
< > - +

Complexity and Logic lecture
Part II. Linear logic, lambda-calculus and

polynomial time complexity

GEOCAL’06 Winter School

Patrick Baillot

CNRS-LIPN, Université Paris 13

patrick.baillot@lipn.univ-paris13.fr

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.1/104

< > - +

feasible proofs-as-programs ?

we want to examine Implicit computational (ICC) complexity through a
proof-theoretical lens:
framework:

proofs-as-programs

computation=normalization

solid foundations: lambda-calculus, proof-theory, semantics . . .

applications: type systems, proof assistents . . .

how can we delineate complexity classes in this approach?
in particular, how could feasible/Ptime computation fit into it?

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.2/104

< > - +

feasible proofs-as-programs ?

how can we delineate complexity classes in this approach?
in particular, how could feasible/Ptime computation fit into it?

−→ regulate logical operations

within second-order approaches:

2nd order quantification (Leivant 91)
duplication (Girard 95)

other proof-theory approaches, using 1st-order logic or arithmetic
systems:

Bounded arithmetic (Buss 85).

ICC feasible arithmetics:
Marion ’01, Bellantoni-Hofmann’02, Aehlig et al. ’04 . . .

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.3/104

< > - +

. . . which method ?

within the proofs-as-programs approach, our reference language:

2nd order intuitionistic logic,

corresponding to

system F types for lambda-calculus
(polymorphic types)

our analysis will be focused on the duplication regulation approach

we would like complexity properties to result from the internal dynamic
of the logic (cut-elimination)

−→ Linear logic is a sharp tool to study system F dynamics

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.4/104

< > - +

. . . what can be changed about LL?

with Linear logic, duplication is managed through a protocol specified
by modality !:

duplication operation / duplicability

this protocol can be tuned via the choice of ! rules

this way: delineate fragments of F corresponding to Ptime complexity

this presentation will be based on results by

Girard, Asperti, Roversi, Lafont, and others.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.5/104

< > - +

about the goals

let us anticipate on what we cannot/can expect.

lambda-calculus is a basic language, but it allows for general
features (higher-order, polymorphism . . .)
→ this approach is not directed towards a fine-grained intensional
characterization
but we can hope for robust conditions

internal chacterization:
the complexity bounds will result from basic logical/programming
operations
→ analogous to safe recursion, tiering approaches
but different from the QI approach (somehow external condition)

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.6/104

< > - +

comparison with safe recursion

safe/tiered recursion: data types and associated methods as primitives

LL aproach: logical operations as primitives

data structures are constructed

=lambda-calculus-style approach with

homogeneity between programs and data

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.7/104

< > - +

Plan

1. system F, Linear logic and overview of LL variants for ICC

2. Elementary and Soft Linear Logics

3. Light Linear Logic

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.8/104

< > - +

Part 1: system F, LL and overview of LL variants for complexity

1.1 Background on λ-calculus, Curry-Howard correspondence

1.2 core Linear logic. Proof-nets.

1.3 what are the options for duplication ? variants of LL

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.9/104

< > - +

Setting

From system F to Linear logic

proofs-as-programs approach

Intuitionistic 2nd-order logic (IL)
Curry-Howard.
−−−−−−−−−−−−→ system F

(Intuitionistic) linear logic (LL2): refinement of IL
by Curry-Howard corresp.: formulas=types, proofs=programs

(, ⊗, !(.), ∀(2)

Examples of LL types:

N (N (!N (N) (N

!N (N

rules for modality ! responsible for duplication
⇒ restrict the rules for ! to tame complexity.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.10/104

< > - +

Setting

From system F to Linear logic

proofs-as-programs approach

Intuitionistic 2nd-order logic (IL)
Curry-Howard.
−−−−−−−−−−−−→ system F

(Intuitionistic) linear logic (LL2): refinement of IL
by Curry-Howard corresp.: formulas=types, proofs=programs

(, ⊗, !(.), ∀(2)

Examples of LL types:

N (N (!N (N) (N

!N (N

rules for modality ! responsible for duplication
⇒ restrict the rules for ! to tame complexity.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.10/104

< > - +

Setting

From system F to Linear logic

proofs-as-programs approach

Intuitionistic 2nd-order logic (IL)
Curry-Howard.
−−−−−−−−−−−−→ system F

(Intuitionistic) linear logic (LL2): refinement of IL
by Curry-Howard corresp.: formulas=types, proofs=programs

(, ⊗, !(.), ∀(2)

Examples of LL types:

N (N (!N (N) (N

!N (N

rules for modality ! responsible for duplication
⇒ restrict the rules for ! to tame complexity.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.10/104

< > - +

Lambda-calculus

lambda-terms:

t, u ::= x | λx.t | (t) u

notations: λx1x2.t for λx1.λx2.t

(t) u v for ((t) u) v

substitution: t[u/x]

β-reduction:
1
−→ relation obtained by context-closure of:

(λx.t)u
1
−→ t[u/x]

→ reflexive and transitive closure of 1
−→.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.11/104

< > - +

Typed Lambda-terms

system F types:

T, U ::= α | T → U | ∀α.T

simple types: without ∀

Simply typed terms, in Church-style:

xT (λxT .MU)T→U ((MT→U)NT)U

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.12/104

< > - +

Proofs-programs correspondence (Curry-Howard)

typed term ⇒ 2nd-order intuitionistic logic proof

type formula

MB, with proof of A1, . . . , An ` B

free variables xi : Ai, 1 ≤ i ≤ n

β-reduction of term normalization of proof

(cut elimination)

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.13/104

< > - +

Sequent calculus for Intuitionistic logic

sequents of the form B1, . . . , Bn ` A

A ` A
Id

Γ1 ` A A,Γ2 ` C

Γ1,Γ2 ` C
Cut

Γ1 ` A1 A2,Γ2 ` C

Γ1, A1 → A2,Γ2 ` C
→ l

A1,Γ ` A2

Γ ` A1 → A2
→ r

A[B/α],Γ ` C

∀α.A,Γ ` C
∀l

Γ ` A
Γ ` ∀α.A

∀r (α not free in Γ)

Γ ` C
A,Γ ` C

Weak
A,A,Γ ` t :C

A,Γ ` C
Cntr

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.14/104

< > - +

Sequent calculus and lambda-terms

judgements of the form x1 : B1, . . . , xn : Bn ` t : A, where FV (t) ⊆ {x1, . . . , xn}.

x :A ` x :A
Id

Γ1 ` u :A x :A,Γ2 ` t :C

Γ1,Γ2 ` t[u/x] :C
Cut

Γ1 ` u :A1 x :A2,Γ2 ` t :C

Γ1, y :A1 → A2,Γ2 ` t[(y)u/x] :C
→ l

x :A1,Γ ` t :A2

Γ ` λx.t :A1 → A2
→ r

x :A[B/α],Γ ` t :C

x :∀α.A,Γ ` t :C
∀l

Γ ` t :A
Γ ` t :∀α.A

∀r (α not free in Γ)

Γ ` t :C
A,Γ ` t :C

Weak
x :A, y :A,Γ ` t :C

z :A,Γ ` t[z/x, z/y] :C
Cntr

In binary rules we assume Γ1 and Γ2 have disjoint variables.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.15/104

