Ramification

Jean-Yves Marion

Ecole nationale supérieure des Mines de Nancy Loria-INPL

February, 6th 2006

Ramification

Jean-Yves Marion

Primitive recursion over arbitrary first order structures Bounded recursion

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Outline

Primitive recursion over arbitrary first order structures Bounded recursion

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

A first conclusion

Ramification

Jean-Yves Marion

Primitive recursion over arbitrary first order structures Bounded recursion

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion echnique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Primitive recursion

A first order structure for unary numbers

• Nat = $\langle 0, suc \rangle$

is a set of data objects defined by

O is a number of Nat

▶ if *n* is a number, then **suc**(*n*) is a number of **Nat** Semantics

$$\llbracket Nat
rbracket = \mathbb{N}$$

Primitive recursion over Nat

$$f(0, \overline{x}) = g(\overline{x})$$

 $f(\operatorname{suc}(n), \overline{x}) = h(n, \overline{x}, f(n, \overline{x}))$

Ramification

Primitive recursion over arbitrary first order structures

Bounded recursion

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Primitive recursion on Words

A first order structure for binary words

Word =
$$\langle \epsilon, \mathbf{0}, \mathbf{1} \rangle$$

is a set of data objects defined by

• if u is a word, then $\mathbf{0}(u)$ and $\mathbf{1}(u)$ are words of **Word** Semantics

$$\llbracket Word \rrbracket = \{0, 1\}^*$$

Ramification

Primitive recursion over arbitrary first order structures

Bounded recursion

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Primitive recursive functions on Words

The class of primitive recursive functions over **Word** contains

Constructors of Word

$$x\mapsto\epsilon\qquad x\mapsto {f 0}(x)\qquad x\mapsto {f 1}(x)$$

► Projections : $\pi_i(x_1, ..., x_n) = x_i$ is closed under

Composition

$$f(\overline{x}) = h(g_1(\overline{x}), \ldots, g_k(\overline{x}))$$

where $\overline{x} = x_1, \ldots, x_n$

and Primitive recursion over Word

$$f(\epsilon, \overline{x}) = g(\overline{x})$$

$$f(\mathbf{0}(w), \overline{x}) = h_0(w, \overline{x}, f(w, \overline{x}))$$

$$f(\mathbf{1}(w), \overline{x}) = h_1(w, \overline{x}, f(w, \overline{x})) \qquad \overline{x} = x_1, \dots, x_n$$

- recurrence parameter : w
- recursive call : $f(w, \overline{x})$

Ramification

Primitive recursion over arbitrary first order structures

Bounded recursion

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Word concatenation or addition

Example

$$\operatorname{add}(\epsilon, x) = x$$

 $\operatorname{add}(\mathbf{0}(w), x) = \mathbf{0}(\operatorname{add}(w, x))$
 $\operatorname{add}(\mathbf{1}(w), x) = \mathbf{1}(\operatorname{add}(w, x))$

$$\llbracket \texttt{add} \rrbracket : (\{0,1\}^*)^2 \mapsto \{0,1\}^*$$

 $\operatorname{add}(\mathbf{1}(\mathbf{0}(\epsilon)), v) = \mathbf{1}(\mathbf{0}(v))$

Ramification

Primitive recursion over arbitrary first order structures

Bounded recursion

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique

numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Primitive recursion on an arbitrary structure Σ

A first order structure $\Sigma = \langle a_1, \dots, a_n, b_1, \dots, b_m \rangle$ Primitive recursion over Σ

$$f(a_i, \overline{x}) = g_i(\overline{x}) \qquad i = 1, n$$

$$f(b_j(w_1, \dots, w_n), \overline{x}) = h_j(\overline{w}, \overline{x}, f(w_1, \overline{x}), \dots$$

$$\dots, f(w_n, \overline{x})) \qquad j = 1, m$$

Theorem

The class of primitive recursive functions over Σ is exactly the set of primitive recursive functions over natural numbers.

Ramification

Primitive recursion over arbitrary first order structures

Bounded recursion

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique Church numeral as a tiere

What's about space ?

Other classes

Computing over an arbitrary structures

Bounded recursion

 G₀ is the class containing zero, suc., projections and closed under composition and bounded recursion:

$$egin{aligned} &f(0,\overline{x})=g(\overline{x})\ &f(\operatorname{suc}(t),\overline{x})=h(t,\overline{x},f(t,\overline{x}))\ &f(t,\overline{x})\leq k(t,\overline{x}) \end{aligned}$$
 for k is in G_0

Ramification

Primitive recursior over arbitrary first order structures

Bounded recursion

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Grzegorczyk Hierarchy

G_{n+1} is the class containing zero, suc, projections,
 E_n and closed under composition and bounded recursion:

$$egin{aligned} &f(0,\overline{x})=g(\overline{x})\ &f(extsf{suc}(t),\overline{x})=h(t,\overline{x},f(t,\overline{x}))\ &f(t,\overline{x})\leq k(t,\overline{x}) \ & extsf{for k is in G_{n+1}} \end{aligned}$$

Theorem

The union $\cup_n G_n$ is the class of P.R. functions.

G₃ is the class of elementary functions (Kalmar)

Ramification

Primitive recursion over arbitrary first order structures

Bounded recursion

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique Church numeral as a tiere

numeration

What's about space ?

Other classes

Computing over an arbitrary structures

PTIME

Definition

PTIME is the set of functions which are computed in polynomial time with a Turing machine.

- PTIME computationally tractable problems, Cook's thesis
- All reasonable formalizations of the intuitive notion of tractable computability are equivalent within a polynomial bounded overhead
- Polynomial-time Turing machines computability capture all tractable functions.

Ramification

Primitive recursion over arbitrary first order structures Bounded recursion

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique Church numeral as a tiere

What's about space ?

