
Quasi-
interpretations

Jean-Yves Marion

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Quasi-interpretations
A way to control resources

Jean-Yves Marion

Ecole nationale supérieure des Mines de Nancy
Loria-INPL

February, 6th 2006

Quasi-
interpretations

Jean-Yves Marion

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Outline
First order functional programming

Programs as rewiting systems
Termination

Quasi-interpretations
Definition of QI
Key properties
Classifications
Upper bounds

Characterizing PTIME

Space resources
Observations

Some practical issues
Synthesis of QI
Resource Bound Certified Code

A conclusion

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Shuffle

Example

shuffle(ε, y) → y

shuffle(x , ε) → x

shuffle(i(x), j(y)) → i(j(shuffle(x , y))) i, j ∈ {0, 1}

shuffle(10(ε), 001(ε)) → 10(shuffle(0(ε)), 01(ε))

→ 1000(shuffle(ε, 1(ε)))

→ 10001(ε)

Domain of computations is the binary word struct. 〈ε, 0, 1〉

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Program Syntax

Constructor
v ::= c | c(v1, · · · , vn)

c ∈ C set of constructors

Patterns
p ::= c | x | c(p1, · · · , pn)

x is a variable

Terms

t ::= c | x | c(t1, · · · , tn) | f (t1, · · · , tn)

f is a fct symbol

Rules
d ::= f (p1, · · · , pn) → t

A program f is a set of rewriting rules

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Program rewriting

I A context is a special term C[_] with a hole
I u → v iff there is a substitution σ and

f (p1, · · · , pn) → t such that
u = C[f (p1, · · · , pn)σ] and v = C[tσ].

I
∗→ is the reflexive and transitive closure of →.

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Program semantics

Hypothesis
Programs are confluent
A sufficient condition (Huet) is that

1. A variable appears only one in p1, · · · , pn in any rule

2. There are no two left-hand side rule wich are
overlapping

Definition
A function φ over constructor domains is computed by a
program f iff

f (w)
∗→φ(w)

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Termination methods

Based on termination orderings
I Polynomial interpretation (Lankford)
I Recursive path ordering with status (Plaisted,

Dershowitz, Kamin and Lévy . . .)
PPO Product path ordering
LPO Lexicographic path ordering

I Dependency pairs (Arts and Giesl)

Other methods
I Size change principle (Lee,Jones and ben-Amram)
I Type systems

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Reduction ordering

A reduction ordering ≺ is a well-founded term ordering

Closed under context If t ≺ s then C[t] ≺ C[s]

Closed under substitution If t ≺ s then σ(t) ≺ σ(s)

A reduction ordering is compatible with a program f if for
each rule f (p1, · · · , pn) → t

t ≺ f (p1, · · · , pn)

Theorem
A program is terminating iff it admits a compatible
reduction ordering.

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Reduction ordering

Theorem
A program is terminating iff it admits a compatible
reduction ordering.

Proof.

I If f is terminating, take ≺ to be the transitive closure
of →.

I Conversely, u → v such that u = C[f (p1, · · · , pn)σ]
and v = C[tσ]. where f (p1, · · · , pn) → t .
We have v ≺ u because ≺ is closed under context
and substitution.
Termination follows by well-foundedness of ≺.

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Recursive path ordering (RPO)

t = f (t1, · · · , tn) ≺rpo g(u1, · · · , um) = u

where ≺F is a precedence on symbols.

∃i , t �rpo ui

t ≺rpo u

∀i , ti ≺rpo g(u1, · · · , um) f ≺F g

t ≺rpo u

∀i , ti ≺rpo u {t1, · · · , tn} ≺st(f)
rpo {u1, · · · , un} f ≈F g

t ≺rpo u

And st is a status given to function symbols

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Ordering and constructors
Constructors

∀i ui ≺rpo f (t1, · · · , tn)
f ∈ F , c ∈ C

c(u1, · · · , um) ≺rpo f (t1, · · · , tn)

I So constructors are the smallest wrt ≺F
I So if u and v are two constructor terms, u ≺rpo v iff u

is a subterm of v .

Lemma
The number of n-uplets v1, · · · , vn such that

(v1, · · · , vn) ≺st(f)
rpo (t1, · · · , tn)

is bounded by
∏

i |ti |

Proof.
A term t has |t | subterms.

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Status

How to compare recursive calls ?

