1966.

Academic Press
击 R．Ritchie．
Classes of recursive functions based on Ackermann＇s function．
Pacific journal of mathematics，15（3）， 1965.
圊 H．E．Rose．
Subrecursion．
Oxford university press， 1984.

Polynomial time computation

Data Ramification
Safe recursion
Tiering as a recursion lechnique
Church numeral as a tiered numeration

P.R. Global functions

- Interpret $\llbracket \mathbf{N a t} \rrbracket=\{0, \ldots, n\}$
- See f is a primitive recursive schema
- Define $\llbracket f \rrbracket_{n}$ as the interpretation of f over $\{0, \ldots, n\}$ where

$$
\boldsymbol{\operatorname { s u c }}(m)= \begin{cases}m+1 & \text { if } m<n \\ n & \text { if } n=m\end{cases}
$$

A global function F is defined from a primitive recursive schema f

$$
F(n, \bar{x})=\llbracket f \rrbracket_{n}(\bar{x}) \quad x_{i} \leq n
$$

Theorem (Gurevich)
The set of global functions is exactly the set of Logspace functions

P.R. Global functions and PTIME

- Sazonov and Gurevich characterize PTIME using the Herbrand-Gödel equations over finite structures.
- Jones characterizes PTIME using cons-free while language.

Polynomial time computation

Data Ramification
Safe recursion
Tiering as a recursion
lechnique
Church numeral as a tiered numeration

reference

國 Y．Gurevich．
Algebras of feasible functions．
In FOCS，pages 210－214， 1983.
目 N．Jones．
LOGSPACE and PTIME characterized by programming languages．
Theoretical Computer Science，228：151－174， 1999.
目 N．Jones．
The expressive power of higher order types or，life without cons．
Journal of Functional Programming，11（1）：55－94， 2000.

囯 V．Sazonov．
Polynomial computability and recursivity in finite domains．
Elektronische Informationsverarbeitung und Kybernetik，7：319－323， 1980.

Polynomial time computation

Domains with two colors

Two first order structures for binary words

$$
\begin{array}{ll}
\text { Word }=\langle\epsilon, \mathbf{0}, \mathbf{1}\rangle & \text { Normal } \\
\text { Word }=\langle\epsilon, \mathbf{0}, \mathbf{1}\rangle & \text { Safe }
\end{array}
$$

Functions over domains with colors :

$$
\begin{gathered}
\llbracket f \rrbracket: \llbracket \text { Word } \rrbracket^{p} \times \llbracket \text { Word } \rrbracket^{q} \rightarrow \llbracket \text { Word } \rrbracket \\
\bar{x}, \bar{y} \rightarrow f(\bar{x} ; \bar{y})
\end{gathered}
$$

Note the semicolon ; separates arguments

Bounded recursion

Safe Composition and Recursion

- safe composition

$$
f(\bar{x} ; \bar{y})=g\left(h_{1}(\bar{x} ;) ; h_{2}(\bar{x} ; \bar{y})\right)
$$

- safe recursion

$$
\begin{aligned}
f(\epsilon, \bar{x} ; \bar{y}) & =g(\bar{x} ; \bar{y}) \\
f(0(z), \bar{x} ; \bar{y}) & =h_{0}(z, \bar{x} ; f(z, \bar{x} ; \bar{y}), \bar{y}) \\
f(1(z), \bar{x} ; \bar{y}) & =h_{1}(z, \bar{x} ; f(z, \bar{x} ; \bar{y}), \bar{y})
\end{aligned}
$$

Recursive calls are safe !!

Data ramification

Data Ramification implies

Word > Word

because

$$
\begin{aligned}
f(x ;) & =g(; I(x ;)) & & \text { Safe comp } \\
I(x ;) & =x & & \text { projection }
\end{aligned}
$$

But the converse does not hold !!

Safe Recursive functions

The class \mathcal{B} of safe recursive functions contains Safe basic functions

- Constructors : $x \mapsto \epsilon, x \mapsto \mathbf{0}(; x)$, and $x \mapsto \mathbf{1}(; x)$
- Predecessor : $p(; \epsilon)=\epsilon, p(; \mathbf{i}(; x))=x$
- Conditional : $C(; x, y, z)= \begin{cases}y & \text { if } x=\mathbf{0}\left(x^{\prime}\right) \\ z & \text { otherwise }\end{cases}$
- Projections : $\pi_{i}\left(x_{1}, \ldots, x_{n} ; x_{n+1}, \ldots, x_{n+m}\right)=x_{i}$ and is closed
- safe composition
- safe recursion

Examples

Concatenation or addition :

$$
\begin{aligned}
\operatorname{add}(\epsilon ; x) & =x \\
\operatorname{add}(0(w) ; x) & =\mathbf{0}(; \operatorname{add}(w ; x)) \\
\operatorname{add}(1(w) ; x) & =\mathbf{1}(; \operatorname{add}(w ; x))
\end{aligned}
$$

Multiplication by iterating addition

$$
\begin{aligned}
\operatorname{mul}(\epsilon, y ;) & =\epsilon \\
\operatorname{mul}(0(v), y ;) & =\operatorname{add}(y ; \operatorname{mul}(v, y ;)) \\
\operatorname{mul}(1(v), y ;) & =\operatorname{add}(y ; \operatorname{mul}(v, y ;))
\end{aligned}
$$

Primitive recursion

Theorem (Bellantoni-Cook)
The set PTIME of functions which are computable in polynomial time is exactly the class \mathcal{B} of safe recursive functions.