Other classes

Computing over an arbitrary structures

Bounded recursion overs words

The class \mathcal{L} contains

Constructors of Word

$$x\mapsto\epsilon\qquad x\mapsto \mathbf{0}(x)\qquad x\mapsto \mathbf{1}(x)$$

• Projections :
$$\pi_i(x_1, \ldots, x_n) = x_i$$

► The smash function x#y = 2^{|x|·|y|} where |x| is the length of x.

and is closed under

- composition
- and bounded recursion

$$\begin{split} f(\epsilon,\overline{x}) &= g(\overline{x}) \\ f(\mathbf{0}(t),\overline{x}) &= h(t,\overline{x},f(t,\overline{x})) \\ f(\mathbf{1}(t),\overline{x}) &= h(t,\overline{x},f(t,\overline{x})) \\ &\qquad f(t,\overline{x}) \leq k(t,\overline{x}) \\ \end{split} \qquad k \text{ is in } \mathcal{L} \end{split}$$

Ramification

Primitive recursion over arbitrary first order structures Bounded recursion

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Cobham's Characterization of Ptime

$$f(\epsilon, \overline{x}) = g(\overline{x})$$

$$f(\mathbf{0}(t), \overline{x}) = h(t, \overline{x}, f(t, \overline{x}))$$

$$f(\mathbf{1}(t), \overline{x}) = h(t, \overline{x}, f(t, \overline{x}))$$

$$f(t, x) \le k(t, \overline{x})$$

Based on Ritchies's work:

Theorem (Cobham (65))

The class \mathcal{L} is exactly the class of PTIME of functions which are computable in Polynomial time.

Ramification

Primitive recursion over arbitrary first order structures Bounded recursion

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique Church numeral as a tiere

What's about

Other classes

Computing over an arbitrary structures

Bounded recursion as a complexity model

- A lof of characterizations of complexity classes follow the Cobham's idea. See the survey of Clote.
- Polynomial resource bound is inside the L's formalization
- Not intrinsic : Separate resources from algorithms
- Applications
 - Difficult to show that a program is PTIME
 - Difficult to extract complexity bounds

Ramification

Primitive recursion over arbitrary first order structures Bounded recursion

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

References

🔒 A. Cobham.

The intrinsic computational difficulty of functions.

In Y. Bar-Hillel, editor, *Proc of the Int. Conf. on Logic, Methodology, and Philosophy of Science*, pages 24–30. North-Holland, 1962.

R. Péter.

Recursive Functions, 1966.

Academic Press

R. Ritchie.

Classes of recursive functions based on Ackermann's function.

Pacific journal of mathematics, 15(3), 1965.

H.E. Rose.

Subrecursion.

Oxford university press, 1984.

Ramification

Primitive recursion over arbitrary first order structures Bounded recursion

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique

numeration

What's about space ?

Other classes

Computing over an arbitrary structures

P.R. Global functions

- ▶ Interpret **[Nat]** = {0,..., *n*}
- See f is a primitive recursive schema
- ▶ Define [[f]]_n as the interpretation of f over {0,..., n} where

$$\mathbf{suc}(m) = egin{cases} m+1 & ext{if } m < n \ n & ext{if } n = m \end{cases}$$

A global function *F* is defined from a primitive recursive schema *f*

$$F(n,\overline{x}) = \llbracket f \rrbracket_n(\overline{x}) \qquad x_i \leq n$$

Theorem (Gurevich)

The set of global functions is exactly the set of LOGSPACE functions

Ramification

Primitive recursior over arbitrary first order structures Bounded recursion

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique Church numeral as a tiere

numeration

What's about space ?

Other classes

Computing over an arbitrary structures

P.R. Global functions and PTIME

- Sazonov and Gurevich characterize PTIME using the Herbrand-Gödel equations over finite structures.
- Jones characterizes PTIME using cons-free while language.

Ramification

Primitive recursior over arbitrary first order structures Bounded recursion

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique

numeration

What's about space ?

Other classes

Computing over an arbitrary structures

reference

Y. Gurevich.

Algebras of feasible functions. In FOCS, pages 210–214, 1983.

N. Jones.

LOGSPACE and PTIME characterized by programming languages.

Theoretical Computer Science, 228:151–174, 1999.

N. Jones.

The expressive power of higher order types or, life without cons.

Journal of Functional Programming, 11(1):55–94, 2000.

V. Sazonov.

Polynomial computability and recursivity in finite domains.

Elektronische Informationsverarbeitung und Kybernetik, 7:319–323, 1980.

Ramification

Primitive recursion over arbitrary first order structures Bounded recursion

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique Church numeral as a tiere

What's about space ?

Other classes

Computing over an arbitrary structures

Domains with two colors

Two first order structures for binary words

Word = $\langle \epsilon, 0, 1 \rangle$ NormalWord = $\langle \epsilon, 0, 1 \rangle$ Safe

Functions over domains with colors :

$$\llbracket f \rrbracket : \llbracket \mathsf{Word} \rrbracket^p \times \llbracket \mathsf{Word} \rrbracket^q \to \llbracket \mathsf{Word} \rrbracket$$
$$\overline{x}, \overline{y} \to f(\overline{x}; \overline{y})$$

Note the semicolon ; separates arguments

Ramification

Primitive recursior over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion

Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Safe Composition and Recursion

safe composition

 $f(\overline{\mathbf{x}};\overline{\mathbf{y}}) = g(h_1(\overline{\mathbf{x}};);h_2(\overline{\mathbf{x}};\overline{\mathbf{y}}))$

safe recursion

 $f(\epsilon, \overline{x}; \overline{y}) = g(\overline{x}; \overline{y})$ $f(\mathbf{0}(z), \overline{x}; \overline{y}) = h_0(z, \overline{x}; f(z, \overline{x}; \overline{y}), \overline{y})$ $f(\mathbf{1}(z), \overline{x}; \overline{y}) = h_1(z, \overline{x}; f(z, \overline{x}; \overline{y}), \overline{y})$

Recursive calls are safe !!

Ramification

Primitive recursior over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion

Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Data ramification

Data Ramification implies

Word > Word

because

f(x;) = g(; I(x;))I(x;) = x Safe comp projection

Ramification

Primitive recursion over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion

Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

A first conclusion

But the converse does not hold !!

