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Abstract

We present a polymorphic type system for lambda calculus ensuring that well-
typed programs can be executed in polynomial time: dual light affine logic (DLAL).
DLAL has a simple type language with a linear and an intuitionistic type arrow,
and one modality. It corresponds to a fragment of light affine logic (LAL). We show
that contrarily to LAL, DLAL ensures good properties on lambda-terms (and not
only on proof-nets): subject reduction is satisfied and a well-typed term admits a
polynomial bound on the length of any of its beta reduction sequences. We also
give a translation of LAL into DLAL and deduce from it that all polynomial time
functions can be represented in DLAL.
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computational complexity, polynomial time complexity.

1 Introduction

Implicit Computational Complexity. Functional languages like ML assist
the programmer with prevention of such errors as run-time type errors, thanks
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to automatic type inference. One could wish to extend this setting to verifi-
cation of quantitative properties, such as time or space complexity bounds
(see for instance [25]). We think that progress on such issues can follow from
advances in the topic of Implicit Computational Complexity, the field that
studies calculi and languages with intrinsic complexity-theoretic properties.
In particular some lines of research have explored recursion-based approaches
[28,12,24] and approaches based on linear logic to control the complexity of
programs [20,26].

Here we are interested in light linear or affine logic (resp. LLL, LAL) [2,20],
a logical system designed from linear logic and which characterizes polyno-
mial time computation. By the Curry-Howard correspondence, proofs in this
logic can be used as programs. A nice aspect of this system with respect to
other approaches is the fact that it includes higher order types as well as
polymorphism (in the sense of system F); relations with the recursion-based
approach have been studied in [33]. Moreover this system naturally extends to
a consistent naive set theory, in which one can reason about polynomial time
concepts. In particular the provably total functions of that set theory are ex-
actly the polynomial time functions [20,38]. Finally LLL and related systems
like elementary linear logic have also been studied through the approaches of
denotational semantics [27,5], geometry of interaction [17,7] and realizability
[18].

Programming directly in LAL through the Curry-Howard correspondence is
quite delicate, in particular because the language has two modalities and is
thus quite complicated. A natural alternative idea is to use ordinary lambda
calculus as source language and LAL as a type system. Then one would like
to use a type inference algorithm to perform LAL typing automatically (as
for elementary linear logic [15,16,14,10]). However following this line one has
to face several issues:

(1) β reduction is problematic: subject reduction fails and no polynomial
bound holds on the number of β reduction steps;

(2) type inference, though decidable in the propositional case [6], is difficult.

Problem (1) can be avoided by compiling LAL-typed lambda-terms into an
intermediate language with a more fine-grained decomposition of computation:
proof-nets (see [2,32]) or terms from light affine lambda calculus [37,39]. In
that case subject-reduction and polytime soundness are recovered, but the
price paid is the necessity to deal with a more complicated calculus.

Modal types and restrictions. Now let us recast the situation in a larger
perspective. Modal type systems have actually been used extensively for typing
lambda calculus (see [19] for a brief survey). It has often been noted that the
modalities together with the functional arrow induce a delicate behaviour:
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for instance adding them to simple types can break down such properties as
principal typing or subject-reduction (see e.g. the discussions in [34,23,13]),
and make type inference more difficult. However in several cases it is sufficient
in order to overcome some of these problems to restrict one’s attention to a
subclass of the type language, for instance where the modality � is used only
in combination with arrows, in types �A → B; in this situation types of the
form A→ �B for instance are not considered. This is systematized in Girard’s
embedding of intuitionistic logic in linear logic by (A→ B)∗ = !A∗ ( B∗.

Application to light affine logic. The present work fits in this perspective
of taming a modal type system in order to ensure good properties. Here as we
said the motivation comes from implicit computational complexity.

In order to overcome the problems (1) and (2), we propose to apply to LAL
the approach mentioned before of restricting to a subset of the type language
ensuring good properties. Concretely we replace the ! modality by two notions
of arrows: a linear one (() and an intuitionistic one (⇒). This is in the line
of the work of Plotkin ([35]; see also [21]). Accordingly we have two kinds of
contexts as in dual intuitionistic linear logic of Barber and Plotkin [11]. Thus
we call the resulting system dual light affine logic, DLAL.

An important point is that even though the new type language is smaller than
the previous one, this system is actually computationally as general as LAL:
indeed we provide a generic encoding of LAL into DLAL, which is based on
the simple idea of translating (!A)• = ∀α.(A• ⇒ α) ( α [35].

Moreover DLAL keeps the good properties of LAL: the representable func-
tions on binary lists are exactly the polynomial time functions. Finally and
more importantly it enjoys new properties:

• subject-reduction w.r.t. β reduction;
• Ptime soundness w.r.t. β reduction;
• efficient type inference: it was shown in [3,4] that type inference in DLAL

for system F lambda-terms can be performed in polynomial time.

Contributions. Besides giving detailed proofs of the results in [8], in partic-
ular of the strong polytime bound, the present paper also brings some new
contributions:

• a result showing that DLAL really corresponds to a fragment of LAL;
• a simplified account of coercions for data types;
• a generic encoding of LAL into DLAL, which shows that DLAL is com-

putationally as expressive as LAL;
• a discussion about iteration in DLAL and, as an example, a DLAL pro-

gram for insertion sort.

3



Outline. The paper is organized as follows. We first recall some background
on light affine logic in Section 2 and define DLAL in Section 3. Then in Section
4 we state the main properties of DLAL and discuss the use of iteration on
examples. Section 5 is devoted to an embedding of DLAL into LAL, Section
6 to the simulation theorem and its corollaries: the subject reduction theorem
and the polynomial time strong normalization theorem. Finally in Section 7
we give a translation of LAL into DLAL and prove the FP completeness
theorem.

2 Background on light affine logic

Notations. Given a lambda-term t we denote by FV (t) the set of its free
variables. Given a variable x we denote by no(x, t) the number of occurrences
of x in t. We denote by |t| the size of t, i.e., the number of nodes in the term
formation tree of t. The notation −→ will stand for β reduction on lambda-
terms.

2.1 Light affine logic

The language LLAL of LAL types is given by:

A,B ::= α | A ( B | !A | §A | ∀α.A.

We omit the connective ⊗ which is definable. We will write † instead of either
! or §.

Light affine logic is a logic for polynomial time computation in the proofs-
as-programs approach to computing. It controls the number of reduction (or
cut-elimination) steps of a proof-program using two ideas:

(i) stratification,

(ii) control on duplication.

Stratification means that the proof-program is divided into levels and that
the execution preserves this organization. It is managed by the two modalities
(also called exponentials) ! and §.

Duplication is controlled as in linear logic: an argument can be duplicated
only if it has undergone a !-rule (hence has a type of the form !A). What is
specific to LAL with respect to linear logic is the condition under which one

4



x : A ` x : A
(Id)

Γ, x : A ` t : B

Γ ` λx.t : A ( B
(( i)

Γ1 ` t : A ( B Γ2 ` u : A
Γ1,Γ2 ` tu : B

(( e)

Γ1 ` t : A
Γ1,Γ2 ` t : A

(Weak)
x1 : !A, x2 : !A,Γ ` t : B

x : !A,Γ ` t[x/x1, x/x2] : B
(Cntr)

Γ,∆ ` t : A

!Γ, §∆ ` t : §A (§ i)
Γ1 ` u : §A Γ2, x : §A ` t : B

Γ1,Γ2 ` t[u/x] : B
(§ e)

x : B ` t : A
x : !B ` t : !A

(! i)
Γ1 ` u : !A Γ2, x : !A ` t : B

Γ1,Γ2 ` t[u/x] : B
(! e)

Γ ` t : A
Γ ` t : ∀α.A (∀ i) (*)

Γ ` t : ∀α.A
Γ ` t : A[B/α]

(∀ e)

Fig. 1. Natural deduction system for LAL

can apply a !-rule to a proof-program: it should have at most one occurrence
of free variable (rule (! i) of Figure 1).

We present the system as a natural deduction type assignment system for
lambda calculus: see Figure 1. We have:

• for (∀ i): (*) α does not appear free in Γ.
• the (! i) rule can also be applied to a judgement of the form ` u : A (u has

no free variable).

The notation Γ, ∆ will be used for environments attributing formulas to vari-
ables. If Γ = x1 : A1, . . . , xn : An then †Γ denotes x1 : †A1, . . . , xn : †An. In
the sequel we write Γ `LAL t : A for a judgement derivable in LAL.

The depth of a derivation D is the maximal number of (! i) and (§ i) rules
in a branch of D. We denote by |D| the size of D defined as its number of
judgments.

Now, light affine logic enjoys the following property:

Theorem 1 ([20,1]) Given an LAL proof D with depth d, its normal form
can be computed in O(|D|2d+1

) steps.

This statement refers to reduction performed either on proof-nets [20,2] or on
light affine lambda terms [37,39]. If the depth d is fixed and the size of D
might vary (for instance when applying a fixed term to binary integers) then
the result can be computed in polynomial steps.
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Moreover we have:

Theorem 2 ([20,2]) If a function f : {0, 1}∗ → {0, 1}∗ is computable in
polynomial time, then there is a proof in LAL that represents f .

Here the depth of the proof depends on the degree of the polynomial. See also
Theorem 33.

