Light Types for Polynomial Time Computation in Lambda Calculus

Patrick Baillot ${ }^{1}$
LIPN - UMR 7030 CNRS - Université Paris 13, F-93430 Villetaneuse, France

Kazushige Terui ${ }^{2}$
Research Institute for Mathematical Sciences, Kyoto University, Japan

Abstract

We present a polymorphic type system for lambda calculus ensuring that welltyped programs can be executed in polynomial time: dual light affine logic (DLAL). DLAL has a simple type language with a linear and an intuitionistic type arrow, and one modality. It corresponds to a fragment of light affine logic (LAL). We show that contrarily to LAL, DLAL ensures good properties on lambda-terms (and not only on proof-nets): subject reduction is satisfied and a well-typed term admits a polynomial bound on the length of any of its beta reduction sequences. We also give a translation of LAL into DLAL and deduce from it that all polynomial time functions can be represented in DLAL.

Key words: linear logic, light linear logic, lambda calculus, type system, implicit computational complexity, polynomial time complexity.

1 Introduction

Implicit Computational Complexity. Functional languages like ML assist the programmer with prevention of such errors as run-time type errors, thanks

Email addresses: patrick.baillot@ens-lyon.fr (Patrick Baillot), terui@kurims.kyoto-u.ac.jp (Kazushige Terui).
${ }^{1}$ Partially supported by projects NOCoST (ANR, JC05_43380), GEOCAL ACI Nouvelles interfaces des mathématiques and CRISS ACI Sécurité informatique.
${ }^{2}$ Partially supported by Grant-in-Aid for Scientific Research, MEXT, Japan. Also employed by National Institute of Informatics, Tokyo and by CNRS at Laboratoire d'Informatique de Paris Nord when this paper was written.
to automatic type inference. One could wish to extend this setting to verification of quantitative properties, such as time or space complexity bounds (see for instance [25]). We think that progress on such issues can follow from advances in the topic of Implicit Computational Complexity, the field that studies calculi and languages with intrinsic complexity-theoretic properties. In particular some lines of research have explored recursion-based approaches [28,12,24] and approaches based on linear logic to control the complexity of programs [20,26].

Here we are interested in light linear or affine logic (resp. LLL, LAL) [2,20], a logical system designed from linear logic and which characterizes polynomial time computation. By the Curry-Howard correspondence, proofs in this logic can be used as programs. A nice aspect of this system with respect to other approaches is the fact that it includes higher order types as well as polymorphism (in the sense of system \mathbf{F}); relations with the recursion-based approach have been studied in [33]. Moreover this system naturally extends to a consistent naive set theory, in which one can reason about polynomial time concepts. In particular the provably total functions of that set theory are exactly the polynomial time functions [20,38]. Finally LLL and related systems like elementary linear logic have also been studied through the approaches of denotational semantics [27,5], geometry of interaction [17,7] and realizability [18].

Programming directly in LAL through the Curry-Howard correspondence is quite delicate, in particular because the language has two modalities and is thus quite complicated. A natural alternative idea is to use ordinary lambda calculus as source language and LAL as a type system. Then one would like to use a type inference algorithm to perform LAL typing automatically (as for elementary linear logic $[15,16,14,10])$. However following this line one has to face several issues:
(1) β reduction is problematic: subject reduction fails and no polynomial bound holds on the number of β reduction steps;
(2) type inference, though decidable in the propositional case [6], is difficult.

Problem (1) can be avoided by compiling LAL-typed lambda-terms into an intermediate language with a more fine-grained decomposition of computation: proof-nets (see [2,32]) or terms from light affine lambda calculus [37,39]. In that case subject-reduction and polytime soundness are recovered, but the price paid is the necessity to deal with a more complicated calculus.

Modal types and restrictions. Now let us recast the situation in a larger perspective. Modal type systems have actually been used extensively for typing lambda calculus (see [19] for a brief survey). It has often been noted that the modalities together with the functional arrow induce a delicate behaviour:
for instance adding them to simple types can break down such properties as principal typing or subject-reduction (see e.g. the discussions in [34,23,13]), and make type inference more difficult. However in several cases it is sufficient in order to overcome some of these problems to restrict one's attention to a subclass of the type language, for instance where the modality \square is used only in combination with arrows, in types $\square A \rightarrow B$; in this situation types of the form $A \rightarrow \square B$ for instance are not considered. This is systematized in Girard's embedding of intuitionistic logic in linear logic by $(A \rightarrow B)^{*}=!A^{*} \multimap B^{*}$.

Application to light affine logic. The present work fits in this perspective of taming a modal type system in order to ensure good properties. Here as we said the motivation comes from implicit computational complexity.

In order to overcome the problems (1) and (2), we propose to apply to LAL the approach mentioned before of restricting to a subset of the type language ensuring good properties. Concretely we replace the ! modality by two notions of arrows: a linear one $(-\infty)$ and an intuitionistic one (\Rightarrow). This is in the line of the work of Plotkin ([35]; see also [21]). Accordingly we have two kinds of contexts as in dual intuitionistic linear logic of Barber and Plotkin [11]. Thus we call the resulting system dual light affine logic, DLAL.

An important point is that even though the new type language is smaller than the previous one, this system is actually computationally as general as LAL: indeed we provide a generic encoding of LAL into DLAL, which is based on the simple idea of translating $(!A)^{\bullet}=\forall \alpha .\left(A^{\bullet} \Rightarrow \alpha\right) \multimap \alpha[35]$.

Moreover DLAL keeps the good properties of LAL: the representable functions on binary lists are exactly the polynomial time functions. Finally and more importantly it enjoys new properties:

- subject-reduction w.r.t. β reduction;
- Ptime soundness w.r.t. β reduction;
- efficient type inference: it was shown in [3,4] that type inference in DLAL for system \mathbf{F} lambda-terms can be performed in polynomial time.

Contributions. Besides giving detailed proofs of the results in [8], in particular of the strong polytime bound, the present paper also brings some new contributions:

- a result showing that DLAL really corresponds to a fragment of LAL;
- a simplified account of coercions for data types;
- a generic encoding of LAL into DLAL, which shows that DLAL is computationally as expressive as LAL;
- a discussion about iteration in DLAL and, as an example, a DLAL program for insertion sort.

Outline. The paper is organized as follows. We first recall some background on light affine logic in Section 2 and define DLAL in Section 3. Then in Section 4 we state the main properties of DLAL and discuss the use of iteration on examples. Section 5 is devoted to an embedding of DLAL into LAL, Section 6 to the simulation theorem and its corollaries: the subject reduction theorem and the polynomial time strong normalization theorem. Finally in Section 7 we give a translation of LAL into DLAL and prove the FP completeness theorem.

2 Background on light affine logic

Notations. Given a lambda-term t we denote by $F V(t)$ the set of its free variables. Given a variable x we denote by $n o(x, t)$ the number of occurrences of x in t. We denote by $|t|$ the size of t, i.e., the number of nodes in the term formation tree of t. The notation \longrightarrow will stand for β reduction on lambdaterms.

2.1 Light affine logic

The language $\mathcal{L}_{L A L}$ of $\mathbf{L A L}$ types is given by:

$$
A, B::=\alpha|A \multimap B|!A|\S A| \forall \alpha . A .
$$

We omit the connective \otimes which is definable. We will write \dagger instead of either ! or \S.

Light affine logic is a logic for polynomial time computation in the proofs-as-programs approach to computing. It controls the number of reduction (or cut-elimination) steps of a proof-program using two ideas:
(i) stratification,
(ii) control on duplication.

Stratification means that the proof-program is divided into levels and that the execution preserves this organization. It is managed by the two modalities (also called exponentials)! and §.

Duplication is controlled as in linear logic: an argument can be duplicated only if it has undergone a !-rule (hence has a type of the form $!A$). What is specific to LAL with respect to linear logic is the condition under which one

$$
\begin{array}{cc}
\overline{x: A \vdash x: A}(\mathrm{Id}) \\
\frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x \cdot t: A \multimap B}(\multimap \mathrm{i}) & \frac{\Gamma_{1} \vdash t: A \multimap B \quad \Gamma_{2} \vdash u: A}{\Gamma_{1}, \Gamma_{2} \vdash t u: B}(\multimap \mathrm{e}) \\
\frac{\Gamma_{1} \vdash t: A}{\Gamma_{1}, \Gamma_{2} \vdash t: A}(\text { Weak }) & \frac{x_{1}:!A, x_{2}:!A, \Gamma \vdash t: B}{x:!A, \Gamma \vdash t\left[x / x_{1}, x / x_{2}\right]: B}(\text { Cntr }) \\
\frac{\Gamma, \Delta \vdash t: A}{!\Gamma, \S \Delta \vdash t: \S A}(\S \mathrm{i}) & \frac{\Gamma_{1} \vdash u: \S A \quad \Gamma_{2}, x: \S A \vdash t: B}{\Gamma_{1}, \Gamma_{2} \vdash t[u / x]: B}(\S \mathrm{e}) \\
\frac{x: B \vdash t: A}{x:!B \vdash t:!A}(!\mathrm{i}) & \frac{\Gamma_{1} \vdash u:!A \quad \Gamma_{2}, x:!A \vdash t: B}{\Gamma_{1}, \Gamma_{2} \vdash t[u / x]: B}(!\mathrm{e}) \\
\frac{\Gamma \vdash t: A}{\Gamma \vdash t: \forall \alpha \cdot A}(\forall \mathrm{i})\left(^{*}\right) & \frac{\Gamma \vdash t: \forall \alpha \cdot A}{\Gamma \vdash t: A[B / \alpha]}(\forall \mathrm{e})
\end{array}
$$

Fig. 1. Natural deduction system for LAL
can apply a !-rule to a proof-program: it should have at most one occurrence of free variable (rule (! i) of Figure 1).

We present the system as a natural deduction type assignment system for lambda calculus: see Figure 1. We have:

- for $(\forall \mathrm{i}): \quad\left({ }^{*}\right) \alpha$ does not appear free in Γ.
- the (! i) rule can also be applied to a judgement of the form $\vdash u: A$ (u has no free variable).

The notation Γ, Δ will be used for environments attributing formulas to variables. If $\Gamma=x_{1}: A_{1}, \ldots, x_{n}: A_{n}$ then $\dagger \Gamma$ denotes $x_{1}: \dagger A_{1}, \ldots, x_{n}: \dagger A_{n}$. In the sequel we write $\Gamma \vdash_{L A L} t$: A for a judgement derivable in LAL.

The depth of a derivation \mathcal{D} is the maximal number of (! i) and (§ i) rules in a branch of \mathcal{D}. We denote by $|\mathcal{D}|$ the size of \mathcal{D} defined as its number of judgments.

Now, light affine logic enjoys the following property:
Theorem 1 ([20,1]) Given an LAL proof \mathcal{D} with depth d, its normal form can be computed in $O\left(|\mathcal{D}|^{2^{d+1}}\right)$ steps.

This statement refers to reduction performed either on proof-nets [20,2] or on light affine lambda terms $[37,39]$. If the depth d is fixed and the size of \mathcal{D} might vary (for instance when applying a fixed term to binary integers) then the result can be computed in polynomial steps.

Moreover we have:
Theorem $2([20,2])$ If a function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is computable in polynomial time, then there is a proof in $\mathbf{L A L}$ that represents f.

Here the depth of the proof depends on the degree of the polynomial. See also Theorem 33.

2.2 LAL and β reduction

It was shown in [39] that light affine lambda calculus admits polynomial step strong normalization: the bound of Theorem 1 holds on the length of any reduction sequence of light affine lambda terms. However, this property is not true for LAL-typed plain lambda terms and β reduction: indeed [2] gives a family of LAL-typed terms (with a fixed depth) such that there exists a reduction sequence of exponential length. So the reduction of LAL-typed lambda terms is not strongly poly-step (when counting the number of β reduction steps).

We stress here with an example the fact that normalization of LAL-typed lambda terms is not even weakly poly-step nor polytime: there exists a family of LAL-typed terms (with fixed depth) such that the computation of their normal form on a Turing machine (using any strategy) will take exponential time. Note that this is however not in contradiction with the statement of Theorem 1, because the data structures considered here and in Theorem 1 are different: lambda calculus in the forthcoming example and proof-nets (or light affine lambda terms) in the theorem mentioned.

Let us define the example. First, observe that the following judgments are derivable:

$$
\begin{gathered}
y_{i}:!A \multimap!A \multimap!A \vdash_{L A L} \lambda x \cdot y_{i} x x:!A \multimap!A, \\
z:!A \vdash_{L A L} z:!A .
\end{gathered}
$$

From this it is easy to check that the following is derivable:

$$
\begin{aligned}
y_{1}:!A \multimap! & \left(A-\infty!A, \ldots, y_{n}:!A-\infty!A-\infty!A, z:!A\right. \\
& \vdash_{L A L}\left(\lambda x \cdot y_{1} x x\right)\left(\cdots\left(\lambda x \cdot y_{n} x x\right) z \cdots\right):!A .
\end{aligned}
$$

Using (§ i) and (Cntr) we finally get:

$$
y:!(!A \multimap!A-\infty!A), z:!!A \vdash_{L A L}(\lambda x . y x x)^{n} z: \S!A .
$$

Denote by t_{n} the term $(\lambda x . y x x)^{n} z$ and by u_{n} its normal form. We have $u_{n}=$ $y u_{n-1} u_{n-1}$, so $\left|u_{n}\right|=O\left(2^{n}\right)$, whereas $\left|t_{n}\right|=O(n)$: the size of u_{n} is exponential
in the size of t_{n}. Hence computing u_{n} from t_{n} on a Turing machine will take at least exponential time (if the result is written on the tape as a lambda-term).

It should be noted though that even if u_{n} is of exponential size, it nevertheless has a type derivation of size $O(n)$. To see this, note that we have $z:!A, y$: $!A \multimap!A \multimap!A \vdash_{L A L} y z z:!A$. Now make n copies of it and compose them by (! e); each time (! e) is applied, the term size is doubled. Finally, by applying (§ i) and (Cntr) as before, we obtain a linear size derivation for $y:!(!A \multimap$ $!A \multimap!A), z:!!A \vdash_{L A L} u_{n}: \S!A$.

2.3 Discussion

The counter-example of the previous section illustrates a mismatch between lambda calculus and light affine logic. It can be ascribed to the fact that the (! e) rule on lambda calculus not only introduces sharing but also causes duplication. As Asperti neatly points out [1], "while every datum of type ! A is eventually sharable, not all of them are actually duplicable." The above $y z z$ gives a typical example. While it is of type $!A$ and thus sharable, it should not be duplicable, as it contains more than one free variable occurrence. The (! e) rule on lambda calculus, however, neglects this delicate distinction, and actually causes duplication.

Light affine lambda calculus remedies this by carefully designing the syntax so that the (! e) rule allows sharing but not duplication. As a result, it offers the properties of subject reduction with respect to LAL and polynomial time strong normalization [39]. However it is not as simple as lambda calculus; in particular it includes new constructions !(.), §(.) and let (.) be (.) in (.) corresponding to the management of boxes in proof nets.

The solution we propose here is more drastic: we simply do not allow the (! e) rule to be applied to a term of type ! A. This is achieved by removing judgments of the form $\Gamma \vdash t:!A$. As a consequence, we also remove types of the form $A \multimap!B$. Bang ! is used only in the form $!A \multimap B$, which we consider as a primitive connective $A \Rightarrow B$. Note that it does not cause much loss of expressiveness in practice, since the standard decomposition of intuitionistic logic by linear logic does not use types of the form $A-!!B$.