Safe Recursive functions

The class \mathcal{B} of safe recursive functions contains Safe basic functions

- Constructors : $x \mapsto \epsilon$, $x \mapsto \mathbf{0}(; \mathbf{x})$, and $x \mapsto \mathbf{1}(; x)$
- Predecessor : $p(; \epsilon) = \epsilon, p(; i(; x)) = x$
- Conditional : $C(; x, y, z) = \begin{cases} y & \text{if } x = \mathbf{0}(x') \\ z & \text{otherwise} \end{cases}$

► Projections : $\pi_i(x_1, ..., x_n; x_{n+1}, ..., x_{n+m}) = x_i$ and is closed

- safe composition
- safe recursion

Ramification

Primitive recursior over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion

Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Examples

Concatenation or addition :

 $add(\epsilon; x) = x$ $add(\mathbf{0}(w); x) = \mathbf{0}(; add(w; x))$ $add(\mathbf{1}(w); x) = \mathbf{1}(; add(w; x))$

Multiplication by iterating addition

 $\begin{aligned} & \texttt{mul}(\epsilon, y;) = \epsilon \\ & \texttt{mul}(\mathbf{0}(v), y;) = \texttt{add}(y; \texttt{mul}(v, y;)) \\ & \texttt{mul}(\mathbf{1}(v), y;) = \texttt{add}(y; \texttt{mul}(v, y;)) \end{aligned}$

Ramification

Primitive recursion over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion

Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Characterizations of PTIME

Theorem (Bellantoni-Cook)

The set PTIME of functions which are computable in polynomial time is exactly the class \mathcal{B} of safe recursive functions.

 Simmons (88) was the first to suggest this data-separation for primitive recursion.

Ramification

Primitive recursior over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion

liering as a recursion echnique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Exponential is not safe !

Double length function is safe

$$double(\epsilon;) = \epsilon$$

double(0(w);) = 1(;1(;double(w;)))
double(1(w);) = 1(;1(;double(w;)))

Exponential by doubling is not safe

$$\exp(\epsilon;) = \mathbf{1}(\epsilon)$$
$$\exp(\mathbf{0}(\nu);) = \operatorname{double}(\exp(\nu;))$$
$$\exp(\mathbf{1}(\nu);) = \operatorname{double}(\exp(\nu;))$$

The recursive call exp(v;) should be safe. But double requires a normal argument.

Ramification

Primitive recursion over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion

Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

A well-known Escher drawing to make a break

Ramification

Primitive recursion over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion

Tiering as a recursion rechnique Church numeral as a tierer

numeration

What's about space ?

Other classes

Computing over an arbitrary structures

A first conclusion

 $f: Word(n + 1) \rightarrow Word(n)$ Analysis of the energy of arguments in recursive definitions

Domains is stratified by tiers

Refer to the same set of words, $\llbracket Word(k) \rrbracket = \{0, 1\}^*$

Ramification

Tiered recursion

$$f(\epsilon, y) = g(y) f(0(x), y) = h_0(x, y, f(x, y)) f(1(x), y) = h_1(x, y, f(x, y))$$

$$g: Word(m) \rightarrow Word(n)$$

 $h_i: Word(n+1) \rightarrow Word(m) \rightarrow Word(n) \rightarrow Word(n)$
 $f: Word(n+1), Word(m) \rightarrow Word(n)$

Tier of Recurrence param. > Tier of the recursive calls

Now the inputs and outputs have colors.

Keep that in mind !!!

Ramification

Primitive recursion over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion

Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Addition and Multiplication

Concatenation or addition :

 $add(\epsilon, \mathbf{x}) = \mathbf{x}$ $add(\mathbf{0}(w), \mathbf{x}) = \mathbf{0}(add(w, \mathbf{x}))$ $add(\mathbf{1}(w), \mathbf{x}) = \mathbf{1}(add(w, \mathbf{x}))$

add : Word(n + 1) \rightarrow Word(n) \rightarrow Word(n)

Multiplication by iterating addition

$$\begin{split} & \texttt{mul}(\epsilon, y) = \epsilon \\ & \texttt{mul}(\mathbf{0}(v), y) = \texttt{add}(y, \texttt{mul}(v, y)) \\ & \texttt{mul}(\mathbf{1}(v), y) = \texttt{add}(y, \texttt{mul}(v, y)) \end{split}$$

 $mul: Word(n + 1) \rightarrow Word(n + 1) \rightarrow Word(n)$

Ramification

Primitive recursion over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion

Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Down casting

$$cast(\epsilon) = \epsilon$$
$$cast(\mathbf{0}(w)) = \mathbf{0}(cast(w))$$
$$cast(\mathbf{1}(w)) = \mathbf{1}(cast(w))$$

$$cast: Word(n+1) \rightarrow Word(n)$$

But up-casting is forbidden ! \Rightarrow strict data ramification

$$\ldots > Word(k+1) > Word(k) > \ldots > Word(1) > Word(0)$$

Ramification

Primitive recursion over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion

Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Flat recurrence

Special case of tiered recursion where there is no recursive call

$$\begin{split} f(\epsilon,\overline{y}) &= g(\overline{y}) \\ g: \mathsf{Word}(n) \to \mathsf{Word}(n) \\ f(\mathbf{0}(x),\overline{y}) &= h_0(x,\overline{y}) \\ h_i: \mathsf{Word}(n) \to \mathsf{Word}(n) \to \mathsf{Word}(n) \\ f(\mathbf{1}(x)),\overline{y}) &= h_1(x,\overline{y}) \\ f: \mathsf{Word}(n) \to \mathsf{Word}(n) \to \mathsf{Word}(n) \\ pred(\epsilon) &= \epsilon \\ pred(\mathbf{0}(x),y) &= x \\ pred(\mathbf{1}(x),y) &= x \\ pred($$

$$\operatorname{cond}(\epsilon, y, z, w) = w$$
 $\operatorname{cond}(\mathbf{0}(x), y, z, w) = y$
 $\operatorname{cond}(\mathbf{1}(x), y, z, w) = z$