Status given to functions :

1. Product

2. Lexicographic

To capture some algorithmic patterns

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

The product status

f (m1, · · · , mp) ≺p
rpo f (n1, · · · , np)

iff
I ∀1 ≤ i ≤ p, mi �rpo ni

I ∃1 ≤ j ≤ p such that mj ≺rpo nj .

Example

shuffle(ε, y) → y

shuffle(x , ε) → x

shuffle(i(x), j(y)) → i(j(shuffle(x , y))) i, j ∈ {0, 1}

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

The lexicographic extension

f (m1, · · · , mp) ≺l
rpo f (n1, · · · , np)

iff ∃j s.t.
I ∀i < j , mi �rpo ni

I mj ≺rpo nj .

Example

verif (Exists (x , φ), σ) → or (verif (φ, update(σ, x , true))

verif (φ, update(σ, x , false)))

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Program termination

Theorem
A rpo-ordering on terms is a reduction ordering

Proof.
A consequence of Higmann and Kruskal Theorem.

Theorem
A program is terminating iff it admits a compatible
ordering ≺rpo for some precedence ≺F and status st.
That is for each rule

t ≺rpo f (p1, · · · , pn)

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Primitive recursion

A RPOPro-program is a program which terminates by ≺rpo

with product comparison status.

Theorem (Hofbauer (92))
The set of RPOPro-functions,computed by
RPOPro-programs, is exactly the set of primitive recursive
functions.

Example

f (ε, x) → g(x)

f (0(w), x) → h0(w , x , f (w , x))

f (1(w), x) → h1(w , x , f (w , x)) x = x1, . . . , xn

is a RPOPro-program.

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Multiple recursive

A RPO-program which terminates by ≺rpo with any kind
of status .

Theorem (Weiermann (95))
The set of functions computed by RPO-programs, is
exactly the set of multiple recursive functions.

Example (Ackermann)

ack (0, n) = suc (n)

ack (m + 1, 0) = ack (m, 1)

ack (m + 1, n + 1) = ack (m, ack (m + 1, n))

is a RPO-program because it terminates using a
lexicographic status.

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Intentionality

Both examples are not primitive recursive Tail recursion
terminates by lexicographic orders

reverse(ε, y) → y

reverse(i(x), y) → reverse(x , i(y)) i ∈ {0, 1}

Colson’s inf terminatesz by product orders

inf(0, y) → 0

inf(x , 0) → 0

inf(suc (x), suc (y)) → suc (inf((x , y)))

Term ordering capture a large class of algorithms
Polynomial time ordering, see Light MPO (M03).

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Assignments

An assignment of f is Lf M : (R+)n → R+ satisfying:
I Lf M(X1, · · · , Xn)≥ Xi

I Lf M is increasing (not-strictly).
If X ≤ Y then

Lf M(X1, . . . , X , . . . , Xn) ≤ Lf M(X1, . . . , Y , . . . , Xn)

Term assignment

Lf (t1, · · · , tn) M = Lf M(Lt1 M, . . . , Ltn M)

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Quasi interpretations

Definition
An assignment is a quasi-interpretation if for any rule
l → r ,

Llσ M ≥ Lrσ M

(Marion, Moyen, Bonfante)

where σ : Variables 7→ Values is a constructor
substitution.

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Shuffle

shuffle(ε, y) → y

shuffle(x , ε) → x

shuffle(i(x), j(y)) → i(j(shuffle(x , y))) i, j ∈ {0, 1}

I Lε M = 0
I L0 M(X) = L1 M(X) = X + 1
I Lshuffle M(X , Y) = X + Y

Lshuffle(i(x), j(y)) M = X + 1 + Y + 1 ≥ Li(j(shuffle(x , y))) M
= 1 + 1 + X + Y

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Max functions

max(0, y) → y

max(x , 0) → x

max(suc (x), suc (y)) → suc (max(x , y))

I L0 M = 0
I Lsuc M(X) = X + 1
I LmaxM(X , Y) = max(X , Y)

Lmax(suc (x), suc (y)) M = max(X + 1, Y + 1)

= Lsuc (max(x , y)) M
= 1 + max(X , Y)

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Insertion sort

if tt then x else y → x

if ff then x else y → y

0 < suc (y) → tt

x < 0 → ff

suc (x) < suc (y) → x < y

insert (a, ε) → cons (a, ε)

insert (a, cons (b, l)) → if a < b

then cons (a, cons (b, l))

else cons (b, insert (a, l))

sort (ε) → ε

sort (cons (a, l)) → insert (a, sort (l))