- Simmons (88) was the first to suggest this data-separation for primitive recursion.

Exponential is not safe !

Double length function is safe

$$
\begin{aligned}
\text { double }(\epsilon ;) & =\boldsymbol{\epsilon} \\
\text { double }(0(w) ;) & =\mathbf{1}(; \mathbf{1}(; \text { double }(w ;))) \\
\text { double }(1(w) ;) & =\mathbf{1}(; \mathbf{1}(; \text { double }(w ;)))
\end{aligned}
$$

Exponential by doubling is not safe

$$
\begin{aligned}
\exp (\boldsymbol{\epsilon} ;) & =\mathbf{1}(\boldsymbol{\epsilon}) \\
\exp (\mathbf{0}(v) ;) & =\text { double }(\exp (v ;)) \\
\exp (\mathbf{1}(v) ;) & =\text { double }(\exp (v ;))
\end{aligned}
$$

The recursive call $\exp (v ;)$ should be safe. But double requires a normal argument.

A well-known Escher drawing to make a break

Primitive recursion over arbitrary firs order structures Bounded recursion

Polynomial time computation

Data namification

Safe recursion

Tiering as a recursion technique
Church numeral as a tiered numeration

What's about space?

Other classes
Computing over an arbitrary structures

A first conclusion

Domains is stratified by tiers

Refer to the same set of words, $\llbracket \operatorname{Word}(k) \rrbracket=\{0,1\}^{*}$

Tiered recursion

$$
\begin{aligned}
f(\epsilon, y) & =g(y) \\
f(\mathbf{0}(x), y) & =h_{0}(x, y, f(x, y)) \\
f(\mathbf{1}(x), y) & =h_{1}(x, y, f(x, y))
\end{aligned}
$$

$$
g: \operatorname{Word}(m) \rightarrow \operatorname{Word}(n)
$$

$h_{i}: \operatorname{Word}(n+1) \rightarrow \operatorname{Word}(m) \rightarrow \operatorname{Word}(n) \rightarrow \boldsymbol{\operatorname { W o r d }}(n)$ $f: \operatorname{Word}(n+1), \operatorname{Word}(m) \rightarrow \boldsymbol{\operatorname { W o r d }}(n)$

Tier of Recurrence param. > Tier of the recursive calls
Now the inputs and outputs have colors.
Keep that in mind !!!

Addition and Multiplication

Concatenation or addition :

$$
\begin{aligned}
\operatorname{add}(\epsilon, x) & =x \\
\operatorname{add}(0(w), x) & =\mathbf{0}(\operatorname{add}(w, x)) \\
\operatorname{add}(1(w), x) & =\mathbf{1}(\operatorname{add}(w, x))
\end{aligned}
$$

$$
\operatorname{add}: \operatorname{Word}(n+1) \rightarrow \operatorname{Word}(n) \rightarrow \operatorname{Word}(n)
$$

Multiplication by iterating addition

$$
\begin{aligned}
\operatorname{mul}(\epsilon, y) & =\epsilon \\
\operatorname{mul}(0(v), y) & =\operatorname{add}(y, \operatorname{mul}(v, y)) \\
\operatorname{mul}(1(v), y) & =\operatorname{add}(y, \operatorname{mul}(v, y))
\end{aligned}
$$

$$
\operatorname{mul}: \operatorname{Word}(n+1) \rightarrow \boldsymbol{\operatorname { W o r d }}(n+1) \rightarrow \boldsymbol{\operatorname { W o r d }}(n)
$$

Down casting

$$
\begin{aligned}
& \operatorname{cast}(\epsilon)=\boldsymbol{\epsilon} \\
& \operatorname{cast}(\mathbf{0}(w))=\mathbf{0}(\operatorname{cast}(w)) \\
& \operatorname{cast}(\mathbf{1}(w))=\mathbf{1}(\operatorname{cast}(w)) \\
& \text { cast }: \mathbf{W o r d}(n+1) \rightarrow \mathbf{W o r d}(n)
\end{aligned}
$$

But up-casting is forbidden !
\Rightarrow strict data ramification
$\ldots>\operatorname{Word}(k+1)>\operatorname{Word}(k)>\ldots>\operatorname{Word}(1)>\operatorname{Word}(0)$

Flat recurrence

Special case of tiered recursion where there is no recursive call

$$
f(\epsilon, \bar{y})=g(\bar{y})
$$

$g: \operatorname{Word}(n) \rightarrow \operatorname{Word}(n)$

$$
f(\mathbf{0}(x), \bar{y})=h_{0}(x, \bar{y})
$$

$$
h_{i}: \operatorname{Word}(n) \rightarrow \operatorname{Word}(n) \rightarrow \operatorname{Word}(n)
$$