2.2 LAL and β reduction

It was shown in [39] that light affine lambda calculus admits polynomial step
strong normalization: the bound of Theorem 1 holds on the length of any re-
duction sequence of light affine lambda terms. However, this property is not
true for LAL-typed plain lambda terms and β reduction: indeed [2] gives a
family of LAL-typed terms (with a fixed depth) such that there exists a reduc-
tion sequence of exponential length. So the reduction of LAL-typed lambda
terms is not strongly poly-step (when counting the number of β reduction
steps).

We stress here with an example the fact that normalization of LAL-typed
lambda terms is not even weakly poly-step nor polytime: there exists a family
of LAL-typed terms (with fixed depth) such that the computation of their
normal form on a Turing machine (using any strategy) will take exponential
time. Note that this is however not in contradiction with the statement of
Theorem 1, because the data structures considered here and in Theorem 1 are
different: lambda calculus in the forthcoming example and proof-nets (or light
affine lambda terms) in the theorem mentioned.

Let us define the example. First, observe that the following judgments are
derivable:

yi :!A−◦!A−◦!A `LAL λx.yixx :!A−◦!A,
z :!A `LAL z :!A.

From this it is easy to check that the following is derivable:

y1 :!A−◦!A−◦!A, . . . , yn :!A−◦!A−◦!A, z :!A
`LAL (λx.y1xx)(· · · (λx.ynxx)z · · · ) :!A.

Using (§ i) and (Cntr) we finally get:

y :!(!A−◦!A−◦!A), z :!!A `LAL (λx.yxx)nz : §!A.

Denote by tn the term (λx.yxx)nz and by un its normal form. We have un =
yun−1un−1, so |un| = O(2n), whereas |tn| = O(n): the size of un is exponential
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in the size of tn. Hence computing un from tn on a Turing machine will take at
least exponential time (if the result is written on the tape as a lambda-term).

It should be noted though that even if un is of exponential size, it nevertheless
has a type derivation of size O(n). To see this, note that we have z : !A, y :
!A (!A (!A `LAL yzz :!A. Now make n copies of it and compose them by
(! e); each time (! e) is applied, the term size is doubled. Finally, by applying
(§ i) and (Cntr) as before, we obtain a linear size derivation for y :!(!A (
!A (!A), z :!!A `LAL un : §!A.

2.3 Discussion

The counter-example of the previous section illustrates a mismatch between
lambda calculus and light affine logic. It can be ascribed to the fact that
the (! e) rule on lambda calculus not only introduces sharing but also causes
duplication. As Asperti neatly points out [1], “while every datum of type !A is
eventually sharable, not all of them are actually duplicable.” The above yzz
gives a typical example. While it is of type !A and thus sharable, it should
not be duplicable, as it contains more than one free variable occurrence. The
(! e) rule on lambda calculus, however, neglects this delicate distinction, and
actually causes duplication.

Light affine lambda calculus remedies this by carefully designing the syntax
so that the (! e) rule allows sharing but not duplication. As a result, it of-
fers the properties of subject reduction with respect to LAL and polynomial
time strong normalization [39]. However it is not as simple as lambda calcu-
lus; in particular it includes new constructions !(.), §(.) and let (.) be (.) in (.)
corresponding to the management of boxes in proof nets.

The solution we propose here is more drastic: we simply do not allow the
(! e) rule to be applied to a term of type !A. This is achieved by removing
judgments of the form Γ ` t :!A. As a consequence, we also remove types of
the form A (!B. Bang ! is used only in the form !A ( B, which we consider
as a primitive connective A ⇒ B. Note that it does not cause much loss of
expressiveness in practice, since the standard decomposition of intuitionistic
logic by linear logic does not use types of the form A (!B.

3 Dual light affine logic

The system we propose does not use the ! connective but distinguishes two
kinds of function spaces (linear and non-linear) as in [35] (see also [21]). Our
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approach is also analogous to that of dual intuitionistic linear logic of Barber
and Plotkin [11] in that it distinguishes two kinds of environments (linear and
non-linear). Thus we call our system dual light affine logic (DLAL). We will
see that it corresponds in fact to a well-behaved fragment of LAL.

The language LDLAL of DLAL types is given by:

A,B ::= α | A ( B | A⇒ B | §A | ∀α.A.

Let us now define Π1 and Σ1 types. The class of Π1 (resp. Σ1) types is the
least subset of DLAL types satisfying:

• any atomic type α is Π1 (resp. Σ1),
• if A is Σ1 (resp. Π1) and B is Π1 (resp. Σ1), then A ( B and A ⇒ B are

Π1 (resp. Σ1),
• if A is Π1 (resp. Σ1) then §A is Π1 (resp. Σ1),
• if A is Π1 then so is ∀α.A.

There is an unsurprising translation (.)? from DLAL to LAL given by:

• (A⇒ B)? = !A? ( B?,
• (.)? commutes to the other connectives.

Let LDLAL? denote the image of LDLAL by (.)?, and (.)− : LDLAL? → LDLAL
stand for the converse map of (.)?.

For DLAL typing we will handle judgements of the form Γ; ∆ ` t : C. The
intended meaning is that variables in ∆ are (affine) linear, that is to say that
they have at most one occurrence in the term, while variables in Γ are non-
linear. We give the typing rules as a natural deduction system: see Figure 2.
We have:

• for (∀ i): (*) α does not appear free in Γ,∆.
• in the (⇒ e) rule the r.h.s. premise can also be of the form ;` u : A (u has

no free variable).

In the rest of the paper we will write Γ; ∆ `DLAL t : A for a judgement
derivable in DLAL.

Observe that the contraction rule (Cntr) is used only on variables on the l.h.s.
of the semi-column. It is then straightforward to check the following statement:

Lemma 3 If Γ; ∆ `DLAL t : A then the set FV (t) is included in the variables
of Γ ∪∆, and if x ∈ ∆ then we have no(x, t) 6 1.

We can make the following remarks on DLAL rules:
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;x : A ` x : A
(Id)

Γ; ∆, x : A ` t : B

Γ; ∆ ` λx.t : A ( B
(( i)

Γ1; ∆1 ` t : A ( B Γ2; ∆2 ` u : A

Γ1,Γ2; ∆1,∆2 ` tu : B
(( e)

Γ, x : A; ∆ ` t : B

Γ; ∆ ` λx.t : A⇒ B
(⇒ i)

Γ; ∆ ` t : A⇒ B ; z : C ` u : A

Γ, z : C; ∆ ` tu : B
(⇒ e)

Γ1; ∆1 ` t : A

Γ1,Γ2; ∆1,∆2 ` t : A
(Weak)

x1 : A, x2 : A,Γ; ∆ ` t : B

x : A,Γ; ∆ ` t[x/x1, x/x2] : B
(Cntr)

; Γ,∆ ` t : A

Γ; §∆ ` t : §A (§ i)
Γ1; ∆1 ` u : §A Γ2;x : §A,∆2 ` t : B

Γ1,Γ2; ∆1,∆2 ` t[u/x] : B
(§ e)

Γ; ∆ ` t : A

Γ; ∆ ` t : ∀α.A (∀ i) (*)
Γ; ∆ ` t : ∀α.A

Γ; ∆ ` t : A[B/α]
(∀ e)

Fig. 2. Natural deduction system for DLAL

• Initially the variables are linear (rule (Id)); to convert a linear variable into
a non-linear one we can use the (§ i) rule. Note that it adds a § to the type
of the result and that the variables that remain linear get a § type too.
• the (( i) (resp. (⇒ i)) rule corresponds to abstraction on a linear variable

(resp. non-linear variable);
• observe (⇒ e): a term of type A⇒ B can only be applied to a term u with

at most one occurrence of free variable.

Note that the only rules which correspond to substitutions in the term are
(Cntr) and (§ e): in (Cntr) only a variable is substituted and in (§ e) substitu-
tion is performed on a linear variable. Combined with Lemma 3 this ensures
the following important property:

Proposition 4 If a derivation D has conclusion Γ; ∆ `DLAL t : A then we
have |t| ≤ |D|.

This proposition shows that the mismatch between lambda calculus and LAL
illustrated in the previous section is resolved with DLAL.

One can observe that the rules of DLAL are obtained from the rules of LAL
via the (.)? translation. As a consequence, DLAL can be considered as a
subsystem of LAL. Let us make this point precise.

Definition 5 Let LDLAL+ be the set LDLAL? ∪ {!A : A ∈ LDLAL?}. We write
Γ `DLAL? t : A if there is an LAL derivation D of Γ ` t : A in which

• any formula belongs to LDLAL+,
• any instantiation formula B of a (∀ e) rule in D belongs to LDLAL?.
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We stress that LDLAL? and LDLAL+ are sublanguages of LLAL and not of
LDLAL. Hence when writing Γ `DLAL? t : A, we are handling an LAL deriva-
tion (and not a DLAL one).

Theorem 6 (Embedding) Let Γ; ∆ ` t : A be a judgment in DLAL. Then
Γ; ∆ `DLAL t : A if and only if !Γ?,∆? `DLAL? t : A?.

The ‘only-if’ direction is straightforward and the ‘if’ one will be given in
Section 5.

If D is a DLAL derivation, let us denote by D? the LAL derivation obtained
by the translation of Theorem 6.

