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S h Ufﬂ e inter?)lrjeisf;\it-ions

Example

Programs as rewiting
systems

shuffle(e,y) — y
shuffle(x, €) — x
shuffle(i(x),j(y)) — i(j(shuffle(x,y))) i,j € {0,1}

shuffle(10(e),001(€)) — 10(shuffle(0(e)), 01(€))
— 1000(shuffle(e, 1(€)))
— 10001 (€)

Domain of computations is the binary word struct. (e, 0, 1)



Program Syntax interpretations

Constructor
v = c|c(vy, - ,Vn)

Programs as rewiting
systems

¢ € C set of constructors
Patterns
p = cfx|c(pz-,Pn)
X is a variable
Terms

t o= clx|c(ty, - tn) [ f(ty, -, th)

f is a fct symbol
Rules
d == f(p1, - ,pn)—t
A program f is a set of rewriting rules



Program rewriting Quasi-

interpretations

Programs as rewiting
systems

» A context is a special term C[_] with a hole

» u — V iff there is a substitution o and
f(p1,---,pn) — t such that
u=CI[f (p1,---,pn)o] and v = CJto].

» = is the reflexive and transitive closure of —.



Quasi-

PrOgI'am SemantICS interpretations

Hypothesis e

Programs are confluent
A sufficient condition (Huet) is that

1. Avariable appears only one in pq,---,pn in any rule
2. There are no two left-hand side rule wich are
overlapping
Definition

A function ¢ over constructor domains is computed by a
program f iff

f(w)=¢(w)



Termination methods T

Based on termination orderings
» Polynomial interpretation (Lankford)

» Recursive path ordering with status (Plaisted,
Dershowitz, Kamin and Lévy ...)

PPO Product path ordering
LPO Lexicographic path ordering

» Dependency pairs (Arts and Giesl)

Other methods
» Size change principle (Lee,Jones and ben-Amram)
» Type systems



Reduction ordering interpretations

A reduction ordering < is a well-founded term ordering
Closed under context If t < s then CJt] < CJ[s]
Closed under substitution Ift < s then o(t) < o(s)

A reduction ordering is compatible with a program f if for
eachrule f (py,---,pn) —t

t <f(pl>"' 7pn)
Theorem

A program is terminating iff it admits a compatible
reduction ordering.



Quasi-

RedUCtIOﬂ Orderlng interpretations

Theorem
A program is terminating iff it admits a compatible
reduction ordering.

Proof.
» If f is terminating, take < to be the transitive closure
of —.
» Conversely, u — v such that u = CI[f (p1,--- ,Pn)o]

and v = C[to]. where f (py, -+ ,pn) — t.

We have v < u because < is closed under context
and substitution.

Termination follows by well-foundedness of <.



Recursive path ordering (RPO) interpretations

t="1(t1, - ,th) <rpo 9(U1,--- ,Um) =u
where < is a precedence on symbols.

Ji,t <rpo Ui

t %rpo u

V|,t| ‘<rp0 g(U]_7 ,Um) f {]—' g

t ‘<rpo u

. f
\V/|,ti —<I'p0 u {tl7' o 7tn} -<$[t)(0) {ulv'” 7Un} f ~F g

t '<rpo u



Quasi-

Ol’derlng and COﬂStI’UCtOI’S interpretations
Constructors
Vi u; =rpo f(t, - ,tn)
feF,cel
c(ug, - ,Um) <rpo f (t1,- -+ ,tn) o

» So constructors are the smallest wrt < ¢

» Soif u and v are two constructor terms, u <o V iff u
is a subterm of v.

Lemma
The number of n-uplets vy, - - - , v, such that

(Vla‘ o 7Vn) —<f[§g) (t17' o ,tn)

is bounded by [T; [ti]

Proof.
Atermt has |t| subterms.

OJ



Stat U S imer(;gjlrjtgtit-ions

How to compare recursive calls ?