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

QI of Insertion sort

Ltt M = Lff M = L0 M = Lε M = 0

Lsuc M(X) = X + 1

Lcons M(X , Y) = X + Y + 1

And function symbols

Lif then else M(X , Y , Z) = max(X , Y , Z)

L< M(X , Y) = max(X , Y)

Linsert M(X , Y) = X + Y + 1

Lsort M(X) = X

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Properties
Proposition
L− M is a quasi-interpretation.
Take two terms u and v such that u ∗→v, we have

Lv M ≤ Lu M

Proof.
∃ a subst. σ and f (p1, · · · , pn) → t such that
u = C[f (p1, · · · , pn)σ] and v = C[tσ].
Since QI are compatible with program rules

Ltσ M ≤ Lf (p1, · · · , pn)σ M

Monotonicity implies

LC[tσ] M ≤ LC[f (p1, · · · , pn)σ] M

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Additive QI
I For each symbol f , Lf M is bounded by a polynomial
I For each constructor c,

Lc M(X1, . . . , Xn) =
∑

i

Xi + αc where αc ≥ 1

Definition (Size)

|c| = 0 |c(t1, · · · , tn)| = 1 +
∑

i

|ti |

Proposition
For any constructor term t,

|t | ≤ Lt M (1)

Lt M ≤ k × |t | (2)

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Addition and multiplication

Domain of unary integers {0, suc }

add (0, y) → y

add (suc (x), y) → suc (add (x , y))

mult (0, y) → 0

mult (suc (x), y) → add (y , mult (x , y))

I L0 M = 1
I Lsuc M(X) = X + 1
I Ladd M(X , Y) = X + Y
I Lmult M(X , Y) = X × Y

Any polynomial has an additive QI.

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Exponential has no additive QI

exp (0) → suc (�)
exp (suc ′(x)) → add (exp (x), exp (x))

Lsuc ′ M(X) = 2X + 1

Lexp M(X) = X + 1

Fact
There is no additive QI for exp !

Proof.
No polynomial solution.

Lexp M(X + α) ≥ Lexp M(X) + Lexp M(X) = 2× Lexp M(X)

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Exponential time evaluation
Theorem
Assume that f admits an additive QI.
There is an evaluation procedure eval such that

eval (f , t1, · · · , tn) =

{
w f (t1, · · · , tn)

∗→w

⊥ otherwise

which runs in O(2
Pn

i=1 |ti |k).

Proof.

I The size of each intermediate value is bounded by
Lf (t1, · · · , tn) M

I f (t1, · · · , tn) is computed in space O(Lf (t1, · · · , tn) M) on a
TM with an unbounded stack.

I Cook’s simulation implies that eval runs in 2c×Lf (t1,··· ,tn) M

I that is runs in O(2
Pn

i=1 |ti |
k
)

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Characterization of PTIME

A RPOQI
Pro-program is a RPOPro-program, which

1. terminates by ≺rpo with product comparison status,

2. admits an additive quasi-interpretation L_ M

Theorem (Marion-Moyen)
The set of functions which are computed by a
RPOQI

Pro-program is exactly the set PTIME of functions
computable in polynomial time.

ICAR system implements this resource analysis method.
(Moyen)

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Additive QI captured PTIME

Lemma
Assume that φ is computable in polynomial time.
Then φ is computable by a RPOQI

Pro-program.

Proof.
A configuration is 〈q, u, v〉 where

I q is a state,
I u is the left tape
I v is the right tape
I the head is scanning the first letter of u.

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Additive QI captured PTIME
state gives the next configuration

state (〈q, u, v〉) = 〈q′, u′, v ′〉

eval (0, 〈q, u, v〉) = 〈q, u, v〉
eval (suc (t), c) = state (eval (t , c))

Lstate M(X) = X + 1 L〈X , Y , Z 〉 M = X + Y + Z + 1

Leval M(T , X) = T + X

L0 M = 0 Lsuc M(X) = X + 1

A polynomial P is computed by a RPOQI
Pro-program

φ(w) = eval (P(w), 〈q0, w , ε〉)

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Computation of Additive QI

Lemma
Let f be an additive RPOQI

Pro-program.
For each constructor term t1, · · · , tn, the runtime to
compute f (t1, · · · , tn) is bounded by a polynomial in
maxn

i=1 |ti |.

Proof.

