Quasiinterpretations

Jean-Yves Marion

First order functional programming

Programs as rewiting systems Termination

Quasiinterpretations

Definition of QI Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical issues

Synthesis of QI Resource Bound Certified Code

A conclusion

Quasi-interpretations A way to control resources

Jean-Yves Marion

Ecole nationale supérieure des Mines de Nancy Loria-INPL

February, 6th 2006

Outline

First order functional programming Programs as rewiting systems Termination

Quasi-interpretations

Definition of QI Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical issues

Synthesis of QI Resource Bound Certified Code

A conclusion

Quasiinterpretations

Jean-Yves Marion

First order functional programming

Programs as rewiting systems Termination

Quasiinterpretations

Definition of QI Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical issues

Synthesis of QI Resource Bound Certified Code

Shuffle

Example

 $\begin{array}{l} \mathsf{shuffle}(\epsilon,y) \to y \\ \mathsf{shuffle}(x,\epsilon) \to x \\ \mathsf{shuffle}(\mathbf{i}(x),\mathbf{j}(y)) \to \mathbf{i}(\mathbf{j}(\mathsf{shuffle}(x,y))) \quad \ \mathbf{i},\mathbf{j} \in \{\mathbf{0},\mathbf{1}\} \end{array}$

 $\begin{array}{l} \mathsf{shuffle}(\mathsf{10}(\epsilon),\mathsf{001}(\epsilon)) \to \mathsf{10}(\mathsf{shuffle}(\mathsf{0}(\epsilon)),\mathsf{01}(\epsilon)) \\ \to \mathsf{1000}(\mathsf{shuffle}(\epsilon,\mathsf{1}(\epsilon))) \\ \to \mathsf{10001}(\epsilon) \end{array}$

Domain of computations is the binary word struct. $\langle \epsilon, \mathbf{0}, \mathbf{1}
angle$

Quasiinterpretations

First order functional programming Programs as rewiting systems

Termination

Quasi-

Definition of QI Key properties Classifications Upper bounds

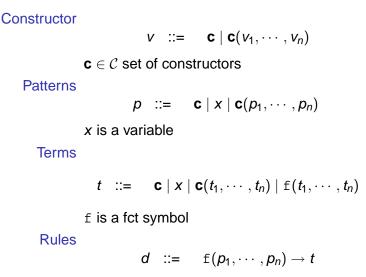
Characterizing PTIME

Space resources Observations

Some practical ssues

Synthesis of QI Resource Bound Certified Code

Program Syntax



A program f is a set of rewriting rules

Quasiinterpretations

functional programming Programs as rewiting systems

Termination

Quasi-

Definition of QI Key properties

Upper bounds

Characterizing PTIME

Space resources Observations

Some practical issues

Synthesis of QI Resource Bound Certified Code

Program rewriting

- A context is a special term C[_] with a hole
- $u \to v$ iff there is a substitution σ and $f(p_1, \dots, p_n) \to t$ such that $u = C[f(p_1, \dots, p_n)\sigma]$ and $v = C[t\sigma]$.
- ▶ $\xrightarrow{*}$ is the reflexive and transitive closure of \rightarrow .

Quasiinterpretations

First order functional programming Programs as rewiting

systems

Termination

Quasi-

interpretations

Definition of QI Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical issues

Synthesis of QI Resource Bound Certified Code

Program semantics

Hypothesis

Programs are confluent A sufficient condition (Huet) is that

- 1. A variable appears only one in p_1, \dots, p_n in any rule
- 2. There are no two left-hand side rule wich are overlapping

Definition

A function ϕ over constructor domains is computed by a program \pm iff

$$f(w) \xrightarrow{*} \phi(w)$$

Quasiinterpretations

First order functional programming Programs as rewiting

systems

Juggi

auasinterpretations

Definition of QI Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical ssues

Synthesis of QI Resource Bound Certified Code

Termination methods

Based on termination orderings

- Polynomial interpretation (Lankford)
- Recursive path ordering with status (*Plaisted, Dershowitz, Kamin and Lévy ...*)

PPO Product path ordering LPO Lexicographic path ordering

Dependency pairs (Arts and GiesI)

Other methods

- Size change principle (Lee, Jones and ben-Amram)
- Type systems

Quasiinterpretations

First order functional programming Programs as rewiting systems

Termination

Quasi-

Definition of QI Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical ssues

Synthesis of QI Resource Bound Certified Code

Reduction ordering

A reduction ordering \prec is a well-founded term ordering Closed under context If $t \prec s$ then $C[t] \prec C[s]$ Closed under substitution If $t \prec s$ then $\sigma(t) \prec \sigma(s)$ A reduction ordering is compatible with a program f if for each rule $f(p_1, \dots, p_n) \rightarrow t$

$$t \prec f(p_1, \cdots, p_n)$$

Theorem

A program is terminating iff it admits a compatible reduction ordering.

Quasiinterpretations

First order functional programming Programs as rewiting systems

Termination

Quasi-

Definition of QI Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical issues

Synthesis of QI Resource Bound Certified Code

Reduction ordering

Theorem

A program is terminating iff it admits a compatible reduction ordering.