Status given to functions :

1. Product
2. Lexicographic

To capture some algorithmic patterns



The product status interpretations

f(mg, -, mp) <Ppof(n17"' ,Np)
iff
> V1 <i<p,m=poh;
» J1 <j < p such that mj <po N;.

Example

shuffle(e,y) — y
shuffle(x, €) — x
shuffle(i(x),j(y)) — i(j(shuffle(x,y))) 1i,j € {0,1}



Quasi-

The lexicographic extension i

f(my, - mp) <o F(N1,--+,1p)
iff 3j s.t.
> Vi <], mi Zrpo N
> Mj <o Nj.

Example

verif  (Exists (x, ¢),0) — or (verif (¢, update(o, x,true))
verif (¢, update(o, X, false)))



Quasi-

PrOgI'am termlﬂatlon interpretations

Theorem
A rpo-ordering on terms is a reduction ordering

Proof.
A consequence of Higmann and Kruskal Theorem. O

Theorem

A program is terminating iff it admits a compatible
ordering <rpo for some precedence < and status st.
That is for each rule

t ’<rpof(p17"‘ ,Pn)



Primitive recursion interpretations
A RPOpo-program is a program which terminates by <rpo

with product comparison status.

Theorem (Hofbauer (92))

The set of RPOp,-functions,computed by
RPOp,-programs, is exactly the set of primitive recursive
functions.

Example

is a RPOpo-program.



Multiple recursive interpretations

A RPO-program which terminates by <po With any kind
of status .

Theorem (Weiermann (95))

The set of functions computed by RPO-programs, is
exactly the set of multiple recursive functions.

Example (Ackermann)

ack (0,n) = suc(n)
ack (m+1,0) = ack (m,1)
ack(m+1,n+1) =ack (m,ack (m+ 1,n))

is a RPO-program because it terminates using a
lexicographic status.



|ntent|0nallty inter(;gjlrjgzt-ions

Both examples are not primitive recursive Tail recursion
terminates by lexicographic orders

reverse(e,y) — Yy
reverse(i(x),y) — reverse(x,i(y)) i €{0,1}

Colson’s inf terminatesz by product orders

inf(0,y) — 0
inf(x,0) — 0
inf(suc (x),suc (y)) — suc (inf((x,y)))

Term ordering capture a large class of algorithms
Polynomial time ordering, see Light MPO (MO03).



Quasi-

ASS | g n m e ntS interpretations

An assignment of f is (f ) : (RT)" — R* satisfying:
> (FD(X1, - Xn)= X
» (f ) is increasing (not-strictly). Detriton o 1
If X <Y then

(FDKgy ooy Xy Xn) < (FD(Xgy oo, Yooy Xn)
Term assignment

(f(te, -, t) ) = (FD((ta ), - -, (ta))



Quasi-

QuaSl |nterpretat|ons interpretations

Definition
An assignment is a quasi-interpretation if for any rule

| —r,

Definition of QI

llo) > (ro)
(Marion, Moyen, Bonfante)

where ¢ : Variables — Values is a constructor
substitution.



S h Ufﬂ e imer(;gllrJ:IS;t-ions

shuffle(e,y) —y
shuffle(x, €) —
j

shuffle(i(x),j(y)) — (J(Sthﬂe(X y) i€ {0,1}

» (e) =0
> (0)(X) = (1)(X) =X +1
» (shuffle)(X,Y)=X+Y

(shuffle(i(x),j(y))) =X +1+Y + 1 > (i(j(shuffle(x,y))))
=1+1+X+Y



MaX fUﬂCtIOﬂS imer(;gllrJ:tit-ions

max(0,y) —y
max(x,0) — x
max(suc (x), suc (y)) — suc (max(x,y))

» (0) =0
» (suc )(X)=X+1
» (max)(X,Y)=max(X,Y)

(max(suc (x),suc(y))) = max(X +1,Y +1)
= (suc(max(x,y)))
=1-+max(X,Y)