$f: \operatorname{Word}(n) \rightarrow \mathbf{W o r d}(n) \rightarrow \mathbf{W o r d}(n)$

$$
\begin{array}{rlrl}
\operatorname{pred}(\boldsymbol{\epsilon})=\boldsymbol{\epsilon} & \operatorname{pred}(\mathbf{0}(x), y) & =x \\
\operatorname{pred}(\mathbf{1}(x), y) & =x \\
\operatorname{cond}(\boldsymbol{\epsilon}, y, z, w)=w & \operatorname{cond}(\mathbf{0}(x), y, z, w) & =y \\
\operatorname{cond}(\mathbf{1}(x), y, z, w) & =z
\end{array}
$$

$$
f(\mathbf{1}(x)), \bar{y})=h_{1}(x, \bar{y})
$$

Tiering as a recursion technique

Simultaneous tiered recursion

$$
\begin{gathered}
f_{0}(\epsilon, \bar{y})=g_{0}(\bar{y}) \quad \ldots \quad f_{p}(\epsilon, \bar{y})=g_{p}(\bar{y}) \\
f_{0}(\mathbf{0}(x), \bar{y})=h_{0}\left(x, \bar{y}, f_{0}(x, \bar{y}), \ldots, f_{p}(x, \bar{y})\right) \\
f_{0}(\mathbf{1}(x), \bar{y})=h_{0}^{\prime}\left(x, \bar{y}, f_{0}(x, \bar{y}), \ldots, f_{p}(x, \bar{y})\right) \\
\ldots \\
f_{p}(\mathbf{0}(x), \bar{y})=h_{0}\left(x, \bar{y}, f_{0}(x, \bar{y}), \ldots, f_{p}(x, \bar{y})\right) \\
f_{p}(\mathbf{1}(x), \bar{y})=h_{0}^{\prime}\left(x, \bar{y}, f_{0}(x, \bar{y}), \ldots, f_{p}(x, \bar{y})\right)
\end{gathered}
$$

where

$$
g_{i}: \operatorname{Word}(i) \rightarrow \operatorname{Word}(j)
$$

$h_{i}, h_{i}^{\prime}: \operatorname{Word}(k+1) \rightarrow \mathbf{W o r d}(i) \rightarrow \operatorname{Word}(j)^{p} \rightarrow \operatorname{Word}(j)$

$$
f_{i}: \operatorname{Word}(k+1) \rightarrow \operatorname{Word}(i) \rightarrow \operatorname{Word}(j)
$$

Tiering condition implies

$$
k+1 \geq i>j
$$

Characterization of PTIME

Definition

The class TRec*(Word) is the set of functions defined by simultaneous tiered recursion and explicit definitions (projections and composition well typed).

Theorem (Leivant 94)
The three sets are identical

- The set PTIME of functions computable in polynomial time.
- The set TRec* (Word) using any tiers
- The set TRec*(Word) using 2 tiers only

Proof.

We are going to sketch it shortly.

Another look at the exponential

Double the length

$$
\begin{aligned}
& \text { double }(\boldsymbol{\epsilon})=\boldsymbol{\epsilon} \\
& \text { double }(\mathbf{0}(w))=\mathbf{1}(\mathbf{1}(\text { double }(w))) \\
& \text { double }(\mathbf{1}(w))=\mathbf{1}(\mathbf{1}(\text { double }(w))) \\
& \text { double }: \operatorname{Word}(n+1) \rightarrow \operatorname{Word}(n)
\end{aligned}
$$

Exponential by doubling

$$
\begin{aligned}
& \exp (\boldsymbol{\epsilon})=\mathbf{1}(\boldsymbol{\epsilon}) \\
& \exp (\mathbf{0}(w))=\text { double }(\exp (w)) \\
& \exp (\mathbf{1}(w))=\text { double }(\exp (w)) \\
& \exp : \boldsymbol{W} \operatorname{ord}(k+1) \rightarrow \mathbf{W o r d}(k)
\end{aligned}
$$

No solution, this definition is circular !!!

Tiered recursion captures PTIME

Take a Turing Machine M,

- q is a state
- u the left tape
- v the right tape
- the head is scanning the first letter of u

$$
\begin{aligned}
\text { state }(q, u, v) & =\text { next state } \\
\text { left }(q, u, v) & =\text { left side of the tape } \\
\operatorname{right}(q, u, v) & =\text { right side of the tape }
\end{aligned}
$$

build by explicit definitions

$$
\text { state, left, right }: \operatorname{Word}(0)^{3} \rightarrow \operatorname{Word}(0)
$$

Linear length Iteration

$$
\begin{aligned}
& T_{1}^{S}(\epsilon, q, u, v)=q \\
& T_{1}^{L}(\epsilon, q, u, v)=u \\
& T_{1}^{R}(\epsilon, q, u, v)=v \\
& T_{1}^{S}(\mathbf{i}(t), q, u, v)=\operatorname{state}\left(T_{1}^{S}(t, q, u, v),\right. \\
&\left.T_{1}^{L}(t, q, u, v), T_{1}^{R}(t, q, u, v)\right) \\
& T_{1}^{L}(\mathbf{i}(t), q, u, v)=\operatorname{left}\left(T_{1}^{S}(t, q, u, v),\right. \\
&\left.T_{1}^{L}(t, q, u, v), T_{1}^{R}(t, q, u, v)\right) \\
& T_{1}^{R}(\mathbf{i}(t), q, u, v)=\operatorname{right}\left(T_{1}^{S}(t, q, u, v),\right. \\
&\left.T_{1}^{L}(t, q, u, v), T_{1}^{R}(t, q, u, v)\right)
\end{aligned}
$$

Linear length Iteration

$$
\begin{gathered}
T_{1}^{S}, T_{1}^{L}, T_{1}^{R}: \operatorname{Word}(1) \rightarrow \operatorname{Word}(0)^{3} \rightarrow \operatorname{Word}(0) \\
\\
\llbracket T_{1}^{S}(t, q, u, v) \rrbracket=\text { state after } t \text { steps } \\
\llbracket T_{1}^{L}(t, q, u, v) \rrbracket=\text { left tape after } t \text { steps } \\
\llbracket T_{1}^{R}(t, q, u, v) \rrbracket=\text { right tape after } t \text { steps }
\end{gathered}
$$