Proof.

- If f is terminating, take ≺ to be the transitive closure of →.
- Conversely, u → v such that u = C[f(p₁, · · · , p_n)σ] and v = C[tσ]. where f(p₁, · · · , p_n) → t. We have v ≺ u because ≺ is closed under context and substitution.

Termination follows by well-foundedness of \prec .

Quasiinterpretations

First order functional programming Programs as rewiting systems

Termination

Quasi-

nterpretatio Definition of QI Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical ssues

Synthesis of QI Resource Bound Certified Code

Recursive path ordering (RPO)

$$t = f(t_1, \dots, t_n) \prec_{rpo} g(u_1, \dots, u_m) = u$$

where $\prec_{\mathcal{F}}$ is a precedence on symbols.

$$\frac{\exists i, t \preceq_{rpo} u_i}{t \prec_{rpo} u}$$

$$\frac{\forall i, t_i \prec_{rpo} g(u_1, \cdots, u_m) \quad f \prec_{\mathcal{F}} g}{t \prec_{rpo} u}$$

$$\forall i, t_i \prec_{\textit{rpo}} u \quad \{t_1, \cdots, t_n\} \prec_{\textit{rpo}}^{\textit{st}(f)} \{u_1, \cdots, u_n\} \quad \texttt{f} \approx_{\mathcal{F}} \texttt{g}$$

Quasiinterpretations

First order functional programming Programs as rewiting systems

Termination

Quasinterpretations

Definition of QI Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical issues

Synthesis of QI Resource Bound Certified Code

A conclusion

 $t \prec_{rpo} u$

Ordering and constructors Constructors

$$\frac{\forall i \; u_i \prec_{rpo} f(t_1, \cdots, t_n)}{\mathbf{c}(u_1, \cdots, u_m) \prec_{rpo} f(t_1, \cdots, t_n)} f \in \mathcal{F}, \mathbf{c} \in \mathcal{C}$$

- So constructors are the smallest wrt ≺_F
- So if u and v are two constructor terms, u ≺_{rpo} v iff u is a subterm of v.

Lemma

The number of *n*-uplets v_1, \dots, v_n such that

$$(v_1, \cdots, v_n) \prec_{rpo}^{st(f)} (t_1, \cdots, t_n)$$

is bounded by $\prod_i |t_i|$

Proof.

A term t has |t| subterms.

Quasiinterpretations

First order functional programming Programs as rewiting systems

Termination

Quasi-

Definition of QI Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical issues

Synthesis of QI Resource Bound Certified Code

Status

How to compare recursive calls ?

Status given to functions :

- 1. Product
- 2. Lexicographic

To capture some algorithmic patterns

Quasiinterpretations

First order functional programming Programs as rewiting systems

Termination

Quasi-

Definition of QI Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical ssues

Synthesis of QI Resource Bound Certified Code

The product status

$$f(m_1, \cdots, m_p) \prec^p_{rpo} f(n_1, \cdots, n_p)$$

iff

Example

$$\begin{array}{l} \mathsf{shuffle}(\epsilon, y) \to y \\ \mathsf{shuffle}(x, \epsilon) \to x \\ \mathsf{shuffle}(\mathbf{i}(x), \mathbf{j}(y)) \to \mathbf{i}(\mathbf{j}(\mathsf{shuffle}(x, y))) \quad \ \mathbf{i}, \mathbf{j} \in \{\mathbf{0}, \mathbf{1}\} \end{array}$$

Quasiinterpretations

First order functional programming Programs as rewiting systems

Termination

Quasi-

Definition of QI Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical issues

Synthesis of QI Resource Bound Certified Code

The lexicographic extension

$$f(m_1, \cdots, m_p) \prec_{rpo}^l f(n_1, \cdots, n_p)$$

iff ∃*j* s.t.

▶ $m_j \prec_{rpo} n_j$.

Example

 $verif(Exists(x, \phi), \sigma) \rightarrow or(verif(\phi, update(\sigma, x, true)))$ $verif(\phi, update(\sigma, x, false)))$

Quasiinterpretations

First order functional programming Programs as rewiting systems

Termination

Quasiptorprototions

Definition of QI Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical ssues

Synthesis of QI Resource Bound Certified Code

Program termination

Theorem

A rpo-ordering on terms is a reduction ordering

Proof.

A consequence of Higmann and Kruskal Theorem.

Theorem

A program is terminating iff it admits a compatible ordering \prec_{rpo} for some precedence $\prec_{\mathcal{F}}$ and status st. That is for each rule

$$t\prec_{rpo} f(p_1,\cdots,p_n)$$

Quasiinterpretations

First order functional programming Programs as rewiting systems

Termination

Quasi-

Definition of QI Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical ssues

Synthesis of QI Resource Bound Certified Code

Primitive recursion

A RPO_{Pro}-program is a program which terminates by \prec_{rpo} with product comparison status.