I We construct a call-by-value interpreter with cache
I We show that it runs within P(Lf (t1, · · · , tn) M) where

P is a polynomial.
I Since the QI is additive Lti M ≤ O(|ti |) and

Lf (t1, · · · , tn) M ≤ P(maxn
i=1 |ti |)

I So, runtime evaluation is bounded by a polynomial

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Memoisation

Example
Computing the length of the longest common
subsequence

lcs (x , ε) → 0

lcs (ε, y) → 0

lcs (i(x), i(y)) → lcs (x , y) + 1

lcs (i(x), j(y)) → max(lcs (x , j(y)), lcs (i(x), y))

I The rewriting calculation required O(2n) steps
I But, lcs terminates by RPO and admits an additive

QI : Llcs M = max.
I So, the function computed by lcs is polynomial time

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

CBV with cache

σ(x) = w

E , σ ` 〈C, x〉 → 〈C, w〉

c ∈ C E , σ ` 〈Ci−1, ti〉 → 〈Ci , wi〉

E , σ ` 〈C0, c(t)〉 → 〈Cn, c(w)〉

f ∈ F E , σ ` 〈Ci−1, ti〉 → 〈Ci , wi〉 (f (w), w) ∈ Cn

E , σ ` 〈C0, f (t1, · · · , tn)〉 → 〈Cn, w〉

f (p) → r ∈ E piσ
′ = wi

E , σ ` 〈Ci−1, ti〉 → 〈Ci , wi〉 E , σ′ ` 〈Cn, r〉 → 〈C, w〉

E , σ ` 〈C0, f (t1, · · · , tn)〉 → 〈C
⋃

(f (w), w), w〉

〈C, t〉 ⇓ 〈C′, w〉 means the computation of t is w given an
initial cache C.

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

CBV with cache

Lemma
Let f be a RPOQI

Pro-program. For each constructor term
t1, · · · , tn, the runtime of the call by value interpreter with
cache to compute f (t1, · · · , tn) is bounded by a
polynomial in Lf (t1, · · · , tn) M.

Proof.

I We memorize all intermediate function values in
cache.

I Time is at most quadratic in the size of the cache.
I Show that the cache size is polynomially bounded in

Lf (t1, · · · , tn) M.
I Conclusion follows because of additive QI.

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Size of the cache

I Suppose that f (t1, · · · , tn) is the input
I The number of possible recursive calls

#{(u1, · · · , un) | (u1, · · · , un) ≺prod
rpo (t1, · · · , tn)}

≤
∏

i

|ti |

I The function f calls g only if g ≺F f .
I If (g, u1, · · · , un, uo) is in a cache, then

|ui | ≤ Lf (t1, · · · , tn) M

I Conclusion follows . . .

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Optimization

1. The cache may be minimized. Because the result of
f (t1, · · · , tn is not necessary if we know the value of
f (t1, · · · , tn) and u1, · · · , un ≺prod

rpo t1, · · · , tn.

2. If a recursive call is linear, we do not need to put it in
cache.

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

tail recursion

f terminates by tail recursion if
(i) the comparison status of f is lexicographic,
(ii) for each rule f (p1, · · · , pn) → r then f has at most

one occurrence in r .

reverse(ε, y) → y

reverse(i(x), y) → reverse(x , i(y))

Theorem
The set of functions computed by tail recursion programs
is exactly PTIME.

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Characterization of PSPACE

A RPOQI-program is a RPO-program, which

1. terminates by ≺rpo with lexicographic status,

2. admits an additive QI L_ M

Theorem (Bonfante, Marion et Moyen)
The set of functions computed by a RPOQI-programs is
exactly the set PSPACE of functions computable in
polynomial space.

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Simulate PSPACE computation

I Recurrence with parameter substitution is
terminating with a lexicographic status.

f (ε, y) → g(y)

f (0(x), y) → h0(x , y , f (x , σ1(y)), . . . , f (x , σk (y)))

f (1(x), y) → h1(x , y , f (x , σ′
1(y)), . . . , f (x , σ′

k (y)))

I Polynomials admit a RPOQI
Lin-program

I We simulate a PRM with forks

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

RPOQI-programs are PSPACE

Lemma
The space used by a call by value interpreter to compute
f (t1, · · · , tn) is bounded by a polynomial in Lf (t1, · · · , tn) M.