< > - +

Sequent calculus and lambda-terms

judgements of the form x1 : B1, . . . , xn : Bn ` t : A, where FV (t) ⊆ {x1, . . . , xn}.

x :A ` x :A
Id

Γ1 ` u :A x :A,Γ2 ` t :C

Γ1,Γ2 ` t[u/x] :C
Cut

Γ1 ` u :A1 x :A2,Γ2 ` t :C

Γ1, y :A1 → A2,Γ2 ` t[(y)u/x] :C
→ l

x :A1,Γ ` t :A2

Γ ` λx.t :A1 → A2
→ r

x :A[B/α],Γ ` t :C

x :∀α.A,Γ ` t :C
∀l

Γ ` t :A
Γ ` t :∀α.A

∀r (α not free in Γ)

Γ ` t :C
A,Γ ` t :C

Weak
x :A, y :A,Γ ` t :C

z :A,Γ ` t[z/x, z/y] :C
Cntr

In binary rules we assume Γ1 and Γ2 have disjoint variables.

a derivable rule:
Γ1 ` v :A1 → A2 Γ2 ` u :A1

Γ1,Γ2 ` (v) u :A2

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.15/104

< > - +

Examples of F types

Polymorphic identity:

λxα.x : ∀α.(α→ α)

Tally integers:

N = ∀α.(α→ α) → (α→ α)

example

2 = λfα→α.λxα.(f) (f) x : N

Binary words:

W = ∀α.(α→ α) → (α→ α) → (α→ α)

example

< 1, 1, 0 > = λoα→α.λzα→α.λxα.(o) (o) (z) x : W

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.16/104

< > - +

Example of derivation

x : α ` x : α y : α ` y : α
→ l

f2 : α→ α, x : α ` (f2) x : α z : α ` z : α
→ l

f1 : α→ α, f2 : α→ α, x : α ` (f1) (f2) x : α
contr

f : α→ α, f : α→ α, x : α ` (f) (f) x : α
2 → r

` λfx.(f) (f) x : (α→ α) → (α→ α)
∀ r

` 2 : ∀α.(α→ α) → (α→ α)

so

` 2 : N

.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.17/104

< > - +

Iteration

For each inductive data type an associated iteration principle.
For instance, for N = ∀α.(α→ α) → (α→ α), we can define for any A
an iterator iterA:

iterA = λfxn. (n) f x : (A→ A) → A→ N → A

then (iterA) F t n→ (F) (F) . . . (F) t (n times)

example:
double : N → N

exp = λn.(iterN) double 1 n : N → N

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.18/104

< > - +

Examples of terms

concatenation

conc = λuW .λvW .λo.λz.λx.((u) o z) (v) o z x

: W →W →W

length

length = λuW .λfα→α.(u) f fα→α

: W → N

’multiplication’

mult = λnN .λvW .[(n) (conc) v)] nilW

: N →W →W

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.19/104

< > - +

System F and termination

Theorem 0 (Girard 1972) If a term is well typed in F , then it is
strongly normalizable.

Thus a type derivation can be seen as a termination witness.
In particular, a term t : W →W represents a function on words which
terminates on all inputs.

Can we refine this system in order to guarantee feasible termination,

that is to say in polynomial time?

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.20/104

< > - +

Core Intuitionistic Linear logic

Core Intuitionistic Linear logic (IMLL) formulas:

A,B ::= α | A (B | A⊗B | ∀α.A

A (B: use-once implication
A⊗B: conjunction (pair of resources)

IMLL
(

: fragment without ⊗

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.21/104

< > - +

Core Intuitionistic Linear Logic: rules

system IMLL
(

:

x :A ` x :A
Id

Γ1 ` u :A x :A,Γ2 ` t :C

Γ1,Γ2 ` t[u/x] :C
Cut

Γ1 ` u :A1 x :A2,Γ2 ` t :C

Γ1, y :A1 −◦A2,Γ2 ` t[(y u)/x] :C
−◦l

x :A1,Γ ` t :A2

Γ ` λx.t :A1 −◦A2
−◦r

x :A[B/α],Γ ` t :C

x :∀α.A,Γ ` t :C
∀l

Γ ` t :A
Γ ` t :∀α.A

∀r (α non free in Γ)

Typeable terms are . . . linear, in the sense that each variable occurs
exactly once.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.22/104

< > - +

Core Intuitionistic Linear Logic: rules

system IMLL
(

:

x :A ` x :A
Id

Γ1 ` u :A x :A,Γ2 ` t :C

Γ1,Γ2 ` t[u/x] :C
Cut

Γ1 ` u :A1 x :A2,Γ2 ` t :C

Γ1, y :A1 −◦A2,Γ2 ` t[(y u)/x] :C
−◦l

x :A1,Γ ` t :A2

Γ ` λx.t :A1 −◦A2
−◦r

x :A[B/α],Γ ` t :C

x :∀α.A,Γ ` t :C
∀l

Γ ` t :A
Γ ` t :∀α.A

∀r (α non free in Γ)

Typeable terms are . . . linear, in the sense that each variable occurs
exactly once.
We can also consider the affine variant with weakening:

Γ ` t :C
x : A,Γ ` t :C

Weak

corresponds to lambda-terms where variables occur at most once.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.22/104

< > - +

Classical multiplicative Linear logic (MLL)

Classical MLL formulas:

A,B ::= α | α⊥ | A℘B | A⊗B | ∀α.A | ∃α.A

linear negation A⊥.
A℘B: par (disjunction)
A (B =def A⊥℘B

A⊥ defined by:

(A⊗B)⊥ = A⊥℘B⊥ (A℘B)⊥ = A⊥ ⊗B⊥

(∀α.A)⊥ = ∃α.A⊥ (∃α.A)⊥ = ∀α.A⊥

replace sequents A1, . . . , An ` B by ` A⊥

1 , . . . , A
⊥

n , B

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.23/104

< > - +

Classical multiplicative Linear logic

Identity Group

Axiom ` A⊥, A
ax

Cut

` A,∆ ` A⊥,∆′

` ∆,∆′
cut

Logical Rules (multiplicatives and second-order quantifiers)

Par
` A,B,∆

` A℘B,∆
℘

Tensor

` A,∆ ` B,∆′

` A⊗B,∆,∆′
⊗

Universal
` A,∆

` ∀αA,∆
∀

Existential

` A[C/α],∆

` ∃αA,∆
∃

provided α is not free in ∆

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.24/104

< > - +

MLL proof-structures

ax

A A⊥ A A⊥

cut
A B

A℘B

℘
A B

⊗

A ⊗ B

∀

∀αA

A A{C/α}

∃

∃αA

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.25/104

< > - +

MLL proof-structures

ax

A A⊥ A A⊥

cut
A B

A℘B

℘
A B

⊗

A ⊗ B

∀

∀αA

A A{C/α}

∃

∃αA

each ∀ node is associated with a box :

. . .

∀

B1 Bn

Bn∀α.A

A

B1

2 boxes are either disjoint, or one is included in the other

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.25/104

< > - +

Translation of proofs

proof Π translation Π∗ = R

Π
` A1, . . . , An

. . .

R

A1 An

` A,A⊥
ax

A⊥A
ax

Π1

` Γ, A

Π2

` A⊥,∆

` Γ,∆
cut

Π∗
i = Ri, i = 1, 2

. . . cut . . .