Ramification

recursion

Simultaneous tiered recursion

$$f_{0}(\epsilon, \overline{y}) = g_{0}(\overline{y}) \dots f_{p}(\epsilon, \overline{y}) = g_{p}(\overline{y})$$

$$f_{0}(\mathbf{0}(x), \overline{y}) = h_{0}(x, \overline{y}, f_{0}(x, \overline{y}), \dots, f_{p}(x, \overline{y}))$$

$$f_{0}(\mathbf{1}(x), \overline{y}) = h'_{0}(x, \overline{y}, f_{0}(x, \overline{y}), \dots, f_{p}(x, \overline{y}))$$

$$\dots$$

$$f_{\rho}(\mathbf{0}(x),\overline{y}) = h_0(x,\overline{y},f_0(x,\overline{y}),\ldots,f_{\rho}(x,\overline{y}))$$

$$f_{\rho}(\mathbf{1}(x),\overline{y}) = h'_0(x,\overline{y},f_0(x,\overline{y}),\ldots,f_{\rho}(x,\overline{y}))$$

where

$$egin{aligned} g_i: \mathsf{Word}(i) &
ightarrow \mathsf{Word}(j) \ h_i, h_i': \mathsf{Word}(k+1) &
ightarrow \mathsf{Word}(i) &
ightarrow \mathsf{Word}(j)^p &
ightarrow \mathsf{Word}(j) \ f_i: \mathsf{Word}(k+1) &
ightarrow \mathsf{Word}(i) &
ightarrow \mathsf{Word}(j) \end{aligned}$$

Tiering condition implies

$$k+1 \ge i > j$$

Ramification

Primitive recursior over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion

Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Characterization of PTIME

Definition

The class **TRec**^{*}(**Word**) is the set of functions defined by simultaneous tiered recursion and explicit definitions (projections and composition well typed).

Theorem (Leivant 94)

The three sets are identical

- The set PTIME of functions computable in polynomial time.
- The set TRec*(Word) using any tiers
- The set TRec*(Word) using 2 tiers only

Proof.

We are going to sketch it shortly.

Ramification

Primitive recursion over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion

Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Another look at the exponential

Double the length

$$\begin{array}{l} \texttt{double}(\epsilon) = \epsilon \\ \texttt{double}(\mathbf{0}(w)) = \mathbf{1}(\mathbf{1}(\texttt{double}(w))) \\ \texttt{double}(\mathbf{1}(w)) = \mathbf{1}(\mathbf{1}(\texttt{double}(w))) \end{array}$$

double: $Word(n+1) \rightarrow Word(n)$

Exponential by doubling

$$\exp(\epsilon) = \mathbf{1}(\epsilon)$$
$$\exp(\mathbf{0}(w)) = \operatorname{double}(\exp(w))$$
$$\exp(\mathbf{1}(w)) = \operatorname{double}(\exp(w))$$

 $\exp: \textbf{Word}(k+1) \rightarrow \textbf{Word}(k)$

No solution, this definition is circular !!!

Ramification

Primitive recursion over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion

Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Tiered recursion captures PTIME

Take a Turing Machine M,

- q is a state
- u the left tape
- v the right tape
- the head is scanning the first letter of u

state(q, u, v) = next state
left(q, u, v) = left side of the tape
right(q, u, v) = right side of the tape

build by explicit definitions

 $\texttt{state}, \texttt{left}, \texttt{right}: \textbf{Word}(0)^3 \to \textbf{Word}(0)$

Ramification

Primitive recursior over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion

Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Linear length Iteration

$$\begin{split} T_1^S(\epsilon, q, u, v) &= q \\ T_1^L(\epsilon, q, u, v) &= u \\ T_1^R(\epsilon, q, u, v) &= v \\ T_1^S(\mathbf{i}(t), q, u, v) &= \texttt{state}(T_1^S(t, q, u, v), \\ & T_1^L(t, q, u, v), T_1^R(t, q, u, v)) \\ T_1^L(\mathbf{i}(t), q, u, v) &= \texttt{left}(T_1^S(t, q, u, v), \\ & T_1^L(t, q, u, v), T_1^R(t, q, u, v)) \\ T_1^R(\mathbf{i}(t), q, u, v) &= \texttt{right}(T_1^S(t, q, u, v), \\ & T_1^L(t, q, u, v), T_1^R(t, q, u, v)) \end{split}$$

Ramification

Primitive recursion over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion

Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Linear length Iteration

 $T_1^S, T_1^L, T_1^R: \text{Word}(1) \to \text{Word}(0)^3 \to \text{Word}(0)$

$$\llbracket T_1^S(t, q, u, v) \rrbracket = \text{state after } t \text{ steps}$$
$$\llbracket T_1^L(t, q, u, v) \rrbracket = \text{left tape after } t \text{ steps}$$
$$\llbracket T_1^R(t, q, u, v) \rrbracket = \text{right tape after } t \text{ steps}$$

We make k nested simultaneous recursion to iterate n^k times

Ramification

Primitive recursior over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion

Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Polynomial length iteration

$$T_{k+1}^{S}(\epsilon, q, u, v) = q$$
 $T_{k+1}^{L}(\epsilon, q, u, v) = u$ $T_{k+1}^{R}(\epsilon, q, u, v) =$

$$T_{k+1}^{S}(\mathbf{i}(t), \bar{t}, q, u, v) = T_{k}^{S}(\bar{t}, T_{k}^{S}(\bar{t}, q, u, v,), T_{k}^{L}(\bar{t}, q, u, v), T_{k}^{R}(\bar{t}, q, u, v))$$

$$T_{k+1}^{L}(\mathbf{i}(t), \bar{t}, q, u, v) = T_{k}^{L}(\bar{t}, T_{k}^{S}(\bar{t}, q, u, v), T_{k}^{R}(\bar{t}, q, u, v))$$

$$T_{k+1}^{R}(\mathbf{i}(t), \bar{t}, q, u, v) = T_{k}^{R}(\bar{t}, T_{k}^{S}(\bar{t}, q, u, v), T_{k}^{R}(\bar{t}, q, u, v))$$

$$T_{k+1}^{R}(\mathbf{i}(t), \bar{t}, q, u, v) = T_{k}^{R}(\bar{t}, T_{k}^{S}(\bar{t}, q, u, v), T_{k}^{R}(\bar{t}, q, u, v))$$

where $\overline{t} = t, t_k, \ldots, t_1$

 $T_{k+1}^{S}, T_{k+1}^{L}, T_{k+1}^{R}: Word(1)^{k+1}
ightarrow Word(0)^{3}
ightarrow Word(0)$

Ramification

Primitive recursion over arbitrary first order structures

Polynomial time

Data Ramification

Safe recursion

Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Simulation of PTIME computation

Lemma

A polynomial time computable function $\phi : \{0,1\}^* \rightarrow \{0,1\}^*$ is captured by a function in **TRec**^{*}(*Word*) using 2 tiers only

Proof.