Insertion sort e

interpretations

if ttthen xelse y — X
if ffthen xelse y —vy
0<suc(y)—tt
X <0—ff
suc(x) <suc(y) - x <y
insert (a,e) — cons (a,¢€)
insert (a,cons(b,l)) —if a<b
then cons (a,cons (b,1))
else cons (b,insert (a,l))

Definition of QI

sort (€) —
sort (cons (a,l)) — insert (a,sort (1))



QI of Insertion sort interpretations

(tt) = (ff) = (0) = (e) =0
(suc )(X)=X+1
(cons (X, Y)=X+Y +1

Definition of QI

And function symbols

(if then else )(X,Y,Z)=max(X,Y,Z)
(<D(X,Y)=max(X,Y)
(insert  )(X,Y)=X+Y +1
(sort )(X)=X



Quasi-

PrOpel’tleS interpretations
Proposition
(—) is a quasi-interpretation.
Take two terms u and v such that u=v, we have

(V) < (u)

Key properties

Proof.

Jasubst. o and f (py,--- ,pn) — t such that
u=CI[f (pg,--- ,pn)o] and v = CJto].

Since QI are compatible with program rules

(]tUD S (]f (pla Tt 7pn)UD
Monotonicity implies

(Clta]) < (C[f (p1,--- ,Pn)o])



Addltlve QI imer(;gllrjeatsf;\it-ions
» For each symbol f, (f ) is bounded by a polynomial
» For each constructor c,

(C)(X1,- -, Xn) =D Xi+ac whereac > 1
i

Definition (Size)

Classifications

c| =0 ety t)l =1+ ) It
i

Proposition
For any constructor term t,

It < (t) 1)
(t) <k x|t] 2)



Addition and multiplication

Domain of unary integers {0, suc }

add (0,

add (suc (x),
mult (O,

mult (suc (x),

—Y

— suc (add(x,y))
—0

— add(y, mult (x,y))

< K K <
~— N — —

X)=X+1
(X,Y)=X+Y
(mult )(X,Y)=XxY

Any polynomial has an additive QI.

Quasi-
interpretations

Classifications



Exponential has no additive QI

exp (0) — suc (o)
exp (suc’(x)) — add (exp (x), exp (x))

(suc’D(X) =2X +1
(exp )(X)=X+1

Fact
There is no additive QI for exp !

Proof.
No polynomial solution.

(exp (X + ) = (exp )(X) + (exp )(X) = 2 x (exp )(X

)

L]

Quasi-
interpretations

Classifications



Quasi-

Exponential time evaluation i

Theorem
Assume that f admits an additive QI.
There is an evaluation procedure eval such that

wof (g, th) 5w
1 otherwise

eval (f tg, - ,tq) = {
which runs in O (22X 1),
Proof.

» The size of each intermediate value is bounded by
(f (ta, - tn))

» f(t1, - ,t,) is computed in space O((f (t1,--- ,tn))) ona
TM with an unbounded stack.

» Cook’s simulation implies that eval runs in 2¢%(f (t, )

» that is runs in 02X mk)



Characterization of PTIME Quasi-

interpretations

A RPOS -program is a RPOpo-program, which
1. terminates by <rpo With product comparison status,
2. admits an additive quasi-interpretation (_)

Theorem (Marion-Moyen)

The set of functions which are computed by a Charasterizing
RPOS! -program is exactly the set PTIME of functions PTIME
computable in polynomial time.

ICAR system implements this resource analysis method.
(Moyen)



Additive QI captured PTIME

Lemma
Assume that ¢ is computable in polynomial time.
Then ¢ is computable by a RPOSr'O-program.

Proof.
A configuration is (g, u, Vv) where

» ( is a state,

> U is the left tape

» V is the right tape

» the head is scanning the first letter of u.

Quasi-
interpretations

Characterizing
PTIME



Additive QI captured PTIME Quasi

interpretations
state gives the next configuration

state  ((q,u,Vv)) = (q’,u’,v’)

suc t’), ) = state (eval (t,c))

Characterizing
PTIME

(state )(X)=X+1 ((X,Y,Z))=X+Y+Z+1
(eval )(T,X)=T+X
(op=o0 (suc )(X)=X+1

A polynomial P is computed by a RPOSr'O-program

¢p(w) = eval (P(w),(do, W, e))



Computation of Additive QI interpretations

Lemma

Letf be an additive RPOS! -program.