We make k nested simultaneous recursion to iterate n^{k} times

Polynomial length iteration

$$
T_{k+1}^{S}(\epsilon, q, u, v)=q \quad T_{k+1}^{L}(\epsilon, q, u, v)=u \quad T_{k+1}^{R}(\epsilon, q, u, v)=v
$$

$$
\begin{aligned}
& T_{k+1}^{S}(\mathbf{i}(t), \bar{t}, q, u, v)=T_{k}^{S}\left(\bar{t}, T_{k}^{S}(\bar{t}, q, u, v,)\right. \\
&\left.T_{k}^{L}(\bar{t}, q, u, v), T_{k}^{R}(\bar{t}, q, u, v)\right)
\end{aligned}
$$

$$
T_{k+1}^{L}(\mathbf{i}(t), \bar{t}, q, u, v)=T_{k}^{L}\left(\bar{t}, T_{k}^{S}(\bar{t}, q, u, v,)\right.
$$

$$
\left.T_{k}^{L}(\bar{t}, q, u, v), T_{k}^{R}(\bar{t}, q, u, v)\right)
$$

$$
T_{k+1}^{R}(\mathbf{i}(t), \bar{t}, q, u, v)=T_{k}^{R}\left(\bar{t}, T_{k}^{S}(\bar{t}, q, u, v,)\right.
$$

$$
\left.T_{k}^{L}(\bar{t}, q, u, v), T_{k}^{R}(\bar{t}, q, u, v)\right)
$$

where $\bar{t}=t, t_{k}, \ldots, t_{1}$

$$
T_{k+1}^{S}, T_{k+1}^{L}, T_{k+1}^{R}: \operatorname{Word}(1)^{k+1} \rightarrow \operatorname{Word}(0)^{3} \rightarrow \operatorname{Word}(0)
$$

Simulation of PTIME computation

Lemma
A polynomial time computable function
$\phi:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is captured by a function in
TRec*(Word) using 2 tiers only
Proof.
Suppose that Φ is computed by a TM in time n^{k}.

$$
\phi(w)=T_{k}^{R}\left(w, \ldots, w, q_{0}, w, \epsilon\right)
$$

where

$$
\begin{aligned}
\llbracket T_{k}^{S}(\bar{w}, q, u, v) \rrbracket & =\text { state after }|w|^{k} \text { steps } \\
\llbracket T_{k}^{L}(\bar{w}, q, u, v) \rrbracket & =\text { left tape after }|w|^{k} \text { steps } \\
\llbracket T_{k}^{R}(\bar{w}, q, u, v) \rrbracket & =\text { right tape after }|w|^{k} \text { steps }
\end{aligned}
$$

Computation of tiered recursion

Lemma

For any tier 1 arguments u_{1}, \ldots, u_{p}, and tier 0 arguments v_{1}, \ldots, v_{q}, the computation of $f\left(u_{1}, \ldots, u_{p}, v_{1}, \ldots, v_{q}\right)$ runs in time bounded by $c \times\left(\sum_{i=1, p}\left|u_{i}\right|\right)^{k}$.

Tiering as a recursion technique

Proof

$$
\begin{aligned}
f(\epsilon, y ; z) & =g(y ; z) \\
f(\mathbf{0}(x), y ; z) & =h_{0}(x, y ; z, f(x, y ; z)) \\
f(\mathbf{1}(x), y ; z) & =h_{1}(x, y ; z, f(x, y ; z))
\end{aligned}
$$

$$
f: \operatorname{Word}(1), \operatorname{Word}(1), \operatorname{Word}(0) \rightarrow \operatorname{Word}(0)
$$

- Ind. Hyp applies to g and h_{i}
- So, g runs within a time bounded by a polynomial in tier 1 inputs

$$
\operatorname{Time}(g(v ; w)) \leq|v|^{k^{\prime}}
$$

- So, the run time of h_{i} is polynomial in tier 1 inputs

$$
\operatorname{Time}\left(h_{i}\left(u^{\prime}, v ; w, w^{\prime}\right)\right) \leq\left(\left|u^{\prime}\right|+|v|\right)^{k^{\prime \prime}}
$$

- $f(u, v, w)$ is computed by iterating $|u|$ times h_{i} 's

$$
\begin{aligned}
\operatorname{Time}(f(u, v, w)) & \leq|u| \times(|u|+|v|)^{k^{\prime \prime}}+|v|^{k^{\prime}} \\
& \leq(|u|+|v|)^{k^{\prime}+k^{\prime \prime}}
\end{aligned}
$$

Church-numerals

$$
\underline{n}=\lambda f: \alpha \rightarrow \alpha \lambda x: \alpha, f^{n}(x)
$$

where $f^{0}(x)=x$ and $f^{k+1}(x)=f\left(f^{k}(x)\right)$

$$
\underline{n}: \mathbf{N}(\alpha)=(\alpha \rightarrow \alpha) \rightarrow(\alpha \rightarrow \alpha)
$$

Successor:

$\boldsymbol{s u c}=\lambda n: \mathbf{N}(\alpha) \lambda f: \alpha \rightarrow \alpha \lambda x: \alpha, f(n f x)$

$$
\underline{0}=\lambda f \lambda x, x \quad \underline{n+1}=(\boldsymbol{\operatorname { s u c }} \underline{n})
$$