Let us now define the depth of a DLAL derivation D. For that, intuitively
we need to consider the maximum, among all branches of the derivation, of
the added numbers of (§ i) rules and arguments of an application rule (⇒ e)
(noted u in the rule). More formally, the depth of a DLAL derivation D is
thus the maximal number of premises of (§ i) and r.h.s. premises of (⇒ e) in
a branch of D.

In this way the depth of a DLAL derivation D corresponds to the depth of its
translation D? in LAL , that is to say to the maximal nesting of exponential
boxes in the corresponding proof-net (see [2] for the definition of proof-nets).

The data types of LAL can be directly adapted to DLAL. For instance, we
have the following data types for booleans, unary integers and binary words
in LAL:

B =∀.α.α ( α ( α,

NL =∀α.!(α ( α) ( §(α ( α),

WL =∀α.!(α ( α) ( !(α ( α) ( §(α ( α).

The type B is also available in DLAL as it stands, while for the latter two,
we have N and W such that N? = NL and W? = WL in DLAL:

N =∀α.(α ( α)⇒ §(α ( α),

W =∀α.(α ( α)⇒ (α ( α)⇒ §(α ( α).

The inhabitants of B, N and type W are the familiar Church codings of
booleans, integers and words:
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Γ1; ∆1 ` t1 : A1 Γ2; ∆2 ` t2 : A2

Γ1,Γ2; ∆1,∆2 ` t1 ⊗ t2 : A1 ⊗ A2
(⊗ i)

Γ1; ∆1 ` u : A1 ⊗ A2 Γ2;x1 : A1, x2 : A2,∆2 ` t : B

Γ1,Γ2; ∆1,∆2 ` let u be x1 ⊗ x2 in t : B
(⊗ e)

Fig. 3. Derived rules

i=λx0.λx1.xi,

n=λf.λx. f(f . . . (f︸ ︷︷ ︸
n

x) . . . ),

w=λf0.λf1.λx.fi1(fi2 . . . (finx) . . . ),

with i ∈ {0, 1}, n ∈ N and w = i1i2 · · · in ∈ {0, 1}∗. The following terms for
addition and multiplication on Church integers are typable in DLAL:

add = λn.λm.λf.λx.nf(mfx)) : N ( N ( N,

mult = λn.λm.m(λy. add n y)0 : N ⇒ N ( §N.

It can be useful in practice to use a type A ⊗ B. It can anyway be defined,
thanks to full weakening:

A⊗B = ∀α.((A ( B ( α) ( α).

We use as syntactic sugar the following new constructions on terms with the
typing rules of Figure 3:

t1 ⊗ t2 = λx.xt1t2,

let u be x1 ⊗ x2 in t = u(λx1.λx2.t).

4 Properties of DLAL

4.1 Main properties

We will now present the main properties of DLAL. As the proofs of some
theorems require some additional notions and definitions, we prefer to start
by the statements of the results, and postpone the proofs to the following
sections.
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First of all, DLAL enjoys the subject reduction property with respect to
lambda calculus, in contrast to LAL:

Theorem 7 (Subject Reduction) If Γ; ∆ `DLAL t0 : A and t0 −→ t1, then
Γ; ∆ `DLAL t1 : A.

To prove this property we will use another calculus, light affine lambda calculus
and a simulation property of DLAL in this calculus (Theorem 22). For the
proof see Section 6. Note that a direct proof was also given in [9].

DLAL types ensure the following strong normalization property:

Theorem 8 (Polynomial time strong normalization) Let t be a lambda-
term which has a typing derivation D of depth d in DLAL. Then t reduces to
the normal form in at most O(|t|2d

) reduction steps and in time O(|t|2d+2
) on a

multi-tape Turing machine. This result holds independently of which reduction
strategy we take.

The bound O(|t|2d
) for the number of reduction steps is slightly better than

that of Theorem 1. The reason is that we are working on plain lambda terms
and thus in particular do not need commuting reductions. The proof is again
based on light affine lambda calculus and the simulation property. It will be
given in Section 6.

Finally, even if DLAL offers good properties with respect to lambda calculus,
in order to be convincing we expect it to be expressive enough to represent all
Ptime functions, just as LAL; this is the case:

Theorem 9 (FP completeness) If a function f : {0, 1}? → {0, 1}? is com-
putable in time O(n2d

) by a multi-tape Turing machine for some d, then there
exists a lambda-term t such that `DLAL t : W ( §2d+2W and t represents f .

The depth of the result type §2d+2W above is smaller than the ones given by
[20,2,30]. It is mainly due to the refined coding of polynomials, which is also
available in LAL (see Proposition 11 and Theorem 33).

To prove the above theorem, we will define in Section 7 a translation from
LAL to DLAL and use the FP completeness of LAL. Note that in [9] a
direct proof was also given.

4.2 Iteration and example

In this section we will discuss the use of iteration in programming in DLAL.
We will in particular describe the example of insertion sort.
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4.2.1 Iteration

As in other polymorphic type systems, iteration schemes can be defined in
DLAL for various data types. For instance for N and the following data type
corresponding to lists over A:

L(A) =∀α.(A ( α ( α)⇒ §(α ( α),

we respectively have the following iteration schemes, for any type B:

iterB : (B ( B)⇒ §B ( N ( §B,
foldB : (A ( B ( B)⇒ §B ( L(A) ( §B.

They are defined by the same term:

iterB =λF.λb.λn.nFb,

foldB =λF.λb.λl.lF b.

Note that with the iterB scheme for instance, if we iterate on type B = N
a function N ( N we obtain a term of type N ( §N, which is thus itself
not iterable. Typing therefore prevents nesting of iterations (see [33] for the
relation with safe recursion).

This is the case for instance if we try to define addition on unary integers by
iteration over one of the two arguments, using the successor function, and ob-
taining as type §N ( N ( §N. However recall that we have given previously
a term for addition with type N ( N ( N.

We want to show that by choosing suitably the type B on which to do the
iteration, one can type in DLAL programs with nested iterations. To illustrate
that on a simple example we first consider the case of addition. Can we define
addition by an iteration giving it the type N ( N ( N ?

Let us call open Church integer a term of the following form:

; f1 : (α ( α), . . . , fn : (α ( α) ` λx.f1(. . . (fnx) . . . ) : (α ( α)

Informally speaking it is a Church integer, where the variables f1, . . . , fn have
not been contracted nor bound yet.

Now we can define and type a successor on open Church integers in the fol-
lowing way:

; f : (α ( α) ` λk.λy.f(ky) : (α ( α) ( (α ( α)
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Denote this term by osuccf , indicating the free variable f . The typing judge-
ment claimed above can be derived in the following way:

; f : α ( α ` f : α ( α

; k : α ( α ` k : α ( α ; y : α ` y : α

; k : α ( α, y : α ` ky : α

; f : (α ( α), k : α ( α, y : α ` f(ky) : α

; f : (α ( α), k : α ( α ` λy.f(ky) : α ( α

; f : (α ( α) ` osuccf : (α ( α) ( (α ( α)

By applying iterB on the type B = α ( α of open Church integers, we get:

f : α ( α, f ′ : α ( α;n : N,m : N ` iterα(α osuccf (m f ′) n : §(α ( α)

f : α ( α;n : N,m : N ` iterα(α osuccf (m f) n : §(α ( α)

;n : N,m : N ` λf.iterα(α osuccf (m f) n : (α ( α)⇒ §(α ( α)

;n : N,m : N ` λf.iterα(α osuccf (m f) n : N

Note that a crucial point for the type derivation to be valid is the (⇒ e)
rule, which forces osucc to have at most one occurrence of free variable. This
restricts the osucc term not to increase the size of open integers by more than
one unit, which is reminiscent of the non-size-increasing discipline of [24].

4.2.2 Insertion sort

We consider here a programming of the insertion sort algorithm in lambda
calculus analogous to the one from [24]. The program is defined by two steps
of iteration (one for defining the insertion, and one for the sorting) but inter-
estingly enough is typable in DLAL. We will proceed in the same way as for
addition in the previous section.

We consider the type L(A) of lists over a type A representing a totally ordered
set, and assume given a term:

comp : A ( A ( A⊗ A, with comp a1 a2 → a1 ⊗ a2 if a1 ≤ a2

a2 ⊗ a1 if a2 < a1

Such a term can be programmed for instance if we choose for A a finite type,
say the type B32 = B ⊗ · · · ⊗B (32 times) for 32-bit binary integers. As for
unary integers, we can consider open lists of type (α ( α) which have free
variables of type (A ( α ( α). Insertion will be defined by iterating a term
acting on open lists.

14



We first define the insertion function by iteration on type B = A ( (α ( α):

hcompg = λaAfBa′A. let (comp a a′) be a1 ⊗ a2 in

λxα.gBa1
A(fa2x)α : A ( B ( B

Observe that hcompg has only one occurrence of free variable g, so it can be
used as argument of non-linear application. Then:

insert = λa§A0 lL(A).λgB.(foldB hcompg g l) a0 : §A ( L(A) ( L(A)

Finally the sorting function is obtained by iteration on type L(A):

sort = λlL(§A).foldL(A) insert nil l : L(§A) ( §L(A).

When working on lists over a standard data type such as B32, the coercion
map A ( §A is always available (see Proposition 10). Hence in practice the
sorting function admits a simpler type: L(A) ( §L(A).