3 Dual light affine logic

The system we propose does not use the ! connective but distinguishes two kinds of function spaces (linear and non-linear) as in [35] (see also [21]). Our
approach is also analogous to that of dual intuitionistic linear logic of Barber and Plotkin [11] in that it distinguishes two kinds of environments (linear and non-linear). Thus we call our system dual light affine logic (DLAL). We will see that it corresponds in fact to a well-behaved fragment of LAL.

The language $\mathcal{L}_{D L A L}$ of $\mathbf{D L A L}$ types is given by:

$$
A, B::=\alpha|A \multimap B| A \Rightarrow B|\S A| \forall \alpha . A
$$

Let us now define Π_{1} and Σ_{1} types. The class of Π_{1} (resp. Σ_{1}) types is the least subset of DLAL types satisfying:

- any atomic type α is $\Pi_{1}\left(\right.$ resp. $\left.\Sigma_{1}\right)$,
- if A is $\Sigma_{1}\left(\right.$ resp. $\left.\Pi_{1}\right)$ and B is Π_{1} (resp. Σ_{1}), then $A \multimap B$ and $A \Rightarrow B$ are $\Pi_{1}\left(\right.$ resp. $\left.\Sigma_{1}\right)$,
- if A is Π_{1} (resp. Σ_{1}) then $\S A$ is Π_{1} (resp. Σ_{1}),
- if A is Π_{1} then so is $\forall \alpha . A$.

There is an unsurprising translation (. $)^{\star}$ from DLAL to LAL given by:

- $(A \Rightarrow B)^{\star}=!A^{\star} \multimap B^{\star}$,
- (. $)^{\star}$ commutes to the other connectives.

Let $\mathcal{L}_{D L A L^{\star}}$ denote the image of $\mathcal{L}_{D L A L}$ by (. $)^{\star}$, and (. $)^{-}: \mathcal{L}_{D L A L^{\star}} \rightarrow \mathcal{L}_{D L A L}$ stand for the converse map of (. $)^{\star}$.

For DLAL typing we will handle judgements of the form $\Gamma ; \Delta \vdash t: C$. The intended meaning is that variables in Δ are (affine) linear, that is to say that they have at most one occurrence in the term, while variables in Γ are nonlinear. We give the typing rules as a natural deduction system: see Figure 2. We have:

- for $(\forall \mathrm{i}): \quad\left({ }^{*}\right) \alpha$ does not appear free in Γ, Δ.
- in the $(\Rightarrow \mathrm{e})$ rule the r.h.s. premise can also be of the form $; \vdash u: A$ (u has no free variable).

In the rest of the paper we will write $\Gamma ; \Delta \vdash_{\text {DLAL }} t: A$ for a judgement derivable in DLAL.

Observe that the contraction rule (Cntr) is used only on variables on the l.h.s. of the semi-column. It is then straightforward to check the following statement:

Lemma 3 If $\Gamma ; \Delta \vdash_{D L A L} t$: A then the set $F V(t)$ is included in the variables of $\Gamma \cup \Delta$, and if $x \in \Delta$ then we have no $(x, t) \leqslant 1$.

We can make the following remarks on DLAL rules:

$$
\begin{array}{cc}
\overline{; x: A \vdash x: A}(\mathrm{Id}) \\
\\
\frac{\Gamma ; \Delta, x: A \vdash t: B}{\Gamma ; \Delta \vdash \lambda x \cdot t: A \multimap B}(\multimap \mathrm{i}) & \frac{\Gamma_{1} ; \Delta_{1} \vdash t: A \multimap B \quad \Gamma_{2} ; \Delta_{2} \vdash u: A}{\Gamma_{1}, \Gamma_{2} ; \Delta_{1}, \Delta_{2} \vdash t u: B}(\multimap \mathrm{e}) \\
\frac{\Gamma, x: A ; \Delta \vdash t: B}{\Gamma ; \Delta \vdash \lambda x . t: A \Rightarrow B}(\Rightarrow \mathrm{i}) & \frac{\Gamma ; \Delta \vdash t: A \Rightarrow B \quad ; z: C \vdash u: A}{\Gamma, z: C ; \Delta \vdash t u: B}(\Rightarrow \mathrm{e}) \\
\frac{\Gamma_{1} ; \Delta_{1} \vdash t: A}{\Gamma_{1}, \Gamma_{2} ; \Delta_{1}, \Delta_{2} \vdash t: A}(\mathrm{Weak}) & \frac{x_{1}: A, x_{2}: A, \Gamma ; \Delta \vdash t: B}{x: A, \Gamma ; \Delta \vdash t\left[x / x_{1}, x / x_{2}\right]: B}(\mathrm{Cntr}) \\
\frac{; \Gamma, \Delta \vdash t: A}{\Gamma ; \S \Delta \vdash t: \S A}(\S \mathrm{i}) & \frac{\Gamma_{1} ; \Delta_{1} \vdash u: \S A \quad \Gamma_{2} ; x: \S A, \Delta_{2} \vdash t: B}{\Gamma_{1}, \Gamma_{2} ; \Delta_{1}, \Delta_{2} \vdash t[u / x]: B}(\S \mathrm{e}) \\
\frac{\Gamma ; \Delta \vdash t: A}{\Gamma ; \Delta \vdash t: \forall \alpha \cdot A}(\forall \mathrm{i})(*) & \frac{\Gamma ; \Delta \vdash t: \forall \alpha \cdot A}{\Gamma ; \Delta \vdash t: A[B / \alpha]}(\forall \mathrm{e})
\end{array}
$$

Fig. 2. Natural deduction system for DLAL

- Initially the variables are linear (rule (Id)); to convert a linear variable into a non-linear one we can use the (§ i) rule. Note that it adds a § to the type of the result and that the variables that remain linear get a § type too.
- the (\multimap i) (resp. ($\Rightarrow \mathrm{i})$) rule corresponds to abstraction on a linear variable (resp. non-linear variable);
- observe ($\Rightarrow \mathrm{e}$): a term of type $A \Rightarrow B$ can only be applied to a term u with at most one occurrence of free variable.

Note that the only rules which correspond to substitutions in the term are (Cntr) and (§e): in (Cntr) only a variable is substituted and in (§e) substitution is performed on a linear variable. Combined with Lemma 3 this ensures the following important property:

Proposition 4 If a derivation \mathcal{D} has conclusion $\Gamma ; \Delta \vdash_{D L A L} t$: A then we have $|t| \leq|\mathcal{D}|$.

This proposition shows that the mismatch between lambda calculus and LAL illustrated in the previous section is resolved with DLAL.

One can observe that the rules of DLAL are obtained from the rules of $\mathbf{L A L}$ via the (. $)^{\star}$ translation. As a consequence, DLAL can be considered as a subsystem of LAL. Let us make this point precise.

Definition 5 Let $\mathcal{L}_{D L A L^{+}}$be the set $\mathcal{L}_{D L A L^{*}} \cup\left\{!A: A \in \mathcal{L}_{D L A L^{*}}\right\}$. We write $\Gamma \vdash_{D L A L^{\star}} t: A$ if there is an $\mathbf{L A L}$ derivation \mathcal{D} of $\Gamma \vdash t: A$ in which

- any formula belongs to $\mathcal{L}_{\text {DLAL+}}$,
- any instantiation formula B of a $\left(\forall\right.$ e) rule in \mathcal{D} belongs to $\mathcal{L}_{D L A L^{\star}}$.

We stress that $\mathcal{L}_{D L A L^{\star}}$ and $\mathcal{L}_{D L A L^{+}}$are sublanguages of $\mathcal{L}_{L A L}$ and not of $\mathcal{L}_{D L A L}$. Hence when writing $\Gamma \vdash_{D L A L^{\star}} t: A$, we are handling an LAL derivation (and not a DLAL one).

Theorem 6 (Embedding) Let $\Gamma ; \Delta \vdash t: A$ be a judgment in DLAL. Then $\Gamma ; \Delta \vdash_{D L A L} t: A$ if and only if ! $\Gamma^{\star}, \Delta^{\star} \vdash_{D L A L^{\star}} t: A^{\star}$.

The 'only-if' direction is straightforward and the 'if' one will be given in Section 5.

If \mathcal{D} is a DLAL derivation, let us denote by \mathcal{D}^{\star} the $\mathbf{L A L}$ derivation obtained by the translation of Theorem 6 .

Let us now define the depth of a DLAL derivation \mathcal{D}. For that, intuitively we need to consider the maximum, among all branches of the derivation, of the added numbers of (§ i) rules and arguments of an application rule $(\Rightarrow$ e) (noted u in the rule). More formally, the depth of a DLAL derivation \mathcal{D} is thus the maximal number of premises of (§ i) and r.h.s. premises of $(\Rightarrow \mathrm{e})$ in a branch of \mathcal{D}.

In this way the depth of a DLAL derivation \mathcal{D} corresponds to the depth of its translation \mathcal{D}^{\star} in LAL, that is to say to the maximal nesting of exponential boxes in the corresponding proof-net (see [2] for the definition of proof-nets).

The data types of LAL can be directly adapted to DLAL. For instance, we have the following data types for booleans, unary integers and binary words in LAL:

$$
\begin{aligned}
\mathbf{B} & =\forall . \alpha . \alpha \multimap \alpha \multimap \alpha, \\
\mathbf{N}_{L} & =\forall \alpha!!(\alpha \multimap \alpha) \multimap \S(\alpha \multimap \alpha), \\
\mathbf{W}_{L} & =\forall \alpha .!(\alpha \multimap \alpha) \multimap!(\alpha \multimap \alpha) \multimap \S(\alpha \multimap \alpha)
\end{aligned}
$$

The type \mathbf{B} is also available in DLAL as it stands, while for the latter two, we have \mathbf{N} and \mathbf{W} such that $\mathbf{N}^{\star}=\mathbf{N}_{L}$ and $\mathbf{W}^{\star}=\mathbf{W}_{L}$ in DLAL:

$$
\begin{aligned}
\mathbf{N} & =\forall \alpha \cdot(\alpha \multimap \alpha) \\
\mathbf{W} & =\forall \alpha \cdot(\alpha \multimap \alpha), \\
\multimap \alpha) & \Rightarrow(\alpha \multimap \alpha) \Rightarrow \S(\alpha \multimap \alpha) .
\end{aligned}
$$

The inhabitants of \mathbf{B}, \mathbf{N} and type \mathbf{W} are the familiar Church codings of booleans, integers and words:

$$
\begin{gathered}
\frac{\Gamma_{1} ; \Delta_{1} \vdash t_{1}: A_{1} \quad \Gamma_{2} ; \Delta_{2} \vdash t_{2}: A_{2}}{\Gamma_{1}, \Gamma_{2} ; \Delta_{1}, \Delta_{2} \vdash t_{1} \otimes t_{2}: A_{1} \otimes A_{2}}(\otimes \mathrm{i}) \\
\frac{\Gamma_{1} ; \Delta_{1} \vdash u: A_{1} \otimes A_{2} \quad \Gamma_{2} ; x_{1}: A_{1}, x_{2}: A_{2}, \Delta_{2} \vdash t: B}{\Gamma_{1}, \Gamma_{2} ; \Delta_{1}, \Delta_{2} \vdash \text { let } u \text { be } x_{1} \otimes x_{2} \text { in } t: B}(\otimes \mathrm{e})
\end{gathered}
$$

Fig. 3. Derived rules

$$
\begin{aligned}
\underline{i} & =\lambda x_{0} \cdot \lambda x_{1} \cdot x_{i}, \\
\underline{n} & =\lambda f \cdot \lambda x \cdot \underbrace{f(f \ldots(f}_{n} x) \ldots), \\
\underline{w} & =\lambda f_{0} \cdot \lambda f_{1} \cdot \lambda x \cdot f_{i_{1}}\left(f_{i_{2}} \ldots\left(f_{i_{n}} x\right) \ldots\right),
\end{aligned}
$$

with $i \in\{0,1\}, n \in N$ and $w=i_{1} i_{2} \cdots i_{n} \in\{0,1\}^{*}$. The following terms for addition and multiplication on Church integers are typable in DLAL:

$$
\begin{array}{rlrl}
\text { add } & =\lambda n \cdot \lambda m \cdot \lambda f \cdot \lambda x \cdot n f(m f x)): & & N \multimap N \multimap N, \\
\text { mult }=\lambda n \cdot \lambda m \cdot m(\lambda y \cdot \operatorname{add} n y) \underline{0}: & N \Rightarrow N \multimap \S N .
\end{array}
$$

It can be useful in practice to use a type $A \otimes B$. It can anyway be defined, thanks to full weakening:

$$
A \otimes B=\forall \alpha .((A \multimap B \multimap \alpha) \multimap \alpha) .
$$

We use as syntactic sugar the following new constructions on terms with the typing rules of Figure 3:

$$
\begin{aligned}
t_{1} \otimes t_{2} & =\lambda x \cdot x t_{1} t_{2}, \\
\text { let } u \text { be } x_{1} \otimes x_{2} \text { in } t & =u\left(\lambda x_{1} \cdot \lambda x_{2} \cdot t\right) .
\end{aligned}
$$

4 Properties of DLAL

4.1 Main properties

We will now present the main properties of DLAL. As the proofs of some theorems require some additional notions and definitions, we prefer to start by the statements of the results, and postpone the proofs to the following sections.

First of all, DLAL enjoys the subject reduction property with respect to lambda calculus, in contrast to LAL:

Theorem 7 (Subject Reduction) If $\Gamma ; \Delta \vdash_{D L A L} t_{0}: A$ and $t_{0} \longrightarrow t_{1}$, then $\Gamma ; \Delta \vdash_{D L A L} t_{1}: A$.

To prove this property we will use another calculus, light affine lambda calculus and a simulation property of DLAL in this calculus (Theorem 22). For the proof see Section 6. Note that a direct proof was also given in [9].

DLAL types ensure the following strong normalization property:
Theorem 8 (Polynomial time strong normalization) Lett be a lambdaterm which has a typing derivation \mathcal{D} of depth d in DLAL. Then t reduces to the normal form in at most $O\left(|t|^{2^{d}}\right)$ reduction steps and in time $O\left(|t|^{2^{d+2}}\right)$ on a multi-tape Turing machine. This result holds independently of which reduction strategy we take.

The bound $O\left(|t|^{2^{d}}\right)$ for the number of reduction steps is slightly better than that of Theorem 1. The reason is that we are working on plain lambda terms and thus in particular do not need commuting reductions. The proof is again based on light affine lambda calculus and the simulation property. It will be given in Section 6.

Finally, even if DLAL offers good properties with respect to lambda calculus, in order to be convincing we expect it to be expressive enough to represent all Ptime functions, just as LAL; this is the case:

Theorem 9 (FP completeness) If a function $f:\{0,1\}^{\star} \rightarrow\{0,1\}^{\star}$ is computable in time $O\left(n^{2^{d}}\right)$ by a multi-tape Turing machine for some d, then there exists a lambda-term t such that $\vdash_{D L A L} t: \mathbf{W} \multimap \S^{2 d+2} \mathbf{W}$ and t represents f.

The depth of the result type $\S^{2 d+2} \mathbf{W}$ above is smaller than the ones given by [20,2,30]. It is mainly due to the refined coding of polynomials, which is also available in LAL (see Proposition 11 and Theorem 33).