Proof.
Set A = Lf (t1, · · · , tn) M

I Each intermediate results are bounded by O(A).
I The maximal length of a branch of a cbv computation

is bounded by α× Ad

I Conclusion : the space is at most O(Ad+1)

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Observations

I Similar result with polynomial interpretation, but less
algorithms

I Use of dynamic programming methods (cache) and
NLOGSPACE

I Capturing other complexity classes LOGSPACE, . . .
I Sup-interpretation (with Péchoux)

log (0) → 0

log (suc (y) → suc (log (half (suc (y))))

half (0) → 0

half (suc (0)) → 0

half (suc (y)) → suc (half (y))

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Finding QI

Does a program admits an additive quasi-interpretation ?
I Restrict to (max,+, ∗) for candidates to be QI
I Fixed a max-degree
I There is a decision procedure in 2|f |

I Because of Tarski’s decision procedure for first order
polynomial over reals

I NP-hard when considering max-plus assignment on
R+ (Amadio 2003)

I Finding heuristics to synthesis QIs ?
I but, usually the degree is low

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

A functional Scenario

I We try to find QI for a functional program.
I Then, QI are transfered to bytecode as resource

annotations
I Virtual Machine check the resource annotations

From Amadio, Coupet-Grimal, Dal Zilio and Jakubiec

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Playing with QI@Nancy

Virtual machine with stack frames
Byte code with 8 instructions
load n Load the nth argument call g n
branch c Conditional & destructor return
build c Constructor stop
in out

Virtual Machine (nearly) runs on Lego Robot Mindstorm

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

A functional Scenario

1. load 1
2. branch s 7
3. load 2
4. build s 1
5. call add 2
6. return

7. load 2
8. return

s(z) z1

s(z) z4 z z

s(z) z5 z s(z)

…5 s(z)z8 z s(z)

s(z) z2 s(z)

s(z) z3 z

…5 s(z)z1

…5 s(z)z2 z

…5 s(z)z7 z

6 zs(z) s(z)
program counter

frame returned result

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Resource bound bytecode certification
At Virtual machine level

I Type verification
I Size control → no-malloc at runtime
I Termination

I Application of QI to synchronous cooperative threads
(Amadio, Dal Zilio)

I EmBounded and MRG european project (Hofmann)
I Application of QI to control memory allocation of the

AVR Butterfly processor (work in progress with
Bonfante)

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Another applied directions

I Defense against viruses
I and attack by memory-overflow techniques

i n t i ;
char b u f f e r [2 5 6] ;

vo id f u n c t i o n (vo id)
{
f o r (i =0; i <512; i ++)

b u f f e r [i] = ’A ’ ;
}

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Fight : Functions vs Algorithms

About functions
I Calculability
I Logical characterization of complexity classes

I Extensional characterization of complexity classes

About Algorithms
I Studying algorithms : Colson-David, Gurevich,

Moschovakis
I Intentional completeness of characterization of

complexity classes
I Intentional characterization of complexity classes
I including “good” algorithms (Amadio & al, Jones,

Hofmann, Bonfante, Marion Moyen, Péchoux)

Quasi-
interpretations

First order
functional
programming
Programs as rewiting
systems

Termination

Quasi-
interpretations
Definition of QI

Key properties

Classifications

Upper bounds

Characterizing
PTIME

Space resources
Observations

Some practical
issues
Synthesis of QI

Resource Bound Certified
Code

A conclusion

Some references

R. Amadio.

Max-plus quasi-interpretations.
TLCA 2003, vol 2701 pp 31–45.

R. Amadio, S. Coupet-Grimal, S. Dal-Zilio, and L. Jakubiec.

A functional scenario for bytecode verification of resource bounds.
CSL, vol 3210 LNCS, pp 265–279. 2004

G. Bonfante, A. Cichon, J.-Y. Marion, and H. Touzet.

Algorithms with polynomial interpretation termination proof.
Journal of Functional Programming, 11(1):33–53, 2001.

Guillaume Bonfante, Jean-Yves Marion, and Jean-Yves Moyen.

Quasi-interpretations, a way to control resources.
Theoretical Computer Science, (revision).

J.-Y. Marion.

Complexité implicite des calculs, de la théorie à la pratique.
Habilitation à diriger les recherches, Université Nancy 2, 2000.

J.-Y. Marion and J.-Y. Moyen.

Efficient first order functional program interpreter with time bound certifications.
LPAR 2000, vol 1955 LNCS, pp 25–42

	First order functional programming
	Programs as rewiting systems
	Termination

	Quasi-interpretations
	Definition of QI
	Key properties
	Classifications
	Upper bounds

	Characterizing PTIME
	Space resources
	Observations

	Some practical issues
	Synthesis of QI
	Resource Bound Certified Code

	A conclusion