Let us now give a general scheme for iteration over open lists. We start by the
simple case which produces a function of type L(A) ( L(A). We write it as
a derivable rule, omitting the notation of terms to simplify readability:

;A ( α ( α ` A ( (α ( α) ( (α ( α) Γ, A ( α ( α; ∆ ` §(α ( α)

Γ; ∆ ` L(A) ( L(A)

However insertion does not fit into this scheme, because it is defined by itera-
tion on a functional type. Consider thus the following modified scheme, based
on iteration over the type C ( (α ( α):

; f : A ( α ( α ` tf : A ( (C ( α ( α) ( (C ( α ( α)

Γ, f : A ( α ( α; ∆ ` uf : §(C ( α ( α)

Γ; ∆ ` v : §C ( L(A) ( L(A)

with v = λclf.((foldC(α(α tf uf l) c).

To check that this scheme is derivable, first observe that the following judge-
ment can be derived from the two premises:

f : A ( α ( α,Γ; ∆, l : L(A) ` foldC(α(α tf uf l : §(C ( α ( α).

The conclusion can then easily be derived.

Finally the previous insertion function can be obtained applying this scheme,
by taking C = A.
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4.2.3 Coercion

Composition of programs in DLAL is quite delicate in the presence of modal-
ity § and non-linear arrow⇒. When composing two programs involving § and
⇒, one frequently uses the coercion maps over data types. Below we only
describe the coercion maps for booleans and integers, but in fact they can be
easily generalised to other data types.

Proposition 10 (Coercion)

(1) There is a lambda-term coerb : B ( §B such that coerbi −→∗i for i ∈
{0, 1}.

(2) There is a lambda-term coer1 : N ( §N such that coer1n −→∗n for every
integer n.

(3) For any type A, there is a lambda-term coer2 : §(N ⇒ A) ( (N ( §A)
such that coer2tn −→∗tn for every term t and every integer n.

Proof. 1. Let coerb = λx.x01.
2. Let coer1 = iterN succ 0, where succ is the usual successor λn.λfx.f(nfx) :
N ( N.
3. We have ‘lifted’ versions of the successor and the zero:

lsucc = λfx.f( succ x) : (N⇒ A) ( (N⇒ A)

lzero = λf.f0 : §(N⇒ A) ( §A.

We therefore have

coer2 = λfn.lzero(iterN⇒A lsucc f n) : §(N⇒ A) ( (N ( §A).

Given a term t : §(N⇒ A) and an integer n, it works as follows:

coer2tn−→∗ lzero(iter lsucc t n)

−→∗ lzero(lsuccnt)

−→∗ lzero(λx.t(succnx))

−→∗ t(succn0) −→∗ tn.

As a slight variant of coer2, we have a contraction map cont : §(N ⇒ N (
A) ( (N ( §A) defined by

csucc = λfxy.f( succ x)( succ y) : (N⇒ N ( A) ( (N⇒ N ( A),

czero = λf.f00 : §(N⇒ N ( A) ( §A,

cont = λfn.czero(iterN⇒N(A csucc f n) : §(N⇒ N ( A) ( (N ( §A).
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By applying cont to the multiplication function mult : N ⇒ N ( §N, the
squaring function on unary integers can be represented: square = cont(mult) :
N ( §2N. We therefore obtain:

Proposition 11 There is a closed term of type N ( §2dN representing the
function n2d

for each d ≥ 0.

5 Embedding of DLAL into DLAL?

We are now going to prove Theorem 6, establishing that basically the system
DLAL is the restriction of LAL to the language of LDLAL+ . Let us begin
with the ordinary substitution lemma.

Lemma 12 (Substitution) We consider derivations in DLAL.

(1) If Γ1; ∆1 ` u : A and Γ2;x : A,∆2 ` t : B,
then Γ1,Γ2; ∆1,∆2 ` t[u/x] : B.

(2) If ; Γ1,∆1 ` u : A and Γ2;x : §A,∆2 ` t : B,
then Γ1,Γ2; §∆1,∆2 ` t[u/x] : B.

(3) If ; z : C ` u : A and x : A,Γ; ∆ ` t : B,
then z : C,Γ; ∆ ` t[u/x] : B.

Lemma 13 If A,H ∈ LDLAL?, we have A[H/α]− = A−[H−/α].

In order to prove Theorem 6 we will first prove a stronger lemma. The theorem
will then follow directly.

Lemma 14

(1) If !Γ,∆ `DLAL? t : A with Γ,∆, A ∈ LDLAL?, then Γ−; ∆− `DLAL t : A−.
(2) If !Γ,∆ `DLAL? t : !A with Γ,∆, A ∈ LDLAL?, then for any DLAL deriv-

able judgement x : A−,Θ; Π `DLAL u : B with Θ,Π, B ∈ LDLAL, we have
Γ−,Θ; ∆−,Π `DLAL u[t/x] : B.

Proof. We prove these statements by a single induction over derivations in
DLAL?.

Let D be a DLAL? derivation of !Γ,∆ ` t : C with Γ,∆ ∈ LDLAL? . We have
to prove that: if C ∈ LDLAL? then claim (1) holds; otherwise if C = !A and
A ∈ LDLAL? then claim (2) holds. Consider the last rule of D:
(Case 1) The derivation consists of the identity axiom. Straightforward.
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(Case 2) The last rule is (( i):

y : A1, !Γ,∆ ` v : A2

!Γ,∆ ` λy.v : A1 ( A2
(( i)

and A = A1 ( A2, t = λy.v. Therefore we are in the case of claim (1). By
i.h. we have:

• if A1 ∈ LDLAL? :

Γ−; y : A1
−,∆− `DLAL v : A2

−.

so, by applying the rule (( i) in DLAL, we get:

Γ−; ∆− `DLAL λy.v : A1
− ( A2

−,

and A1
− ( A2

− = (A1 ( A2)
−.

• if A1 = !A′1, with A′1 ∈ LDLAL? :

Γ−, y : A′1
−

; ∆− `DLAL v : A2
−.

so, by applying the rule (⇒ i) in DLAL, we get:

Γ−; ∆− `DLAL λy.v : A′1
− ⇒ A2

−,

and A′1
− ⇒ A2

− = (A1 ( A2)
−.

(Case 3) The last rule is (( e):

!Γ1,∆1 ` t1 : C ( A !Γ2,∆2 ` t2 : C

!Γ1, !Γ2,∆1,∆2 ` t1t2 : A
(( e)

As by assumption we have C ( A ∈ LDLAL+ , we get that A ∈ LDLAL? . Thus
we are in the case of claim (1). We now distinguish two possible subcases:

• first subcase: C ∈ LDLAL? . Then (C ( A)− = C− ( A−. We apply the
i.h. to the two subderivations, which are both in the case of claim (1), and
apply the DLAL rule:

Γ−1 ; ∆−1 ` t1 : C− ( A− Γ−2 ; ∆−2 ` t2 : C−

Γ−1 ,Γ
−
2 ; ∆−1 ,∆

−
2 ` t1t2 : A−

(( e)

• second subcase: C = !C ′, with C ′ ∈ LDLAL? . Then (C ( A)− = C ′− ⇒ A−.
We apply the i.h. to the l.h.s. premise, which is in the case of claim (1), and
a (⇒ e) rule in DLAL, to get:

Γ−1 ; ∆−1 ` t1 : C ′− ⇒ A− ; z : C− ` z : C−

z : C−,Γ−1 ; ∆−1 ` t1z : A−
(⇒ e)
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Then by applying the i.h. to the DLAL? subderivation of !Γ2,∆2 ` t2 : C,
which is the case of claim (2), and to the DLAL judgement z : C−,Γ−1 ; ∆−1
`DLAL t1z : A− we get:

Γ−1 ,Γ
−
2 ; ∆−1 ,∆

−
2 `DLAL t1t2 : A−.

(Case 4) The last rule is (∀ i). This case is easy, so we omit it here.
(Case 5) The last rule is (∀ e):

!Γ,∆ ` t : ∀α.A′
!Γ,∆ ` t : A′[H/α]

(∀ e)

with A = A′[H/α]. By assumption we have ∀α.A′ ∈ LDLAL+ , so A′ ∈ LDLAL? .
Moreover, also by assumption we know that H ∈ LDLAL? . Therefore we get:
A′[H/α] ∈ LDLAL? , and by Lemma 13, A′[H/α]− = A′−[H−/α]. Thus we are
in the case of claim (1). By applying the i.h. and a (∀ e) rule in DLAL we
get:

Γ−; ∆− ` t : ∀α.A′−

Γ−; ∆− ` t : A′−[H−/α]
(∀ e)

(Case 6) The last rule is (! i). We have to prove claim (2). Let us assume the
judgement is of the form y : !D ` t :!A (the case of ` t :!A is similar). Its
premise is y : D ` t : A. By induction hypothesis there is a DLAL derivation
of ; y : D− ` t : A−. Let x : A−,Θ; Π ` u : B be a DLAL derivable judgement.
By the substitution lemma (Lemma 12) we get y : D−,Θ; Π `DLAL u[t/x] : B.
(Case 7) The last rule is (! e). Let us assume for instance that we are in the
situation of claim (2) (claim (1) is easier anyway); the last rule is:

!Γ1,∆1 ` t1 : !D y : !D, !Γ2,∆2 ` t2 : !A

!Γ1, !Γ2,∆1,∆2 ` t2[t1/y] : !A
(! e)

Consider a DLAL derivable judgement x : A−,Θ; Π ` u : B. By i.h. on the
r.h.s. premise of (! e) we get that the following judgement is DLAL derivable:

y : D−,Γ2
−,Θ; ∆2

−,Π ` u[t2/x] : B.