Church numeral arithmetic

$$
\begin{gathered}
(\operatorname{add} \underline{n} \underline{m})=\lambda f \lambda x,(\underline{n} f(\underline{m} f x)) \\
\text { add }: \mathbf{N}(\alpha) \rightarrow \mathbf{N}(\alpha) \rightarrow \mathbf{N}(\alpha) \\
\llbracket \operatorname{add} \rrbracket(\underline{n}, \underline{m})=\underline{n+m} \\
(\operatorname{mul} \underline{n} \underline{m})=\lambda f \lambda x,(\underline{n}(\underline{m} f) x) \\
\operatorname{mul}: \mathbf{N}(\alpha) \rightarrow \mathbf{N}(\alpha) \rightarrow \mathbf{N}(\alpha) \\
\llbracket \operatorname{mul} \rrbracket(\underline{n}, \underline{m})=\underline{n} \times m
\end{gathered}
$$

But

$$
\begin{gathered}
(\exp \underline{n})=(\underline{n} \underline{2}) \\
\exp : \mathbf{N}(\alpha \rightarrow \alpha) \rightarrow \mathbf{N}(\alpha) \\
\llbracket \exp \rrbracket(\underline{n})=\underline{2}^{n}
\end{gathered}
$$

Extended polynomials

Definition
A function $\phi: \mathbb{N} \rightarrow \mathbb{N}$ is Church-representable if there is a λ-term F such that

$$
\begin{gathered}
(F \underline{n})=\phi(n) \\
F: \mathbf{N}(\alpha) \rightarrow \mathbf{N}(\alpha)
\end{gathered}
$$

- Exponential is not Church-representable

Theorem (Schwichtenberg)
The set of Church-representable functions is the set of extended polynomials ($=$ polynomials + test if $n=0$).

Church representation of first order structures

$$
\left.\begin{array}{rl}
\mathbf{W}(\alpha)= & (\alpha \rightarrow \alpha) \rightarrow(\alpha \rightarrow \alpha) \rightarrow(\alpha \rightarrow \alpha) \\
\underline{\epsilon} & =\lambda f_{0} \lambda f_{1} \lambda x, x \\
\underline{1} & =\lambda u \lambda f_{0} \lambda f_{1} \lambda x, f_{0}\left(\underline{u} f_{0} f_{1} x\right) \\
\underline{0} & =\lambda u \lambda f_{0} \lambda f_{1} \lambda x, f_{1}\left(\underline{u} f_{0} f_{1} x\right)
\end{array}\right] \begin{aligned}
\underline{\mathbf{0}(u)} & =(\underline{0} \underline{u}) \quad \underline{\mathbf{1}(u)}=(\underline{1} \underline{u})
\end{aligned}
$$

$$
\begin{gathered}
\mathbf{W}(\alpha)=(\alpha \rightarrow \alpha) \rightarrow(\alpha \rightarrow \alpha) \rightarrow(\alpha \rightarrow \alpha) \\
\underline{u}: \mathbf{W}(\alpha)
\end{gathered}
$$

Two levels of data representations

Abstract level : $\lambda u \lambda f_{0} \lambda f_{1} \lambda x, f_{0}\left(f_{0}\left(f_{1} x\right)\right)$

Data level: $\mathbf{0}(\mathbf{O}(\mathbf{1}(\boldsymbol{\epsilon})))$

- Abstract level \Rightarrow Data Level
- But the converse does not hold
- Data ramification principle!

λ-calculus over Word*

Atomic types : Word and Word*

Constructors :

ϵ : Word nil : Word* \quad cons $:$ Word \rightarrow Word ${ }^{*} \rightarrow$ Word*
0, 1 : Word \rightarrow Word

Primitive recursion
over arbitrary first

oer stiotir

Bounded recursion

Polynomial time

computation
Data Ramification
Safe recursion
Tiering as a recursion
techique
Church numeral as a tiered numeration

λ-calculus over Word*

Destructors:

$$
\operatorname{pred}(\boldsymbol{\epsilon})=\boldsymbol{\epsilon} \quad \operatorname{pred}(\mathbf{0}(u))=u \quad \operatorname{pred}(\mathbf{1}(u))=u
$$

$$
\operatorname{cond}(u, a, b, c)= \begin{cases}a & u=\boldsymbol{\epsilon} \\ b & u=\mathbf{0}(u) \\ c & u=\mathbf{1}(u)\end{cases}
$$

$$
\begin{array}{rlrl}
\text { hd (nil) } & =\text { nil } & \text { hd }(\boldsymbol{\operatorname { c o n s }}(u, L)) & =u \\
\mathrm{tl}(\text { nil }) & =\text { nil } & \mathrm{tl}(\boldsymbol{\operatorname { c o n s } (u , L))}=\mathrm{L}
\end{array}
$$

$$
\operatorname{cond}(L, a, b)= \begin{cases}a & u=\text { nil } \\ b & \text { otherwise }\end{cases}
$$

Church representation of algebra terms

Definition

$1 \lambda^{\mathbf{p}}\left(\right.$ Word $\left.^{*}\right)$ is the class of terms of simply typed
λ-calculus with constructors and destructors over Word*
Definition
A function $\Phi:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is computed by a λ-term F of $\mathbf{1} \lambda^{\mathfrak{p}}\left(\right.$ Word $\left.^{*}\right)$ if $F(\underline{w})=\phi(w)$ where $\underline{f}: \mathbf{W}\left(\right.$ Word $\left.^{*}\right) \rightarrow$ Word ${ }^{*}$.