To prove the above theorem, we will define in Section 7 a translation from LAL to DLAL and use the FP completeness of LAL. Note that in [9] a direct proof was also given.

4.2 Iteration and example

In this section we will discuss the use of iteration in programming in DLAL. We will in particular describe the example of insertion sort.

4.2.1 Iteration

As in other polymorphic type systems, iteration schemes can be defined in DLAL for various data types. For instance for \mathbf{N} and the following data type corresponding to lists over A :

$$
\mathbf{L}(A)=\forall \alpha .(A \multimap \alpha \multimap \alpha) \Rightarrow \S(\alpha \multimap \alpha),
$$

we respectively have the following iteration schemes, for any type B :

$$
\begin{aligned}
& \operatorname{iter}_{B}:(B \multimap B) \Rightarrow \S B \multimap \mathbf{N} \multimap \S B \\
& \operatorname{fold}_{B}:(A \multimap B \multimap B) \Rightarrow \S B \multimap \mathbf{L}(A) \multimap \S B .
\end{aligned}
$$

They are defined by the same term:

$$
\begin{aligned}
\operatorname{iter}_{B} & =\lambda F \cdot \lambda b \cdot \lambda n \cdot n F b, \\
\operatorname{fold}_{B} & =\lambda F \cdot \lambda b \cdot \lambda l \cdot l F b .
\end{aligned}
$$

Note that with the iter $_{B}$ scheme for instance, if we iterate on type $B=\mathbf{N}$ a function $\mathbf{N} \multimap \mathbf{N}$ we obtain a term of type $\mathbf{N} \multimap \S \mathbf{N}$, which is thus itself not iterable. Typing therefore prevents nesting of iterations (see [33] for the relation with safe recursion).

This is the case for instance if we try to define addition on unary integers by iteration over one of the two arguments, using the successor function, and obtaining as type $\S \mathbf{N} \multimap \mathbf{N} \multimap \S \mathbf{N}$. However recall that we have given previously a term for addition with type $\mathbf{N} \multimap \mathbf{N} \multimap \mathbf{N}$.

We want to show that by choosing suitably the type B on which to do the iteration, one can type in DLAL programs with nested iterations. To illustrate that on a simple example we first consider the case of addition. Can we define addition by an iteration giving it the type $\mathbf{N} \multimap \mathbf{N} \multimap \mathbf{N}$?

Let us call open Church integer a term of the following form:

$$
; f_{1}:(\alpha \multimap \alpha), \ldots, f_{n}:(\alpha \multimap \alpha) \vdash \lambda x \cdot f_{1}\left(\ldots\left(f_{n} x\right) \ldots\right):(\alpha \multimap \alpha)
$$

Informally speaking it is a Church integer, where the variables f_{1}, \ldots, f_{n} have not been contracted nor bound yet.

Now we can define and type a successor on open Church integers in the following way:

$$
; f:(\alpha \multimap \alpha) \vdash \lambda k \cdot \lambda y \cdot f(k y):(\alpha \multimap \alpha) \multimap(\alpha \multimap \alpha)
$$

Denote this term by osucc f, indicating the free variable f. The typing judgement claimed above can be derived in the following way:

$$
\begin{gathered}
\overline{; f: \alpha \multimap \alpha \vdash f: \alpha \multimap \alpha} \\
\frac{\overline{; k: \alpha \multimap \alpha \vdash k: \alpha \multimap \alpha}}{; k: y: \alpha \vdash y: \alpha} \\
\frac{; f:(\alpha \multimap \alpha), k: \alpha \multimap \alpha, y: \alpha \vdash f(k y): \alpha}{; f:(\alpha \multimap \alpha), k: \alpha \multimap \alpha \vdash \lambda y \cdot f(k y): \alpha \multimap \alpha} \\
\frac{; f:(\alpha \multimap \alpha) \vdash \operatorname{osucc}_{f}:(\alpha \multimap \alpha) \multimap(\alpha \multimap \alpha)}{; f}
\end{gathered}
$$

By applying iter ${ }_{B}$ on the type $B=\alpha \multimap \alpha$ of open Church integers, we get:

$$
\frac{f: \alpha \multimap \alpha, f^{\prime}: \alpha \multimap \alpha ; n: \mathbf{N}, m: \mathbf{N} \vdash \operatorname{iter}_{\alpha \multimap \alpha} \operatorname{osucc}_{f}\left(m f^{\prime}\right) n: \S(\alpha \multimap \alpha)}{\frac{f: \alpha \multimap \alpha ; n: \mathbf{N}, m: \mathbf{N} \vdash \operatorname{iter}_{\alpha \multimap \alpha} \operatorname{osucc}_{f}(m f) n: \S(\alpha \multimap \alpha)}{; n: \mathbf{N}, m: \mathbf{N} \vdash \lambda f . \text { iter }_{\alpha \multimap \alpha} \operatorname{osucc}_{f}(m f) n:(\alpha \multimap \alpha) \Rightarrow \S(\alpha \multimap \alpha)}} \frac{; n: \mathbf{N}, m: \mathbf{N} \vdash \lambda f . \text { iter }_{\alpha \multimap \alpha} \operatorname{osucc}_{f}(m f) n: \mathbf{N}}{\frac{f(2)}{}}
$$

Note that a crucial point for the type derivation to be valid is the $(\Rightarrow e)$ rule, which forces osucc to have at most one occurrence of free variable. This restricts the osucc term not to increase the size of open integers by more than one unit, which is reminiscent of the non-size-increasing discipline of [24].

4.2.2 Insertion sort

We consider here a programming of the insertion sort algorithm in lambda calculus analogous to the one from [24]. The program is defined by two steps of iteration (one for defining the insertion, and one for the sorting) but interestingly enough is typable in DLAL. We will proceed in the same way as for addition in the previous section.

We consider the type $\mathbf{L}(A)$ of lists over a type A representing a totally ordered set, and assume given a term:

$$
\begin{aligned}
\text { comp : } A \multimap A \multimap A \otimes A, \quad \text { with } \operatorname{comp} a_{1} a_{2} \rightarrow a_{1} \otimes a_{2} & \text { if } a_{1} \leq a_{2} \\
& a_{2} \otimes a_{1}
\end{aligned} \quad \text { if } a_{2}<a_{1}
$$

Such a term can be programmed for instance if we choose for A a finite type, say the type $\mathbf{B}^{32}=\mathbf{B} \otimes \cdots \otimes \mathbf{B}$ (32 times) for 32-bit binary integers. As for unary integers, we can consider open lists of type ($\alpha \multimap \alpha$) which have free variables of type $(A \multimap \alpha \multimap \alpha)$. Insertion will be defined by iterating a term acting on open lists.

We first define the insertion function by iteration on type $B=A \multimap(\alpha \multimap \alpha)$:

$$
\begin{aligned}
& \text { hcomp }_{g}=\lambda a^{A} f^{B} a^{\prime A} \text {. let }\left(\text { comp } a a^{\prime}\right) \text { be } a_{1} \otimes a_{2} \text { in } \\
& \qquad \lambda x^{\alpha} \cdot g^{B} a_{1}{ }^{A}\left(f a_{2} x\right)^{\alpha} \quad: A \multimap B \multimap B
\end{aligned}
$$

Observe that hcomp ${ }_{g}$ has only one occurrence of free variable g, so it can be used as argument of non-linear application. Then:

$$
\text { insert }=\lambda a_{0}^{\S A} l^{\mathbf{L}(A)} \cdot \lambda g^{B} .\left(\text { fold }_{B} \text { hcomp }_{g} g l\right) a_{0}: \S A \multimap \mathbf{L}(A) \multimap \mathbf{L}(A)
$$

Finally the sorting function is obtained by iteration on type $\mathbf{L}(A)$:

$$
\text { sort }=\lambda l^{\mathbf{L}(\S A)} \text {.fold } \mathbf{L}_{(A)} \text { insert nil } l: \mathbf{L}(\S A) \multimap \S \mathbf{L}(A) .
$$

When working on lists over a standard data type such as \mathbf{B}^{32}, the coercion map $A \multimap \S A$ is always available (see Proposition 10). Hence in practice the sorting function admits a simpler type: $\mathbf{L}(A) \multimap \S \mathbf{L}(A)$.

Let us now give a general scheme for iteration over open lists. We start by the simple case which produces a function of type $\mathbf{L}(A) \multimap \mathbf{L}(A)$. We write it as a derivable rule, omitting the notation of terms to simplify readability:

$$
\frac{; A \multimap \alpha \multimap \alpha \vdash A \multimap(\alpha \multimap \alpha) \multimap(\alpha \multimap \alpha) \quad \Gamma, A \multimap \alpha \multimap \alpha ; \Delta \vdash \S(\alpha \multimap \alpha)}{\Gamma ; \Delta \vdash \mathbf{L}(A) \multimap \mathbf{L}(A)}
$$

However insertion does not fit into this scheme, because it is defined by iteration on a functional type. Consider thus the following modified scheme, based on iteration over the type $C \multimap(\alpha \multimap \alpha)$:

$$
\begin{gathered}
; f: A \multimap \alpha \multimap \alpha \vdash t_{f}: A \multimap(C \multimap \alpha \multimap \alpha) \multimap(C \multimap \alpha \multimap \alpha) \\
\Gamma, f: A \multimap \alpha \multimap \alpha ; \Delta \vdash u_{f}: \S(C \multimap \alpha \multimap \alpha) \\
\Gamma ; \Delta \vdash v: \S C \multimap \mathbf{L}(A) \multimap \mathbf{L}(A)
\end{gathered}
$$

with $v=\lambda c l f .\left(\left(\right.\right.$ fold $\left.\left._{C-\circ \alpha \rightarrow \alpha} t_{f} u_{f} l\right) c\right)$.
To check that this scheme is derivable, first observe that the following judgement can be derived from the two premises:

$$
f: A \multimap \alpha \multimap \alpha, \Gamma ; \Delta, l: \mathbf{L}(A) \vdash \text { fold }_{C \multimap \alpha \multimap \alpha} t_{f} u_{f} l: \S(C \multimap \alpha \multimap \alpha) .
$$

The conclusion can then easily be derived.
Finally the previous insertion function can be obtained applying this scheme, by taking $C=A$.

4.2.3 Coercion

Composition of programs in DLAL is quite delicate in the presence of modality \S and non-linear arrow \Rightarrow. When composing two programs involving \S and \Rightarrow, one frequently uses the coercion maps over data types. Below we only describe the coercion maps for booleans and integers, but in fact they can be easily generalised to other data types.

Proposition 10 (Coercion)

(1) There is a lambda-term $\operatorname{coer}_{b}: \mathbf{B} \longrightarrow \S \mathbf{B}$ such that $\operatorname{coer}_{b} \underline{i} \longrightarrow{ }^{*} \underline{i}$ for $i \in$ $\{0,1\}$.
(2) There is a lambda-term $\operatorname{coer}_{1}: \mathbf{N} \multimap \S \mathbf{N}$ such that $\operatorname{coer}_{1} \underline{n} \longrightarrow{ }^{*} \underline{n}$ for every integer n.
(3) For any type A, there is a lambda-term $\operatorname{coer}_{2}: \S(\mathbf{N} \Rightarrow A) \multimap(\mathbf{N} \multimap \S A)$ such that coer $_{2} t \underline{n} \longrightarrow{ }^{*}$ tn for every term t and every integer n.

Proof. 1. Let coer $_{b}=\lambda x . x \underline{01}$.
2. Let coer ${ }_{1}=$ iter $_{\mathbf{N}}$ succ $\underline{0}$, where succ is the usual successor $\lambda n . \lambda f x . f(n f x)$: $\mathbf{N} \multimap \mathbf{N}$.
3. We have 'lifted' versions of the successor and the zero:

$$
\begin{aligned}
& \text { Isucc }=\lambda f x \cdot f(\operatorname{succ} x):(\mathbf{N} \Rightarrow A) \multimap(\mathbf{N} \Rightarrow A) \\
& \text { Izero }=\lambda f \cdot f \underline{0} \quad: \S(\mathbf{N} \Rightarrow A) \multimap \S A .
\end{aligned}
$$

We therefore have

$$
\text { coer }_{2}=\lambda f n \cdot \text { Izero }\left(\text { iter }_{\mathbf{N} \Rightarrow A} \text { Isucc } f n\right): \S(\mathbf{N} \Rightarrow A) \multimap(\mathbf{N} \multimap \S A) .
$$

Given a term $t: \S(\mathbf{N} \Rightarrow A)$ and an integer n, it works as follows:

```
coer 2t\underline{n}\longrightarrow
    \longrightarrow * ~ I z e r o ( ~ \| s u c c ~ n ~ t ) ~
    \longrightarrow}\mp@subsup{}{}{*}\operatorname{Izero}(\lambdax.t(\mp@subsup{\operatorname{succ}}{}{n}x)
    \longrightarrow * ~ t ( \operatorname { s u c c } ^ { n } \underline { 0 } ) \longrightarrow * ~ t \underline { n } .
```

As a slight variant of coer $_{2}$, we have a contraction map cont : $\S(\mathbf{N} \Rightarrow \mathbf{N} \multimap$ $A) \multimap(\mathbf{N} \multimap \S A)$ defined by

$$
\begin{array}{rlrl}
\text { csucc } & =\lambda f x y \cdot f(\operatorname{succ} x)(\operatorname{succ} y) & & :(\mathbf{N} \Rightarrow \mathbf{N} \multimap A) \multimap(\mathbf{N} \Rightarrow \mathbf{N} \multimap A), \\
\text { czero }=\lambda f \cdot f \underline{00} & & : \S(\mathbf{N} \Rightarrow \mathbf{N} \multimap A) \multimap \S A, \\
\text { cont } & =\lambda f n . \text { czero }\left(\text { iter }_{\mathbf{N} \Rightarrow \mathbf{N} \rightarrow A} \operatorname{csucc} f n\right) & : \S(\mathbf{N} \Rightarrow \mathbf{N} \multimap A) \multimap(\mathbf{N} \multimap \S A) .
\end{array}
$$

By applying cont to the multiplication function mult : $\mathbf{N} \Rightarrow \mathbf{N} \multimap \S \mathbf{N}$, the squaring function on unary integers can be represented: square $=\operatorname{cont}($ mult $)$: $\mathbf{N} \multimap \S^{2} \mathbf{N}$. We therefore obtain:

Proposition 11 There is a closed term of type $\mathbf{N} \multimap \S^{2 d} \mathbf{N}$ representing the function $n^{2^{d}}$ for each $d \geq 0$.

5 Embedding of DLAL into DLAL*

We are now going to prove Theorem 6 , establishing that basically the system DLAL is the restriction of $\mathbf{L A L}$ to the language of $\mathcal{L}_{D L A L^{+}}$. Let us begin with the ordinary substitution lemma.

Lemma 12 (Substitution) We consider derivations in DLAL.
(1) If $\Gamma_{1} ; \Delta_{1} \vdash u: A$ and $\Gamma_{2} ; x: A, \Delta_{2} \vdash t: B$, then $\Gamma_{1}, \Gamma_{2} ; \Delta_{1}, \Delta_{2} \vdash t[u / x]: B$.
(2) If $; \Gamma_{1}, \Delta_{1} \vdash u: A$ and $\Gamma_{2} ; x: \S A, \Delta_{2} \vdash t: B$, then $\Gamma_{1}, \Gamma_{2} ; \S \Delta_{1}, \Delta_{2} \vdash t[u / x]: B$.
(3) If $; z: C \vdash u: A$ and $x: A, \Gamma ; \Delta \vdash t: B$, then $z: C, \Gamma ; \Delta \vdash t[u / x]: B$.