Then by using this judgement with the i.h. on the l.h.s. premise of (! e) we
get that the following judgement is DLAL derivable:

Γ−,Θ; ∆−,Π ` (u[t2/x])[t1/y] : B.

Observe that the last term is equivalent to u[t2[t1/y]/x] = u[t/x], hence the
statement is proved.
(Case 8) The last rule is one of (§ e), (§ i), (Weak) and (Cntr). They are easy,
so we omit them here.

19



6 Light affine lambda calculus and the simulation theorem

In this section, we will recall light affine lambda calculus (λla) from [39] and
give a simulation of DLAL typable lambda terms by λla-terms. More specif-
ically, we show that every DLAL typable lambda-term t translates to a λla-
term t? (depending on the typing derivation for t) which is typable in DLAL?,
and that any β reduction sequence from t can be simulated by a longer λla
reduction sequence from t?. This simulation property directly implies the sub-
ject reduction theorem and the polynomial time strong normalization theorem
for DLAL.

6.1 Light affine lambda calculus

The set of (pseudo) terms of λla is defined by the following grammar:

M,N ::= x | λx.M | MN | !M | let N be !x in M | §M | let N be §x in M.

The depth of M is the maximal number of occurrences of subterms of the form
!N and §N in a branch of the term tree for M . The size |M | of the term M
is the number of nodes of its term tree.

LAL, or more importantly its subsystem DLAL?, can be considered as a type
system for λla. The system we present below uses two sorts of discharged types
[A]! and [A]§ with A ∈ LLAL. Thus an environment Γ may contain a declaration
x : [A]†. If Γ = x1 : A1, . . . , x : An, then [Γ]† denotes x1 : [A1]†, . . . , xn : [An]†.

For a discharged type [A]†, [̂A]† denotes the nondischarged type †A. We also
define Â = A and extend the notation to environments Γ in a natural way.
We write Γ `LAL M : A if M is a term of λla and Γ ` M : A is derivable by
the type assignment rules in Figure 4. As before, the eigenvariable condition
is imposed on the rule (∀ i).

We also write Γ `DLAL? M : A if it has a derivation in DLAL? (as in Definition
5); here we allow that a judgment may have a discharged declaration x : [A]†
with A ∈ LDLAL? in its environment.

The reduction rules of λla are given on Figure 5.

A term M is (§, !, com)-normal if neither of the reduction rules (§), (!), (com1)

and (com2) applies to M . We write M
(β)−→ N when M reduces to N by one

application of the (β) reduction rule followed by zero or several applications
of the (§), (!), (com1) and (com2) rules.
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x : A ` x : A
(Id)

Γ, x : A `M : B

Γ ` λx.M : A ( B
(( i)

Γ1 `M : A ( B Γ2 ` N : A
Γ1,Γ2 `MN : B

(( e)

Γ1 `M : A
Γ1,Γ2 `M : A

(Weak)
x1 : [A]!, x2 : [A]!,Γ `M : B

x : [A]!,Γ `M [x/x1, x/x2] : B
(Cntr)

Γ,∆ `M : A

[Γ]!, [∆]§ ` §M : §A (§ i)
Γ1 ` N : §A Γ2, x : [A]§ `M : B

Γ1,Γ2 ` let N be §x in M : B
(§ e)

x : B `M : A
x : [B]! ` !M : !A

(! i)
Γ1 ` N : !A Γ2, x : [A]! `M : B

Γ1,Γ2 ` let N be !x in M : B
(! e)

Γ `M : A
Γ `M : ∀α.A (∀ i) (*)

Γ `M : ∀α.A
Γ `M : A[B/α]

(∀ e)

Fig. 4. LAL as a type system for λla

(β) (λx.M)N −→ M [N/x]

(§) let §N be §x in M −→ M [N/x]

(!) let !N be !x in M −→ M [N/x]

(com1) (let N be † x in M)L −→ let N be † x in (ML)

(com2) let (let N be † x in M) be † y in L −→

let N be † x in (let M be † y in L)

Fig. 5. Reduction rules of λla

Given a λla-term M , its erasure M− is defined by:

x− = x (MN)− = M−N−

(λx.M)− = λx.(M−) (†M)− = M−

(let N be † x in M)− = M−[N−/x].

The following holds quite naturally.

Lemma 15 If Γ `DLAL? M : A with M a λla-term, then Γ̂ `DLAL? M− : A.
In addition:

(1) When M contains a subterm let N1 be §x in N2, no(x,N−2 ) ≤ 1.
(2) When M is (§, !, com)-normal, |M−| ≤ |M |.
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The following is the main result of [39]:

Theorem 16 (Polytime strong normalization for λla) A λla-term M
of depth d typable in LAL reduces to the normal form in O(|M |2d+1

) reduction
steps, and in time O(|M |2d+2

) on a Turing machine. Moreover, any term N in
the reduction sequence from M has a size bounded by O(|M |2d

). These results
hold independently of which reduction strategy we take.

The upper boundO(|M |2d+1
) for the length of reduction sequences is concerned

with all reduction rules. When only the (β) reduction rule is concerned, it can
be sharpened. In fact, Lemma 14 of [39] claims that given a λla-term M , the
length of any reduction sequence at fixed depth is bounded by |M |2. In that
proof, it is actually shown that the number of (β) reductions is bounded by
|M |. This observation leads to the following improvement:

Lemma 17 Let M be an LAL-typable λla-term M of depth d. Then the
number of (β) reduction steps in any reduction sequence M −→ M1 −→
· · · −→Mn is bounded by |M |2d

.

The subject reduction theorem for λla with respect to LAL is also proved in
[39]. By inspecting the proof and since LDLAL? is a subclass of LLAL , one can
in fact observe:

Theorem 18 (Subject Reduction for λla and DLAL?) If Γ `DLAL? M0 :
A and M0 −→M1, then Γ `DLAL? M1 : A.

6.2 Simulation theorem

First of all, let us rephrase the ‘only-if’ direction of Theorem 6 in terms of
λla-terms rather than plain lambda terms.

Lemma 19 If Γ; ∆ ` t : A has a derivation of depth d in DLAL, then there
is a λla-term t? such that !Γ?,∆? `DLAL? t? : A? and t?− = t. Moreover,

(1) the depth of t? is not greater than d;
(2) x ∈ FV (t) if and only if x ∈ FV (t?) for any variable x declared in ∆;
(3) |t?| ≤ 6(d+ 1)|t|.

Proof. Let us denote by |K|′ the number of non-leaf nodes in the term
formation tree of K, where K is either a lambda-term or a λla-term. Namely,

|K|′ = |K| − the number of (bound and free) variable occurrences in K.

We prove the existence of t?, claims (1), (2) and
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(3’) |t?|′ ≤ 3(d+ 1)|t|′

by induction on the structure of the derivation of Γ; ∆ ` t : A in DLAL. Since
|K| ≤ 2|K|′ + 1 and |K|′ + 1 ≤ |K|, (3) follows from (3’), by:

|t?| ≤ 2|t?|′ + 1 ≤ 6(d+ 1)|t|′ + 1 ≤ 6(d+ 1)(|t| − 1) + 1

≤ 6(d+ 1)|t| − 6(d+ 1) + 1 ≤ 6(d+ 1)|t|.

(Case 1) The derivation consists of the identity axiom. Straightforward.
(Case 2) The last rule is (⇒ e):

Γ1; ∆1 ` t : A⇒ B ; z : C ` u : A

Γ1, z : C; ∆1 ` tu : B
(⇒ e)

Define
(tu)? = let z be !z′ in t?!(u?[z′/z])

with z′ fresh. Since the immediate subderivations for t and u respectively have
depth d and d−1, we have |t?|′ ≤ 3(d+1)|t|′ and |u?|′ ≤ 3d|u|′ by the induction
hypothesis. Therefore we have

|(tu)?|′= |t?|′ + |u?|′ + 3

≤ 3(d+ 1)|t|′ + 3d|u|′ + 3

≤ 3(d+ 1)(|t|′ + |u|′ + 1) = 3(d+ 1)|tu|′,

establishing claim (3’). The other claims are easy to show.
(Case 3) The last rule is (§ i):

; Γ,∆ ` t : A

Γ; §∆ ` t : §A (§ i)

If t = x, we set t? = x and the claims are trivially satisfied. Otherwise, let
x1, . . . , xm (y1, . . . , yn, resp.) be the free variables declared in Γ (∆, resp.)
that actually occur in t as free variables. By i.h., we have t? associated to
the subderivation ending with the premise of the above rule. To the whole
derivation, we associate a new λla-term M defined by

M = let x1 be !x′1 in · · · let xm be !x′m in

let y1 be §y′1 in · · · let yn be §y′n in §t?[x′i/xi, y′j/yj].