Γ

R1 R2

A A⊥

∆

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.26/104

< > - +

Translation of proofs (continued)

proof Π translation Π∗ = R

Π1

` Γ, A

Π2

` B,∆

` Γ, A⊗B,∆
⊗

Π∗
i = Ri, i = 1, 2

.

Γ ∆

R1 R2

A B

A ⊗ B

⊗

Π1

` Γ, A,B

` Γ, A℘B
℘

Π∗
1 = R1

R1

. . .

Γ

A B

A℘B

℘

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.27/104

< > - +

Translation of proofs (continued)

proof Π translation Π∗ = R

Π1

` A,B1, . . . , Bn

` ∀α.A,B1, . . . , Bn
∀

Π∗
1 = R1

. . .

∀

B1 Bn

Bn∀α.A

A

B1

Π1

` A1[C/α], A2, . . . , An

` ∃α.A1, A2, . . . , An
∃

Π∗
1 = R1

A1[C/α] . . . An

R1

∃

∃α.A1

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.28/104

< > - +

MLL proof-nets

A proof-structure R is called a proof-net iff there exists a proof Π such
that Π∗ = R.

Proofs-nets can also be characterized among proof-structures in an in-

trinsic way, by correctness criterions. However, this will not be our con-

cern here.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.29/104

< > - +

Reduction of proof-nets (cut-elimination)

cut

ax

A⊥

A

A A

(A)

[ax]

cut
cut

A B

⊗
A

B B⊥

A⊥
℘

cut

A⊥ B⊥

[m]

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.30/104

< > - +

Example

t = (λx.(x)y) λz.z

y : α ` y : α a : α ` a : α
(l

x : α (α, y : α ` (x) y : α

y : α ` λx.(x) y : (α (α) (α

z : α ` z : α
` λz.z : α (α w : α ` w : α

z′ : (α (α) (α ` (z′) λz.z : α
cut

y : α ` (λx.(x)y) λz.z : α

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.31/104

< > - +

Example

t = (λx.(x)y) λz.z

α ` α α ` α
(l

α (α, α ` α
(r

α ` (α (α) (α

α ` α
(r

` α (α α ` α
(l

(α (α) (α ` α
cut

α ` α

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.31/104

< > - +

Example

t = (λx.(x)y) λz.z

α ` α α ` α
(l

α (α, α ` α
(r

α ` (α (α) (α

α ` α
(r

` α (α α ` α
(l

(α (α) (α ` α
cut

α ` α

in MLL:

` α⊥, α ` α⊥, α

` (α (α)⊥, α⊥, α

` α⊥, (α (α)⊥℘α

` α⊥, α

` α⊥℘α ` α⊥, α

` ((α (α) (α)⊥, α
cut

` α⊥, α

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.31/104

< > - +

Example

t = (λx.(x)y) λz.z

α ` α α ` α
(l

α (α, α ` α
(r

α ` (α (α) (α

α ` α
(r

` α (α α ` α
(l

(α (α) (α ` α
cut

α ` α

in MLL:

` α⊥, α ` α⊥, α
⊗

` (α⊗ α⊥), α⊥, α

` α⊥, (α⊗ α⊥)℘α

` α⊥, α

` α⊥℘α ` α⊥, α
⊗

` ((α⊥℘α) ⊗ α⊥), α
cut

` α⊥, α

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.31/104

< > - +

Example

t = (λxα(α.[(x)y]α) λzα.z : α

` α⊥, α ` α⊥, α
⊗2

` (α⊗ α⊥), α⊥, α
℘2

` α⊥, (α⊗ α⊥)℘α

` α⊥, α
℘1

` α⊥℘α ` α⊥, α
⊗1

` ((α⊥℘α) ⊗ α⊥), α
cut

` α⊥, α

℘2

⊗2

⊗1

℘1

ax ax ax ax

cut

α⊥
α

α
α⊥

α⊥
ααα⊥

(α⊥℘α) ⊗ α⊥
(α ⊗ α⊥)℘α

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.32/104

< > - +

Example

t = (λxα(α.[(x)y]α) λzα.z : α

` α⊥, α ` α⊥, α
⊗2

` (α⊗ α⊥), α⊥, α
℘2

` α⊥, (α⊗ α⊥)℘α

` α⊥, α
℘1

` α⊥℘α ` α⊥, α
⊗1

` ((α⊥℘α) ⊗ α⊥), α
cut

` α⊥, α

℘2

⊗2

⊗1

℘1

ax ax ax ax

cut

α⊥
α

α
α⊥

α⊥
ααα⊥

(α⊥℘α) ⊗ α⊥
(α ⊗ α⊥)℘α

y

@1

λ2 λ1

@2

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.32/104

< > - +

Bound on reduction of MLL proof-nets

Theorem 0 (Small normalization theorem) Any MLL proof-net R
can be reduced in less than |R| steps.

. . . because each reduction step makes |R| decrease.

Thus MLL admits a polynomial time dynamics.
However it is not expressive enough, while on the other hand F is too
expressive.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.33/104

< > - +

In between MLL and F: reintroduce duplication

Linear logic idea to control duplication: specific connective= modality !

(called exponential)
2 issues:

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.34/104

< > - +

In between MLL and F: reintroduce duplication

Linear logic idea to control duplication: specific connective= modality !

(called exponential)
2 issues:

how to use duplicable ressources how to produce them

Linear Logic: contraction

!A ((!A⊗ !A) (contr)

A1 ⊗ . . .⊗An (B

!A1 ⊗ . . .⊗ !An (!B
(!)

!A (1

!A (A !A (!!A

dereliction digging

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.34/104

< > - +

In between MLL and F: reintroduce duplication

Linear logic idea to control duplication: specific connective= modality !

(called exponential)
2 issues:

how to use duplicable ressources how to produce them

Elementary LL: !A ((!A⊗ !A) (contr)

!A (1

A1 ⊗ . . .⊗An (B

!A1 ⊗ . . .⊗ !An (!B
(!)

Soft LL: multiplexing

!A ((A⊗ . . .⊗A)
︸ ︷︷ ︸

(mplex)

n copies of A, for any n ≥ 0

A1 ⊗ . . .⊗An (B

!A1 ⊗ . . .⊗ !An (!B
(!)

Light LL: !A ((!A⊗ !A) (contr)

A1 (B

!A1 (!B
(u !)

!A (1 and a new modality §

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.34/104

< > - +

Properties

ELL has an elementary time cut-elimination procedure, that is to

say with time bounded by a function 22...2
n

, with fixed height
⇒ represents only elementary functions

SLL, LLL have polynomial time cut-elimination procedure
⇒ represent only Ptime functions

LL is as expressive as system F

to make these claims precise we will need to specify the parameters
varying in proofs.

Remark: another (earlier) variant of LL for Ptime: Bounded Linear Logic

([GSS92]).

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.35/104

< > - +

Relations between these systems

Elementary time

LL

ELL

LLLSLL Ptime

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.36/104

< > - +

Relating these systems to F

LL (or ILL) is as expressive as system F:
Girard translation:

F −→ ILL

A→ B !A?
(B?

gives a simulation

For all these systems there is a forgetful map:

ILL −→ F

ELL

SLL

LLL

obtained by erasing modalities and replacing (with →.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.37/104

< > - +

Method

we adopt the following viewpoint:

source language: lambda-calculus

type system: ELL/SLL/LLL. . .

intermediary language: proof-nets

as affine variants are easier to handle we will consider
Elementary (res. Soft, Light) Affine Logic: EAL (resp. SAL, LAL).