Theorem (Hofbauer (92))

The set of RPO_{Pro} -functions, computed by RPO_{Pro} -programs, is exactly the set of primitive recursive functions.

Example

$$\begin{split} &f(\boldsymbol{\epsilon},\overline{\boldsymbol{x}}) \to g(\overline{\boldsymbol{x}}) \\ &f(\boldsymbol{0}(w),\overline{\boldsymbol{x}}) \to h_0(w,\overline{\boldsymbol{x}},f(w,\overline{\boldsymbol{x}})) \\ &f(\boldsymbol{1}(w),\overline{\boldsymbol{x}}) \to h_1(w,\overline{\boldsymbol{x}},f(w,\overline{\boldsymbol{x}})) \qquad \overline{\boldsymbol{x}} = x_1,\ldots,x_n \end{split}$$

is a RPO_{Pro}-program.

Quasiinterpretations

First order functional programming Programs as rewiting systems

Termination

Quasi-

nterpretations

Definition of QI Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical issues

Synthesis of QI Resource Bound Certified Code

Multiple recursive

A RPO-program which terminates by $\prec_{\textit{rpo}}$ with any kind of status .

Theorem (Weiermann (95))

The set of functions computed by RPO-programs, is exactly the set of multiple recursive functions.

Example (Ackermann)

$$ack(0, n) = suc(n)$$
$$ack(m+1, 0) = ack(m, 1)$$
$$ack(m+1, n+1) = ack(m, ack(m+1, n))$$

is a RPO-program because it terminates using a lexicographic status.

Quasiinterpretations

First order functional programming Programs as rewiting systems

Termination

Quasi-

Definition of QI Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical ssues

Synthesis of QI Resource Bound Certified Code

Intentionality

Both examples are not *primitive recursive* Tail recursion terminates by lexicographic orders

$$\mathsf{reverse}(\epsilon, y) \to y$$

 $\mathsf{reverse}(\mathbf{i}(x), y) \to \mathsf{reverse}(x, \mathbf{i}(y)) \qquad \mathbf{i} \in \{\mathbf{0}, \mathbf{1}\}$

Colson's inf terminatesz by product orders

$$egin{aligned} & \inf(0,y) o 0 \ & \inf(x,0) o 0 \ & \inf(extsf{suc}(x), extsf{suc}(y)) o extsf{suc}(\inf((x,y))) \end{aligned}$$

Term ordering capture a large class of algorithms Polynomial time ordering, see Light MPO (M03).

Quasiinterpretations

First order functional programming Programs as rewiting systems

Termination

Quasi-

Definition of QI Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical issues

Synthesis of QI Resource Bound Certified Code

Assignments

An assignment of *f* is $(f) : (\mathbb{R}^+)^n \to \mathbb{R}^+$ satisfying:

- $(f)(X_1,\cdots,X_n)\geq X_i$
- ∬f) is increasing (not-strictly).

 If X ≤ Y then

$$(f)(X_1,\ldots,X,\ldots,X_n) \leq (f)(X_1,\ldots,Y,\ldots,X_n)$$

Term assignment

$$(f(t_1,\cdots,t_n)) = (f)((t_1),\ldots,(t_n))$$

Quasiinterpretations

First order functional programming Programs as rewiting systems Termination

Quasiinterpretations

Definition of QI Key properties

Upper bounds

Characterizing PTIME

Space resources Observations

Some practical issues

Synthesis of QI Resource Bound Certified Code

Quasi interpretations

Definition

An assignment is a *quasi-interpretation* if for any rule $I \rightarrow r$,

$$(\!\!| \sigma \!\!|) \geq (\!\!| r \sigma \!\!|)$$

(Marion, Moyen, Bonfante)

where σ : *Variables* \mapsto *Values* is a constructor substitution.

Quasiinterpretations

First order functional programming Programs as rewiting systems Termination

Quasiinterpretations

Definition of QI Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical ssues

Synthesis of QI Resource Bound Certified Code

Shuffle

 $\begin{array}{l} \mathsf{shuffle}(\epsilon,y) \to y \\ \mathsf{shuffle}(x,\epsilon) \to x \\ \mathsf{shuffle}(\mathbf{i}(x),\mathbf{j}(y)) \to \mathbf{i}(\mathbf{j}(\mathsf{shuffle}(x,y))) \quad \ \mathbf{i},\mathbf{j} \in \{\mathbf{0},\mathbf{1}\} \end{array}$

•
$$(\epsilon) = 0$$

•
$$(0)(X) = (1)(X) = X + 1$$

• (shuffle)(X, Y) = X + Y

 $\| \mathsf{shuffle}(\mathbf{i}(x), \mathbf{j}(y)) \| = X + 1 + Y + 1 \ge \| \mathbf{i}(\mathbf{j}(\mathsf{shuffle}(x, y))) \|$ = 1 + 1 + X + Y

Quasiinterpretations

First order functional programming Programs as rewiting systems Termination

Quasiinterpretations

Definition of QI Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical issues

Synthesis of QI Resource Bound Certified Code

Max functions

$$egin{aligned} & \max(m{0},m{y}) o m{y} \ & \max(m{x},m{0}) o m{x} \ & \max(m{suc}(m{x}),m{suc}(m{y})) o m{suc}(\max(m{x},m{y})) \end{aligned}$$