Lemma 13 If $A, H \in \mathcal{L}_{D L A L^{\star}}$, we have $A[H / \alpha]^{-}=A^{-}\left[H^{-} / \alpha\right]$.
In order to prove Theorem 6 we will first prove a stronger lemma. The theorem will then follow directly.

Lemma 14

(1) If ! $\Gamma, \Delta \vdash_{D L A L^{\star}} t: A$ with $\Gamma, \Delta, A \in \mathcal{L}_{D L A L^{\star}}$, then $\Gamma^{-} ; \Delta^{-} \vdash_{D L A L} t: A^{-}$.
(2) If ! $\Gamma, \Delta \vdash_{D L A L^{\star}} t:$! with $\Gamma, \Delta, A \in \mathcal{L}_{D L A L^{\star}}$, then for any $\mathbf{D L A L}$ derivable judgement $x: A^{-}, \Theta ; \Pi \vdash_{D L A L} u: B$ with $\Theta, \Pi, B \in \mathcal{L}_{D L A L}$, we have $\Gamma^{-}, \Theta ; \Delta^{-}, \Pi \vdash_{D L A L} u[t / x]: B$.

Proof. We prove these statements by a single induction over derivations in DLAL*.

Let \mathcal{D} be a DLAL^{\star} derivation of $!\Gamma, \Delta \vdash t: C$ with $\Gamma, \Delta \in \mathcal{L}_{D L A L^{\star}}$. We have to prove that: if $C \in \mathcal{L}_{D L A L^{\star}}$ then claim (1) holds; otherwise if $C=!A$ and $A \in \mathcal{L}_{D L A L^{\star}}$ then claim (2) holds. Consider the last rule of \mathcal{D} :
(Case 1) The derivation consists of the identity axiom. Straightforward.
(Case 2) The last rule is $(\multimap i)$:

$$
\frac{y: A_{1},!\Gamma, \Delta \vdash v: A_{2}}{!\Gamma, \Delta \vdash \lambda y \cdot v: A_{1} \multimap A_{2}}(\multimap \mathrm{i})
$$

and $A=A_{1} \multimap A_{2}, t=\lambda y . v$. Therefore we are in the case of claim (1). By i.h. we have:

- if $A_{1} \in \mathcal{L}_{D L A L^{\star}}$:

$$
\Gamma^{-} ; y: A_{1}^{-}, \Delta^{-} \vdash_{D L A L} v: A_{2}^{-} .
$$

so, by applying the rule (\multimap i) in DLAL, we get:

$$
\Gamma^{-} ; \Delta^{-} \vdash_{D L A L} \lambda y . v: A_{1}^{-} \multimap A_{2}^{-},
$$

and $A_{1}{ }^{-} \multimap A_{2}^{-}=\left(A_{1} \multimap A_{2}\right)^{-}$.

- if $A_{1}=!A_{1}^{\prime}$, with $A_{1}^{\prime} \in \mathcal{L}_{D L A L^{*}}$:

$$
\Gamma^{-}, y: A_{1}^{\prime-} ; \Delta^{-} \vdash_{D L A L} v: A_{2}^{-}
$$

so, by applying the rule ($\Rightarrow \mathrm{i}$) in DLAL, we get:

$$
\Gamma^{-} ; \Delta^{-} \vdash_{D L A L} \lambda y \cdot v: A_{1}^{\prime-} \Rightarrow A_{2}^{-}
$$

and $A_{1}^{\prime-} \Rightarrow A_{2}^{-}=\left(A_{1} \multimap A_{2}\right)^{-}$.
(Case 3) The last rule is ($\multimap e$):

$$
\frac{!\Gamma_{1}, \Delta_{1} \vdash t_{1}: C \multimap A \quad!\Gamma_{2}, \Delta_{2} \vdash t_{2}: C}{!\Gamma_{1},!\Gamma_{2}, \Delta_{1}, \Delta_{2} \vdash t_{1} t_{2}: A}(\multimap \mathrm{e})
$$

As by assumption we have $C \multimap A \in \mathcal{L}_{D L A L^{+}}$, we get that $A \in \mathcal{L}_{D L A L^{\star}}$. Thus we are in the case of claim (1). We now distinguish two possible subcases:

- first subcase: $C \in \mathcal{L}_{D L A L^{\star}}$. Then $(C \multimap A)^{-}=C^{-} \multimap A^{-}$. We apply the i.h. to the two subderivations, which are both in the case of claim (1), and apply the DLAL rule:

$$
\frac{\Gamma_{1}^{-} ; \Delta_{1}^{-} \vdash t_{1}: C^{-} \multimap A^{-} \quad \Gamma_{2}^{-} ; \Delta_{2}^{-} \vdash t_{2}: C^{-}}{\Gamma_{1}^{-}, \Gamma_{2}^{-} ; \Delta_{1}^{-}, \Delta_{2}^{-} \vdash t_{1} t_{2}: A^{-}}(\multimap \mathrm{e})
$$

- second subcase: $C=!C^{\prime}$, with $C^{\prime} \in \mathcal{L}_{D L A L^{\star}}$. Then $(C \multimap A)^{-}=C^{\prime-} \Rightarrow A^{-}$. We apply the i.h. to the l.h.s. premise, which is in the case of claim (1), and a $(\Rightarrow$ e) rule in DLAL, to get:

$$
\frac{\Gamma_{1}^{-} ; \Delta_{1}^{-} \vdash t_{1}: C^{\prime-} \Rightarrow A^{-} \quad ; z: C^{-} \vdash z: C^{-}}{z: C^{-}, \Gamma_{1}^{-} ; \Delta_{1}^{-} \vdash t_{1} z: A^{-}}(\Rightarrow \mathrm{e})
$$

Then by applying the i.h. to the $\mathbf{D L A L}{ }^{\star}$ subderivation of $!\Gamma_{2}, \Delta_{2} \vdash t_{2}: C$, which is the case of claim (2), and to the DLAL judgement $z: C^{-}, \Gamma_{1}^{-} ; \Delta_{1}^{-}$ $\vdash_{D L A L} t_{1} z: A^{-}$we get:

$$
\Gamma_{1}^{-}, \Gamma_{2}^{-} ; \Delta_{1}^{-}, \Delta_{2}^{-} \vdash_{D L A L} t_{1} t_{2}: A^{-} .
$$

(Case 4) The last rule is $(\forall i)$. This case is easy, so we omit it here.
(Case 5) The last rule is $(\forall e)$:

$$
\frac{!\Gamma, \Delta \vdash t: \forall \alpha \cdot A^{\prime}}{!\Gamma, \Delta \vdash t: A^{\prime}[H / \alpha]}(\forall \mathrm{e})
$$

with $A=A^{\prime}[H / \alpha]$. By assumption we have $\forall \alpha . A^{\prime} \in \mathcal{L}_{D L A L^{+}}$, so $A^{\prime} \in \mathcal{L}_{D L A L^{*}}$. Moreover, also by assumption we know that $H \in \mathcal{L}_{D L A L^{\star}}$. Therefore we get: $A^{\prime}[H / \alpha] \in \mathcal{L}_{D L A L^{\star}}$, and by Lemma 13, $A^{\prime}[H / \alpha]^{-}=A^{\prime-}\left[H^{-} / \alpha\right]$. Thus we are in the case of claim (1). By applying the i.h. and a $(\forall$ e) rule in DLAL we get:

$$
\frac{\Gamma^{-} ; \Delta^{-} \vdash t: \forall \alpha \cdot A^{\prime-}}{\Gamma^{-} ; \Delta^{-} \vdash t: A^{\prime}\left[H^{-} / \alpha\right]}(\forall \mathrm{e})
$$

(Case 6) The last rule is (! i). We have to prove claim (2). Let us assume the judgement is of the form $y:!D \vdash t:!A$ (the case of $\vdash t:!A$ is similar). Its premise is $y: D \vdash t: A$. By induction hypothesis there is a DLAL derivation of $; y: D^{-} \vdash t: A^{-}$. Let $x: A^{-}, \Theta ; \Pi \vdash u: B$ be a DLAL derivable judgement. By the substitution lemma (Lemma 12) we get $y: D^{-}, \Theta ; \Pi \vdash_{D L A L} u[t / x]: B$. (Case 7) The last rule is (! e). Let us assume for instance that we are in the situation of claim (2) (claim (1) is easier anyway); the last rule is:

$$
\frac{!\Gamma_{1}, \Delta_{1} \vdash t_{1}:!D \quad y:!D,!\Gamma_{2}, \Delta_{2} \vdash t_{2}:!A}{!\Gamma_{1},!\Gamma_{2}, \Delta_{1}, \Delta_{2} \vdash t_{2}\left[t_{1} / y\right]:!A}(!\text { e) }
$$

Consider a DLAL derivable judgement $x: A^{-}, \Theta ; \Pi \vdash u: B$. By i.h. on the r.h.s. premise of (! e) we get that the following judgement is DLAL derivable:

$$
y: D^{-}, \Gamma_{2}^{-}, \Theta ; \Delta_{2}^{-}, \Pi \vdash u\left[t_{2} / x\right]: B .
$$

Then by using this judgement with the i.h. on the l.h.s. premise of $(!e)$ we get that the following judgement is DLAL derivable:

$$
\Gamma^{-}, \Theta ; \Delta^{-}, \Pi \vdash\left(u\left[t_{2} / x\right]\right)\left[t_{1} / y\right]: B
$$

Observe that the last term is equivalent to $u\left[t_{2}\left[t_{1} / y\right] / x\right]=u[t / x]$, hence the statement is proved.
(Case 8) The last rule is one of (§ e), (§i), (Weak) and (Cntr). They are easy, so we omit them here.

6 Light affine lambda calculus and the simulation theorem

In this section, we will recall light affine lambda calculus ($\lambda \mathrm{LA}$) from [39] and give a simulation of DLAL typable lambda terms by λ LA-terms. More specifically, we show that every DLAL typable lambda-term t translates to a λ LAterm t^{\star} (depending on the typing derivation for t) which is typable in $\mathbf{D L A L}{ }^{\star}$, and that any β reduction sequence from t can be simulated by a longer λ LA reduction sequence from t^{\star}. This simulation property directly implies the subject reduction theorem and the polynomial time strong normalization theorem for DLAL.

6.1 Light affine lambda calculus

The set of (pseudo) terms of λ_{LA} is defined by the following grammar:

$$
M, N::=x|\lambda x . M| M N|!M| \text { let } N \text { be }!x \text { in } M|\S M| \text { let } N \text { be } \S x \text { in } M .
$$

The depth of M is the maximal number of occurrences of subterms of the form $!N$ and $\S N$ in a branch of the term tree for M. The size $|M|$ of the term M is the number of nodes of its term tree.

LAL, or more importantly its subsystem DLAL *, can be considered as a type system for $\lambda_{\text {LA. }}$. The system we present below uses two sorts of discharged types $[A]_{!}$and $[A]_{\S}$ with $A \in \mathcal{L}_{L A L}$. Thus an environment Γ may contain a declaration $x:[A]_{\dagger}$. If $\Gamma=x_{1}: A_{1}, \ldots, x: A_{n}$, then $[\Gamma]_{\dagger}$ denotes $x_{1}:\left[A_{1}\right]_{\dagger}, \ldots, x_{n}:\left[A_{n}\right]_{\dagger}$. For a discharged type $[A]_{\dagger}, \widehat{[A]}_{\dagger}$ denotes the nondischarged type $\dagger A$. We also define $\widehat{A}=A$ and extend the notation to environments Γ in a natural way. We write $\Gamma \vdash_{L A L} M: A$ if M is a term of λ_{LA} and $\Gamma \vdash M: A$ is derivable by the type assignment rules in Figure 4. As before, the eigenvariable condition is imposed on the rule ($\forall \mathrm{i}$).

We also write $\Gamma \vdash_{D L A L^{\star}} M: A$ if it has a derivation in $\mathbf{D L A L}{ }^{\star}$ (as in Definition 5); here we allow that a judgment may have a discharged declaration $x:[A]_{\dagger}$ with $A \in \mathcal{L}_{D L A L^{*}}$ in its environment.

The reduction rules of λ LA are given on Figure 5.
A term M is $(\S,!$, com)-normal if neither of the reduction rules $(\S),(!),(c o m 1)$ and (com2) applies to M. We write $M \xrightarrow{(\bar{\beta})} N$ when M reduces to N by one application of the (β) reduction rule followed by zero or several applications of the (\S), (!), (com1) and (com2) rules.

$$
\begin{array}{cc}
\overline{x: A \vdash x: A}(\mathrm{Id}) \\
\frac{\Gamma, x: A \vdash M: B}{\Gamma \vdash \lambda x \cdot M: A \multimap B}(\multimap \mathrm{i}) & \frac{\Gamma_{1} \vdash M: A \multimap B \quad \Gamma_{2} \vdash N: A}{\Gamma_{1}, \Gamma_{2} \vdash M N: B}(\multimap \mathrm{e}) \\
\frac{\Gamma_{1} \vdash M: A}{\Gamma_{1}, \Gamma_{2} \vdash M: A}(\text { Weak }) & \frac{x_{1}:[A]_{!}, x_{2}:[A]_{!}, \Gamma \vdash M: B}{x:[A]_{!}, \Gamma \vdash M\left[x / x_{1}, x / x_{2}\right]: B}(\mathrm{Cntr}) \\
\frac{\Gamma, \Delta \vdash M: A}{[\Gamma]_{!},[\Delta]_{\S} \vdash \S M: \S A}(\S \mathrm{i}) & \frac{\Gamma_{1} \vdash N: \S A \quad \Gamma_{2}, x:[A]_{\S} \vdash M: B}{\Gamma_{1}, \Gamma_{2} \vdash \text { let } N \text { be } \S x \text { in } M: B}(\S \mathrm{e}) \\
\frac{x: B \vdash M: A}{x:[B]_{!} \vdash!M:!A}(!\mathrm{i}) & \frac{\Gamma_{1} \vdash N:!A \quad \Gamma_{2}, x:[A]!\vdash M: B}{\Gamma_{1}, \Gamma_{2} \vdash \operatorname{let} N \text { be }!x \text { in } M: B}(!\mathrm{e}) \\
\frac{\Gamma \vdash M: A}{\Gamma \vdash M: \forall \alpha \cdot A}(\forall \mathrm{i})(*) & \frac{\Gamma \vdash M: \forall \alpha \cdot A}{\Gamma \vdash M: A[B / \alpha]}(\forall \mathrm{e})
\end{array}
$$

Fig. 4. LAL as a type system for λ_{LA}

(β)	$(\lambda x \cdot M) N$	\longrightarrow	$M[N / x]$
(\S)	let $\S N$ be $\S x$ in M	\longrightarrow	$M[N / x]$
$(!)$	let $!N$ be $!x$ in M	\longrightarrow	$M[N / x]$
$(c o m 1)$	$($ let N be $\dagger x$ in $M) L$	\longrightarrow	let N be $\dagger x$ in $(M L)$
$(c o m 2)$	let (let N be $\dagger x$ in $M)$ be $\dagger y$ in L	\longrightarrow	
let N be $\dagger x$ in (let M be $\dagger y$ in $L)$			

Fig. 5. Reduction rules of $\lambda_{\text {LA }}$
Given a λ LA-term M, its erasure M^{-}is defined by:

$$
\begin{aligned}
x^{-} & =x & (M N)^{-} & =M^{-} N^{-} \\
(\lambda x \cdot M)^{-} & =\lambda x \cdot\left(M^{-}\right) & (\dagger M)^{-} & =M^{-} \\
\text {(let } N \text { be } \dagger x \text { in } M)^{-} & =M^{-}\left[N^{-} / x\right] . & &
\end{aligned}
$$

The following holds quite naturally.
Lemma 15 If $\Gamma \vdash_{D L A L^{\star}} M: A$ with M a $\lambda \mathrm{LA}$-term, then $\widehat{\Gamma} \vdash_{D L A L^{\star}} M^{-}: A$. In addition:
(1) When M contains a subterm let N_{1} be $\S x$ in $N_{2}, n o\left(x, N_{2}^{-}\right) \leq 1$.
(2) When M is $\left(\S,!\right.$, com)-normal, $\left|M^{-}\right| \leq|M|$.