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.38/104

< > - +

Summary

(contr) + (!) ≡ Elementary (ELL)

(mplex) + (!) ≡ Ptime (SLL)

(contr) + (u !) + (§) ≡ Ptime (LLL)

how to use duplicable resources / how to produce them

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.39/104

< > - +

Part 2: Elementary and Soft Linear Logics

2.1 Elementary Linear logic (ELL)

the system

proof-nets and normalization

representation issues

2.2 Soft Linear logic (SLL)

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.40/104

< > - +

Presentation

for each system (ELL, SLL . . .) we will proceed as follows:

define it as a sequent calculus/ typing system

give data types

study its dynamics with proof-nets

state soundness and completeness complexity results

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.41/104

< > - +

Elementary Linear Logic (ELL) [Girard98]

corresponds to elementary recursive functions : time 22...2
n

, with
fixed height. . .

applications to optimal reduction: simplification of Lamping’s
algorithm.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.42/104

< > - +

ELL : definition

we consider here the intuitionistic version of ELL, with second-order (à
la système F).
the language of formulas is that of ILL (without additives)

A,B ::= α | A (B | A⊗B | !A | ∀α.A

ELL is obtained by removing from ILL the rules for dereliction and
digging
the other rules are unchanged.

actually this is the multiplicative fragment of ELL, but it will be sufficient

for our purposes.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.43/104

< > - +

ELL : remarks

contrarily to ILL/CLL : infinite number of modalities (sequences of
!, ?) up to equivalence;

to have more flexibility, we can add general weakening:
Elementary Affine Logic (EAL);

for computational intuition: we see ELL/EAL as a type system for
λ-calculus.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.44/104

< > - +

EAL as a sequent calculus

A ` A
Id

Γ1 ` A A,Γ2 ` C

Γ1,Γ2 ` C
Cut

Γ1 ` A1 A2,Γ2 ` C

Γ1, A1 −◦A2,Γ2 ` C
−◦l

A1,Γ ` A2

Γ ` A1 −◦A2
−◦r

A[B/α],Γ ` C

∀α.A,Γ ` C
∀l

Γ ` A
Γ ` ∀α.A

∀r (α not free in Γ)

Γ ` C
∆,Γ ` C

Weak
!A, !A,Γ ` C

!A,Γ ` C
Cntr

Γ ` A
!Γ ` !A

!r

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.45/104

< > - +

EAL and λ-calculus

x :A ` x :A
Id

Γ1 ` u :A x :A,Γ2 ` t :C

Γ1,Γ2 ` t[u/x] :C
Cut

Γ1 ` u :A1 x :A2,Γ2 ` t :C

Γ1, y :A1 −◦A2,Γ2 ` t[(y)u/x] :C
−◦l

x :A1,Γ ` t :A2

Γ ` λx.t :A1 −◦A2
−◦r

x :A[B/α],Γ ` t :C

x :∀α.A,Γ ` t :C
∀l

Γ ` t :A
Γ ` t :∀α.A

∀r (α not free in Γ)

Γ ` t :C
∆,Γ ` t :C

Weak
x : !A, y : !A,Γ ` t :C

z : !A,Γ ` t[z/x, z/y] :C
Cntr

Γ ` t :A
!Γ ` t : !A

!r

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.46/104

< > - +

Forgetful map: from EAL to F

map (.)− : EAL→ F defined by:

(!A)− = A−, (A (B)− = A− → B−,

Proposition 0 If Γ `EAL t : A then Γ− `F t : A−.

If A− = T : A is called a décoration of T in EAL.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.47/104

< > - +

Data types in EAL

unary integers

F: EAL:

NF NEAL

∀α.(α→ α) → (α→ α) ∀α.!(α (α) (!(α (α)

Example: 2, in F: 2 = λf (α→α).λxα.(f) (f) x .

binary lists

F: EAL:

WF WEAL

∀α.(α→ α) → (α→ α) → (α→ α) ∀α.!(α (α) (!(α (α) (!(α (α)

Example: w = [1, 0, 0], in F:

w = λz(α→α).λu(α→α).λxα.(u)(z)(z)x .

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.48/104

< > - +

Classical ELL formulas

we will represent proofs by proof-structures of classical ELL
the grammar of classical ELL formulas is given by

A,B ::= α | α⊥ | A℘B | A⊗B | !A | ?A | ∀α.A | ∃α.A

A (B = A⊥℘B

A⊥ is defined by:

(A⊗B)⊥ = A⊥℘B⊥ (A℘B)⊥ = A⊥ ⊗B⊥

(∀α.A)⊥ = ∃α.A⊥ (∃α.A)⊥ = ∀α.A⊥

(!A)⊥ =?A⊥ (?A)⊥ = !A⊥

α⊥⊥ = α

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.49/104

< > - +

Modality rules for classical ELL

` Γ
`?A,Γ

Weak
`?A, ?A,Γ

`?A,Γ
Cntr

` A,B1, . . . , Bn

` !A, ?B1, . . . , ?Bn
!

We translate (intuitionistic) ELL derivations into proof-nets, via their
translation into classical ELL derivations:

B1, . . . , Bn ` A −→ ` B⊥

1 , . . . , B
⊥

n , A

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.50/104

< > - +

ELL proof-structures

ax

A A⊥ A A⊥

cut
A B

A℘B

℘
A B

⊗

A ⊗ B

?c ?w
?A ?A

?A ?A

!

!A

A A

?

?A

∀

∀αA

A A{C/α}

∃

∃αA

each !, ? node (resp. ∀ node) is a door of an exponential (resp. quanti-

fier) box

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.51/104

< > - +

Proof-structures: boxes

exponential box (!-box)

A . . .

!

!A

Bn

?B1 ?Bn

B1

? ?

box ∀: α /∈ FV (Bi), 1 ≤ i ≤ n

. . .

∀

B1 Bn

Bn∀α.A

A

B1

two boxes are disjoint, or one is included in the other

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.52/104

< > - +

Proof-net reduction

contraction or weakening cut reduction step: as in LL proof-nets

cut

?c

[co]

R1?A⊥ ?A⊥
?A⊥

?A⊥

R1

R1

?c
?c

?A⊥

cut

cut
? ?

? ?

? ?

A

. . .
!

?B1 ?Bn!A

?Bn

A

. . .
!

!A

A

. . .
!

?B1
!A ?Bn

?B1

. . .?B1 ?Bn

[w]

cut

?w

R1

?A⊥
?w?? ?w

. . .

A

!
!A

?B1 ?Bn ?B1 ?Bn

. . .

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.53/104

< > - +

Proof-net reduction (continued)

box-box cut reduction step: merging

cut

R1 R2

cut

R1 R2

!A

[cc]

!A

?B1

?

?B1

? ?

? ? ?

?

?C⊥
?Cm

?Cm

B1 C⊥ Cm

B1 C CmC⊥

C
!C

.
! !

!
. . .

.

. . .