•
$$(|suc|)(X) = X + 1$$

•
$$(\max)(X, Y) = \max(X, Y)$$

$$(\max(\operatorname{suc}(x),\operatorname{suc}(y))) = \max(X+1,Y+1)$$

= (suc(max(x,y)))
= 1 + max(X,Y)

Quasiinterpretations

First order functional programming Programs as rewiting systems Termination

Quasiinterpretations

Definition of QI Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical issues

Synthesis of QI Resource Bound Certified Code

Insertion sort

if **tt** then x else $y \rightarrow x$ if **ff** then **x** else $y \rightarrow y$ $\mathbf{0} < \mathbf{suc}(\mathbf{y}) \rightarrow \mathbf{tt}$ Definition of OI $x < \mathbf{0} \rightarrow \mathbf{ff}$ $suc(x) < suc(y) \rightarrow x < y$ $insert(a, \epsilon) \rightarrow cons(a, \epsilon)$ $insert(a, cons(b, l)) \rightarrow if a < b$ then **cons**(*a*, **cons**(*b*, *l*)) else **cons**(*b*, insert(*a*, *l*)) $\operatorname{sort}(\epsilon) o \epsilon$ $sort(cons(a, I)) \rightarrow insert(a, sort(I))$

Quasiinterpretations

QI of Insertion sort

$$(\mathbf{tt}) = (\mathbf{ff}) = (\mathbf{0}) = (\epsilon) = 0$$
$$(\mathbf{suc})(X) = X + 1$$
$$(\mathbf{cons})(X, Y) = X + Y + 1$$

And function symbols

(if then else
$$\mathcal{V}(X, Y, Z) = \max(X, Y, Z)$$

 $\langle \langle \mathcal{V}(X, Y) \rangle = \max(X, Y)$
 $\langle \langle \mathsf{insert} \rangle (X, Y) \rangle = X + Y + 1$
 $\langle \mathsf{sort} \rangle (X) \rangle = X$

Quasiinterpretations

First order functional programming Programs as rewiting systems Termination

Quasiinterpretations

Definition of QI Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical issues

Synthesis of QI Resource Bound Certified Code

Properties

Proposition

(-) is a quasi-interpretation. Take two terms u and v such that $u \xrightarrow{*} v$, we have

 $(v) \leq (u)$

Proof. \exists a subst. σ and $f(p_1, \dots, p_n) \rightarrow t$ such that $u = C[f(p_1, \dots, p_n)\sigma]$ and $v = C[t\sigma]$. Since QI are compatible with program rules

$$(t\sigma) \leq (f(p_1, \cdots, p_n)\sigma)$$

Monotonicity implies

$$(|\mathbf{C}[t\sigma]|) \leq (|\mathbf{C}[\mathtt{f}(\boldsymbol{p}_1,\cdots,\boldsymbol{p}_n)\sigma]|)$$

Quasiinterpretations

First order functional programming Programs as rewiting systems Termination

Quasiinterpretations Definition of QI

Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical issues

Synthesis of QI Resource Bound Certified Code

Additive QI

- ► For each symbol *f*, (*f*) is bounded by a polynomial
- For each constructor c,

$$(\mathbf{c})(X_1,\ldots,X_n) = \sum_i X_i + \alpha_{\mathbf{c}}$$
 where $\alpha_{\mathbf{c}} \ge 1$

Definition (Size)

$$|\mathbf{c}| = 0$$
 $|\mathbf{c}(t_1, \cdots, t_n)| = 1 + \sum_i |t_i|$

Proposition

For any constructor term t,

$$|t| \le (|t|)$$
$$(|t|) \le \kappa \times |t|$$

Quasiinterpretations

First order functional programming Programs as rewiting systems Termination

Quasiinterpretations Definition of QI

Classifications

Characterizing PTIME

Space resources Observations

Some practical issues

Synthesis of QI Resource Bound Certified Code

A conclusion

(1) (2)

Addition and multiplication

Domain of unary integers $\{\mathbf{0}, \mathbf{suc}\}$

$$egin{aligned} & \operatorname{add}(\mathbf{0},y)
ightarrow y \ & \operatorname{add}(\operatorname{\textbf{suc}}(x),y)
ightarrow \operatorname{\textbf{suc}}(\operatorname{add}(x,y)) \ & \operatorname{\mathfrak{mult}}(\mathbf{0},y)
ightarrow \mathbf{0} \ & \operatorname{\mathfrak{mult}}(\operatorname{\textbf{suc}}(x),y)
ightarrow \operatorname{add}(y,\operatorname{\mathfrak{mult}}(x,y)) \end{aligned}$$

•
$$(|suc|)(X) = X + 1$$

•
$$(add)(X, Y) = X + Y$$

•
$$(mult)(X, Y) = X \times Y$$

Any polynomial has an additive QI.