Theorem (Leivant-Marion)
The set of functions computed by $\mathbf{1} \lambda^{\mathbf{p}}$ (Word*)-terms is exactly the set PTIME of polynomial time functions.

References

围 S．Bellantoni and S．Cook．
A new recursion－theoretic characterization of the poly－time functions．
Computational Complexity，2：97－110， 1992.
围 D．Leivant．
A foundational delineation of poly－time． Information and Computation，110（2）：391－420， 1994.

圊 D．Leivant and J－Y Marion．
Lambda calculus characterizations of poly－time．
Fundamenta Informaticae，19（1，2）：167，184，
September 1993.
目 H．Simmons．
The realm of primitive recursion．
Archive for Mathematical Logic，27：177－188， 1988.

Parallel Register Machines (PRM)

1. a finite set $S=\left\{s_{0}, s_{1}, \ldots, s_{k}\right\}$ of states
2. a finite list $\Pi=\left\{\pi_{1}, \ldots, \pi_{m}\right\}$ of registers
3. and commands

- $\left[\operatorname{Succ}\left(\pi=\mathbf{i}(\pi), s^{\prime}\right)\right],\left[\operatorname{Pred}\left(\pi=\mathbf{p}(\pi), s^{\prime}\right)\right]$,
- $\left[\operatorname{Branch}\left(\pi, s^{\prime}, s^{\prime \prime}\right)\right]$,
- $\left[\operatorname{Fork}_{\text {min }}\left(s^{\prime}, s^{\prime \prime}\right)\right],\left[\operatorname{Fork}_{\text {max }}\left(s^{\prime}, s^{\prime \prime}\right)\right]$,
- [End].

$$
\operatorname{eval}(0, s, \Pi)=\perp
$$

$\operatorname{cmd}(s)=\pi_{j}=\mathbf{i}\left(\pi_{j}\right)$ and the next state is s^{\prime}

$$
\operatorname{eval}(t+1, s, \Pi)=\operatorname{eval}\left(t, s^{\prime},\{\pi \leftarrow \mathbf{i}(\pi)\} \Pi\right)
$$

$\operatorname{cmd}(s)=\operatorname{pred}(\pi)$

$$
\operatorname{eval}(t+1, s, \Pi)=\operatorname{eval}\left(t, s^{\prime},\{\pi \leftarrow \mathbf{p}(\pi)\} \Pi\right)
$$

$\operatorname{cmd}(\boldsymbol{s})=\operatorname{Branch}\left(\pi, s^{\prime}, s^{\prime \prime}\right)$

$$
\operatorname{eval}(t+1, s, \Pi)= \begin{cases}\operatorname{eval}\left(t, s^{\prime}, \Pi\right) & \text { if } \pi=\mathbf{0}(w) \\ \operatorname{eval}\left(t, s^{\prime \prime}, \Pi\right) & \text { if } \pi=\mathbf{1}(w)\end{cases}
$$

PRM

And the Fork
$\operatorname{cmd}(s)=$ Fork $_{\text {min }}\left(s^{\prime}, s^{\prime \prime}\right)$

$$
\operatorname{eval}(t+1, s, \Pi)=\min _{4}\left(\operatorname{eval}\left(t, s^{\prime}, \Pi\right), \operatorname{eval}\left(t, s^{\prime \prime}, \Pi\right)\right)
$$

$\operatorname{cmd}(s)=\operatorname{Fork}_{\max }\left(s^{\prime}, s^{\prime \prime}\right)$

$$
\operatorname{eval}\left(t+1, s^{\prime}, \Pi\right)=\max _{4}\left(\operatorname{eval}\left(t, s^{\prime}, \Pi\right), \operatorname{eval}\left(t, s^{\prime \prime}, \Pi\right)\right)
$$

where \longleftarrow is the lexicographic order on words.

$$
\operatorname{eval}(t+1, \text { End }, \Pi)=\Pi \text { (OUTPUT) }
$$

PRM

A function $\phi:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is PRM-computable in time $T: \mathbb{N} \rightarrow \mathbb{N}$ if there is a PRM M such that for each $\left(w_{1}, \cdots, w_{k}\right) \in \mathbb{W}^{k}$, we have

$$
\operatorname{eval}\left(T(|w|), \operatorname{BEGIN}, F_{0}\right)=\phi(w)
$$

Time-bound semantics

$$
\text { eval : } \mathbb{N} \times S \times \mathbb{W}^{m} \mapsto \mathbb{W}
$$

Trade-off between time and space

Theorem
The following are equivalent

1. ϕ is computable in polynomial space
2. ϕ is computable in non-deterministic polynomial space
3. ϕ is computable in polynomial time on Alternating Turing Machine
4. ϕ is computable in polynomial time on PRM

Proof.
See Chandra, Kozen, Stockmeyer and Savitch

Tiered recursion with substitutions

$$
\begin{aligned}
f(\epsilon, \bar{y}) & =g(\bar{y}) \\
f(\mathbf{0}(x), \bar{y}) & =h_{0}\left(x, \bar{y}, f\left(x, \sigma_{1}(\bar{y})\right), \ldots, f\left(x, \sigma_{k}(\bar{y})\right)\right) \\
f(\mathbf{1}(x), \bar{y}) & =h_{1}\left(x, \bar{y}, f\left(x, \sigma_{1}^{\prime}(\bar{y})\right), \ldots, f\left(x, \sigma_{k}^{\prime}(\bar{y})\right)\right)
\end{aligned}
$$

$$
\begin{gathered}
\sigma_{i}, \sigma_{i}^{\prime}: \operatorname{Word}(m) \rightarrow \operatorname{Word}(n) \\
g: \operatorname{Word}(m) \rightarrow \operatorname{Word}(n)
\end{gathered}
$$