A

A

one could handle full weakening (EAL) by using suitable proof-nets, but

we stick here to ELL for simplicity

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.54/104

< > - +

Examples of terms

addition

add = λnmfx.(n) f (m) f x

: N (N (N

multiplication

mult = λnmf.(n) (m) f

: N (N (N

square

square = λnf.(n) (n) f

: !N (!N

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.55/104

< > - +

Proof-net normalization and term reduction

Proposition 0 (simulation ELL-Λ) If R is an ELL proof-net
corresponding to a proof of conclusion Γ ` t : A and if R→ R′ by
reduction, then R′ corresponds to a proof of conclusion Γ ` t′ : A, with
t→ t′

Proposition 0 If R is an ELL proof-net corresponding to a proof of
Γ ` t : A and if R is cut-free, then t is in normal form.

Proposition 0 If Γ ` t : A, t→ t′ and t′ is in normal form then
Γ ` t′ : A.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.56/104

< > - +

Normalization of proof-nets

R ELL proof-net. e edge of R.
depth of e, d(e): number of exponential boxes containing e.
depth of node N : similar.
depth of R, d(R): maximum depth of its nodes.

size of R, |R|: number of nodes of R

|R|i: number of nodes at depth i

|R|i+: number of nodes at depth ≥ i

Proposition 0 (Stratification) The depth of an edge of an ELL
proof-net does not change after a reduction step.

Note that this is not true in LL: the depth can decrease (dereliction step)

or increase (box-box step).

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.57/104

< > - +

Complexity bound on reduction

K(0, n) = n, K(k + 1, n) = 2K(k,n).

Theorem 0 If R is an ELL proof-net, then R can be reduced into its
normal form in less than K(d+ 1, |R|) steps.

Remarks:

the height of the tower only depends on the depth, and not on the
size;

no reference to the formulas occuring in the proof-net;

this bound is obtained by applying a reduction strategy by levels.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.58/104

< > - +

Normalization strategy by levels

this strategy eliminates cuts by proceeding by increasing depth.
more precisely:

one deals successively with rounds for each depth level
i = 0, 1, . . . d.
at the end of round i: the proof-net does not have any more cut at
depth ≤ i

round i:

phase (a): one reduces the multiplicative/axiom/quantifier cuts
at depth i,

phase (b): one repeats the following step until there isn’t any
exponential cut left:
at depth i:

step: reduce a maximal exponential cut at depth i (for a
certain order relation ≺ on cuts).

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.59/104

< > - +

Bounds (continued)

Proposition 0 A proof-net R can be reduced in time O(K(d+ 1, |R|)).

notation: !kA = ! . . . !A (k times).

Consequence:

If ` t : N (!kN then t represents an elementary recursive function.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.60/104

< > - +

Iteration in EAL

we can define for any A an iterator iterA:

iterA = λfxn. (n) f x : !(A (A) (!A (N (!A

then (iterA) F t n→ (F) (F) . . . (F) t (n times)
examples:
double : N (N

exp = λn.(iterN) double 1 n : N (!N

remark: exp cannot be iterated.
coerc1 = λn.(iterN) succ 0 : N (!N

coercion from N to !N .
more generally: coerci : N (!iN , for i ∈ N

consequence: a term ` t : !iN (A can be replaced by ` t′ : N (A

extensionally equal:
t′ = λn.(t) (coerci) n

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.61/104

< > - +

Representation of functions

Π proof of x : N ` t : !lN .
we say π represents function f : N → N if:
for any integer n the proof obtained by cutting ` n : N with Π reduces
to ` n′ : !lN , where n′ = f(n).

Definition 0 a function f is elementary recursive if there exists an
integer h and a Turing machine M which computes f in time bounded
by K(h, n).

Theorem 0 The functions representable in EAL are exactly the
elementary recursive functions.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.62/104

< > - +

ELL and type fixpoints

as the normalization proof does not use formulas, ELL can be
extended with type fixpoints while keeping the same complexity
property
EALµ is obtained by extending the language with formulas µα.A, and
rules of EAL by:

Γ, A[µα.A/α] ` B

Γ, µα.A ` B
µ l

Γ ` A[µα.A/α]

Γ ` µα.A
µ r

the following unfolding rules are then derivable:
Γ, µα.A ` B

Γ, A[µα.A/α] ` B

Γ ` µα.A

Γ ` A[µα.A/α]

Proposition 0 A proof Π of EALµ with depth d can be normalized in a
number of steps bounded by K(d+ 1, |Π|).

this allows to define alternative data-types, as for integers:
N = µα.(1 ⊕ (α⊗ 1)).
however: no associated iteration scheme!

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.63/104

< > - +

Soft Linear Logic (Lafont 04)

languages of formulas: same as ELL
SLL rules:

core ILL and

x1 :A1, . . . , xn :An,` t :A

x1 : !A1, . . . , xn : !An,` t : !A
!

x1 :A, . . . , xn :A,Γ ` t :C

z : !A,Γ ` t[z/x1, . . . , z/xn] :C
mplex (n ≥ 0)

The rule (mplex) is multiplexing.
Soft affine logic: SAL.

With connective ⊗ we have:
non-valid: !A (!A⊗ !A (Contraction), !A (!!A (digging)
valid: !A ((A⊗ ...⊗A) for any number k ≥ 0 of A.

generic derivation: no multiplexing (linear term)

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.64/104

< > - +

SAL

Type for Church integers:

N = ∀α.!(α (α) ((α (α)

For booleans:

B = ∀α. α (α (α

For binary lists:

W = ∀α.!(B (α (α) ((α (α)

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.65/104

< > - +

SAL: properties

Theorem 0 (Lafont) If D is type derivation for t, with depth d, then D

can be normalized in a number of steps bounded by O(nd), where
n = |D|.

Consequence: if `SAL t : !W (B, then t denotes a Ptime predicate.

Theorem 0 If f : {0, 1}? → {0, 1} is a Ptime predicate then there
exists a term t with a Soft affine logic derivation of ` t : !W (B,
representing f .

Mairson-Terui 03: P-completeness of multiplicative SLL.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.66/104

< > - +

SAL: programming

idea: programs typed with generic derivations. multiplexing used for
data.
however: successor cannot be typed with N (N .
to type it:

N (N〈X + 1〉, where

N〈X + 1〉 = ∀α.!(α (α) ⊗ (α (α) ((α (α).
More generally, for polynomial P :
N〈P 〉: type for integers P (n)

Proposition 0 For any P , there is a (generic) derivation for:

Np ` N〈P 〉

where p = deg(P) and Np denotes N, . . . , N with p repetitions.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.67/104

< > - +

Encoding of Turing Machines: sketch

type for machine configurations: C.
M machine with polynomials P (for time) and Q for space.
the step function can be encoded with type: C (C.
then: C〈Q〉 (C〈Q〉

besides we have:

W p ` N〈P 〉

W q ` C〈Q〉

by iteration we get: N〈P 〉 ` C〈Q〉 (C〈Q〉,
(k=P(n) steps of transition on a configuration)
so finally:

W p+q ` C〈Q〉

!W ` C〈Q〉 by multiplexing .