The following is the main result of [39]:
Theorem 16 (Polytime strong normalization for $\lambda \mathrm{LA}) A \lambda_{\mathrm{LA}}$-term M of depth d typable in $\mathbf{L} \mathbf{A L}$ reduces to the normal form in $O\left(|M|^{2^{d+1}}\right)$ reduction steps, and in time $O\left(|M|^{2^{d+2}}\right)$ on a Turing machine. Moreover, any term N in the reduction sequence from M has a size bounded by $O\left(|M|^{2^{d}}\right)$. These results hold independently of which reduction strategy we take.

The upper bound $O\left(|M|^{2^{d+1}}\right)$ for the length of reduction sequences is concerned with all reduction rules. When only the (β) reduction rule is concerned, it can be sharpened. In fact, Lemma 14 of [39] claims that given a λ LA-term M, the length of any reduction sequence at fixed depth is bounded by $|M|^{2}$. In that proof, it is actually shown that the number of (β) reductions is bounded by $|M|$. This observation leads to the following improvement:

Lemma 17 Let M be an LAL-typable λ LA-term M of depth d. Then the number of (β) reduction steps in any reduction sequence $M \longrightarrow M_{1} \longrightarrow$ $\cdots \longrightarrow M_{n}$ is bounded by $|M|^{2^{d}}$.

The subject reduction theorem for λ LA with respect to $\mathbf{L A L}$ is also proved in [39]. By inspecting the proof and since $\mathcal{L}_{D L A L^{\star}}$ is a subclass of $\mathcal{L}_{L A L}$, one can in fact observe:

Theorem 18 (Subject Reduction for $\lambda_{\text {LA }}$ and DLAL ${ }^{\star}$) If $\Gamma \vdash_{D L A L^{\star}} M_{0}$: A and $M_{0} \longrightarrow M_{1}$, then $\Gamma \vdash_{D L A L^{\star}} M_{1}: A$.

6.2 Simulation theorem

First of all, let us rephrase the 'only-if' direction of Theorem 6 in terms of λ LA-terms rather than plain lambda terms.

Lemma 19 If $\Gamma ; \Delta \vdash t: A$ has a derivation of depth d in DLAL, then there is a $\lambda \mathrm{LA}-t e r m t^{\star}$ such that $!\Gamma^{\star}, \Delta^{\star} \vdash_{D L A L^{\star}} t^{\star}: A^{\star}$ and $t^{\star-}=t$. Moreover,
(1) the depth of t^{\star} is not greater than d;
(2) $x \in F V(t)$ if and only if $x \in F V\left(t^{\star}\right)$ for any variable x declared in Δ;
(3) $\left|t^{\star}\right| \leq 6(d+1)|t|$.

Proof. Let us denote by $|K|^{\prime}$ the number of non-leaf nodes in the term formation tree of K, where K is either a lambda-term or a λ LA-term. Namely,
$|K|^{\prime}=|K|-$ the number of (bound and free) variable occurrences in K.
We prove the existence of t^{\star}, claims (1), (2) and
(3') $\left|t^{\star}\right|^{\prime} \leq 3(d+1)|t|^{\prime}$
by induction on the structure of the derivation of $\Gamma ; \Delta \vdash t: A$ in DLAL. Since $|K| \leq 2|K|^{\prime}+1$ and $|K|^{\prime}+1 \leq|K|$, (3) follows from (3'), by:

$$
\begin{aligned}
\left|t^{\star}\right| & \leq 2\left|t^{\star}\right|^{\prime}+1 \leq 6(d+1)|t|^{\prime}+1 \leq 6(d+1)(|t|-1)+1 \\
& \leq 6(d+1)|t|-6(d+1)+1 \leq 6(d+1)|t|
\end{aligned}
$$

(Case 1) The derivation consists of the identity axiom. Straightforward.
(Case 2) The last rule is $(\Rightarrow e)$:

$$
\frac{\Gamma_{1} ; \Delta_{1} \vdash t: A \Rightarrow B \quad ; z: C \vdash u: A}{\Gamma_{1}, z: C ; \Delta_{1} \vdash t u: B}(\Rightarrow \mathrm{e})
$$

Define

$$
(t u)^{\star}=\text { let } z \text { be }!z^{\prime} \text { in } t^{\star}!\left(u^{\star}\left[z^{\prime} / z\right]\right)
$$

with z^{\prime} fresh. Since the immediate subderivations for t and u respectively have depth d and $d-1$, we have $\left|t^{\star}\right|^{\prime} \leq 3(d+1)|t|^{\prime}$ and $\left|u^{\star}\right|^{\prime} \leq 3 d|u|^{\prime}$ by the induction hypothesis. Therefore we have

$$
\begin{aligned}
\left|(t u)^{\star}\right|^{\prime} & =\left|t^{\star}\right|^{\prime}+\left|u^{\star}\right|^{\prime}+3 \\
& \leq 3(d+1)|t|^{\prime}+3 d|u|^{\prime}+3 \\
& \leq 3(d+1)\left(|t|^{\prime}+|u|^{\prime}+1\right)=3(d+1)|t u|^{\prime}
\end{aligned}
$$

establishing claim (3'). The other claims are easy to show.
(Case 3) The last rule is (§ i):

$$
\frac{; \Gamma, \Delta \vdash t: A}{\Gamma ; \S \Delta \vdash t: \S A}(\S \text { i) }
$$

If $t=x$, we set $t^{\star}=x$ and the claims are trivially satisfied. Otherwise, let $x_{1}, \ldots, x_{m}\left(y_{1}, \ldots, y_{n}\right.$, resp.) be the free variables declared in Γ (Δ, resp.) that actually occur in t as free variables. By i.h., we have t^{\star} associated to the subderivation ending with the premise of the above rule. To the whole derivation, we associate a new $\lambda \mathrm{LA}$-term M defined by

$$
\begin{aligned}
& M=\text { let } x_{1} \text { be }!x_{1}^{\prime} \text { in } \cdots \text { let } x_{m} \text { be }!x_{m}^{\prime} \text { in } \\
& \quad \text { let } y_{1} \text { be } \S y_{1}^{\prime} \text { in } \cdots \text { let } y_{n} \text { be } \S y_{n}^{\prime} \text { in } \S t^{\star}\left[x_{i}^{\prime} / x_{i}, y_{j}^{\prime} / y_{j}\right] .
\end{aligned}
$$

It is easy to see that $!^{\star}, \S \Delta^{\star} \vdash_{D L A L^{\star}} M: \S A^{\star}$ and the claims (1) and (2) are satisfied. As to (3^{\prime}), notice that we have $m+n+1 \leq|t| \leq 2|t|^{\prime}+1 \leq 3|t|^{\prime}$ since $|t|^{\prime} \neq 0$. Hence we have

$$
|M|^{\prime}=\left|t^{\star}\right|^{\prime}+m+n+1 \leq 3 d|t|^{\prime}+3|t|^{\prime}=3(d+1)|t|^{\prime}
$$

(Case 4) The last rule is (§ e):

$$
\frac{\Gamma_{1} ; \Delta_{1} \vdash u: \S A \quad \Gamma_{2} ; x: \S A, \Delta_{2} \vdash t: B}{\Gamma_{1}, \Gamma_{2} ; \Delta_{1}, \Delta_{2} \vdash t[u / x]: B}(\S \text { e) }
$$

Define $(t[u / x])^{\star}=t^{\star}\left[u^{\star} / x\right]$. If $x \in F V(t)$, we have $\left|(t[u / x])^{\star}\right|^{\prime}=\left|t^{\star}\right|^{\prime}+\left|u^{\star}\right|^{\prime} \leq$ $3(d+1)|t|^{\prime}+3(d+1)|u|^{\prime} \leq 3(d+1)|t[u / x]|^{\prime}$. If not, x does not occur free in $F V\left(t^{\star}\right)$ either, by i.h. (2). Hence $\left|(t[u / x])^{\star}\right|^{\prime}=\left|t^{\star}\right|^{\prime} \leq 3(d+1)|t|^{\prime}=3(d+$ 1) $|t[u / x]|^{\prime}$.

All other cases are straightforward.
To prove the simulation theorem, we need two technical lemmas.
Lemma 20 Let M be a term of λ LA.
(1) If $\Gamma \vdash_{D L A L^{\star}} M: \forall \alpha_{1} \cdots \forall \alpha_{n} . A \multimap B(n \geq 0)$, then M is in one of the following forms: $x, M_{1} M_{2}$, let M_{1} be $\dagger x$ in $M_{2}, \lambda x . M_{0}$.
(2) If $\Gamma \vdash_{D L A L^{\star}} M: \forall \alpha_{1} \cdots \forall \alpha_{n} . \S A(n \geq 0)$, then M is in one of the following forms: $x, M_{1} M_{2}$, let M_{1} be $\dagger x$ in $M_{2}, \S M_{0}$.
(3) If $\Gamma \vdash_{D L A L^{\star}} M:$!A, then M is in one of the following forms: x, let M_{1} be \dagger x in $M_{2},!M_{0}$.

Proof. By induction on the structure of the derivation. The difference between (2) and (3) is due to the restriction that $B \multimap!A \notin \mathcal{L}_{D L A L^{*}}$.

Lemma 21

(1) If $\Gamma \vdash_{D L A L^{\star}} M N: A$ and $M N$ is (§,!, com)-normal, then M is a variable x, an application $M_{1} M_{2}$ or an abstraction $\lambda x . M_{0}$.
(2) If $\Gamma \vdash_{D L A L^{\star}}$ let M be $\S x$ in $N: A$ and (let M be $\S x$ in N) is $(\S,!$, com)normal, then M is either a variable x or an application $M_{1} M_{2}$.
(3) If $\Gamma \vdash_{D L A L^{\star}}$ let M be ! x in $N: A$ and (let M be ! x in N) is ($(,!$, com)normal, then M is a variable x.

Proof. (1) By induction on the structure of the derivation. If the last inference rule is $(\multimap e)$ of the form:

$$
\frac{\Gamma_{1} \vdash M: A \multimap B \quad \Gamma_{2} \vdash N: A}{\Gamma_{1}, \Gamma_{2} \vdash M N: B}(\multimap \mathrm{e})
$$

then M cannot be of the form let M_{1} be $\dagger x$ in M_{2} since $M N$ is (com)-normal. Hence by Lemma 20 (1), M is a variable, an application or an abstraction. The other cases are obvious.
(2) By induction on the structure of the derivation. If the last rule is

$$
\frac{\Gamma_{1} \vdash M: \S A \quad \Gamma_{2}, x:[A]_{\S} \vdash N: B}{\Gamma_{1}, \Gamma_{2} \vdash \text { let } M \text { be } \S x \text { in } N: B}(\S \text { e })
$$

then M cannot be of the form let M_{1} be $\dagger y$ in M_{2} since let M be $\S x$ in N is (com)-normal. Likewise, M cannot be of the form $\S M_{0}$. Hence by Lemma 20 (2), M must be either a variable or an application.
(3) Similarly to (2).

Theorem 22 (Simulation) Let M be a DLAL* typable λ LA-term which is (§,!, com)-normal. Let $t=M^{-}$. If t reduces to u by one (β) reduction step, then there is a $\lambda \mathrm{LA}$-term N such that $M \xrightarrow{(\bar{\beta})} N, N^{-}=u$ and N is (§,!,com)normal:

Proof. It is clearly sufficient to find a $\lambda_{\text {LA-term }} N^{\prime}$ such that $M \xrightarrow{(\bar{\beta})} N^{\prime}$ and $\left(N^{\prime}\right)^{-}=u$. A suitable $(\S,!, c o m)$-normal term N can then be obtained by reduction rules (§), (!) and (com). The proof proceeds by induction on the structure of M.
(Case 1) M is a variable. Trivial.
(Case 2) M is of the form $\lambda x \cdot M_{0}$. By the induction hypothesis.
(Case 3) M is of the form $M_{1} M_{2}$. In this case, t is of the form $t_{1} t_{2}$ with $M_{1}^{-}=t_{1}$ and $M_{2}^{-}=t_{2}$. When the redex is inside t_{1} or t_{2}, the induction hypothesis applies. When the redex is t itself, then t_{1} must be of the form $\lambda x . t_{0}$. By the definition of erasure, M_{1} cannot be a variable nor an application. Therefore, by Lemma 21 (1), M_{1} must be of the form $\lambda x . M_{0}$ with $M_{0}^{-}=t_{0}$. We therefore have

as required.
(Case 4) M is of the form $\dagger M_{0}$. By the induction hypothesis.
(Case 5) M is of the form let M_{1} be $\S x$ in M_{2}. In this case, t is of the form $t_{2}\left[t_{1} / x\right]$ with $M_{1}^{-}=t_{1}$ and $M_{2}^{-}=t_{2}$. By Lemma 21 (2), M_{1} is either a variable or an application, and so is t_{1}. Therefore, no new redex is created by the substitution $t_{2}\left[t_{1} / x\right]$; the redex in t is either inside t_{1} (with $x \in F V\left(t_{2}\right)$) or
results from a redex in t_{2} by substituting t_{1} for x.
In the former case, let $t_{1} \longrightarrow u_{1}$. Then by the induction hypothesis, there is some N_{1} such that

Therefore, we have

by noting that x occurs at most once in t_{2} (Lemma 15 (1)).
In the latter case, let $t_{2} \longrightarrow u_{2}$. By the induction hypothesis, there is N_{2} such that

We therefore have

as required.
(Case 6) M is of the form let M_{1} be !x in M_{2}. By Lemma 21 (3), M_{1} is a variable y. Hence in this case, t is of the form $t_{2}[y / x]$. Therefore, the redex in t results from a redex in t_{2} by substituting y for x. The rest is analogous to the previous case.

Remark 23 Note that the statement of Theorem 22 could not be extended to arbitrary LAL typable $\lambda_{\text {LA-terms. Indeed sometimes one }(\beta) \text { step in a LAL }}$ typed lambda-term might not be simulated by a sequence of $(\bar{\beta})$ steps in the
corresponding $\lambda \mathrm{LA}$-term. The reason for that is that the let (.) be ! x in (.) construct allows for sharing in $\lambda_{\text {LA-terms. This is directly related to the fact that }}$ LAL lambda-terms do not admit subject-reduction for (β) reduction (recall also the discussion of Sections 2.2 and 2.3).

6.3 Subject reduction and Ptime strong normalization

Having obtained the simulation theorem, we are now ready to prove the subject reduction theorem (Theorem 7) and the polynomial time strong normalization theorem (Theorem 8).