Quasiinterpretations

First order functional programming Programs as rewiting systems Termination

Quasiinterpretations Definition of QI

Classifications

Upper bounds

Characterizing PTIME

Space resources Observations

Some practical issues

Synthesis of QI Resource Bound Certified Code

Exponential has no additive QI

$$\exp(\mathbf{0})
ightarrow \operatorname{\mathsf{suc}}(\diamond) \ \exp(\operatorname{\mathsf{suc}}'(x))
ightarrow \operatorname{\mathsf{add}}(\exp(x), \exp(x))$$

$$(\operatorname{\mathtt{suc}})(X) = 2X + 1$$

 $(\operatorname{\mathtt{exp}})(X) = X + 1$

Fact

There is no additive QI for exp !

Proof. No polynomial solution.

 $(\exp \mathbb{I}(X + \alpha) \ge (\exp \mathbb{I}(X) + (\exp \mathbb{I}(X) = 2 \times (\exp \mathbb{I}(X))))$

Quasiinterpretations

First order functional programming Programs as rewiting systems Termination

Quasiinterpretations Definition of QI Key properties

Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical issues

Synthesis of QI Resource Bound Certified Code

Exponential time evaluation

Theorem

Assume that f admits an additive QI. There is an evaluation procedure eval such that

$$eval(f, t_1, \cdots, t_n) = \begin{cases} w & f(t_1, \cdots, t_n) \xrightarrow{*} w \\ \bot & otherwise \end{cases}$$

which runs in $O(2^{\sum_{i=1}^{n} |t_i|^k})$. Proof.

- ► The size of each intermediate value is bounded by $(|f(t_1, \dots, t_n)|)$
- ► $f(t_1, \dots, t_n)$ is computed in space $O(((f(t_1, \dots, t_n))))$ on a TM with an unbounded stack.
- ► Cook's simulation implies that eval runs in 2^{c×(f(t₁,...,t_n))}
- that is runs in $O(2^{\sum_{i=1}^{n} |t_i|^k})$

Quasiinterpretations

First order functional programming Programs as rewiting systems Termination

Quasi-

interpretations

Definition of QI Key properties

Classifications

Upper bounds

Characterizing PTIME

Space resources Observations

Some practical issues

Synthesis of QI Resource Bound Certified Code

Characterization of PTIME

A RPO_{Pro}^{QI} -program is a RPO_{Pro} -program, which

- 1. terminates by \prec_{rpo} with product comparison status,
- 2. admits an additive quasi-interpretation (_)

Theorem (Marion-Moyen)

The set of functions which are computed by a RPO_{Pro}^{Ql} -program is exactly the set PTIME of functions computable in polynomial time.

ICAR system implements this resource analysis method. (Moyen)

Quasiinterpretations

First order functional programming Programs as rewiting systems Termination

Quasi-

nterpretations Definition of QI

Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical ssues

Synthesis of QI Resource Bound Certified Code

Additive QI captured PTIME

Lemma

Assume that ϕ is computable in polynomial time. Then ϕ is computable by a RPO^{QI}_{Pro}-program.

Proof.

A configuration is $\langle q, u, v \rangle$ where

- q is a state,
- u is the left tape
- v is the right tape
- the head is scanning the first letter of u.

Quasiinterpretations

First order functional programming Programs as rewiting systems

Quasi-

nterpretations

Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical issues

Synthesis of QI Resource Bound Certified Code

Additive QI captured PTIME

state gives the next configuration

$$ext{state}(\langle m{q},m{u},m{v}
angle)=\langle m{q}',m{u}',m{v}'
angle$$

$$eval(0, \langle q, u, v \rangle) = \langle q, u, v \rangle$$

 $eval(suc(t), c) = state(eval(t, c))$

$$\begin{aligned} & (\texttt{state})(X) = X + 1 \quad (\langle X, Y, Z \rangle) = X + Y + Z + 1 \\ & (\texttt{eval})(T, X) = T + X \\ & (0) = 0 \qquad (\texttt{suc})(X) = X + 1 \end{aligned}$$

A polynomial *P* is computed by a RPO^{QI}_{Pro}-program

$$\phi(w) = \texttt{eval}(P(w), \langle q_0, w, \epsilon \rangle)$$

Quasiinterpretations

First order functional programming Programs as rewiting systems Termination

Quasi-

nterpretations Definition of QI

Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical issues

Synthesis of QI Resource Bound Certified Code

Computation of Additive QI

Lemma

Let *f* be an additive RPO_{Pro}^{Ql} -program. For each constructor term t_1, \dots, t_n , the runtime to compute $f(t_1, \dots, t_n)$ is bounded by a polynomial in $\max_{i=1}^{n} |t_i|$.

Proof.