For each constructor term ty, - - - , ty, the runtime to
compute f (t,- - ,ty) is bounded by a polynomial in
max{’_; [t;].

Proof.

Characterizing

» We construct a call-by-value interpreter with cache PTIME

» We show that it runs within P ((f (t1,--- ,tn))) where
P is a polynomial.

» Since the QI is additive (tj) < O(]t;|) and
(f (ta, -~ tn) ) < P(maxi, [ti])

» So, runtime evaluation is bounded by a polynomial

O



Quasi-

Mem0|satlon interpretations

Example
Computing the length of the longest common
subsequence
lcs (x,€) —
ICS (67y) Characterizing
les (i(x),i(y)) —les (x,y)+ o
les (i(x),j(y)) — max(lcs (x,'(y)),lcs (i(x),y))

» The rewriting calculation required O(2") steps

» But, Ics terminates by RPO and admits an additive
Ql: (lcs ) = max.

» So, the function computed by Ics is polynomial time



CBV Wlth CaChe imer(;gllrJ:IS;t-ions

U(X):W ceC €,a%<Ci_1,ti>—>(Ci,wi)

E,0F (C,x) — (C,w) E,0 (Cp,c(t)) — (Cp,c(W))

ferF 5,0‘|—<Ci,1,ti>—><ci,wi> (f(W),W)GCn

E,oF <Co,f (t17 S 7tn)> — <Cn,W> g_i}?’(/?éterizing

f(P)—reé po' =w
5,U|—<Ci,1,ti>—><ci,wi> 5,0'/|—<Cn,r>—><C,W>

E,0 (Co,f (tz, -+ ,ta)) — (CJ(F (W), w),w)

(C,t) | (C’,w) means the computation of t is w given an
initial cache C.



CBV Wlth CaChe inter(;gjlrjgit-ions

Lemma
Letf be a RPOZ -program. For each constructor term
t1, - -, tn, the runtime of the call by value interpreter with
cache to compute f (t1,--- ,t,) is bounded by a
polynomial in (f (ty,--- ,tq)).
Proof.
Characterizing
» We memorize all intermediate function values in PTIME
cache.

» Time is at most quadratic in the size of the cache.
» Show that the cache size is polynomially bounded in

(f (tz, - ta) ).

» Conclusion follows because of additive QI.



Quasi-

SIZG Of the CaChe interpretations

v

Suppose that f(ty, - - - ,ty) is the input
The number of possible recursive calls

v

#{(u17"' aUn) ‘ (uly"' aUn) '<Pprgd (tlv' o 7tn)}

SH!ti\

The function f calls g only if g <+ f.
If (g,ug,- -+ ,Un,Ug) is in a cache, then

Characterizing
PTIME

v

v

‘ui’ < (]f(tlﬂ”' 7tn)[)

Conclusion follows ...

v



OptlmlzatIOﬂ imer(;gllrJ:IS;t-ions

1. The cache may be minimized. Because the result of
f(ty,--- .ty is not necessary if we know the value of
rod
f(tl’ o ’tn) and Ug, -+, Un <'Ppo t, -t Characterizing
2. If arecursive call is linear, we do not need to put it in PTIME
cache.



Quasi-

tall reCUFSIOn interpretations

f terminates by tail recursion if

(i) the comparison status of f is lexicographic,

(i) for each rule f (py,- -+ ,pn) — r then f has at most
one occurrence in r.

Characterizing

reverse(e,y) —Y PTIME
reverse(i(x),y) — reverse(x,i(y))

Theorem
The set of functions computed by tail recursion programs
is exactly PTIME.



Characterization of PspPACE T

A RPOQ-program is a RPO-program, which
1. terminates by <po With lexicographic status,
2. admits an additive QI (_)

Theorem (Bonfante, Marion et Moyen)

The set of functions computed by a RPO®!-programs is Space resources
exactly the set PSPACE of functions computable in
polynomial space.