Proof of Theorem 7. Suppose that $\Gamma ; \Delta \vdash_{D L A L} t: A$ and $t \longrightarrow u$. By Lemma 19 , there is a λ LA-term t^{\star} such that $!\Gamma^{\star}, \Delta^{\star} \vdash_{D L A L^{\star}} t^{\star}: A^{\star}$. Moreover, the simulation theorem implies that there is a λ LA-term N such that $t^{\star} \xrightarrow{(\bar{\beta})} N$ and $N^{-}=u$. Finally, Theorem 18, Lemma 15 and Theorem 6 together imply that $\Gamma ; \Delta \vdash_{D L A L} u: A$.

Proof of Theorem 8. By Lemma 19, there is a λ LA-term t^{\star} such that $t^{\star-}=t$ and $\left|t^{\star}\right| \leq 6(d+1)|t|$ where d is the depth of the typing derivation for t.

By the simulation theorem, we have:

Since by Lemma 17 the length of the $(\bar{\beta})$ reduction sequence from t^{\star} to N is bounded by $O\left(\left|t^{\star}\right|^{2^{d}}\right)=O\left(|t|^{2^{d}}\right)$, so is the one from t to u.

To show that the normal form can be computed in time $O\left(|t|^{2 d+2}\right)$ by a Turing machine, notice that any term u such that $t \longrightarrow{ }^{*} u$ has a size bounded by $O\left(|t|^{2^{d}}\right)$ by Theorems 16, 18 and Lemma 15 (2). Since a beta reduction step can be performed in time quadratic in the size of a term, the overall time for normalization is bounded by the order of

$$
|t|^{2^{d}} \cdot\left(|t|^{2^{d}}\right)^{2} \leq|t|^{2^{d+2}}
$$

7 Translation of LAL into DLAL

Although DLAL is a proper subsystem of $\mathbf{L A L}$, it is as expressive as $\mathbf{L A L}$, both logically and computationally. As a consequence, all polynomial time
functions are representable in DLAL.

7.1 Definability of LAL types in DLAL

First of all, we show that the types of LAL are definable in DLAL by using second order quantification. Our coding below is essentially the same as Plotkin's $[35,21]$). Define a mapping $(\cdot)^{\bullet}$ from $\mathcal{L}_{L A L}$ to $\mathcal{L}_{D L A L}$ as follows:

- $(!A)^{\bullet}=\forall \alpha .\left(\left(A^{\bullet} \Rightarrow \alpha\right) \multimap \alpha\right)$, where α is fresh.
- $(\cdot)^{\bullet}$ commutes to the other connectives.

Define also a mapping from λ LA-terms to lambda-terms by:

$$
\begin{aligned}
x^{\bullet} & =x \\
(\lambda x . M)^{\bullet} & =\lambda x . M^{\bullet} \\
(M N)^{\bullet} & =M^{\bullet} N^{\bullet} \\
(!M)^{\bullet} & =\lambda x . x M^{\bullet} \text {, where } x \text { is fresh. } \\
\text { (let } N \text { be }!y \text { in } M)^{\bullet} & =N^{\bullet}\left(\lambda y . M^{\bullet}\right) \\
(\S M)^{\bullet} & =M^{\bullet} \\
\text { (let } N \text { be } \S y \text { in } M)^{\bullet} & =M^{\bullet}\left[N^{\bullet} / y\right]
\end{aligned}
$$

This mapping preserves typing:
Proposition 24 Let $[\Gamma]_{!}$be an environment $x_{1}:\left[A_{1}\right]_{!}, \ldots, x_{m}:\left[A_{m}\right]$! and Δ be $y_{1}:\left[B_{1}\right]_{\S}, \ldots, y_{n}:\left[B_{n}\right]_{\S}, z_{1}: C_{1}, \ldots, z_{k}: C_{k}$. Then,

$$
[\Gamma]_{!}, \Delta \vdash_{L A L} M: A \quad \text { implies } \quad \Gamma^{\bullet} ; \Delta \vdash^{\bullet} \vdash_{D L A L} M^{\bullet}: A^{\bullet}
$$

where $\Gamma^{\bullet}=x_{1}: A_{1}^{\bullet}, \ldots, x_{m}: A_{m}^{\bullet}$ and $\Delta^{\bullet}=y_{1}: \S B_{1}^{\bullet}, \ldots, y_{n}: \S B_{n}^{\bullet}, z_{1}:$ $C_{1}^{\bullet}, \ldots, z_{k}: C_{k}^{\bullet}$.

Proof. By induction on the structure of the derivation.
(Case 1) The last rule is (! i):

$$
\frac{y: B \vdash M: A}{y:[B]!\vdash!M:!A}
$$

We have

$$
\frac{\overline{; x: A^{\bullet} \Rightarrow \alpha \vdash x: A^{\bullet} \Rightarrow \alpha} \quad ; y: B^{\bullet} \vdash M^{\bullet}: A^{\bullet}}{\frac{y: B^{\bullet} ; x: A^{\bullet} \Rightarrow \alpha \vdash x M^{\bullet}: \alpha}{y: B^{\bullet} ; \vdash \lambda x . x M^{\bullet}:\left(A^{\bullet} \Rightarrow \alpha\right) \multimap \alpha}} \frac{y: B^{\bullet} ; \vdash \lambda x . x M^{\bullet}: \forall \alpha .\left(A^{\bullet} \Rightarrow \alpha\right) \multimap \alpha}{y,{ }^{\bullet} \Rightarrow}
$$

(Case 2) The last rule is (! e):

$$
\frac{\left[\Gamma_{1}\right]_{!}, \Delta_{1} \vdash N:!A \quad y:[A]_{!},\left[\Gamma_{2}\right]_{!}, \Delta_{2} \vdash M: B}{\left[\Gamma_{1}\right]_{!},\left[\Gamma_{2}\right]_{!}, \Delta_{1}, \Delta_{2} \vdash \text { let } N \text { be }!y \text { in } M: B}
$$

We have

$$
\frac{\frac{\Gamma_{1}^{\bullet \bullet} ; \Delta_{1}^{\bullet} \vdash N^{\bullet}: \forall \alpha .\left(A^{\bullet} \Rightarrow \alpha\right) \multimap \alpha}{\Gamma_{1}^{\bullet} ; \Delta_{1}^{\bullet} \vdash N^{\bullet}:\left(A^{\bullet} \Rightarrow B^{\bullet}\right) \multimap B^{\bullet}}}{\Gamma_{1}^{\bullet}, \Gamma_{2}^{\bullet} ; \Delta_{1}^{\bullet}, \Delta_{2}^{\bullet} \vdash N^{\bullet}\left(\lambda y \cdot M^{\bullet}\right): B^{\bullet}} \quad \frac{y: A^{\bullet}, \Gamma_{2}^{\bullet} ; \Delta_{2}^{\bullet} \vdash M^{\bullet}: B^{\bullet}}{\Gamma_{2}^{\bullet} ; \Delta^{\bullet} \vdash \lambda y \cdot A^{\bullet}}
$$

The other cases are straightforward.
This translation also preserves the reduction rules of $\lambda_{\text {LA }}$ other than (com1) and (com 2) for the let-! operator.

Lemma 25 Let M and N be terms of λ LA. Then we have $(M[N / x])^{\bullet}=$ $M^{\bullet}\left[N^{\bullet} / x\right]$.

Proof. By induction on the structure of M.
Let (com§) stand for the commuting reduction rules for let-§ constructs.
Proposition 26 Let $M \xrightarrow{(r)} N$, where (r) is (β), (!), (§) or (com§). Then we have

$$
M^{\bullet} \longrightarrow N^{\bullet} .
$$

Proof. For instance, the (!) reduction rule let ! N be ! y in $M \longrightarrow M[N / y]$ can be simulated as follows:

$$
\begin{aligned}
(\text { let }!N \text { be }!y \text { in } M)^{\bullet} & =\left(\lambda x \cdot x N^{\bullet}\right)\left(\lambda y \cdot M^{\bullet}\right) \\
& \longrightarrow\left(\lambda y \cdot M^{\bullet}\right) N^{\bullet} \\
& \longrightarrow M^{\bullet}\left[N^{\bullet} / y\right]=(M[N / y])^{\bullet} .
\end{aligned}
$$

The other reduction rules are easily handled.
However, this is not true of the commuting reduction rules for the let-! operator.

7.2 Preservation of representable functions

We would like to show that DLAL expresses as many algorithms as LAL based on the translation $(\cdot)^{\bullet}$. But there are two obstacles.
(1) The translation does not preserve the commuting reduction rules for let-!.
(2) M^{\bullet} does not represent a function over data types even though M does, because the translation modifies the input/output types.

To overcome the first difficulty, we consider, not a λ LA term M itself, but its erasure M^{-}, which does not need any commuting reductions. To overcome the second, we introduce an encoder and a decoder. Namely, for each $A \in \mathcal{L}_{D L A L}$, we define two lambda terms

$$
\begin{aligned}
& \mathrm{en}_{A}: A \multimap A^{\star \bullet}, \quad \operatorname{de}_{A}: A^{\star \bullet} \multimap A . \\
& \mathrm{en}_{\alpha}(t)=t \\
& \mathrm{de}_{\alpha}(t)=t \\
& \mathrm{en}_{\forall \alpha . A}(t)=\mathrm{en}_{A}(t) \\
& \operatorname{de}_{\forall \alpha . A}(t)=\operatorname{de}_{A}(t) \\
& \mathrm{en}_{\S A}(t)=\mathrm{en}_{A}(t) \quad \mathrm{de}_{\S A}(t)=\mathrm{de}_{A}(t) \\
& \mathrm{en}_{A \rightarrow B}(t)=\lambda x . \mathrm{en}_{B}\left(t \mathrm{de}_{A}(x)\right) \quad \operatorname{de}_{A \rightarrow B}(t)=\lambda x \cdot \operatorname{de}_{B}\left(t \mathrm{en}_{A}(x)\right) \\
& \mathrm{en}_{A \Rightarrow B}(t)=\lambda x \cdot \mathrm{en}_{B}\left(x\left(\lambda y \cdot t \mathrm{de}_{A}(y)\right)\right) \mathrm{de}_{A \Rightarrow B}(t)=\lambda x \cdot \mathrm{de}_{B}\left(t\left(\lambda y \cdot y \mathrm{en}_{A}(x)\right)\right)
\end{aligned}
$$

We have:
Lemma 27 For any $A \in \mathcal{L}_{\text {DLAL }}$, the following judgements are derivable in DLAL :

$$
; z: A \vdash \mathrm{en}_{A}(z): A^{\star \bullet}, \quad ; z: A^{\star \bullet} \vdash \operatorname{de}_{A}(z): A .
$$

Proof. By induction on the structure of A. Here we only deal with en $n_{A \Rightarrow B}$ and $\mathrm{de}_{A \Rightarrow B}$. For both of them, notice

$$
(A \Rightarrow B)^{\star \bullet}=\left(!A^{\star}\right)^{\bullet} \multimap B^{\star \bullet}=\left(\forall \alpha .\left(A^{\star \bullet} \Rightarrow \alpha\right) \multimap \alpha\right) \multimap B^{\star \bullet} .
$$

As to en $A \Rightarrow B$, we have:

$$
\frac{; x:\left(!A^{\star}\right)^{\bullet} \vdash x:\left(!A^{\star}\right)^{\bullet}}{\frac{; x:\left(!A^{\star}\right)^{\bullet} \vdash x:\left(A^{\star \bullet} \Rightarrow B\right) \multimap B}{; z: A \Rightarrow B, x:\left(!A^{\star}\right)^{\bullet} \vdash x\left(\lambda y . z \operatorname{de}_{A}(y)\right): B}}
$$

By substituting the above conclusion into $w: B \vdash \mathrm{en}_{B}(w): B^{\star \bullet}$, one obtains the desired judgement.

As to de ${ }_{A \Rightarrow B}$, we have:
$\frac{; y: A^{\star \bullet} \Rightarrow \alpha \vdash y: A^{\star \bullet} \Rightarrow \alpha \quad ; x: A \vdash \mathrm{en}_{A}(x): A^{\star \bullet}}{x: A ; y: A^{\star \bullet} \Rightarrow \alpha \vdash y \mathrm{en}_{A}(x): \alpha}$
$\frac{\frac{x}{\bullet}:(A \Rightarrow B)^{\star \bullet} \vdash z:\left(!A^{\star}\right)^{\bullet} \multimap B^{\star \bullet}}{x: A ; z:(A \Rightarrow B)^{\star \bullet} \vdash z\left(\lambda y . y \operatorname{en}_{A}(x)\right): B^{\star \bullet}}$

By substituting the above conclusion into $w: B^{\star \bullet} \vdash \operatorname{de}_{B}(w): B$, one obtains the desired judgement.

We then show that M^{\bullet} and M^{-}are related via de_{A}, when A is a Π_{1} type in $\mathcal{L}_{D L A L}$ and M is a λ LA term of type A^{\star}. Here, a direct induction argument would not work, because the type derivation for $\vdash M: A^{\star}$ might involve types outside $\mathcal{L}_{D L A L^{*}}$. We therefore employ logical relations to work on a stronger induction hypothesis.

Consider a binary relation R over the set of plain lambda terms: $R \subseteq \Lambda \times \Lambda$. Such a relation R is $\beta \eta$-closed if $(t, u) \in R, t={ }_{\beta \eta} t^{\prime}$ and $u=_{\beta_{\eta}} u^{\prime}$ imply $\left(t^{\prime}, u^{\prime}\right) \in R$. A valuation φ maps each type variable α to a $\beta \eta$-closed relation.

Given a valuation φ, one can inductively define a binary relation $\llbracket A \rrbracket_{\varphi}$ for each LAL type A :

- $\llbracket \alpha \rrbracket_{\varphi}=\varphi(\alpha) . \llbracket \S A \rrbracket_{\varphi}=\llbracket A \rrbracket_{\varphi}$.
- $(t, u) \in \llbracket A \multimap B \rrbracket_{\varphi} \Longleftrightarrow$ for any $\left(v_{1}, v_{2}\right) \in \llbracket A \rrbracket_{\varphi},\left(t v_{1}, u v_{2}\right) \in \llbracket B \rrbracket_{\varphi}$.
- $(t, u) \in \llbracket \forall \alpha . A \rrbracket_{\varphi} \Longleftrightarrow$ for any $\beta \eta$-closed relation $R,(t, u) \in \llbracket A \rrbracket_{\varphi[\alpha \mapsto R]}$, where $\varphi[\alpha \mapsto R]$ denotes the valuation which maps α to R and agrees with φ on other propositional variables.
- $(t, u) \in \llbracket!A \rrbracket_{\varphi} \Longleftrightarrow$ there is a lambda-term t^{\prime} such that $t={ }_{\beta \eta} \lambda z . z t^{\prime}$ and $\left(t^{\prime}, u\right) \in \llbracket A \rrbracket_{\varphi}$.