- We construct a call-by-value interpreter with cache
- We show that it runs within P(((f(t₁, ···, tn)))) where P is a polynomial.
- Since the QI is additive $(t_i) \leq O(|t_i|)$ and $(f(t_1, \dots, t_n)) \leq P(\max_{i=1}^n |t_i|)$
- So, runtime evaluation is bounded by a polynomial

Quasiinterpretations

First order functional programming Programs as rewiting systems Termination

Quasi-

nterpretations Definition of QI

Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical ssues

Synthesis of QI Resource Bound Certified Code

Memoisation

Example

Computing the length of the longest common subsequence

$$\begin{split} & \log(x,\epsilon) \to 0 \\ & \log(\epsilon,y) \to 0 \\ & \log(\mathbf{i}(x),\mathbf{i}(y)) \to \log(x,y) + 1 \\ & \log(\mathbf{i}(x),\mathbf{j}(y)) \to \max(\log(x,\mathbf{j}(y)), \log(\mathbf{i}(x),y)) \end{split}$$

- The rewriting calculation required $O(2^n)$ steps
- But, lcs terminates by RPO and admits an additive QI: (lcs) = max.
- ► So, the function computed by lcs is polynomial time

Quasiinterpretations

First order functional programming Programs as rewiting systems Termination

Quasi-

nterpretations Definition of QI

Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical ssues

Synthesis of QI Resource Bound Certified Code

CBV with cache

$$\begin{array}{c} \sigma(\mathbf{x}) = \mathbf{w} \\ \hline \mathcal{E}, \sigma \vdash \langle \mathbf{C}, \mathbf{x} \rangle \rightarrow \langle \mathbf{C}, \mathbf{w} \rangle \\ \hline \mathcal{E}, \sigma \vdash \langle \mathbf{C}, \mathbf{x} \rangle \rightarrow \langle \mathbf{C}, \mathbf{w} \rangle \\ \hline \mathbf{E}, \sigma \vdash \langle \mathbf{C}_0, \mathbf{c}(\overline{t}) \rangle \rightarrow \langle \mathbf{C}_n, \mathbf{c}(\overline{w}) \rangle \\ \hline \mathbf{E}, \sigma \vdash \langle \mathbf{C}_0, \mathbf{c}(\overline{t}) \rangle \rightarrow \langle \mathbf{C}_n, \mathbf{c}(\overline{w}) \rangle \\ \hline \mathbf{E}, \sigma \vdash \langle \mathbf{C}_{i-1}, t_i \rangle \rightarrow \langle \mathbf{C}_i, w_i \rangle \quad (\mathbf{f}(\overline{w}), w) \in \mathbf{C}_n \\ \hline \mathcal{E}, \sigma \vdash \langle \mathbf{C}_0, \mathbf{f}(t_1, \cdots, t_n) \rangle \rightarrow \langle \mathbf{C}_n, w \rangle \\ \hline \mathbf{f}(\overline{p}) \rightarrow \mathbf{r} \in \mathcal{E} \quad p_i \sigma' = w_i \\ \hline \mathcal{E}, \sigma \vdash \langle \mathbf{C}_{i-1}, t_i \rangle \rightarrow \langle \mathbf{C}_i, w_i \rangle \quad \mathcal{E}, \sigma' \vdash \langle \mathbf{C}_n, \mathbf{r} \rangle \rightarrow \langle \mathbf{C}, w \rangle \\ \hline \mathcal{E}, \sigma \vdash \langle \mathbf{C}_0, \mathbf{f}(t_1, \cdots, t_n) \rangle \rightarrow \langle \mathbf{C} \bigcup (\mathbf{f}(\overline{w}), w), w \rangle \\ \hline \end{array}$$

 $\langle C, t \rangle \Downarrow \langle C', w \rangle$ means the computation of *t* is *w* given an initial cache *C*.

Quasiinterpretations

First order functional programming Programs as rewiting systems Termination

)uasi-

Definition of QI Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical issues

Synthesis of QI Resource Bound Certified Code

CBV with cache

Lemma

Let *f* be a RPO^{QI}_{Pro}-program. For each constructor term t_1, \dots, t_n , the runtime of the call by value interpreter with cache to compute $f(t_1, \dots, t_n)$ is bounded by a polynomial in $(f(t_1, \dots, t_n))$.

Proof.

- We memorize all intermediate function values in cache.
- Time is at most quadratic in the size of the cache.
- Show that the cache size is polynomially bounded in (∫f(t₁, · · · , t_n)).
- Conclusion follows because of additive QI.

Quasiinterpretations

First order functional programming Programs as rewiting systems Termination

Quasi-

nterpretations Definition of QI Key properties

Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical ssues

Synthesis of QI Resource Bound Certified Code

Size of the cache

- Suppose that $f(t_1, \dots, t_n)$ is the input
- The number of possible recursive calls

$$\#\{(u_1,\cdots,u_n) \mid (u_1,\cdots,u_n) \prec^{prod}_{rpo} (t_1,\cdots,t_n)\} \\ \leq \prod_i |t_i|$$

- The function *f* calls *g* only if $g \prec_{\mathcal{F}} f$.
- If $(g, u_1, \cdots, u_n, u_o)$ is in a cache, then

$$|u_i| \leq (f(t_1, \cdots, t_n))$$

Conclusion follows ...