It is easy to see that !Γ?, §∆? `DLAL? M : §A? and the claims (1) and (2) are
satisfied. As to (3’), notice that we have m + n + 1 ≤ |t| ≤ 2|t|′ + 1 ≤ 3|t|′
since |t|′ 6= 0. Hence we have

|M |′ = |t?|′ +m+ n+ 1 ≤ 3d|t|′ + 3|t|′ = 3(d+ 1)|t|′.
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(Case 4) The last rule is (§ e):

Γ1; ∆1 ` u : §A Γ2;x : §A,∆2 ` t : B

Γ1,Γ2; ∆1,∆2 ` t[u/x] : B
(§ e)

Define (t[u/x])? = t?[u?/x]. If x ∈ FV (t), we have |(t[u/x])?|′ = |t?|′ + |u?|′ ≤
3(d + 1)|t|′ + 3(d + 1)|u|′ ≤ 3(d + 1)|t[u/x]|′. If not, x does not occur free in
FV (t?) either, by i.h. (2). Hence |(t[u/x])?|′ = |t?|′ ≤ 3(d + 1)|t|′ = 3(d +
1)|t[u/x]|′.

All other cases are straightforward.

To prove the simulation theorem, we need two technical lemmas.

Lemma 20 Let M be a term of λla.

(1) If Γ `DLAL? M : ∀α1 · · · ∀αn.A ( B (n ≥ 0), then M is in one of the
following forms: x, M1M2, let M1 be † x in M2, λx.M0.

(2) If Γ `DLAL? M : ∀α1 · · · ∀αn.§A (n ≥ 0), then M is in one of the following
forms: x, M1M2, let M1 be † x in M2, §M0.

(3) If Γ `DLAL? M : !A, then M is in one of the following forms: x, let M1 be †
x in M2, !M0.

Proof. By induction on the structure of the derivation. The difference be-
tween (2) and (3) is due to the restriction that B ( !A 6∈ LDLAL? .

Lemma 21

(1) If Γ `DLAL? MN : A and MN is (§, !, com)-normal, then M is a variable
x, an application M1M2 or an abstraction λx.M0.

(2) If Γ `DLAL? let M be §x in N : A and (let M be §x in N) is (§, !, com)-
normal, then M is either a variable x or an application M1M2.

(3) If Γ `DLAL? let M be !x in N : A and (let M be !x in N) is (§, !, com)-
normal, then M is a variable x.

Proof. (1) By induction on the structure of the derivation. If the last infer-
ence rule is (( e) of the form:

Γ1 `M : A ( B Γ2 ` N : A
Γ1,Γ2 `MN : B

(( e)

then M cannot be of the form let M1 be †x in M2 since MN is (com)-normal.
Hence by Lemma 20 (1), M is a variable, an application or an abstraction.
The other cases are obvious.
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(2) By induction on the structure of the derivation. If the last rule is

Γ1 `M : §A Γ2, x : [A]§ ` N : B

Γ1,Γ2 ` let M be §x in N : B
(§ e)

then M cannot be of the form let M1 be † y in M2 since let M be §x in N is
(com)-normal. Likewise, M cannot be of the form §M0. Hence by Lemma 20
(2), M must be either a variable or an application.

(3) Similarly to (2).

Theorem 22 (Simulation) Let M be a DLAL? typable λla-term which is
(§, !, com)-normal. Let t = M−. If t reduces to u by one (β) reduction step,

then there is a λla-term N such that M
(β)−→ N , N− = u and N is (§, !, com)-

normal:
t u

M N

-
(β)

6
−

p p p p p p p-
(β) ppppp

ppp6
−

Proof. It is clearly sufficient to find a λla-term N ′ such that M
(β)−→ N ′

and (N ′)− = u. A suitable (§, !, com)-normal term N can then be obtained
by reduction rules (§), (!) and (com). The proof proceeds by induction on the
structure of M .
(Case 1) M is a variable. Trivial.
(Case 2) M is of the form λx.M0. By the induction hypothesis.
(Case 3) M is of the form M1M2. In this case, t is of the form t1t2 with M−

1 = t1
and M−

2 = t2. When the redex is inside t1 or t2, the induction hypothesis
applies. When the redex is t itself, then t1 must be of the form λx.t0. By the
definition of erasure, M1 cannot be a variable nor an application. Therefore,
by Lemma 21 (1), M1 must be of the form λx.M0 with M−

0 = t0. We therefore
have

(λx.t0)t2 t0[t2/x]

(λx.M0)M2 M0[M2/x]

-
(β)

6

−

p p p p p p p-
(β)

ppppp
ppppp6−

as required.
(Case 4) M is of the form †M0. By the induction hypothesis.
(Case 5) M is of the form let M1 be §x in M2. In this case, t is of the form
t2[t1/x] with M−

1 = t1 and M−
2 = t2. By Lemma 21 (2), M1 is either a variable

or an application, and so is t1. Therefore, no new redex is created by the
substitution t2[t1/x]; the redex in t is either inside t1 (with x ∈ FV (t2)) or
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results from a redex in t2 by substituting t1 for x.

In the former case, let t1 −→ u1. Then by the induction hypothesis, there is
some N1 such that

t1 u1

M1 N1

-
(β)

6
−

p p p p p p p-
(β)

ppppp
pppp6−

Therefore, we have

t2[t1/x] t2[u1/x]

let M1 be §x in M2 let N1 be §x in M2

-
(β)

6

−

p p p p p p p-
(β)

ppppp
ppppp
p
6

−

by noting that x occurs at most once in t2 (Lemma 15 (1)).

In the latter case, let t2 −→ u2. By the induction hypothesis, there is N2 such
that

t2 u2

M2 N2

-
(β)

6
−

p p p p p p p-
(β)

ppppp
pppp6−

We therefore have

t2[t1/x] u2[t1/x]

let M1 be §x in M2 let M1 be §x in N2

-
(β)

6

−

p p p p p p p-
(β)

ppppp
ppppp
p
6

−

as required.
(Case 6) M is of the form let M1 be !x in M2. By Lemma 21 (3), M1 is a
variable y. Hence in this case, t is of the form t2[y/x]. Therefore, the redex in
t results from a redex in t2 by substituting y for x. The rest is analogous to
the previous case.

Remark 23 Note that the statement of Theorem 22 could not be extended to
arbitrary LAL typable λla-terms. Indeed sometimes one (β) step in a LAL
typed lambda-term might not be simulated by a sequence of (β) steps in the
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corresponding λla-term. The reason for that is that the let (.) be !x in (.) con-
struct allows for sharing in λla-terms. This is directly related to the fact that
LAL lambda-terms do not admit subject-reduction for (β) reduction (recall
also the discussion of Sections 2.2 and 2.3).

6.3 Subject reduction and Ptime strong normalization

Having obtained the simulation theorem, we are now ready to prove the sub-
ject reduction theorem (Theorem 7) and the polynomial time strong normal-
ization theorem (Theorem 8).

Proof of Theorem 7. Suppose that Γ; ∆ `DLAL t : A and t −→ u. By Lemma
19, there is a λla-term t? such that !Γ?,∆? `DLAL? t? : A?. Moreover, the

simulation theorem implies that there is a λla-term N such that t?
(β)−→ N

and N− = u. Finally, Theorem 18, Lemma 15 and Theorem 6 together imply
that Γ; ∆ `DLAL u : A.

Proof of Theorem 8. By Lemma 19, there is a λla-term t? such that t?− = t
and |t?| ≤ 6(d+ 1)|t| where d is the depth of the typing derivation for t.

By the simulation theorem, we have:

t u

t? N

-
(β) p p p p p p p p- -

(β)

6
−

p p p p p p p-
(β) p p p p p p p p- p p p p p p p-

(β) ppppp
pp6
−

Since by Lemma 17 the length of the (β) reduction sequence from t? to N is
bounded by O(|t?|2d

) = O(|t|2d
), so is the one from t to u.

To show that the normal form can be computed in time O(|t|2d+2
) by a Turing

machine, notice that any term u such that t −→∗u has a size bounded by
O(|t|2d

) by Theorems 16, 18 and Lemma 15 (2). Since a beta reduction step
can be performed in time quadratic in the size of a term, the overall time for
normalization is bounded by the order of

|t|2d · (|t|2d

)2 ≤ |t|2d+2

.

7 Translation of LAL into DLAL

Although DLAL is a proper subsystem of LAL, it is as expressive as LAL,
both logically and computationally. As a consequence, all polynomial time
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functions are representable in DLAL.

7.1 Definability of LAL types in DLAL

First of all, we show that the types of LAL are definable in DLAL by us-
ing second order quantification. Our coding below is essentially the same as
Plotkin’s [35,21]). Define a mapping ( · )• from LLAL to LDLAL as follows:

• (!A)• = ∀α.((A• ⇒ α) ( α), where α is fresh.
• ( · )• commutes to the other connectives.

Define also a mapping from λla-terms to lambda-terms by:

x•=x

(λx.M)•=λx.M•

(MN)•=M•N•

(!M)•=λx.xM•, where x is fresh.

(let N be !y in M)•=N•(λy.M•)

(§M)•=M•

(let N be §y in M)•=M•[N•/y]

This mapping preserves typing:

Proposition 24 Let [Γ]! be an environment x1 : [A1]!, . . . , xm : [Am]! and ∆
be y1 : [B1]§, . . . , yn : [Bn]§, z1 : C1, . . . , zk : Ck. Then,

[Γ]!,∆ `LAL M : A implies Γ•; ∆• `DLAL M• : A•,

where Γ• = x1 : A•1, . . . , xm : A•m and ∆• = y1 : §B•1 , . . . , yn : §B•n, z1 :
C•1 , . . . , zk : C•k .