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.68/104

< > - +

Part 3: Light Linear Logic

3.1 Light Linear logic (LLL)

the system

proof-nets and polynomial bound

expressivity and discussion

3.2 Light types for lambda-calculus (DLAL)

language and translation to LAL

coercions and expressivity

Ptime soundness

3.3 Type inference problems

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.69/104

< > - +

Light Linear Logic (LLL)

language of formulas

A,B ::= α | A (B | A⊗B | !A | §A | ∀α.A

rules:
B ` A
!B `!A

` A
`!A

Γ,∆ ` A

!Γ, §∆ ` §A

the other rules are unchanged from ELL.

we will consider the affine version : light affine logic (LAL);

as with EAL we will use LAL as a type system for λ–calculus.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.70/104

< > - +

LAL: remarks

the rule § can be seen as a kind of multiple dereliction, with a
marker §;

from a typing point of view: !A subtype of §A;

from a semantical point of view:
!, § are functors, and we have the principles
!A ((!A⊗ !A)

!A (§A §A⊗ §B (§(A⊗B)

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.71/104

< > - +

LAL sequent-calculus

A ` A
Id

Γ1 ` A A,Γ2 ` C

Γ1,Γ2 ` C
Cut

Γ1 ` A1 A2,Γ2 ` C

Γ1, A1 −◦A2,Γ2 ` C
−◦l

A1,Γ ` A2

Γ ` A1 −◦A2
−◦r

A[B/α],Γ ` C

∀α.A,Γ ` C
∀l

Γ ` A
Γ ` ∀α.A

∀r (α not free in Γ)

Γ ` C
∆,Γ ` C

Weak
!A, !A,Γ ` C

!A,Γ ` C
Cntr

B ` A
!B `!A

!r
` A
`!A

!r

Γ,∆ ` A

!Γ, §∆ ` §A
§r

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.72/104

< > - +

LAL and λ-calculus

x :A ` x :A
Id

Γ1 ` u :A x :A,Γ2 ` t :C

Γ1,Γ2 ` t[u/x] :C
Cut

Γ1 ` u :A1 x :A2,Γ2 ` t :C

Γ1, y :A1 −◦A2,Γ2 ` t[(y)u/x] :C
−◦l

x :A1,Γ ` t :A2

Γ ` λx.t :A1 −◦A2
−◦r

x :A[B/α],Γ ` t :C

x :∀α.A,Γ ` t :C
∀l

Γ ` t :A
Γ ` t :∀α.A

∀r (α not free in Γ)

Γ ` t :C
∆,Γ ` t :C

Weak
x : !A, y : !A,Γ ` t :C

z : !A,Γ ` t[z/x, z/y] :C
Cntr

x :B ` t :A
x : !B ` t :!A

!r
` t :A
` t :!A

!r

Γ,∆ ` t :A

!Γ, §∆ ` t :§A
§r

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.73/104

< > - +

Translation LAL -> EAL

translation (.)o : LAL −→ EAL:

(!A)o = (§A)o = !Ao,

(.)o commutes with other connectives.

This gives a translation from LAL proofs to EAL proofs, and it is a
simulation.
Of course, not all EAL proofs are in the image of (.)o.

As for EAL, we have a forgetful map : (.)
−

: LAL→ F .

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.74/104

< > - +

LAL data types

unary integers

EAL: LAL:

NEAL NLAL

∀α.!(α (α) (!(α (α), ∀α.!(α (α) (§(α (α) .

binary lists

EAL: LAL

WEAL WLAL

∀α.!(α (α) (!(α (α) (!(α (α), ∀α.!(α (α) (!(α (α) (§(α (α) .

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.75/104

< > - +

Examples

addition

add = λnmfx.(n) f (m) f x

: N (N (N

double

double = λnfx.(n) f (n) f x

: !N (§N

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.76/104

< > - +

Iteration in LAL

we have in LAL as type for the iterator:

iterA = λfxn. (n) f x : !(A (A) (§A (N (§A

(iterA) F t n→ (F) (F) . . . (F) t (n times)
examples:
add : N (N (N , (add) 2 : N (N

double′ = λn.[(iterN) (add) 2] 0 n : N (§N

double′ cannot be iterated.

similarly:
m : N ` (add) m : N (N , so m : !N ` (add) m : !(N (N)

multiplication is obtained by:
mult′ = λnm.[(iterN) (add) m] 0 n : !N (N (§N

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.77/104

< > - +

Proof-structures for LLL

we represent proofs by proof-structures for classical LLL.
the language of formula is extended with §̄A, and we have:

(§A)⊥ = §̄A⊥ (§̄A)⊥ = §A⊥

new nodes:

A

§

§A

A

§̄

§̄A

these nodes are used with boxes

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.78/104

< > - +

Proof-nets for LLL: boxes

two kinds of exponential boxes:
§-box:

A

§

.B1

§A ?B1

C1

§̄C1

? §̄

!-box:

A

! ?

!A

B

?B

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.79/104

< > - +

Reduction of LLL proof-nets

as in ELL, with moreover the case of cut §/§̄:

cut

R1 R2

cut

R1 R2

!A

[cc]

?B1

?

?B1

?

? ?

B1 Cm

B1 Cm
§

DD⊥

§̄D⊥ §D
D⊥ D

§̄§

§A §̄Cm

§̄

§̄

§̄Cm

. . .

!
. . .

.

. . .

A

A

. . .

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.80/104

< > - +

Cut-elimination in LLL

Proposition 0 (simulation LLL-Λ) If R is an LLL proof-net
corresponding to a proof of conclusion Γ ` t : A and if R→ R′ by
reduction,then R′ corresponds to a proof of conclusion Γ ` t′ : A, with
t→ t′.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.81/104

< > - +

Complexity bound on reduction

As ELL proof-nets, the LLL proof-nets satisfy the stratification property.

Theorem 0 If R is an LLL proof-net, with depth d, then the reduction

of R into its normal form can be done in O((d+ 1).|R|2
d+1

) steps.

Remarks:

if the depth is fixed, then the number of steps is polynomial in |R| ;

this bound is obtained by a strategy by levels.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.82/104

< > - +

Normalization strategy

Strategy similar to the one for ELL:

rounds at increasing depth levels, from i = 0 to i = d.

round i:

phase (a): one reduces the multiplicative/axiom/quantifier / §
cuts at depth i,

phase (b): repeat the following step until no more exponential
cut at depth i:

step: reduce a maximal exponential cut at depth i (for ≺).

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.83/104

< > - +

Strong polynomial bound and other issues

Actually the previous bound O((d+ 1).|R|2
d+1

) holds not only for
the previous reduction strategy, but for any reduction strategy:
strongly polynomial normalization, [Terui01].

the interest of the strategy by levels is that it makes it easier to
prove the bound.

This strong polynomial normalization property is in contrast with
some other ICC systems (BC safe recursion).

Alternative intermediate language, instead of proof-nets: light
affine lambda-calculus ([Terui01]). Essentially a lambda-calculus
extended with constructions for managing !-boxes.

another possible approach: define ELL, LLL within standard LL
proof-nets. Danos-Joinet 99, Mazza 04.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.84/104

< > - +

Type coercions

iterA = λfxn. (n) f x : !(A (A) (!A (N (§A

We can define a coercion from N to §N :
coerc1 = λn.(iterN) succ 0 : N (§N .
More generally: coerci,j : N (§i+1!jN , with i, j ≥ 0.

From mult′ : !N (N (§N , we get
mult′′ : N (N (§2N ,
then:
square′′ : !N (§3N ,

Similarly for type W . This way we can consider types of the form
W (§kW .

