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Outline

Why automatic typing?

Typing problems: Type Checking (TC) and Typability (TYP)
Simply typed A-calculus

Propositional EAL, LAL and DLAL

Second order

* From system F...

® ...to light logics

Automatic typing vs. expressiveness



Background

In general:
* 2 type assignment system:
* terms M
° types T
* rules for derivation of sequents

> A sequentisof the form I' = M : 7 with I" afunction
from variables to types with finite domain.

o If I'-M : 7 isdeivablein X Il write I' v M : 7.

* Typing 1s “good”.



Why automatic typing?

®* Some form of automatic typing would be appreciated. Well,
that 1s 1if we want to let people other than computer scientists
use the system...

® The best would be for a programmer to just write the
program, giving just “hints” for the types, while a machine
does the work needed to embed the program in the system (or
reject it).



Typing problems

I'm going to concentrate on decision problems.
* TC (Type Checking):

~ Input: I', M, 7

- Decide: I' s M : 7
* TYP (Typability):

— Input: M

- Decide: A", 7 (' s M : 7)

Type inference solves TYP, strong type inference (1.e. giving
all possible types through principal typing) solves TC also.



Simply typed A-calculus

We have Hindley-Milner's strong type inference algorithm.

Its core 1s a procedure that solves unification for types, 1.e.
given two (quantifier-free) types o and T it finds a (most
general) substitution S such that S(o)=S(T).

The rest 1s done by decorating the syntactic tree of the term.



Simply typed A-calculus

Example:
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Simply typed A-calculus

Example:
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Simply typed A-calculus

Example:
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Simply typed A-calculus

Example:
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Simply typed A-calculus

Example:

(var) (var)

‘ ~f - x
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Simply typed A-calculus

Example:

(var)
(app)
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Simply typed A-calculus

Example:

var
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Simply typed A-calculus

Example:

var)
app)

ar
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Simply typed A-calculus

Example:

(var)
(app)

ar
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fivs = fiys =5 fivs = 5,295 (fe): s
fivs =52 950 (F(fx)):7s (abs)
f s = st A (f (fx): 95 — s 2bs)
l—)\f)\x.(f(fx)):(W5—>75)—>75—>’$5

(app)




EAL

Strong type inference for propositional elementary affine logic
has been shown (Coppola and Ronchi della Rocca 2003).

This involves a syntax driven variant of the system, for which a
refinement of the unification procedure 1s designed, handling
variable numbers of bangs by introducing linear constraints on
integers. Decoration of the syntax tree therefore involves
solving a system of linear constraints.

Typing a pure term involves finding all the finitely many
possible syntax driven versions of the term.



LAL

Strong type inference for propositional light affine logic has
been shown (Baillot 2004).

As for EAL, the unification procedure is redesigned to give also
constraints concerning modalities, which 1n this system are
handled as linear inequalities on strings.

Also the variant of this system, DLAL (Baillot and Terui 2004 ),
has a strong type inference algorithm, which tries to convert an
EAL typing into a DLAL one.



Second order

In these systems polymorphism of types 1s added to gain
decent expressiveness.

Results of completeness (all functions of a certain class are
representable in the given system) depend on it.

However this comes at a cost: automatic type inference 1s no
longer granted.

As easiness of unification 1s at the base of propositional type
inference, hardness of the corresponding problem in second
order, SUP (semiunification), is at the base of results of
undecidability.

SUP 1s undecidable (Kfoury, Tiuryn and Urzyczyn 1993).



Semiunification

* SUP (semiunification problem) with two pairs:
~ Input: two pairs of quantifier-free types (o1, 71), (02, 72)
— Decide:
38, 51,82 (S1(S(01)) = 8(11)&S2(S(02)) = S(72))

The intended meaning is that a solution to the problem is a
substitution that, rather than equalling all the types, brings them
to a form where 1n both the pairs 0; can be obtained from 7;
by instantiating separately some further variables.

Undecidability 1s proved by showing a reduction to of an
undecidable problem over Turing machines (immortality).



Reduction of SUP to TC

Sketch (for system F, as shown by Wells):

*Given an instance (01, 71), (02, T2)of SUP we build the
instance of TC givenby I' Fg b (A\x.cxx) : PGwhere

F::{bivv.(7—>7)—>6,C:\V/-(Tl—>51)—>(52_>7_2)_>(O-1_>0-2)}

1 a solution for (01, 71), (02,72) <= I'Fp M : 7



Reduction of TC to TYP

Sketchier still (Wells 1999):

°Given an instance of TC I' g M : 7 acontext C|| is

built such that 1t forces variables binding the hole to be typed

with specific types in case C N s typed, whatever be N. In

particular among those variables are the free ones of M, forced
to be typed as in L', plus a new variable forced to be typed with
T — . Then

' p M : 7 <= C[zM] typable



Reduction of SUP to TC

For DLAL:

*Given an instance (01, 71), (02, T2) of SUP we build the
instance of TC given by I' Fprar b (Ax.czx) : B where

[i=50:Vy.(y — §y) — B, c: §V.(11 —0 d1) —o (02 —o T2) —o (01 — 02)
J a solution for (01, 71), (02, 72) = I' Fprar b (Ax.cxx) : 3

The other direction 1s done by injecting DLLAL all the way to
system F, proving that the reduction holds for all the systems
caught in between (such as LAL and EAL).



Open problem

So TC 1s undecidable for all relevant polymorphic systems.

Undecidability of TYP instead remains up to now an open
question, although we can conjecture the negative result.

Adaptation of Wells' proof seems out of reach though.



Rank 2 restriction

A type 1s of rank k£ iff quantifiers do not appear at left depth
greater or equal than k. In a formal way 7 (types of rank k)

% =V ‘ % — 767
77~e+1 =T}, ‘ Ty — 77c+1 \VV-ZcH-

arc.

Wells has shown strong type inference for rank 2 system F
(i.e. we use only rank 2 types).

Atassi, Baillot and Teru1 have shown decidability of
decoration problem: given a system F type derivation decide
whether or not it can be decorated into an EAL/DLAL one.

So rank 2 EAL and DLAL have strong type inference.

Note that proof of undecidability of TC uses rank 3 types.



Automatic typing vs. expressiveness

® Bringing in full polymorphism gives maximum
expressiveness but gives away automatic typing. A priori we
can't even decide whether for example a function we've just

programmed 1s from integers to integers as we intended (TC
undecidable).

* Restricting polymorphism can grant type inference, but limits
expressiveness. For example in rank 2 system F, defining

int =Va.(a — a) - a — «

we cannot use an integer to iterate a function f : int — int.