Suppose that Φ is computed by a TM in time n^k .

$$\phi(w) = T_k^R(w, \ldots, w, q_0, w, \epsilon)$$

where

$$\llbracket T_k^{\mathsf{S}}(\overline{w}, q, u, v) \rrbracket = \text{state after } |w|^k \text{ steps}$$
$$\llbracket T_k^{\mathsf{L}}(\overline{w}, q, u, v) \rrbracket = \text{left tape after } |w|^k \text{ steps}$$
$$\llbracket T_k^{\mathsf{R}}(\overline{w}, q, u, v) \rrbracket = \text{right tape after } |w|^k \text{ steps}$$

Ramification

Primitive recursion over arbitrary first order structures

Polynomial time

Data Ramification

Safe recursion

Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Computation of tiered recursion

Lemma

For any tier 1 arguments u_1, \ldots, u_p , and tier 0 arguments v_1, \ldots, v_q , the computation of $f(u_1, \ldots, u_p, v_1, \ldots, v_q)$ runs in time bounded by $c \times (\sum_{i=1,p} |u_i|)^k$.

Ramification

Primitive recursior over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion

Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Proof

$$f(\epsilon, y; z) = g(y; z)$$

$$f(\mathbf{0}(x), y; z) = h_0(x, y; z, f(x, y; z))$$

$$f(\mathbf{1}(x), y; z) = h_1(x, y; z, f(x, y; z))$$
: Word(1), Word(0) \rightarrow Word(0)

Ind. Hyp applies to g and h_i

f

 So, g runs within a time bounded by a polynomial in tier 1 inputs

 $\textit{Time}(g(v;w)) \leq |v|^{k'}$

- ► So, the run time of h_i is polynomial in tier 1 inputs $Time(h_i(u', v; w, w')) \le (|u'| + |v|)^{k''}$
- ► f(u, v, w) is computed by iterating |u| times h_i 's $Time(f(u, v, w)) \le |u| \times (|u| + |v|)^{k''} + |v|^{k'}$ $\le (|u| + |v|)^{k'+k''}$

Ramification

Primitive recursion over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion

Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Church-numerals

$$\underline{\mathbf{n}} = \lambda \mathbf{f} : \alpha \to \alpha \, \lambda \mathbf{x} : \alpha, \, \mathbf{f}^{\mathbf{n}}(\mathbf{x})$$

where
$$f^0(x) = x$$
 and $f^{k+1}(x) = f(f^k(x))$
$$\underline{n}: \mathbf{N}(\alpha) = (\alpha \to \alpha) \to (\alpha \to \alpha)$$

 $\mathbf{0} = \lambda f \lambda \mathbf{x}, \mathbf{x}$

Successor :

$$\mathbf{suc} = \lambda n : \mathbf{N}(\alpha) \ \lambda f : \alpha \to \alpha \ \lambda \mathbf{x} : \alpha, \ f(n \ f \ \mathbf{x})$$

 $n+1 = (\operatorname{suc} \underline{n})$

Ramification

Primitive recursion over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Church numeral arithmetic

add
$$\underline{n} \underline{m} = \lambda f \lambda x, (\underline{n} f (\underline{m} f x))$$

add: $\mathbf{N}(\alpha) \to \mathbf{N}(\alpha) \to \mathbf{N}(\alpha)$
 $[add](\underline{n}, \underline{m}) = \underline{n+m}$

$$\begin{array}{l} (\mathtt{mul} \ \underline{n} \ \underline{m}) = \lambda f \lambda \mathbf{x}, (\underline{n} \ (\underline{m} \ f) \ \mathbf{x}) \\ \mathtt{mul} : \mathbf{N}(\alpha) \to \mathbf{N}(\alpha) \to \mathbf{N}(\alpha) \\ [\mathtt{mul}] (\underline{n}, \underline{m}) = \underline{n \times m} \end{array}$$

But

$$(\exp \underline{n}) = (\underline{n} \underline{2})$$
$$\exp: \mathbf{N}(\alpha \to \alpha) \to \mathbf{N}(\alpha)$$
$$[\exp](\underline{n}) = \underline{2^n}$$

Ramification

Primitive recursion over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Extended polynomials

Definition

A function $\phi: \mathbb{N} \to \mathbb{N}$ is Church-representable if there is a λ -term F such that

$$(F\underline{n}) = \underline{\phi(n)}$$

F: $\mathbf{N}(\alpha) \to \mathbf{N}(\alpha)$

Exponential is not Church-representable

Theorem (Schwichtenberg)

The set of Church-representable functions is the set of extended polynomials (= polynomials + test if n = 0).

Ramification

Primitive recursion over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Church representation of first order structures

$$\mathbf{W}(\alpha) = (\alpha \to \alpha) \to (\alpha \to \alpha) \to (\alpha \to \alpha)$$

$$\underline{\epsilon} = \lambda f_0 \lambda f_1 \lambda \mathbf{x}, \mathbf{x}$$

$$\underline{1} = \lambda u \lambda f_0 \lambda f_1 \lambda \mathbf{x}, f_0(\underline{u} f_0 f_1 \mathbf{x})$$

$$\underline{0} = \lambda u \lambda f_0 \lambda f_1 \lambda \mathbf{x}, f_1(\underline{u} f_0 f_1 \mathbf{x})$$

$$\underline{\mathbf{0}}(\underline{u}) = (\underline{0} \ \underline{u}) \qquad \qquad \underline{\mathbf{1}}(\underline{u}) = (\underline{1} \ \underline{u})$$

$$\mathbf{W}(\alpha) = (\alpha \to \alpha) \to (\alpha \to \alpha) \to (\alpha \to \alpha)$$
$$\underline{u} : \mathbf{W}(\alpha)$$

Böhm and Berarducci (85)

Ramification

Primitive recursior over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Two levels of data representations

Abstract level : $\lambda u \lambda f_0 \lambda f_1 \lambda x$, $f_0(f_0(f_1x))$

Data level : $\mathbf{0}(\mathbf{0}(\mathbf{1}(\epsilon)))$

- ► Abstract level ⇒ Data Level
- But the converse does not hold
- Data ramification principle !