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.85/104

< > - +

Representation of functions

for Ptime computation the choice of representation of integers is
important: binary lists.

Π proof of x : W ` t : §kW .
We say Π represents function f : {0, 1}? → {0, 1}? if:
for any w of {0, 1}?, the proof obtained by cutting ` w : W with Π

reduces to ` w′ : §kW , where w′ = f(w).

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.86/104

< > - +

Complexity of LAL

Theorem 0 If f : {0, 1}∗ → {0, 1}∗ belongs to FP, then there exists an
integer k and a proof Π of x : W ` t : §kW representing f .

Corollary 0 The functions representable in LAL are exactly the
functions of FP, that is to say computable in polynomial time on a
Turing machine.

Remarks:

even if a term t is typeable in LAL, to execute it with the expected
complexity bound we need to compile it into a proof-net;

a term can be reducible in polynomial time and still not be
typeable in LAL.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.87/104

< > - +

Simulation of Ptime Turing machines in LAL (sketch)

Girard98, Asperti-Roversi02.

Config: data type for Turing machine configurations (tape and state)
` init : W (Config

` length : W (N : length of a binary list

given a machine M with associated polynomial P , we build:
` step : Config (Config representing 1 step of the machine
` tP : N (§kN

then , with c0 : Config we define s = (iterConfig) step c0.

so we have:

c0 : §Config ` s : N (§Config

hence (s)n computes the configuration obtained after n steps of M
starting from c0.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.88/104

< > - +

Simulation of Turing machines: continued

We have:
c0 : §Config ` s : N (§Config

c0 : §k+1Config ` s : §kN (§k+1Config

` tP : N (§kN

so: w1 : W, c0 : §k+1Config ` (s) (tP) (length) w1 : §k+1Config

using init : W (Config we get a term s′:

w1 : W, w0 : §k+1W ` s′ : §k+1Config

with the coercions: w1 : W,w0 : W ` s′′ : §k+1Config

then by contraction and abstraction:

` M : !W (§k+2Config

composing with ` extract : Config (W and coercions we finally

obtain ` M ′ : W (§k+3W

This term M ′ simulates the machine M we started from.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.89/104

< > - +

A simpler type system : DLAL

DLAL: Dual Light Affine Logic
langage of DLAL types:

A,B ::= α | A (B | A⇒ B | §A | ∀α.A

translation (.)∗ : DLAL −→ LAL:

(A⇒ B)∗ = !A∗
(B∗,

(.)∗ commutes to other connectives.

Note that the following types are not in the image of DLAL :

A (!B, §!A (B, !A .

For typing in DLAL : mixed judgements Γ; ∆ ` t : C,

where ∆ is an affine-linear context, Γ is non linear.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.90/104

< > - +

DLAL

;x :A ` x :A
(Id)

Γ1;∆1 ` u :A Γ2;x :A,∆2 ` t :C

Γ1,Γ2;∆1,∆2 ` t[u/x] :C
(Cut)

Γ1;∆1 ` u :A Γ2;x :B,∆2 ` t :C

Γ1,Γ2; y :A−◦B,∆1,∆2 ` t[(y)u/x] :C
(−◦l)

Γ; x :A,∆ ` t :B

Γ; ∆ ` λx.t :A−◦B
(−◦r)

; z :D ` u :A Γ; x :B,∆ ` t :C

z :D,Γ; y :A⇒ B,∆ ` t[(y)u/x] :C
(⇒ l)(∗)

x :A,Γ; ∆ ` t :B

Γ; ∆ ` λx.t :A⇒ B
(⇒ r)

Γ; x :A[B/α],∆ ` t :C

Γ; x :∀α.A,∆ ` t :C
(∀l)

Γ; ∆ ` t :A

Γ; ∆ ` t :∀α.A
(∀r), α not free in Γ,∆

Γ;∆ ` t :C

Σ,Γ;Π,∆ ` t :C
(Weak)

x :A, y :A,Γ;∆ ` t :C

z :A,Γ; ∆ ` t[z/x, z/y] :C
(Cntr)

; Γ, x1 :B1, . . . , xn :Bn ` t :A

Γ; x1 :§B1, . . . , xn :§Bn ` t :§A
(§)

(*) z : D can be absent.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.91/104

< > - +

Type derivations in DLAL

Proposition 0 if Γ; ∆ `DLAL t : A and x ∈ ∆, then x has at most one
occurrence in t (x linear).

Proposition 0 If Γ; ∆ `DLAL t : A then !Γ∗,∆∗ `LAL t : A∗.
We obtain in this way a simulation from DLAL to LAL.

The depth of a DLAL derivation is the depth of the corresponding LAL
derivation.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.92/104

< > - +

DLAL data types

unary integers

LAL: DLAL

NLAL NDLAL

∀α.!(α (α) (§(α (α), ∀α.(α (α) ⇒ §(α (α) .

binary lists

LAL: DLAL

WLAL WDLAL

∀α.!(α (α) (!(α (α) (§(α (α), ∀α.(α (α) ⇒ (α (α) ⇒ §(α (α) .

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.93/104

< > - +

Types in DLAL

examples of types:

` addition : N (N (N

` double′ : N ⇒ §N

The functions representable in DLAL are given by types W (§kW .

Typing of iterator:

iterA = λfxn. (n) f x : (A (A) ⇒ §A (N (§A

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.94/104

< > - +

Coercions in DLAL

in LAL: coerp,q : N (§p+1!qN

in DLAL, the following rules are derivable:
n : N ; ∆ ` t : A

;m : N, §∆ ` C1[t] : §A
(coerc1)

Γ;n : §N,∆ ` t : A

Γ;m : N,∆ ` C2[t] : A
(coerc2)

with Ci contexts such that Ci[t] is extensionally equivalent to t
(represents the same function)
example:

mult : N ⇒ (N (§N)

mult′ : N (§(N (§N) by (coerc1)

mult′′ : N (N (§§N by (coerc2)

Proposition 1 If P ∈ N[X], then there exists a term tP representing P
and an integer k such that: `DLAL tP : N (§kN .

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.95/104

< > - +

DLAL: complexity bounds

DLAL satisfies the subject-reduction property.

Theorem 2 (strong polynomial bound) If t is typeable in DLAL with
a derivation of depth d, then any sequence of β-reducts of t has length

bounded by O((d+ 1).|t|2
d+1

).

Remarks:

we are dealing here with β-réduction, and not anymore with
proof-net reduction;

this bound holds for any reduction strategy;

in particular, if ` t : W (§kW then we can normalize (t)w in a
number of steps polynomial in longueur(w).

Theorem 3 The functions representable by terms typeable in DLAL
are exactly the functions of FP.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.96/104

< > - +

Type inference issues

problem: given a term t, is it typeable in EAL/LAL/DLAL ?

for propositional systems the problem is decidable:

EAL: Coppola, Martini, Ronchi della Rocca, Dal Lago, PB, Terui.

LAL: PB.

also possible to infer coercions for EAL: Atassi.

typeability is reduced to a constraints system,
for EAL: linear programming problem
for LAL: word constraints.

decoration problem: given t typed in F, does it admit a decoration in
EAL2/LAL2/DLAL2?