$h_{i}: \operatorname{Word}(n+1) \rightarrow \operatorname{Word}(m) \rightarrow \operatorname{Word}(n) \rightarrow \operatorname{Word}(n)$

$$
\sigma_{j}, \sigma^{\prime} j: \operatorname{Word}(m) \rightarrow \mathbf{W o r d}(m)
$$

$f: \mathbf{W o r d}(n+1), \operatorname{Word}(m) \rightarrow \boldsymbol{W o r d}(n)$

Characterization of PSPACE

Definition
The class Sub(Word) is the set of functions defined by tiered recursion with substitutions and explicit definitions (projections and composition).

Theorem (LM95)
The three sets are identical

- The set PSPACE of functions computable in polynomial space
- The set Sub(Word) using any tiers
- The set Sub(Word) using 3 tiers only

Proof.

We are going to sketch it shortly.

Simulating PSPACE

Lemma

A polynomial time PRM computable function
$\phi:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is captured by a function in
Sub(Word) using 3 tiers only
Proof.
eval is defined by rec. with substitution of parameters: $\mathrm{cmd}(s)=$ Fork $_{\text {min }}\left(s^{\prime}, s^{\prime \prime}\right)$
$\operatorname{eval}(t+1, s, \Pi)=\min _{4}\left(\operatorname{eval}\left(t, \delta_{0}(s), \Pi\right), \operatorname{eval}\left(t, \delta_{1}(s), \Pi\right)\right)$ where

$$
\begin{aligned}
& \delta_{0}(s)=s^{\prime} \\
& \delta_{1}(s)=s^{\prime \prime}
\end{aligned}
$$

$$
\text { eval }: \operatorname{Word}(1) \rightarrow \operatorname{Word}(0)^{m} \rightarrow \operatorname{Word}(0)
$$

Simulating PSPACE

Define a polynomial time clock $T:$ Word(2) \rightarrow Word(1) by composing tiered addition and multiplication that we have already seen.

$$
\phi(w)=\operatorname{eval}\left(T(|w|), \operatorname{BEGIN}, F_{0}\right)
$$

Computation in PSPACE

Lemma

A function ϕ in $\mathbf{S u b}$ (Word) using 3 tiers only is computed in space $O\left(n^{k}\right)+m$ for some k

- n is the size of tier 2 and 1 arguments
- m is the size of tier 0 arguments

Bounded recursion

Polynomial time

Other tiered characterizations of low complexity classes

- $\mathrm{NC}^{1} \equiv \mathrm{~A}-\mathrm{LOG}-\mathrm{TIME}$
- Bloch (94),
- Leivant-Marion (00)
- NC^{k}
- Bonfante, Kähle, Marion, Oitavem (06),
- NC
- Leivant (98),
- Oitavem (04)
- NP
- Bellantoni (94)
- FPSPACE \equiv A-PoLy-TIME
- Leivant-Marion (95)

Computing over a structure \mathcal{K}

A computational structure

$$
\mathcal{K}=\left\langle\mathbb{K},\left\{o p_{i}\right\}_{i \in I}, r e l_{1} \ldots, r e l_{\ell},=, \mathbf{0}, \mathbf{1}\right\rangle
$$

- A domain \mathbb{K}
- operators $\left\{o p_{i}\right\}_{i \in I}$ over \mathbb{K}
- relations rel l_{1}, \ldots, rel/
- the equality over \mathbb{K}
- two particular constants $\mathbf{0}$ and 1
\mathbb{K}^{*} denotes lists of elements of \mathbb{K}.

Reference

S. Bellantoni.

Predicative recursion and the polytime hierarchy. In Peter Clote and Jeffery Remmel, editors, Feasible Mathematics II, Perspectives in Computer Science. Birkhäuser, 1994.

宣 S. Bloch.
Function-algebraic characterizations of log and polylog parallel time.
Computational complexity, 4(2):175-205, 1994.
D. Leivant.

A characterization of NC by tree recurrence.
In 39th Annual Symposium on Foundations of Computer Science, FOCS'98, pages 716-724, 1998.
D. Leivant and J-Y Marion.

Ramified recurrence and computational complexity II: substitution and poly-space.
In L. Pacholski and J. Tiurvn. editors. Comouter

Similar to a Turing machine, with the properties:

- Its tape cells hold arbitrary elements of \mathbb{K}.
- It has Computation nodes for computing the operations $\left\{o p_{i}\right\}_{i \in I}$ with unit cost.
- It has Branch nodes for computing the relations rel $l_{1}, \ldots, r e l_{l}$ with unit cost.
- It has Shift nodes for moving the head.
- Inputs and outputs are vectors in \mathbb{K}^{*}

A TM computes a function from \mathbb{K}^{*} to \mathbb{K}^{*}.
\mathbb{K}^{*} denotes lists of elements of \mathbb{K}.

Polynomial time functions over \mathcal{K}

Definition

A function $f:\left(\mathbb{K}^{*}\right)^{n} \rightarrow\left(\mathbb{K}^{*}\right)^{m}$ is in class PTIME $_{\mathcal{K}}$
iff
f is computable in polynomial time.
That is,
there is a polynomial p and a BSS-TM M, such that

- M computes f
- M stops in $p(|\bar{W}|)$ steps on each input w of \mathbb{K}^{*}.
$|\bar{w}|$ is the length of the list $\bar{w} \in \mathbb{K}^{*}$.