Ramification

Primitive recursion over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

λ -calculus over Word*

Atomic types : Word and Word*

Constructors :

 $\begin{array}{cc} \epsilon \colon \text{Word} & \textbf{0}, \textbf{1} \colon \text{Word} \to \text{Word} \\ \text{nil} \colon \text{Word}^* & \text{cons} \colon \text{Word} \to \text{Word}^* \to \text{Word}^* \end{array}$

Ramification

Primitive recursior over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

λ -calculus over **Word***

Destructors:

 $pred(\epsilon) = \epsilon$ $pred(\mathbf{0}(u)) = u$ $pred(\mathbf{1}(u)) = u$

$$\operatorname{cond}(u, a, b, c) = \begin{cases} a & u = \epsilon \\ b & u = \mathbf{0}(u) \\ c & u = \mathbf{1}(u) \end{cases}$$

 $\begin{array}{ll} hd(\mathbf{nil}) = \mathbf{nil} & hd(\mathbf{cons}(u,L)) = u \\ tl(\mathbf{nil}) = \mathbf{nil} & tl(\mathbf{cons}(u,L)) = L \end{array}$

$$ext{cond}(L, a, b) = egin{cases} a & u = ext{nil} \ b & ext{otherwise} \end{cases}$$

Ramification

Primitive recursior over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Church representation of algebra terms

Definition

 $1\lambda^{p}(Word^{*})$ is the class of terms of simply typed λ -calculus with constructors and destructors over Word^{*}

Definition

A function $\Phi: \{0, 1\}^* \to \{0, 1\}^*$ is computed by a λ -term F of $\mathbf{1}\lambda^p(\mathbf{Word}^*)$ if $F(\underline{w}) = \phi(w)$ where $\underline{f}: \mathbf{W}(\mathbf{Word}^*) \to \mathbf{Word}^*$.

Theorem (Leivant-Marion)

The set of functions computed by $1\lambda^{p}(Word^{*})$ -terms is exactly the set PTIME of polynomial time functions.

Ramification

Primitive recursior over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

References

S. Bellantoni and S. Cook.

A new recursion-theoretic characterization of the poly-time functions.

Computational Complexity, 2:97–110, 1992.

D. Leivant.

A foundational delineation of poly-time. Information and Computation, 110(2):391–420, 1994.

D. Leivant and J-Y Marion. Lambda calculus characterizations of poly-time. *Fundamenta Informaticae*, 19(1,2):167,184, September 1993.

H. Simmons.

The realm of primitive recursion.

Archive for Mathematical Logic, 27:177–188, 1988.

Ramification

Primitive recursior over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Parallel Register Machines (PRM)

- 1. a finite set $S = \{s_0, s_1, \dots, s_k\}$ of *states*
- 2. a finite list $\Pi = \{\pi_1, \ldots, \pi_m\}$ of *registers*
- 3. and commands
 - [Succ($\pi = i(\pi), s'$)], [Pred($\pi = p(\pi), s'$)],
 - [Branch(π, s', s'')],
 - [Fork_{min}(s', s'')], [Fork_{max}(s', s'')],
 - ▶ [End].

Ramification

Primitive recursior over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique Church numeral as a tiere

What's about space ?

Other classes

Computing over an arbitrary structures

(PRM)

$$eval(0, s, \Pi) = \bot$$

 $cmd(s) = \pi_j = \mathbf{i}(\pi_j)$ and the next state is s'
 $eval(t + 1, s, \Pi) = eval(t, s', \{\pi \leftarrow \mathbf{i}(\pi)\}\Pi)$
 $cmd(s) = pred(\pi)$
 $eval(t + 1, s, \Pi) = eval(t, s', \{\pi \leftarrow \mathbf{p}(\pi)\}\Pi)$

 $\operatorname{cmd}(s) = \operatorname{Branch}(\pi, s', s'')$

$$\operatorname{eval}(t+1,s,\Pi) = egin{cases} \operatorname{eval}(t,s',\Pi) & \operatorname{if} \pi = \mathbf{0}(w) \\ \operatorname{eval}(t,s'',\Pi) & \operatorname{if} \pi = \mathbf{1}(w) \end{cases}$$

Ramification

Primitive recursior over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique Church numeral as a tiere

What's about space ?

Other classes

Computing over an arbitrary structures

PRM

And the Fork $cmd(s) = Fork_{min}(s', s'')$ $eval(t+1, s, \Pi) = \min(eval(t, s', \Pi), eval(t, s'', \Pi))$ $cmd(s) = Fork_{max}(s', s'')$ $eval(t+1, s', \Pi) = \max(eval(t, s', \Pi), eval(t, s'', \Pi))$

where \blacktriangleleft is the lexicographic order on words.

 $eval(t+1, End, \Pi) = \Pi(OUTPUT)$

Ramification

Primitive recursior over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

PRM

A function $\phi : \{0, 1\}^* \to \{0, 1\}^*$ is PRM-computable in time $T : \mathbb{N} \to \mathbb{N}$ if there is a PRM *M* such that for each $(w_1, \cdots, w_k) \in \mathbb{W}^k$, we have

$$eval(T(|w|), BEGIN, F_0) = \phi(w)$$

Time-bound semantics

 $eval: \mathbb{N} \times S \times \mathbb{W}^m \mapsto \mathbb{W}$

Ramification

Primitive recursior over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique Church numeral as a tiere

What's about space ?

Other classes

Computing over an arbitrary structures

Trade-off between time and space

Theorem

The following are equivalent

- 1. ϕ is computable in polynomial space
- 2. ϕ is computable in non-deterministic polynomial space
- φ is computable in polynomial time on Alternating Turing Machine
- 4. ϕ is computable in polynomial time on PRM

Proof.

See Chandra, Kozen, Stockmeyer and Savitch

Ramification

Primitive recursior over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique Church numeral as a tiere

What's about space ?