Proof. By induction on the structure of the derivation.
(Case 1) The last rule is (! i):

y : B `M : A

y : [B]! `!M :!A

We have
;x : A• ⇒ α ` x : A• ⇒ α ; y : B• `M• : A•

y : B•;x : A• ⇒ α ` xM• : α

y : B•;` λx.xM• : (A• ⇒ α) ( α

y : B•;` λx.xM• : ∀α.(A• ⇒ α) ( α
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(Case 2) The last rule is (! e):

[Γ1]!,∆1 ` N : !A y : [A]!, [Γ2]!,∆2 `M : B

[Γ1]!, [Γ2]!,∆1,∆2 ` let N be !y in M : B

We have

Γ•1; ∆•1 ` N• : ∀α.(A• ⇒ α) ( α

Γ•1; ∆•1 ` N• : (A• ⇒ B•) ( B•
y : A•,Γ•2; ∆•2 `M• : B•

Γ•2; ∆•2 ` λy.M• : A• ⇒ B•

Γ•1,Γ
•
2; ∆•1,∆

•
2 ` N•(λy.M•) : B•

The other cases are straightforward.

This translation also preserves the reduction rules of λla other than (com1)
and (com2) for the let-! operator.

Lemma 25 Let M and N be terms of λla. Then we have (M [N/x])• =
M•[N•/x].

Proof. By induction on the structure of M .

Let (com§) stand for the commuting reduction rules for let-§ constructs.

Proposition 26 Let M
(r)−→ N , where (r) is (β), (!), (§) or (com§). Then we

have

M• −→∗N•.

Proof. For instance, the (!) reduction rule let !N be !y in M −→ M [N/y]
can be simulated as follows:

(let !N be !y in M)• = (λx.xN•)(λy.M•)

−→ (λy.M•)N•

−→M•[N•/y] = (M [N/y])•.

The other reduction rules are easily handled.

However, this is not true of the commuting reduction rules for the let-! oper-
ator.

7.2 Preservation of representable functions

We would like to show that DLAL expresses as many algorithms as LAL
based on the translation ( · )•. But there are two obstacles.

29



(1) The translation does not preserve the commuting reduction rules for let-!.
(2) M• does not represent a function over data types even though M does,

because the translation modifies the input/output types.

To overcome the first difficulty, we consider, not a λla term M itself, but its
erasure M−, which does not need any commuting reductions. To overcome the
second, we introduce an encoder and a decoder. Namely, for each A ∈ LDLAL,
we define two lambda terms

enA : A−◦ A?•, deA : A?• −◦ A.

enα(t) = t deα(t) = t

en∀α.A(t) = enA(t) de∀α.A(t) = deA(t)

en§A(t) = enA(t) de§A(t) = deA(t)

enA(B(t) = λx.enB(t deA(x)) deA(B(t) = λx.deB(t enA(x))

enA⇒B(t) = λx.enB(x(λy.t deA(y))) deA⇒B(t) = λx.deB(t(λy.y enA(x)))

We have:

Lemma 27 For any A ∈ LDLAL, the following judgements are derivable in
DLAL :

; z : A ` enA(z) : A?•, ; z : A?• ` deA(z) : A.

Proof. By induction on the structure of A. Here we only deal with enA⇒B
and deA⇒B. For both of them, notice

(A⇒ B)?• = (!A?)• ( B?• = (∀α.(A?• ⇒ α) ( α) ( B?•.

As to enA⇒B, we have:

;x : (!A?)• ` x : (!A?)•

;x : (!A?)• ` x : (A?• ⇒ B) ( B

; z : A⇒ B ` z : A⇒ B ; y : A?• ` deA(y) : A
y : A?•; z : A⇒ B ` z deA(y) : B

; z : A⇒ B ` λy.z deA(y) : A?• ⇒ B

; z : A⇒ B, x : (!A?)• ` x(λy.z deA(y)) : B

By substituting the above conclusion into w : B ` enB(w) : B?•, one obtains
the desired judgement.

As to deA⇒B, we have:

; z : (A⇒ B)?• ` z : (!A?)• ( B?•

; y : A?• ⇒ α ` y : A?• ⇒ α ;x : A ` enA(x) : A?•

x : A; y : A?• ⇒ α ` y enA(x) : α
x : A;` λy.y enA(x) : (A?• ⇒ α) ( α

x : A;` λy.y enA(x) : (!A?)•

x : A; z : (A⇒ B)?• ` z(λy.y enA(x)) : B?•
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By substituting the above conclusion into w : B?• ` deB(w) : B, one obtains
the desired judgement.

We then show that M• and M− are related via deA, when A is a Π1 type in
LDLAL and M is a λla term of type A?. Here, a direct induction argument
would not work, because the type derivation for `M : A? might involve types
outside LDLAL? . We therefore employ logical relations to work on a stronger
induction hypothesis.

Consider a binary relation R over the set of plain lambda terms: R ⊆ Λ× Λ.
Such a relation R is βη-closed if (t, u) ∈ R, t =βη t′ and u =βη u′ imply
(t′, u′) ∈ R. A valuation ϕ maps each type variable α to a βη-closed relation.

Given a valuation ϕ, one can inductively define a binary relation [[A]]ϕ for each
LAL type A:

• [[α]]ϕ = ϕ(α). [[§A]]ϕ = [[A]]ϕ.
• (t, u) ∈ [[A−◦B]]ϕ ⇐⇒ for any (v1, v2) ∈ [[A]]ϕ, (tv1, uv2) ∈ [[B]]ϕ.
• (t, u) ∈ [[∀α.A]]ϕ ⇐⇒ for any βη-closed relation R, (t, u) ∈ [[A]]ϕ[α 7→R], where
ϕ[α 7→ R] denotes the valuation which maps α to R and agrees with ϕ on
other propositional variables.
• (t, u) ∈ [[!A]]ϕ ⇐⇒ there is a lambda-term t′ such that t =βη λz.zt

′ and
(t′, u) ∈ [[A]]ϕ.

It is then easy to see that [[A]]ϕ is βη-closed for any A. Moreover, it commutes
with the substitution:

Lemma 28 For any LAL types A and B, [[A[B/α]]]ϕ is equal to [[A]]ϕ[α 7→[[B]]ϕ].

The proof is by an easy induction on the structure of A.

As usual with logical relations, we have the basic lemma.

Lemma 29 (Basic Lemma) Let Γ be an environment x1 : A1, . . . , xn :
An, xn+1 : [An+1]†, . . . , xm : [Am]†. If Γ `LAL M : B, then for any valuation ϕ
and any (ui, vi) ∈ [[Ai]]ϕ (1 ≤ i ≤ m), we have (M•[~u/~x],M−[~v/~x]) ∈ [[B]]ϕ.

Proof. By induction on the structure of the derivation.
(Case 1) The derivation consists of the identity axiom. Straightforward.
(Case 2) The last rule is (( i):

y : A,Γ `M : B

Γ ` λy.M : A ( B

Let (ui, vi) ∈ [[Ai]]ϕ for each 1 ≤ i ≤ m. Then for any (u, v) ∈ [[A]]ϕ,
we have (M•[u/y, ~u/~x],M−[v/y,~v/~x]) ∈ [[B]]ϕ by i.h. This shows that we
have ((λy.M)•[~u/~x], (λy.M)−[~v/~x]) ∈ [[A ( B]]ϕ, because (λy.M)•[~u/~x]u =βη

31



M•[u/y, ~u/~x] and (λy.M)−[~v/~x]v =βη M
−[v/y,~v/~x].

(Case 3) The last rule is (( e):

Γ1 `M : A ( B Γ2 ` N : A
Γ1,Γ2 `M N : B

For simplicity, we assume Γ1 and Γ2 are empty (the argument is then easily
adapted to the general case). By i.h., (M•,M−) ∈ [[A ( B]]ϕ and (N•, N−) ∈
[[A]]ϕ. Hence ((MN)•, (MN)−) ∈ [[B]]ϕ.
(Case 4) The last rule is (! i):

y : B `M : A

y : [B]! ` !M : !A

Let (u, v) ∈ [[B]]ϕ. Then (!M)•[u/y] = λz.zM•[u/y] and (M•[u/y],M−[v/y]) ∈
[[A]]ϕ by i.h. Hence ((!M)•[u/y], (!M)−[v/y]) ∈ [[!A]]ϕ.
(Case 5) The last rule is (! e):

Γ1 ` N : !A y : [A]!,Γ2 `M : C

Γ1,Γ2 ` let N be !y in M : C

For simplicity, we assume Γ1 and Γ2 are empty. By i.h., (N•, N−) ∈ [[!A]]ϕ, so
there is some u such that N• =βη λz.zu (with z fresh) and (u,N−) ∈ [[A]]ϕ.
Hence by i.h. we have (M•[u/y],M−[N−/y]) ∈ [[C]]ϕ. Since

(let N be !y in M)• = N•(λy.M•) =βη (λz.zu)(λy.M•) =βη M
•[u/y]

and (let N be !y in M)− = M−[N−/y], we are done.
(Case 6) The last rule is (∀ i):

Γ `M : A
Γ `M : ∀α.A

Let ϕ be a valuation and let (ui, vi) ∈ [[Ai]]ϕ for every 1 ≤ i ≤ m. Since α
does not appear free in any Ai, we have (ui, vi) ∈ [[Ai]]ϕ[α 7→R] for any βη-closed
relation R. Therefore, we have (M•[~u/~x],M−[~v/~x]) ∈ [[A]]ϕ[α 7→R] by i.h. Hence
(M•[~u/~x],M−[~v/~x]) ∈ [[∀α.A]]ϕ.
(Case 7) The last rule is (∀ e):

Γ `M : ∀α.A
Γ `M : A[B/α]

For simplicity, we assume Γ is empty. By i.h., we have (M•,M−) ∈ [[∀α.A]]ϕ,
and hence (M•,M−) ∈ [[A]]ϕ[α 7→R] for any βη-closed relation R. In particular,
(M•,M−) ∈ [[A]]ϕ[α 7→[[B]]ϕ], and by Lemma 28, (M•,M−) ∈ [[A[B/α]]]ϕ.