Quasi-

SlmL”ate PSPACE Computathn interpretations

» Recurrence with parameter substitution is
terminating with a lexicographic status.

f(e,y) —a(y)
f(0(x),y) = ho(x,¥,f(x, 01(¥)), . - -, £(x, 0k (¥)))
f(1(x).¥) = h(x, ¥, f(x,01(¥)), ... F(x, 0%(¥)))

Space resources

» Polynomials admit a RPOZ! -program
» We simulate a PRM with forks



Quasi-

R POQI 'prog ramS are P S PAC E interpretations

Lemma
The space used by a call by value interpreter to compute
f(ty, -+ ,ty) is bounded by a polynomial in (f (ty, - ,ty)).

Proof.
Set A= (f (tg, -~ ,tn))
» Each intermediate results are bounded by O(A).

» The maximal length of a branch of a cbv computation
is bounded by o x Ad

» Conclusion : the space is at most O(A%+1)

Space resources



ObSGYV&tIOnS imer(;gjlrjtgtit-ions

» Similar result with polynomial interpretation, but less
algorithms

» Use of dynamic programming methods (cache) and
NLOGSPACE

» Capturing other complexity classes LOGSPACE, ...
» Sup-interpretation (with Péchoux)

log (0) —
log (suc(y) — suc(log (half (suc(y))))
half (0) —
half (suc(0)) —
)

half (suc(y —>suc(half ¥))



Flndlng QI inter(;gjlrjgzt-ions

Does a program admits an additive quasi-interpretation ?

>

>
>
>

» Finding heuristics to synthesis Qls ?

Restrict to (max, +, ) for candidates to be QI
Fixed a max-degree
There is a decision procedure in 2/f |

Because of Tarski's decision procedure for first order
polynomial over reals

NP-hard when considering max-plus assignment on
R* (Amadio 2003)

Synthesis of QI

» but, usually the degree is low



A functional Scenario T

Functional
Languages

> Complar !

Virtual Machine

Type Verification
Resource Control by QI

» We try to find QI for a functional program.

» Then, QI are transfered to bytecode as resource
annotations

» Virtual Machine check the resource annotations

Code

From Amadio, Coupet-Grimal, Dal Zilio and Jakubiec



Playlng Wlth Q|@NaﬂCy inter(falrjealti;ions

Virtual machine with stack frames
Byte code with 8 instructions

load n Load the n™" argument callgn
branch ¢ | Conditional & destructor || return
build ¢ Constructor stop

in out

Virtual Machine (nearly) runs on Lego Robot Mindstorm

Resource Bound Certified




A functional Scenario

2R S o

load 1
branch s 7
load 2
build s 1
call add 2
return

load 2
return

Msa] z ] [ ]
s z [s@)] ]
ls@ z [z ] |

11
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Resource bound bytecode certification interpretations
At Virtual machine level

» Type verification
» Size control — no-malloc at runtime
» Termination

» Application of QI to synchronous cooperative threads
(Amadio, Dal Zilio)

» EmBounded and MRG european project (Hofmann)

» Application of QI to control memory allocation of the
AVR Butterfly processor (work in progress with
Bonfante)

Resource Bound Certified




Quasi-

Another applled dlreCtIOnS interpretations

» Defense against viruses
» and attack by memory-overflow techniques

int i;
char buffer[256];

void function (void)
{
for(i=0;i<512;i++)
buffer[i]="A";
} .



Fight : Functions vs Algorithms interpretations

About functions

» Calculability
» Logical characterization of complexity classes
» Extensional characterization of complexity classes

About Algorithms

» Studying algorithms : Colson-David, Gurevich,
Moschovakis

» Intentional completeness of characterization of
complexity classes
» Intentional characterization of complexity classes
» including “good” algorithms (Amadio & al, Jones,
Hofmann, Bonfante, Marion Moyen, Péchoux)

A conclusion
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