Complexity Theory over \mathcal{K}

- Over the structure $\mathcal{B}=(\{0,1\},=, 0,1)$, we compute $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, corresponds to classical complexity and $\mathrm{PTIME}_{\mathcal{B}}=$ PTIME.
- Over the structure $\mathcal{R}=(\mathcal{R},+,-, *, /,>,=, 0,1)$ corresponds to the original Blum Shub and Smale (89) paper.

Safe Recursion over a structure \mathcal{K}

Two types of arguments,"normal"and "safe"

$$
f(\bar{x} ; \bar{y})
$$

The set of safe recursive functions over \mathcal{K} is the smallest set of functions containing basic safe functions

- structure operators and relations
- projections
- list destructors : hd and tl
- list constructor : cons
- Boolean selection : if $x=1$ then y else z

Basic functions

- $\mathrm{hd}(; a \cdot \bar{x})=a, \mathrm{tl}(; a \cdot \bar{x})=\bar{x}, \operatorname{cons}(; a \cdot \bar{x}, \bar{y})=a \cdot \bar{y}$
- Projections
- Application of operators and relations

$$
\begin{aligned}
\operatorname{Op}_{\imath}\left(; a_{1} \cdot \overline{x_{1}}, \ldots, a_{n_{2}} \cdot \overline{x_{n_{\imath}}}\right) & =\left(o p_{\imath}\left(a_{1}, \ldots, a_{n_{2}}\right)\right) \cdot \overline{x_{n_{\imath}}} \\
\operatorname{Rel}_{\imath}\left(; a_{1} \cdot \overline{x_{1}}, \ldots, a_{n_{2}} \cdot \overline{x_{n_{2}}}\right) & =\left\{\begin{array}{l}
1 \text { if } \text { rel }\left(a_{1}, \ldots, a_{n_{\imath}}\right) \\
\epsilon \text { otherwise }
\end{array}\right.
\end{aligned}
$$

- Test

$$
\text { Select }(; \bar{x}, \bar{y}, \bar{z})= \begin{cases}\bar{y} & \text { if hd }(\bar{x})=1 \\ \bar{z} & \text { otherwise }\end{cases}
$$

Safe Recursive functions over \mathcal{K}

and closed under both schemas

- safe composition

$$
f(\bar{x} ; \bar{y})=g\left(h_{1}(\bar{x} ;) ; h_{2}(\bar{x} ; \bar{y})\right)
$$

- safe recursion

$$
\begin{aligned}
f(\epsilon, \bar{x} ; \bar{y}) & =g(\bar{x} ; \bar{y}) \\
f(a . \bar{z}, \bar{x} ; \bar{y}) & =g(\bar{z}, \bar{x} ; f(\bar{z}, \bar{x} ; \bar{y}), \bar{y})
\end{aligned}
$$

order structures

Polynomial time functions $\mathrm{PTIME}_{\mathcal{K}}$

Theorem (Bournez-Cucker-de Naurois-Marion (03)) Over any structure \mathcal{K}, the set of safe recursive functions over \mathcal{K} is exactly $\mathrm{PTIME}_{\mathcal{K}}$.

Proof.

This proof implies Bellantoni and Cook's one and is more direct.

About space

A priori, there is no valid notion of space over arbitrary structures.

Theorem (Michaux)
Over $\left(\mathbb{R}^{+}, 0,1,=,+,-, *,<\right)$, any computable function can be computed in constant working space.
But, Paulin de Naurois gives a logarihmic cost, see his talk at the ICC workshop next week !

Bounded recursion

The class $\mathrm{FPAR}_{\mathcal{K}}$

FPAR $_{\mathcal{K}}$ is the set of functions computable in parallel poly-time.
That is, by a P-uniform family of circuits of polynomial depth.
Theorem (Bournez-Cucker-deNaurois-Marion (04))
A function: $\mathbb{K}^{*} \rightarrow \mathbb{K}^{*}$ is computed in $\mathrm{FPAR}_{\mathcal{K}}$ if and only if it is defined as a safe recursive function with substitutions over \mathcal{K}.

What we've seen

- Data Ramification Principle

1. Normal/Safe recursions
2. Tiering
3. Simply typed λ-calculus

- Characterizations of PTIME and PSPACE
- Capture Turing Machine over arbitrary structures

References

(O. Bournez, F. Cucker, P.J. de Naurois, and J.Y. Marion. Implicit complexity over an arbitrary structure: Quantifier alternations.
Information and Computation, 204(2):210-230, Feb 2006.

Olivier Bournez, Felipe Cucker, Paulin Jacobé de Naurois, and Jean-Yves Marion. Implicit complexity over an arbitrary structure: Sequential and parallel polynomial time. Journal of Logic and Computation, 15(1):41-58, 2005.

国 Paulin Jacobé de Naurois.
Résultats de Complétude et Caractérisations Syntaxiques de Classes de Complexité sur des Structures Arbitraires.
PhD thesis, INPL and City university (Hong-Kong),

Conclusion

- Intrinsic characterizations
- "resource" is inside Data Ramification Principle
- Syntactic complexity characterization
- we may extract bound,
- but, low algorithmic expressiveness
- quite robust wrt model of computations
- Can we apply data ramification to other models of computation?
- Studying intentional characterization of complexity classes.
- Developing automatic resource analysis by mean of static analysis.