Other classes

Computing over an arbitrary structures

Tiered recursion with substitutions

$$f(\epsilon, \overline{y}) = g(\overline{y})$$

$$f(\mathbf{0}(x), \overline{y}) = h_0(x, \overline{y}, f(x, \sigma_1(\overline{y})), \dots, f(x, \sigma_k(\overline{y})))$$

$$f(\mathbf{1}(x), \overline{y}) = h_1(x, \overline{y}, f(x, \sigma'_1(\overline{y})), \dots, f(x, \sigma'_k(\overline{y})))$$

$$\sigma_i, \sigma'_i : \operatorname{Word}(m) \to \operatorname{Word}(n)$$

 $g : \operatorname{Word}(m) \to \operatorname{Word}(n)$
 $h_i : \operatorname{Word}(n+1) \to \operatorname{Word}(m) \to \operatorname{Word}(n) \to \operatorname{Word}(n)$
 $\sigma_j, \sigma'j : \operatorname{Word}(m) \to \operatorname{Word}(m)$
 $f : \operatorname{Word}(n+1), \operatorname{Word}(m) \to \operatorname{Word}(n)$

Ramification

Primitive recursior over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique Church numeral as a tiere

What's about space ?

Other classes

Computing over an arbitrary structures

Characterization of PSPACE

Definition

The class **Sub(Word**) is the set of functions defined by tiered recursion with substitutions and explicit definitions (projections and composition).

Theorem (LM95)

The three sets are identical

- The set PSPACE of functions computable in polynomial space
- The set Sub(Word) using any tiers
- The set Sub(Word) using 3 tiers only

Proof.

We are going to sketch it shortly.

Ramification

Primitive recursion over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique Church numeral as a tierer

What's about space ?

Other classes

Computing over an arbitrary structures

Simulating PSPACE

Lemma

A polynomial time PRM computable function $\phi : \{0,1\}^* \rightarrow \{0,1\}^*$ is captured by a function in **Sub(Word)** using 3 tiers only

Proof.

eval is defined by rec. with substitution of parameters: ${\tt cmd}(s) = {\sf Fork}_{\sf min}(s',s'')$

$$eval(t+1, s, \Pi) = \min_{\mathbf{A}}(eval(t, \delta_0(s), \Pi), eval(t, \delta_1(s), \Pi))$$

where

$$\delta_0(s) = s'$$

$$\delta_1(s) = s''$$

 $\texttt{eval}: \textbf{Word}(1) \rightarrow \textbf{Word}(0)^m \rightarrow \textbf{Word}(0)$

Ramification

Primitive recursion over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique Church numeral as a tiered

What's about space ?

Other classes

Computing over an arbitrary structures

Simulating PSPACE

Define a polynomial time clock T : **Word**(2) \rightarrow **Word**(1) by composing tiered addition and multiplication that we have already seen.

$$\phi(w) = \text{eval}(T(|w|), \text{BEGIN}, F_0)$$

Ramification

Primitive recursior over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique Church numeral as a tiere

numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Computation in PSPACE

Lemma

A function ϕ in **Sub**(*Word*) using 3 tiers only is computed in space $O(n^k) + m$ for some k

- n is the size of tier 2 and 1 arguments
- m is the size of tier 0 arguments

Ramification

Primitive recursion over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique Church numeral as a tiere

What's about space ?

Other classes

Computing over an arbitrary structures

Other tiered characterizations of low complexity classes

- ► $NC^1 \equiv A-Log-TIME$
 - Bloch (94),
 - Leivant-Marion (00)
- ► NC^k
 - Bonfante, Kähle, Marion, Oitavem (06),
- NC
 - Leivant (98),
 - Oitavem (04)
- NP
 - Bellantoni (94)
- ► FPSPACE = A-POLY-TIME
 - Leivant-Marion (95)

Ramification

Primitive recursior over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Computing over a structure \mathcal{K}

A computational structure

$$\mathcal{K} = \langle \mathbb{K}, \{op_i\}_{i \in I}, rel_1 \dots, rel_\ell, =, \mathbf{0}, \mathbf{1} \rangle$$

- A domain K
- operators $\{op_i\}_{i \in I}$ over \mathbb{K}
- relations rel₁,..., rel_l
- ▶ the equality over K
- two particular constants 0 and 1

 \mathbb{K}^* denotes lists of elements of $\mathbb{K}.$

Ramification

Primitive recursion over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique

numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Reference

S. Bellantoni.

Predicative recursion and the polytime hierarchy.

In Peter Clote and Jeffery Remmel, editors, *Feasible Mathematics II, Perspectives in Computer Science*. Birkhäuser, 1994.

S. Bloch.

Function-algebraic characterizations of log and polylog parallel time.

Computational complexity, 4(2):175–205, 1994.

D. Leivant.

A characterization of NC by tree recurrence. In 39th Annual Symposium on Foundations of Computer Science, FOCS'98, pages 716–724, 1998.

D. Leivant and J-Y Marion.

Ramified recurrence and computational complexity II: substitution and poly-space.

In L. Pacholski and J. Tiurvn, editors, Computer

Ramification

Primitive recursior over arbitrary first order structures Bounded recursion

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique

numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Blum-Shub-Smale machine over \mathcal{K}

Similar to a Turing machine, with the properties:

- ▶ Its tape cells hold arbitrary elements of K.
- ► It has Computation nodes for computing the operations {op_i}_{i∈1} with unit cost.
- It has Branch nodes for computing the relations rel₁,..., rel_l with unit cost.
- It has Shift nodes for moving the head.
- ► Inputs and outputs are vectors in K^{*}
- A TM computes a function from \mathbb{K}^* to \mathbb{K}^* .

 \mathbb{K}^* denotes lists of elements of \mathbb{K} .

Ramification

Primitive recursior over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Polynomial time functions over $\ensuremath{\mathcal{K}}$

Definition

```
A function f : (\mathbb{K}^*)^n \to (\mathbb{K}^*)^m is in class \mathsf{PTIME}_{\mathcal{K}} iff
```

f is computable in polynomial time.

That is,

there is a polynomial p and a BSS-TM M, such that

- M computes f
- *M* stops in $p(|\overline{w}|)$ steps on each input *w* of \mathbb{K}^* .