Quasiinterpretations

First order functional programming Programs as rewiting systems Termination

Quasi-

nterpretations

Definition of QI Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical issues

Synthesis of QI Resource Bound Certified Code

- 1. The cache may be minimized. Because the result of $f(t_1, \dots, t_n \text{ is not necessary if we know the value of } f(t_1, \dots, t_n)$ and $u_1, \dots, u_n \prec_{rpo}^{prod} t_1, \dots, t_n$.
- If a recursive call is linear, we do not need to put it in cache.

Quasiinterpretations

First order functional programming Programs as rewiting systems Termination

Quasi-

nterpretation Definition of QI Key properties Classifications

Characterizing PTIME

Space resources Observations

Some practical issues

Synthesis of QI Resource Bound Certified Code

tail recursion

f terminates by tail recursion if

(i) the comparison status of f is lexicographic,

(ii) for each rule $f(p_1, \dots, p_n) \rightarrow r$ then f has at most one occurrence in *r*.

 $\mathsf{reverse}(\epsilon, y) o y$ $\mathsf{reverse}(\mathbf{i}(x), y) o \mathsf{reverse}(x, \mathbf{i}(y))$

Theorem

The set of functions computed by tail recursion programs is exactly PTIME.

Quasiinterpretations

First order functional programming Programs as rewiting systems Termination

Quasi-

nterpretations

Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical ssues

Synthesis of QI Resource Bound Certified Code

Characterization of PSPACE

A RPO^{QI}-program is a RPO-program, which

- 1. terminates by \prec_{rpo} with lexicographic status,
- 2. admits an additive QI (_)

Theorem (Bonfante, Marion et Moyen)

The set of functions computed by a RPO^{QI}-programs is exactly the set PSPACE of functions computable in polynomial space.

Quasiinterpretations

First order functional programming Programs as rewiting systems Termination

Quasi-

interpretations

Definition of QI Key properties Classifications Upper bounds

Characterizing PTIME

Space resources

Some practical

Synthesis of QI Resource Bound Certified Code

Simulate **PSPACE** computation

 Recurrence with parameter substitution is terminating with a lexicographic status.

$$\begin{split} &f(\boldsymbol{\epsilon},\overline{\boldsymbol{y}}) \to \boldsymbol{g}(\overline{\boldsymbol{y}}) \\ &f(\boldsymbol{0}(\boldsymbol{x}),\overline{\boldsymbol{y}}) \to h_0(\boldsymbol{x},\overline{\boldsymbol{y}},f(\boldsymbol{x},\sigma_1(\overline{\boldsymbol{y}})),\ldots,f(\boldsymbol{x},\sigma_k(\overline{\boldsymbol{y}}))) \\ &f(\boldsymbol{1}(\boldsymbol{x}),\overline{\boldsymbol{y}}) \to h_1(\boldsymbol{x},\overline{\boldsymbol{y}},f(\boldsymbol{x},\sigma_1'(\overline{\boldsymbol{y}})),\ldots,f(\boldsymbol{x},\sigma_k'(\overline{\boldsymbol{y}}))) \end{split}$$

- Polynomials admit a RPO^{QI}_{Lin}-program
- We simulate a PRM with forks

Quasiinterpretations

First order functional programming Programs as rewiting systems Termination

Quasi-

nterpretations

Definition of QI Key properties Classifications Upper bounds

Characterizing PTIME

Space resources

Observations

Some practical issues

Synthesis of QI Resource Bound Certified Code

RPO^{QI}-programs are PSPACE

Lemma

The space used by a call by value interpreter to compute $f(t_1, \dots, t_n)$ is bounded by a polynomial in $(f(t_1, \dots, t_n))$.

Proof.

Set $A = (f(t_1, \cdots, t_n))$

- Each intermediate results are bounded by O(A).
- ► The maximal length of a branch of a cbv computation is bounded by α × A^d
- Conclusion : the space is at most $O(A^{d+1})$

Quasiinterpretations

First order functional programming Programs as rewiting systems Termination

Quasi-

nterpretations

Definition of QI Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical issues

Resource Bound Certified Code

Observations

- Similar result with polynomial interpretation, but less algorithms
- Use of dynamic programming methods (cache) and NLOGSPACE
- Capturing other complexity classes LOGSPACE, ...
- Sup-interpretation (with Péchoux)

$$\begin{split} \log(0) &\to 0\\ \log(\texttt{suc}(y) &\to \texttt{suc}(\log(\texttt{half}(\texttt{suc}(y))))\\ & \texttt{half}(0) &\to 0\\ \texttt{half}(\texttt{suc}(0)) &\to 0\\ \texttt{half}(\texttt{suc}(y)) &\to \texttt{suc}(\texttt{half}(y)) \end{split}$$

Quasiinterpretations

First order functional programming Programs as rewiting systems Termination

Quasi-

nterpretations

Definition of QI Key properties Classifications Upper bounds

Characterizing PTIME

Space resources

Observations

Some practical issues

```
Synthesis of QI
Resource Bound Certified
Code
```

Finding QI

Does a program admits an additive quasi-interpretation ?