It is then easy to see that $\llbracket A \rrbracket_{\varphi}$ is $\beta \eta$-closed for any A. Moreover, it commutes with the substitution:

Lemma 28 For any LAL types A and $B, \llbracket A[B / \alpha] \rrbracket_{\varphi}$ is equal to $\llbracket A \rrbracket_{\varphi\left[\alpha \mapsto \llbracket B \rrbracket_{\varphi}\right]}$.
The proof is by an easy induction on the structure of A.
As usual with logical relations, we have the basic lemma.
Lemma 29 (Basic Lemma) Let Γ be an environment $x_{1}: A_{1}, \ldots, x_{n}$: $A_{n}, x_{n+1}:\left[A_{n+1}\right]_{\dagger}, \ldots, x_{m}:\left[A_{m}\right]_{\dagger}$. If $\Gamma \vdash_{L A L} M: B$, then for any valuation φ and any $\left(u_{i}, v_{i}\right) \in \llbracket A_{i} \rrbracket_{\varphi}(1 \leq i \leq m)$, we have $\left(M^{\bullet}[\vec{u} / \vec{x}], M^{-}[\vec{v} / \vec{x}]\right) \in \llbracket B \rrbracket_{\varphi}$.

Proof. By induction on the structure of the derivation.
(Case 1) The derivation consists of the identity axiom. Straightforward.
(Case 2) The last rule is $(\multimap i)$:

$$
\frac{y: A, \Gamma \vdash M: B}{\Gamma \vdash \lambda y \cdot M: A \multimap B}
$$

Let $\left(u_{i}, v_{i}\right) \in \llbracket A_{i} \rrbracket_{\varphi}$ for each $1 \leq i \leq m$. Then for any $(u, v) \in \llbracket A \rrbracket_{\varphi}$, we have $\left(M^{\bullet}[u / y, \vec{u} / \vec{x}], M^{-}[v / y, \vec{v} / \vec{x}]\right) \in \llbracket B \rrbracket_{\varphi}$ by i.h. This shows that we have $\left((\lambda y \cdot M)^{\bullet}[\vec{u} / \vec{x}],(\lambda y \cdot M)^{-}[\vec{v} / \vec{x}]\right) \in \llbracket A \multimap B \rrbracket_{\varphi}$, because $(\lambda y \cdot M)^{\bullet}[\vec{u} / \vec{x}] u={ }_{\beta \eta}$
$M^{\bullet}[u / y, \vec{u} / \vec{x}]$ and $(\lambda y \cdot M)^{-}[\vec{v} / \vec{x}] v={ }_{\beta \eta} M^{-}[v / y, \vec{v} / \vec{x}]$.
(Case 3) The last rule is $(\multimap e)$:

$$
\frac{\Gamma_{1} \vdash M: A \multimap B \quad \Gamma_{2} \vdash N: A}{\Gamma_{1}, \Gamma_{2} \vdash M N: B}
$$

For simplicity, we assume Γ_{1} and Γ_{2} are empty (the argument is then easily adapted to the general case). By i.h., $\left(M^{\bullet}, M^{-}\right) \in \llbracket A \multimap B \rrbracket_{\varphi}$ and $\left(N^{\bullet}, N^{-}\right) \in$ $\llbracket A \rrbracket_{\varphi}$. Hence $\left((M N)^{\bullet},(M N)^{-}\right) \in \llbracket B \rrbracket_{\varphi}$.
(Case 4) The last rule is (! i):

$$
\frac{y: B \vdash M: A}{y:[B]!\vdash!M:!A}
$$

Let $(u, v) \in \llbracket B \rrbracket_{\varphi}$. Then $(!M)^{\bullet}[u / y]=\lambda z . z M^{\bullet}[u / y]$ and $\left(M^{\bullet}[u / y], M^{-}[v / y]\right) \in$ $\llbracket A \rrbracket_{\varphi}$ by i.h. Hence $\left((!M)^{\bullet}[u / y],(!M)^{-}[v / y]\right) \in \llbracket!A \rrbracket_{\varphi}$.
(Case 5) The last rule is (!e):

$$
\frac{\Gamma_{1} \vdash N:!A \quad y:[A]!, \Gamma_{2} \vdash M: C}{\Gamma_{1}, \Gamma_{2} \vdash \text { let } N \text { be }!y \text { in } M: C}
$$

For simplicity, we assume Γ_{1} and Γ_{2} are empty. By i.h., $\left(N^{\bullet}, N^{-}\right) \in \llbracket!A \rrbracket_{\varphi}$, so there is some u such that $N^{\bullet}={ }_{\beta \eta} \lambda z . z u$ (with z fresh) and $\left(u, N^{-}\right) \in \llbracket A \rrbracket_{\varphi}$. Hence by i.h. we have $\left(M^{\bullet}[u / y], M^{-}\left[N^{-} / y\right]\right) \in \llbracket C \rrbracket_{\varphi}$. Since

$$
(\text { let } N \text { be }!y \text { in } M)^{\bullet}=N^{\bullet}\left(\lambda y \cdot M^{\bullet}\right)={ }_{{ }_{\beta \eta}}(\lambda z . z u)\left(\lambda y \cdot M^{\bullet}\right)={ }_{\beta \eta} M^{\bullet}[u / y]
$$

and (let N be $!y$ in $M)^{-}=M^{-}\left[N^{-} / y\right]$, we are done.
(Case 6) The last rule is $(\forall i)$:

$$
\frac{\Gamma \vdash M: A}{\Gamma \vdash M: \forall \alpha \cdot A}
$$

Let φ be a valuation and let $\left(u_{i}, v_{i}\right) \in \llbracket A_{i} \rrbracket_{\varphi}$ for every $1 \leq i \leq m$. Since α does not appear free in any A_{i}, we have $\left(u_{i}, v_{i}\right) \in \llbracket A_{i} \rrbracket_{\varphi[\alpha \leftrightarrow R]}$ for any $\beta \eta$-closed relation R. Therefore, we have $\left(M^{\bullet}[\vec{u} / \vec{x}], M^{-}[\vec{v} / \vec{x}]\right) \in \llbracket A \rrbracket_{\varphi[\alpha \leftrightarrow R]}$ by i.h. Hence $\left(M^{\bullet}[\vec{u} / \vec{x}], M^{-}[\vec{v} / \vec{x}]\right) \in \llbracket \forall \alpha . A \rrbracket_{\varphi}$.
(Case 7) The last rule is $(\forall e)$:

$$
\frac{\Gamma \vdash M: \forall \alpha \cdot A}{\Gamma \vdash M: A[B / \alpha]}
$$

For simplicity, we assume Γ is empty. By i.h., we have $\left(M^{\bullet}, M^{-}\right) \in \llbracket \forall \alpha . A \rrbracket_{\varphi}$, and hence $\left(M^{\bullet}, M^{-}\right) \in \llbracket A \rrbracket_{\varphi[\alpha \mapsto R]}$ for any $\beta \eta$-closed relation R. In particular, $\left(M^{\bullet}, M^{-}\right) \in \llbracket A \rrbracket_{\varphi\left[\alpha \mapsto \llbracket B \rrbracket_{\varphi}\right]}$, and by Lemma $28,\left(M^{\bullet}, M^{-}\right) \in \llbracket A[B / \alpha] \rrbracket_{\varphi}$.

Other cases are straightforward.

Note that the $\beta \eta$-equality $=_{\beta \eta}$ itself is a $\beta \eta$-closed relation. So let us define a valuation φ by taking $\varphi(\alpha)$ to be $=_{\beta \eta}$ for every variable α. We denote the resulting logical relations $\llbracket A \rrbracket_{\varphi}$ simply by $\llbracket A \rrbracket$. With this canonical valuation, we have the following:

Lemma 30 Let D be a DLAL type.
(1) If D is Π_{1} and $(t, u) \in \llbracket D^{\star} \rrbracket$, then $\operatorname{de}_{D}(t)={ }_{\beta \eta} u$.
(2) If D is Σ_{1}, then for any lambda-term t of the form $x t_{1} \cdots t_{n}(n \geq 0)$, we have $\left(\mathrm{en}_{D}(t), t\right) \in \llbracket D^{\star} \rrbracket$.

Proof. By induction on the structure of D.
(Case 1) D is a variable α. Straightforward because $\llbracket \alpha \rrbracket$ is just $=_{\beta \eta}$ and de_{α}, en_{α} are just identity.
(Case 2) D is of the form $A \multimap B$.
(1) Suppose that $A \multimap B$ is Π_{1} and $(t, u) \in \llbracket A^{\star} \multimap B^{\star} \rrbracket$. Let x be a fresh variable. Since $\left(\operatorname{en}_{A}(x), x\right) \in \llbracket A^{\star} \rrbracket$ by i.h. (with A a Σ_{1} type), we have $\left(t \mathrm{en}_{A}(x), u x\right) \in \llbracket B^{\star} \rrbracket$. Hence by i.h. (with B a Π_{1} type), $\mathrm{de}_{B}\left(t \mathrm{en}_{A}(x)\right)={ }_{\beta \eta}$ $u x$. Therefore,

$$
\operatorname{de}_{A \rightarrow B}(t)=\lambda x \cdot \operatorname{de}_{B}\left(t \operatorname{en}_{A}(x)\right)={ }_{\beta \eta} \lambda x \cdot u x==_{\beta \eta} u .
$$

(2) Suppose that $A \multimap B$ is Σ_{1} and let $t=x t_{1} \cdots t_{n}$. To prove $\left(\mathrm{en}_{A \rightarrow B}(t), t\right) \in$ $\llbracket A^{\star} \multimap B^{\star} \rrbracket$, it is sufficient to show that $\left.\left(\mathrm{en}_{A \rightarrow B}(t) u, t v\right)\right) \in \llbracket B^{\star} \rrbracket$ holds for any $(u, v) \in \llbracket A^{\star} \rrbracket$. By i.h., $\operatorname{de}_{A}(u)={ }_{\beta \eta} v$. Hence

$$
\operatorname{en}_{A \rightarrow B}(t) u=\left(\lambda x \cdot \mathrm{en}_{B}\left(t \mathrm{de}_{A}(x)\right)\right) u={ }_{\beta \eta} \mathrm{en}_{B}\left(t \mathrm{de}_{A}(u)\right)={ }_{\beta \eta} \mathrm{en}_{B}(t v) .
$$

Therefore by i.h., we have $\left(\operatorname{en}_{A \rightarrow B}(t) u, t v\right) \in \llbracket B^{\star} \rrbracket$.
(Case 3) D is of the form $A \Rightarrow B$.
(1) Suppose that $A \Rightarrow B$ is Π_{1} and $(t, u) \in \llbracket!A^{\star} \multimap B^{\star} \rrbracket$. Let x be a fresh variable. Since $\left(\mathrm{en}_{A}(x), x\right) \in \llbracket A^{\star} \rrbracket$ by i.h, we have $\left(\lambda y . y\right.$ en $\left._{A}(x), x\right) \in$ $\llbracket!A^{\star} \rrbracket$. Hence $\left(t\left(\lambda y \cdot y\right.\right.$ en $\left.\left._{A}(x)\right), u x\right) \in \llbracket B^{\star} \rrbracket$, and so $\operatorname{de}_{B}\left(t\left(\lambda y \cdot y\right.\right.$ en $\left.\left._{A}(x)\right)\right)={ }_{\beta \eta}$ $u x$. We therefore have

$$
\operatorname{de}_{A \Rightarrow B}(t)=\lambda x \cdot \operatorname{de}_{B}\left(t\left(\lambda y \cdot y \operatorname{en}_{A}(x)\right)\right)==_{\beta \eta} \lambda x \cdot u x=_{\beta \eta} u .
$$

(2) Suppose that $A \Rightarrow B$ is Σ_{1}. Let $t=x t_{1} \cdots t_{n}$ and $(u, v) \in \llbracket!A^{\star} \rrbracket$. Our purpose is to show $\left(\mathrm{en}_{A \Rightarrow B}(t) u, t v\right) \in \llbracket B^{\star} \rrbracket$.

There is some u^{\prime} such that $u=_{\beta \eta} \lambda y \cdot y u^{\prime}$ and $\left(u^{\prime}, v\right) \in \llbracket A^{\star} \rrbracket$. By i.h. on A we have $\operatorname{de}_{A}\left(u^{\prime}\right)={ }_{\beta \eta} v$. Hence

$$
\begin{gathered}
\operatorname{en}_{A \Rightarrow B}(t) u={ }_{\beta \eta}\left(\lambda x \cdot \mathrm{en}_{B}\left(x \lambda y \cdot t \operatorname{de}_{A}(y)\right)\right)\left(\lambda z \cdot z u^{\prime}\right) \\
={ }_{\beta \eta} \operatorname{en}_{B}\left(\left(\lambda z \cdot z u^{\prime}\right)\left(\lambda y \cdot t \operatorname{de}_{A}(y)\right)\right)={ }_{\beta \eta} \operatorname{en}_{B}\left(t \operatorname{de}_{A}\left(u^{\prime}\right)\right)={ }_{\beta \eta} \mathrm{en}_{B}(t v) .
\end{gathered}
$$

Moreover by i.h. on B we have $\left(\mathrm{en}_{B}(t v), t v\right) \in \llbracket B^{\star} \rrbracket$, so as en ${ }_{A \Rightarrow B}(t) u={ }_{\beta \eta}$ $\mathrm{en}_{B}(t v)$ we get that: $\left(\operatorname{en}_{A \Rightarrow B}(t) u, t v\right) \in \llbracket B^{\star} \rrbracket$.
(Case 4) D is of the form $\forall \alpha . A$. It is sufficient to show 1 . But this is obvious because $(t, u) \in \llbracket \forall \alpha . A \rrbracket$ implies $(t, u) \in \llbracket A \rrbracket$.
(Case 5) D is of the form $\S A$. Straightforward.
Combined with the basic lemma, it results in:

Corollary 31 If A is a Π_{1} type of DLAL and $\vdash_{L A L} M: A^{\star}$, then $\operatorname{de}_{A}\left(M^{\bullet}\right)={ }_{\beta \eta}$ M^{-}.

7.3 Ptime completeness

Let us now show that DLAL has the same expressive power as LAL, at least when algorithms on binary words are concerned.