 $|\overline{w}|$ is the length of the list $\overline{w} \in \mathbb{K}^*$.

Ramification

Primitive recursior over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Complexity Theory over ${\boldsymbol{\mathcal K}}$

- ▶ Over the structure $\mathcal{B} = (\{0, 1\}, =, 0, 1)$, we compute $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$, corresponds to classical complexity and PTIME_B = PTIME.
- Over the structure R = (R, +, -, *, /, >, =, 0, 1) corresponds to the original Blum Shub and Smale (89) paper.

Ramification

Primitive recursior over arbitrary first order structures

Polynomial time

Data Ramification

Safe recursion Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Safe Recursion over a structure $\ensuremath{\mathcal{K}}$

Two types of arguments, "normal" and "safe"

 $f(\overline{\mathbf{x}}; \overline{\mathbf{y}})$

The set of safe recursive functions over ${\cal K}$ is the smallest set of functions containing basic safe functions

- structure operators and relations
- projections
- list destructors : hd and tl
- list constructor : cons
- Boolean selection : if x = 1 then y else z

Ramification

Primitive recursion over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique

Church numeral as a tierec numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Basic functions

$$\blacktriangleright \mathsf{hd}(; a.\overline{x}) = a, \mathsf{tl}(; a.\overline{x}) = \overline{x}, \mathsf{cons}(; a.\overline{x}, \overline{y}) = a.\overline{y}$$

- Projections
- Application of operators and relations

$$\begin{array}{lll} \mathsf{Op}_{\imath}(;a_{1}.\overline{x_{1}},\ldots,a_{n_{\imath}}.\overline{x_{n_{\imath}}}) &= (op_{\imath}(a_{1},\ldots,a_{n_{\imath}})).\overline{x_{n_{\imath}}} \\ \mathsf{Rel}_{\imath}(;a_{1}.\overline{x_{1}},\ldots,a_{n_{\imath}}.\overline{x_{n_{\imath}}}) &= \begin{cases} \mathbf{1} \text{ if } rel_{\imath}(a_{1},\ldots,a_{n_{\imath}}) \\ \epsilon \text{ otherwise} \end{cases}$$

Test

$$\frac{\text{Select}(; \overline{x}, \overline{y}, \overline{z})}{\overline{z}} = \begin{cases} \overline{y} & \text{if } hd(\overline{x}) = 1\\ \overline{z} & \text{otherwise} \end{cases}$$

Ramification

Primitive recursior over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique Church numeral as a tiere

What's about space ?

Other classes

Computing over an arbitrary structures

Safe Recursive functions over $\ensuremath{\mathcal{K}}$

and closed under both schemas

safe composition

$$f(\overline{x};\overline{y}) = g(h_1(\overline{x};);h_2(\overline{x};\overline{y}))$$

safe recursion

$$f(\epsilon, \overline{x}; \overline{y}) = g(\overline{x}; \overline{y})$$
$$f(a.\overline{z}, \overline{x}; \overline{y}) = g(\overline{z}, \overline{x}; f(\overline{z}, \overline{x}; \overline{y}), \overline{y})$$

Ramification

Primitive recursior over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique

numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Polynomial time functions $\text{PTIME}_{\mathcal{K}}$

Theorem (Bournez-Cucker-de Naurois-Marion (03))

Over any structure \mathcal{K} , the set of safe recursive functions over \mathcal{K} is exactly $\mathsf{PTIME}_{\mathcal{K}}$.

Proof.

This proof implies Bellantoni and Cook's one and is more direct.

Ramification

Primitive recursion over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique

numeration

What's about space ?

Other classes

Computing over an arbitrary structures

A priori, there is no valid notion of space over arbitrary structures.

Theorem (Michaux)

Over $(\mathbb{R}^+, 0, 1, =, +, -, *, <)$, any computable function can be computed in constant working space.

But, Paulin de Naurois gives a logarihmic cost, see his talk at the ICC workshop next week !

Ramification

Primitive recursion over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

The class $\text{FPAR}_{\mathcal{K}}$

 $\text{FPAR}_{\mathcal{K}}$ is the set of functions computable in parallel poly-time.

That is, by a P-uniform family of circuits of polynomial depth.

Theorem (Bournez-Cucker-deNaurois-Marion (04))

A function: $\mathbb{K}^* \to \mathbb{K}^*$ is computed in $\mathsf{FPAR}_{\mathcal{K}}$ if and only if it is defined as a safe recursive function with substitutions over \mathcal{K} .

Ramification

Primitive recursion over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique Church numeral as a tiere

What's about space ?

Other classes

Computing over an arbitrary structures

What we've seen

Data Ramification Principle

- 1. Normal/Safe recursions
- 2. Tiering
- 3. Simply typed λ -calculus
- Characterizations of PTIME and PSPACE
- Capture Turing Machine over arbitrary structures

Ramification

Primitive recursion over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

References

O. Bournez, F. Cucker, P.J. de Naurois, and J.Y. Marion.

Implicit complexity over an arbitrary structure: Quantifier alternations.

Information and Computation, 204(2):210–230, Feb 2006.

- Olivier Bournez, Felipe Cucker, Paulin Jacobé de Naurois, and Jean-Yves Marion.
 Implicit complexity over an arbitrary structure: Sequential and parallel polynomial time.
 Journal of Logic and Computation, 15(1):41–58, 2005.

Paulin Jacobé de Naurois.

Résultats de Complétude et Caractérisations Syntaxiques de Classes de Complexité sur des Structures Arbitraires. PhD thesis, INPL and City university (Hong-Kong),

Ramification

Primitive recursion over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique

church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures

Conclusion

- Intrinsic characterizations
 - "resource" is inside Data Ramification Principle
 - Syntactic complexity characterization
 - we may extract bound,
 - but, low algorithmic expressiveness
 - quite robust wrt model of computations
- Can we apply data ramification to other models of computation ?
- Studying intentional characterization of complexity classes.
- Developing automatic resource analysis by mean of static analysis.

Ramification

Primitive recursior over arbitrary first order structures

Polynomial time computation

Data Ramification

Safe recursion Tiering as a recursion technique

Church numeral as a tiered numeration

What's about space ?

Other classes

Computing over an arbitrary structures