- Restrict to (max, +, *) for candidates to be QI
- Fixed a max-degree
- There is a decision procedure in 2^{|f|}
- Because of Tarski's decision procedure for first order polynomial over reals
- NP-hard when considering max-plus assignment on
 \mathbb{R}^+ (Amadio 2003)
- Finding heuristics to synthesis QIs ?
- but, usually the degree is low

Quasiinterpretations

First order functional programming Programs as rewiting systems Termination

Quasi-

nterpretations Definition of QI Key properties

Classifications Upper bounds

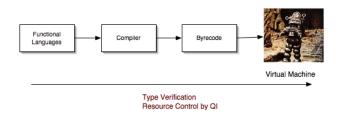
Characterizing PTIME

Space resources Observations

Some practical ssues

Synthesis of QI Resource Bound Certific Code

A functional Scenario



- We try to find QI for a functional program.
- Then, QI are transferred to bytecode as resource annotations
- Virtual Machine check the resource annotations

From Amadio, Coupet-Grimal, Dal Zilio and Jakubiec

Quasiinterpretations

First order functional programming Programs as rewiting systems

Quasi-

nterpretations

Definition of QI Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical ssues

Synthesis of QI

Resource Bound Certified Code

Playing with QI@Nancy

Virtual machine with stack frames Byte code with 8 instructions

load n	Load the <i>n</i> th argument	call g n
branch c	Conditional & destructor	return
build c	Constructor	stop
in		out

Virtual Machine (nearly) runs on Lego Robot Mindstorm

Quasiinterpretations

First order functional programming Programs as rewiting systems

Quasi-

interpretations

Key properties Classifications Upper bounds

Characterizing PTIME

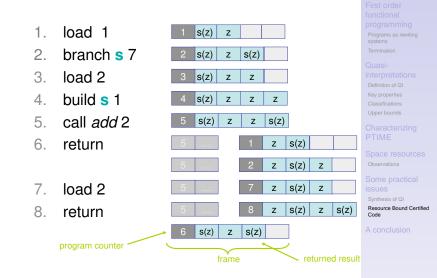
Space resources Observations

Some practical issues

Synthesis of QI

Resource Bound Certified Code

A functional Scenario



Quasiinterpretations

Resource bound bytecode certification

At Virtual machine level

- Type verification
- Size control \rightarrow no-malloc at runtime
- Termination
- Application of QI to synchronous cooperative threads (Amadio, Dal Zilio)
- EmBounded and MRG european project (Hofmann)
- Application of QI to control memory allocation of the AVR Butterfly processor (work in progress with Bonfante)

Quasiinterpretations

First order functional programming Programs as rewiting systems Termination

Quasi-

nterpretation Definition of QI Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical issues

Synthesis of QI

Resource Bound Certified Code

Another applied directions

- Defense against viruses
- and attack by memory-overflow techniques

```
int i;
char buffer[256];
void function(void)
{
for(i=0;i<512;i++)
buffer[i]='A';
}
```

Quasiinterpretations

First order functional programming Programs as rewiting systems Termination

Quasi-

interpretations

Definition of QI Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical issues

Synthesis of QI

Resource Bound Certified Code

Fight : Functions vs Algorithms

About functions

- Calculability
- Logical characterization of complexity classes
 - Extensional characterization of complexity classes
- About Algorithms
 - Studying algorithms : Colson-David, Gurevich, Moschovakis
 - Intentional completeness of characterization of complexity classes
 - Intentional characterization of complexity classes
 - including "good" algorithms (Amadio & al, Jones, Hofmann, Bonfante, Marion Moyen, Péchoux)

Quasiinterpretations

First order functional programming Programs as rewiting systems Termination

Quasi-

nterpretations

Definition of QI Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical ssues

Synthesis of QI Resource Bound Certified Code

Some references

R. Amadio. Max-plus quasi-interpretations. *TLCA 2003*, vol 2701 pp 31–45.

R. Amadio, S. Coupet-Grimal, S. Dal-Zilio, and L. Jakubiec. A functional scenario for bytecode verification of resource bounds. *CSL*, vol 3210 LNCS, pp 265–279, 2004

G. Bonfante, A. Cichon, J.-Y. Marion, and H. Touzet.

Algorithms with polynomial interpretation termination proof. Journal of Functional Programming, 11(1):33–53, 2001.

Guillaume Bonfante, Jean-Yves Marion, and Jean-Yves Moyen.

Quasi-interpretations, a way to control resources. Theoretical Computer Science, (revision).

J.-Y. Marion.

Complexité implicite des calculs, de la théorie à la pratique. Habilitation à diriger les recherches, Université Nancy 2, 2000.

J.-Y. Marion and J.-Y. Moyen.

Efficient first order functional program interpreter with time bound certifications. LPAR 2000, vol 1955 LNCS, pp 25–42

Quasiinterpretations

First order functional programming Programs as rewiting systems

Quasi-

interpretations

Definition of QI Key properties Classifications Upper bounds

Characterizing PTIME

Space resources Observations

Some practical ssues

Synthesis of QI Resource Bound Certified Code