Recall that any word $w=i_{1} \cdots i_{n}$ in $\{0,1\}^{*}$ can be encoded both as a lambdaterm and as a λ LA-term:

$$
\begin{aligned}
\underline{w} & =\lambda f_{0} \cdot \lambda f_{1} \cdot \lambda x \cdot f_{i_{1}}\left(f_{i_{2}} \ldots\left(f_{i_{n}} x\right) \ldots\right): \mathbf{W} \\
\underline{w}_{L} & =\lambda f_{0} . \text { let } f_{0} \text { be }!g_{0} \text { in }\left(\text { let } f_{1} \text { be }!g_{1} \text { in } \S\left(\lambda x \cdot g_{i_{1}}\left(g_{i_{2}} \ldots\left(g_{i_{n}} x\right) \ldots\right)\right)\right): \mathbf{W}_{L}
\end{aligned}
$$

The former can be obtained from the latter by applying the erasure operator: $\underline{w}=\left(\underline{w}_{L}\right)^{-}$for every $w \in\{0,1\}^{*}$. For the converse direction, we have the following term dtol $_{\mathbf{w}}: \mathbf{W} \multimap \mathbf{W}_{L}^{\bullet}$ which maps \underline{w} to $\underline{w}_{L}^{\bullet}$:

$$
\mathrm{dtol}_{\mathbf{w}}=\lambda x^{\mathbf{W}} \cdot \lambda f_{0} \cdot f_{0}\left(\lambda g_{0} \cdot \lambda f_{1} \cdot f_{1}\left(\lambda g_{1} \cdot x g_{0} g_{1}\right)\right) .
$$

(Here we cannot use $\mathrm{en}_{\mathbf{w}}$, as it returns a slightly different term when applied to \underline{w}.) To see that dtol $\mathbf{W}_{\mathbf{W}}$ is surely of type $\mathbf{W} \multimap \mathbf{W}_{L}^{\bullet}$, note that

$$
\mathbf{W}_{L}^{\bullet}=\forall \alpha .(!(\alpha \multimap \alpha))^{\bullet} \multimap(!(\alpha \multimap \alpha))^{\bullet} \multimap \S(\alpha \multimap \alpha),
$$

where $(!(\alpha \multimap \alpha))^{\bullet}=(\forall \beta .((\alpha \multimap \alpha) \Rightarrow \beta) \multimap \beta)$. Hence the variables f_{0}, f_{1} must be typed $(\forall \beta .((\alpha \multimap \alpha) \Rightarrow \beta) \multimap \beta)$. By instantiating β into $\S(\alpha \multimap \alpha)$ for the type of f_{1} and into $(!(\alpha \multimap \alpha))^{\bullet} \multimap \S(\alpha \multimap \alpha)$ for the type of f_{0} (and assuming that g_{0} and g_{1} are of type $\alpha \multimap \alpha$), one obtains:

$$
\begin{gathered}
x g_{0} g_{1}: \S(\alpha \multimap \alpha) \\
\lambda g_{1} \cdot x g_{0} g_{1}:(\alpha \multimap \alpha) \Rightarrow \S(\alpha \multimap \alpha) \\
f_{1}\left(\lambda g_{1} \cdot x g_{0} g_{1}\right): \S(\alpha \multimap \alpha) \\
\lambda f_{1} \cdot f_{1}\left(\lambda g_{1} \cdot x g_{0} g_{1}\right):(!(\alpha \multimap \alpha))^{\bullet} \multimap \S(\alpha \multimap \alpha) \\
\lambda g_{0} \cdot \lambda f_{1} \cdot f_{1}\left(\lambda g_{1} \cdot x g_{0} g_{1}\right):(\alpha \multimap \alpha) \Rightarrow(!(\alpha \multimap \alpha))^{\bullet} \multimap \S(\alpha \multimap \alpha) \\
f_{0}\left(\lambda g_{0} \cdot \lambda f_{1} \cdot f_{1}\left(\lambda g_{1} \cdot x g_{0} g_{1}\right)\right):(!(\alpha \multimap \alpha))^{\bullet} \multimap \S(\alpha \multimap \alpha) \\
\lambda f_{0} \cdot f_{0}\left(\lambda g_{0} \cdot \lambda f_{1} \cdot f_{1}\left(\lambda g_{1} \cdot x g_{0} g_{1}\right)\right):(!(\alpha \multimap \alpha))^{\bullet} \multimap(!(\alpha \multimap \alpha))^{\bullet} \multimap \S(\alpha \multimap \alpha) .
\end{gathered}
$$

It is easy to see that $\operatorname{dtol}_{\mathbf{W}}(\underline{w})$ reduces to $\left(\underline{w}_{L}\right)^{\bullet}$, by noting:

$$
\left(\underline{w}_{L}\right)^{\bullet}=\lambda f_{0} \cdot f_{0}\left(\lambda g_{0} \cdot \lambda f_{1} \cdot f_{1}\left(\lambda g_{1} \cdot \lambda x \cdot g_{i_{1}}\left(g_{i_{2}} \ldots\left(g_{i_{n}} x\right) \ldots\right)\right)\right) .
$$

Theorem 32 (Preservation of representable functions) Suppose that a function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is represented by a $\lambda \mathrm{LA}-$ term M with $\vdash_{L A L} M$: $\mathbf{W}_{L} \multimap \S^{n} \mathbf{W}_{L}$ for some $n \geq 0$. Define a lambda-term t by

$$
t=\lambda x \cdot \operatorname{de}_{\S^{n}} \mathbf{W}\left(M^{\bullet} \operatorname{dtol}_{\mathbf{W}}(x)\right) .
$$

Then we have that $\vdash_{D L A L} t: \mathbf{W} \multimap \S^{n} \mathbf{W}$ and t also represents f.
Proof. The term t gets type $\mathbf{W} \multimap \S^{n} \mathbf{W}$ in DLAL as follows (notice that $\mathbf{W}^{\star}=\mathbf{W}_{L}$), using Proposition 24 and Lemma 27:

Since M represents $f, M \underline{w}_{L}$ reduces to $\underline{f(w)_{L}}$ for any $w \in\{0,1\}^{*}$. This implies that $\left.\left(M \underline{w}_{L}\right)^{-}={ }_{\beta \eta}(\underline{f(w)})_{L}\right)^{-}$. On the other hand,

$$
t \underline{w}={ }_{\beta \eta} \operatorname{de}_{\S^{n}} \mathbf{W}\left(M^{\bullet} \operatorname{dtol}_{\mathbf{W}}(\underline{w})\right)={ }_{\beta \eta} \operatorname{de}_{\S^{n} \mathbf{W}}\left(M^{\bullet}\left(\underline{w}_{L}\right)^{\bullet}\right)=\operatorname{de}_{\S^{n}} \mathbf{W}\left(\left(M \underline{w}_{L}\right)^{\bullet}\right) .
$$

Applying Corollary 31 , as $\S^{n} \mathbf{W}$ is Π_{1}, we thus get:

$$
t \underline{w}={ }_{\beta \eta}\left(M \underline{w}_{L}\right)^{-}={ }_{\beta \eta}\left(\underline{f(w)_{L}}\right)^{-}=\underline{f(w)} .
$$

Theorem 9 is then a direct consequence of the above theorem together with the following fact known from [39] (the depth bound is sharpened):

Theorem 33 (FP completeness of LAL) If a function $f:\{0,1\}^{\star} \rightarrow\{0,1\}^{\star}$ is computable in time $O\left(n^{2^{d}}\right)$ by a multi-tape Turing machine for some d, then there exists a λ LA-term M such that $\vdash_{L A L} M: \mathbf{W}_{L} \multimap \S^{2 d+2} \mathbf{W}_{L}$ and M represents f.

Proof (Sketch). Following the idea of [2], let Conf be the LAL-type

$$
\forall \alpha!!(\alpha \multimap \alpha)^{m} \multimap \S\left((\alpha \multimap \alpha)^{2 n} \otimes \mathbf{B}^{k}\right)
$$

which serves as a type for the configurations of a given Turing machine with m symbols, n tapes and k states. As in [2], one can define the following $\lambda_{\text {LA- }}$ terms:

- trans : Conf \multimap Conf for one-step transition of a Turing Machine;
- init : $\mathbf{W}_{L} \multimap$ Conf for initialization;
- output : Conf $\multimap \mathbf{W}_{L}$ for output extraction;
- length : $\mathbf{W}_{L} \multimap \mathbf{N}_{L}$ for the length map;
- dupl : $\mathbf{W}_{L} \multimap \S\left(\mathbf{W}_{L} \otimes \mathbf{W}_{L}\right)$ for duplication.

Furthermore, Proposition 11 yields a term $\operatorname{prod}\left(2^{d}\right): \mathbf{N}_{L} \multimap \S^{2 d} \mathbf{N}_{L}$ for the map $n \mapsto n^{2^{d}}$. By applying iter ${ }_{\text {Conf }}$ to trans and init, we obtain

$$
x: \mathbf{N}_{L}, y: \S \mathbf{W}_{L} \vdash_{L A L} M_{0}: \S \text { Conf. }
$$

The term M_{0} transforms a given input y into an initial configuration and iterates the one-step transition x times. By applying the rule (§ i) $2 d$ times and composing the outcome with $\operatorname{prod}\left(2^{d}\right)$, we obtain

$$
x: \mathbf{N}_{L}, y: \S^{2 d+1} \mathbf{W}_{L} \vdash_{L A L} M_{1}: \S^{2 d+1} \mathbf{C o n f},
$$

which iterates the transition $x^{2^{d}}$ times. Finally, by using output, length, a variant of coer $_{1}$ and dupl, we obtain the desired term $M: \mathbf{W}_{L} \multimap \S^{2 d+2} \mathbf{W}_{L}$ representing the function f.

We remark that it is possible to improve the type of M as $\mathbf{W}_{L} \multimap \S^{2 d+1} \mathbf{W}_{L}$ for $d \geq 1$, by combining $\operatorname{prod}\left(2^{d}\right)$ and dupl in a clever way.

8 Conclusion and perspectives

We have presented a polymorphic type system for lambda calculus which guarantees that typed terms can be reduced in a polynomial number of steps, and in polynomial time. This system, DLAL, has been designed as a subsystem of LAL. It offers the advantage of recasting the main ideas and achievements of light linear logic into a plain lambda calculus setting.

We have also shown that DLAL is not more constrained computationally than LAL, by describing a generic encoding of LAL typed terms into DLAL ones, which preserves the denotation of functions over binary integers. This has shown that DLAL is complete for the class of polynomial time functions.

We think that the techniques we used to relate DLAL and LAL, based on logical relations, could probably be applied to similar situations in other linear logic like or modal type systems, to encode the general language into a smaller subsystem.

Finally the interest of DLAL has also been confirmed by another work, [3,4], which showed that type inference in DLAL for system \mathbf{F} terms can be performed in polynomial time, using an algorithm based on constraints solving.

Other approaches to characterization of complexity classes in lambda calculus have considered restrictions on type orders (see [22,29,36]); it would be interesting to examine the possible relations between this line of work and the present setting based on linear logic.

References

[1] A. Asperti. Light affine logic. In Proceedings of LICS'98, pages 300-308. IEEE Computer Society, 1998.
[2] A. Asperti and L. Roversi. Intuitionistic light affine logic. ACM Transactions on Computational Logic, 3(1):1-39, 2002.
[3] V. Atassi, P. Baillot, and K. Terui. Verification of Ptime reducibility for system F terms via Dual Light Affine Logic. In Proceedings of CSL'06, volume 4207 of LNCS, pages $150-166$. Springer, 2006.
[4] V. Atassi, P. Baillot, and K. Terui. Verification of Ptime reducibility for system F terms: type inference in Dual Light Affine Logic. Logical Methods in Computer Science, 3(4):1-32, 2007. Special issue on CSL'06.
[5] P. Baillot. Stratified coherence spaces: a denotational semantics for Light Linear Logic. Theoretical Computer Science, 318(1-2):29-55, 2004.
[6] P. Baillot. Type inference for Light Affine Logic via constraints on words. Theoretical Computer Science, 328(3):289-323, 2004.
[7] P. Baillot and M. Pedicini. Elementary complexity and geometry of interaction. Fundamenta Informaticae, 45(1-2):1-31, 2001.
[8] P. Baillot and K. Terui. Light types for polynomial time computation in lambdacalculus. In Proceedings of LICS'04, pages 266-275, 2004.
[9] P. Baillot and K. Terui. Light types for polynomial time computation in lambdacalculus (long version). Technical Report cs.LO/0402059, arXiv, april 2004. available from http://arXiv.org.
[10] P. Baillot and K. Terui. A feasible algorithm for typing in Elementary Affine Logic. In Proceedings of TLCA'05, volume 3461 of $L N C S$, pages 55-70. Springer, 2005.
[11] A. Barber and G. Plotkin. Dual intuitionistic linear logic. Technical report, LFCS, University of Edinburgh, 1997.
[12] S. Bellantoni and S. Cook. New recursion-theoretic characterization of the polytime functions. Computational Complexity, 2:97-110, 1992.
[13] G. M. Bierman and V. de Paiva. On an intuitionistic modal logic. Studia Logica, 65(3):383-416, 2000.
[14] P. Coppola, U. Dal Lago, and S. Ronchi Della Rocca. Elementary affine logic and the call-by-value lambda calculus. In Proceedings of TLCA'05, volume 3461 of $L N C S$, pages 131-145, 2005.
[15] P. Coppola and S. Martini. Optimizing optimal reduction. a type inference algorithm for elementary affine logic. ACM Transactions on Computational Logic, 7(2):219-260, 2006.
[16] P. Coppola and S. Ronchi Della Rocca. Principal typing for lambda calculus in elementary affine logic. Fundamenta Informaticae, 65(1-2):87-112, 2005.
[17] U. Dal Lago. Context semantics, linear logic and computational complexity.. In Proceedings of LICS'06, pages 169-178. IEEE Computer Society, 2006.
[18] U. Dal Lago and M. Hofmann. Quantitative models and implicit complexity. In Proceedings of FSTTCS'05, volume 3821 of $L N C S$, pages 189-200. Springer, 2005.
[19] V. de Paiva, R. Goré, and M. Mendler. Preface to the special issue on intuitionistic modal logic and application. Journal of Logic and Computation, 14(4), 2004.
[20] J.-Y. Girard. Light linear logic. Information and Computation, 143:175-204, 1998.
[21] M. Hasegawa. Classical linear logic of implications. Mathematical Structures in Computer Science, 15(2):323-342, 2005.
[22] G. Hillebrand and P. C. Kannelakis. On the expressive power of simply typed and let-polymorphic lambda calculi. In Proceedings of LICS'96, pages 253-263. IEEE Computer Society, 1996.
[23] M. Hofmann. Safe recursion with higher types and BCK-algebra. Annals of Pure and Applied Logic, 104(1-3):113-166, 2000.
[24] M. Hofmann. Linear types and non-size-increasing polynomial time computation. Information and Computation, 183(1):57-85, 2003.
[25] M. Hofmann and S. Jost. Static prediction of heap space usage for first-order functional programs. In Proceedings of ACM POPL'03, 2003.
[26] Y. Lafont. Soft linear logic and polynomial time. Theoretical Computer Science, 318(1-2):163-180, 2004.
[27] O. Laurent and L. Tortora de Falco. Obsessional cliques: a semantic characterization of bounded time complexity. In Proceedings of LICS'06, pages 179-188. IEEE Computer Society, 2006.
[28] D. Leivant. Predicative recurrence and computational complexity I: word recurrence and poly-time. In Feasible Mathematics II, pages 320-343. Birkhauser, 1994.
[29] D. Leivant. Calibrating computational feasibility by abstraction rank. In Proceedings LICS'02, pages 345-353. IEEE Computer Society, 2002.
[30] H. Mairson and P. M. Neergard. LAL is square: Representation and expressiveness in light affine logic, 2002. Presented at the 4th International Workshop on Implicit Computational Complexity.
[31] F. Maurel. Nondederministic Light Logics and NP-time. In Proceedings of $T L C A$ '03, LNCS. Springer, 2003.
[32] D. Mazza. Linear logic and polynomial time. Mathematical Structures in Computer Science, 16(6):947-988, 2006.
[33] A. S. Murawski and C.-H. L. Ong. On an interpretation of safe recursion in light affine logic. Theoretical Computer Science, 318(1-2):197-223, 2004.
[34] F. Pfenning and H.-C. Wong. On a modal lambda calculus for S4. Electric Notes on Theoretical Computer Science, 1, 1995.
[35] G. D. Plotkin. Type theory and recursion (extended abstract). In Proceedings of LICS'93, page 374, 1993.
[36] A. Schubert. The complexity of beta-reduction in low orders. In Proceedings of TLCA'01, LNCS, pages 400-414. Springer, 2001.
[37] K. Terui. Light affine lambda calculus and polytime strong normalization. In Proceedings of LICS'01, pages 209-220. IEEE Computer Society, 2001.
[38] K. Terui. Light affine set theory: a naive set theory of polynomial time. Studia Logica, 77:9-40, 2004.
[39] K. Terui. Light affine lambda calculus and polynomial time strong normalization. Archive for Mathematical Logic, 46(3):253-280, 2007.