(subsumes propositional inference)

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.97/104

< > - +

Type decoration for DLAL

Theorem 4 There is a polynomial time algorithm which, given t typed
in F, decides whether it admits a decoration in DLAL2.

(joint work with Terui and Atassi)

a key property:

Proposition 5 Let M be a system F term:
x1 : A1, . . . , xm : Am; y1 : B1, . . . , yn : Bn `M : C is derivable in DLAL

if and only if

there is a decoration t of M with type C? and with free variables

x
!A?

1
1 , . . . , x

!A?
m

m , yB?
1

1 , . . . , y
B?

n
n which is regular and satisfies the local

typing, bracketing, λ-scope, bang and Λ-scope conditions.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.98/104

< > - +

Example

M = (λgα→α.(g (g xα)))λyα.zα : α

M = n1[(n2λg
α→α.n3(n4g n6(n5g n7x

α))) n8(λyα.n9z
α)]

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.99/104

< > - +

Example

M = n1[(n2λg
α→α.n3(n4g n6(n5g n7x

α))) n8(λyα.n9z
α)]

boxing conditions:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

n1 ≥ 0

n1 + n2 ≥ 0

n1 + n2 + n3 + n6 + n7 = 0 bracketing (x)

n1 + n8 ≥ 0

n1 + n8 + n9 = 0 bracketing (z)

n3 ≥ 0

n3 + n4 = 0 λ-scope (g1)

n3 + n6 ≥ 0

n3 + n6 + n5 = 0 λ-scope (g2)

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.99/104

< > - +

Example

M = n1[(n2λg
α→α.n3(n4g n6(n5g n7x

α))) n8(λyα.n9z
α)]

p-types:

g : §b1,m1(§b2,m2α (§m3α) x : §b4,m4α

y : §b5,m5α z : §b6,m6α

Local typing conditions:

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

n9zα : n9 + m6 ≥ 0

n8(λyα.n9zα) : n8 ≥ 0

[(n2λgα→α.n3(n4g n6(n5g n7xα))) n8(λyα.n9zα)] : n2 = 0,m1 = n8,m2 = m5,

m3 = n9 + m6,b2 = b5

. . .

(g has 2 occurrences) b1 = 1

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.100/104

< > - +

Example

M = n1[(n2λg
α→α.n3(n4g n6(n5g n7x

α))) n8(λyα.n9z
α)]

p-types:

g : §b1,m1(§b2,m2α (§m3α) x : §b4,m4α

y : §b5,m5α z : §b6,m6α

Bang conditions:
8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

b2 = 1 ⇒ b4 = 1

b2 = 0

b1 = 1 ⇒ b6 = 1

b1 = 1 ⇒ n8 ≥ 1

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.101/104

< > - +

Example

M = n1[(n2λg
α→α.n3(n4g n6(n5g n7x

α))) n8(λyα.n9z
α)]

p-types:

g : §b1,m1(§b2,m2α (§m3α) x : §b4,m4α

y : §b5,m5α z : §b6,m6α

Boolean constraints:

Const
b(M) = {b1 = 1, (b2 = 1 ⇒ b4 = 1),b1 = 0,

(b1 = 1 ⇒ b6 = 1), b2 = b5, b2 = b4}

Minimal solution ψb:

b1 = b6 = 1, b2 = b4 = b5 = 0.

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.102/104

< > - +

Example

M = n1[(n2λg
α→α.n3(n4g n6(n5g n7x

α))) n8(λyα.n9z
α)]

p-types:

g : §b1,m1(§b2,m2α (§m3α) x : §b4,m4α

y : §b5,m5α z : §b6,m6α

The linear system ψbConst
b(M) has solutions. One of them gives:

g : !(α (α) x : §α

y : α z : !α

M = (λg.§ (§̄g (§̄g §̄x))) §(λy.§̄z) : §α

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.103/104

< > - +

Conclusion

LL brings a logical, proof-based approach to implicit
computational complexity,
This approach relates:
ICC on the one hand / functional programming, typing, proofs on
the other . . .

also investigations in semantics:
provability: Kanovich et al, Terui, Dal Lago-Martini
denotational semantics: Murawski-Ong, PB, De Carvalho,
Laurent-Tortora . . .

however limited intensional expressivity
all FP functions are representable, but some common polynomial
time algorithms are not (directly) typeable
Trade-off? intensional expressivity vs efficiency of decision
procedure

Complexity and Logic lecture Part II. Linear logic, lambda-calculus andpolynomial time complexity – p.104/104

		extit {feasible} proofs-as-programs ?
		extit {feasible} proofs-as-programs ?
	 dots which method ?
	 dots what can be changed about LL?
	about the goals
	comparison with safe recursion
	Plan
	Part 1: system F, LL and overview of LL variants for complexity
	Setting
	Lambda-calculus
	Typed Lambda-terms
	Proofs-programs correspondence (Curry-Howard)
	Sequent calculus for Intuitionistic logic
	Sequent calculus and lambda-terms
	Examples of F types
	Example of derivation
	Iteration
	Examples of terms
	System F and termination
	Core Intuitionistic Linear logic
	Core Intuitionistic Linear Logic: rules
	Classical multiplicative Linear logic (MLL)
	Classical multiplicative Linear logic
	MLL proof-structures
	Translation of proofs
	Translation of proofs (continued)
	Translation of proofs (continued)
	MLL proof-nets
	Reduction of proof-nets (cut-elimination)
	Example
	Example
	Bound on reduction of MLL proof-nets
	In between MLL and F: reintroduce duplication
	Properties
	Relations between these systems
	Relating these systems to F
	Method
	Summary
	Part 2: Elementary and Soft Linear Logics
	Presentation
	Elementary Linear Logic (ELL)
[Girard98]
	ELL~: definition
	ELL~: remarks
	EAL as a sequent calculus
	EAL and $la $-calculus
	Forgetful map: from EAL to F
	Data types in EAL
	Classical ELL formulas
	Modality rules for classical ELL
	ELL proof-structures
	Proof-structures: boxes
	Proof-net reduction
	Proof-net reduction (continued)
	Examples of terms
	Proof-net normalization and term reduction
	Normalization of proof-nets
	Complexity bound on reduction
	Normalization strategy by levels
	Bounds (continued)
	Iteration in EAL
	Representation of functions
	ELL and type fixpoints
	Soft Linear Logic (Lafont 04)
	SAL
	SAL: properties
	SAL: programming
	Encoding of Turing Machines: sketch
	Part 3: Light Linear Logic
	Light Linear Logic (LLL)
	 LAL: remarks
	LAL sequent-calculus
	LAL and $la $-calculus
	Translation LAL -> EAL
	LAL data types
	Examples
	Iteration in LAL
	Proof-structures for LLL
	Proof-nets for LLL: boxes
	Reduction of LLL proof-nets
	Cut-elimination in LLL
	Complexity bound on reduction
	Normalization strategy
	Strong polynomial bound and other issues
	Type coercions
	Representation of functions
	Complexity of LAL
	Simulation of Ptime Turing machines in LAL (sketch)
	Simulation of Turing machines: continued
	A simpler type system~: DLAL
	DLAL
	Type derivations in DLAL
	DLAL data types
	Types in DLAL
	Coercions in DLAL
	DLAL: complexity bounds
	Type inference issues
	Type decoration for DLAL
	Example
	Example
	Example
	Example
	Example
	Conclusion