Other cases are straightforward.
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Note that the βη-equality =βη itself is a βη-closed relation. So let us define
a valuation ϕ by taking ϕ(α) to be =βη for every variable α. We denote the
resulting logical relations [[A]]ϕ simply by [[A]]. With this canonical valuation,
we have the following:

Lemma 30 Let D be a DLAL type.

(1) If D is Π1 and (t, u) ∈ [[D?]], then deD(t) =βη u.
(2) If D is Σ1, then for any lambda-term t of the form xt1 · · · tn (n ≥ 0), we

have (enD(t), t) ∈ [[D?]].

Proof. By induction on the structure of D.
(Case 1) D is a variable α. Straightforward because [[α]] is just =βη and deα, enα
are just identity.
(Case 2) D is of the form A ( B.

(1) Suppose that A ( B is Π1 and (t, u) ∈ [[A? ( B?]]. Let x be a fresh
variable. Since (enA(x), x) ∈ [[A?]] by i.h. (with A a Σ1 type), we have
(t enA(x), ux) ∈ [[B?]]. Hence by i.h. (withB a Π1 type), deB(t enA(x)) =βη

ux. Therefore,

deA(B(t) = λx.deB(t enA(x)) =βη λx.ux =βη u.

(2) Suppose that A ( B is Σ1 and let t = xt1 · · · tn. To prove (enA(B(t), t) ∈
[[A? ( B?]], it is sufficient to show that (enA(B(t)u, tv)) ∈ [[B?]] holds
for any (u, v) ∈ [[A?]]. By i.h., deA(u) =βη v. Hence

enA(B(t)u = (λx.enB(t deA(x)))u =βη enB(t deA(u)) =βη enB(tv).

Therefore by i.h., we have (enA(B(t)u, tv) ∈ [[B?]].

(Case 3) D is of the form A⇒ B.

(1) Suppose that A ⇒ B is Π1 and (t, u) ∈ [[!A? ( B?]]. Let x be a fresh
variable. Since (enA(x), x) ∈ [[A?]] by i.h, we have (λy.y enA(x), x) ∈
[[!A?]]. Hence (t(λy.y enA(x)), ux) ∈ [[B?]], and so deB(t(λy.y enA(x))) =βη

ux. We therefore have

deA⇒B(t) = λx.deB(t(λy.y enA(x))) =βη λx.ux =βη u.

(2) Suppose that A ⇒ B is Σ1. Let t = xt1 · · · tn and (u, v) ∈ [[!A?]]. Our
purpose is to show (enA⇒B(t)u, tv) ∈ [[B?]].

There is some u′ such that u =βη λy.yu
′ and (u′, v) ∈ [[A?]]. By i.h. on

A we have deA(u′) =βη v. Hence

enA⇒B(t)u =βη (λx.enB(xλy.t deA(y)))(λz.zu′)

=βη enB((λz.zu′)(λy.t deA(y))) =βη enB(t deA(u′)) =βη enB(tv).
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Moreover by i.h. on B we have (enB(tv), tv) ∈ [[B?]], so as enA⇒B(t)u =βη

enB(tv) we get that: (enA⇒B(t)u, tv) ∈ [[B?]].

(Case 4) D is of the form ∀α.A. It is sufficient to show 1. But this is obvious
because (t, u) ∈ [[∀α.A]] implies (t, u) ∈ [[A]].
(Case 5) D is of the form §A. Straightforward.

Combined with the basic lemma, it results in:

Corollary 31 If A is a Π1 type of DLAL and `LAL M : A?, then deA(M•) =βη

M−.

7.3 Ptime completeness

Let us now show that DLAL has the same expressive power as LAL, at least
when algorithms on binary words are concerned.

Recall that any word w = i1 · · · in in {0, 1}∗ can be encoded both as a lambda-
term and as a λla-term:

w=λf0.λf1.λx.fi1(fi2 . . . (finx) . . . ) : W

wL =λf0.let f0 be !g0 in (let f1 be !g1 in §(λx.gi1(gi2 . . . (ginx) . . . ))) : WL

The former can be obtained from the latter by applying the erasure operator:
w = (wL)− for every w ∈ {0, 1}∗. For the converse direction, we have the
following term dtolW : W ( W•

L which maps w to w•L:

dtolW = λxW.λf0.f0(λg0.λf1.f1(λg1.xg0g1)).

(Here we cannot use enW, as it returns a slightly different term when applied
to w.) To see that dtolW is surely of type W ( W•

L, note that

W•
L = ∀α.(!(α ( α))• ( (!(α ( α))• ( §(α ( α),

where (!(α ( α))• = (∀β.((α ( α) ⇒ β) ( β). Hence the variables f0, f1

must be typed (∀β.((α ( α) ⇒ β) ( β). By instantiating β into §(α ( α)
for the type of f1 and into (!(α ( α))• ( §(α ( α) for the type of f0 (and
assuming that g0 and g1 are of type α ( α), one obtains:
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xg0g1 : §(α ( α)

λg1.xg0g1 : (α ( α)⇒ §(α ( α)

f1(λg1.xg0g1) : §(α ( α)

λf1.f1(λg1.xg0g1) : (!(α ( α))• ( §(α ( α)

λg0.λf1.f1(λg1.xg0g1) : (α ( α)⇒ (!(α ( α))• ( §(α ( α)

f0(λg0.λf1.f1(λg1.xg0g1)) : (!(α ( α))• ( §(α ( α)

λf0.f0(λg0.λf1.f1(λg1.xg0g1)) : (!(α ( α))• ( (!(α ( α))• ( §(α ( α).

It is easy to see that dtolW(w) reduces to (wL)•, by noting:

(wL)• = λf0.f0(λg0.λf1.f1(λg1.λx.gi1(gi2 . . . (ginx) . . . ))).

Theorem 32 (Preservation of representable functions) Suppose that a
function f : {0, 1}∗ → {0, 1}∗ is represented by a λla-term M with `LAL M :
WL −◦ §nWL for some n ≥ 0. Define a lambda-term t by

t = λx.de§nW(M•dtolW(x)).

Then we have that `DLAL t : W −◦ §nW and t also represents f .

Proof. The term t gets type W −◦ §nW in DLAL as follows (notice that
W? = WL), using Proposition 24 and Lemma 27:

;`M• : W?• −◦ §nW?• ;x : W ` dtolW(x) : W?•

;x : W `M•dtolW(x) : §nW?•

;x : W ` de§nW(M•dtolW(x)) : §nW
` t : W −◦ §nW .

Since M represents f , MwL reduces to f(w)
L

for any w ∈ {0, 1}∗. This implies

that (MwL)− =βη (f(w)
L
)−. On the other hand,

tw =βη de§nW(M•dtolW(w)) =βη de§nW(M•(wL)•) = de§nW((MwL)•).

Applying Corollary 31, as §nW is Π1, we thus get:

tw =βη (MwL)− =βη (f(w)
L
)− = f(w).

Theorem 9 is then a direct consequence of the above theorem together with
the following fact known from [39] (the depth bound is sharpened):

Theorem 33 (FP completeness of LAL) If a function f : {0, 1}? → {0, 1}?
is computable in time O(n2d

) by a multi-tape Turing machine for some d, then
there exists a λla-term M such that `LAL M : WL ( §2d+2WL and M rep-
resents f .
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Proof (Sketch). Following the idea of [2], let Conf be the LAL-type

∀α.!(α−◦ α)m ( §((α−◦ α)2n ⊗Bk),

which serves as a type for the configurations of a given Turing machine with
m symbols, n tapes and k states. As in [2], one can define the following λla-
terms:

• trans : Conf ( Conf for one-step transition of a Turing Machine;
• init : WL ( Conf for initialization;
• output : Conf ( WL for output extraction;
• length : WL ( NL for the length map;
• dupl : WL ( §(WL ⊗WL) for duplication.

Furthermore, Proposition 11 yields a term prod(2d) : NL ( §2dNL for the
map n 7→ n2d

. By applying iterConf to trans and init, we obtain

x : NL, y : §WL `LAL M0 : §Conf .

The term M0 transforms a given input y into an initial configuration and
iterates the one-step transition x times. By applying the rule (§ i) 2d times
and composing the outcome with prod(2d), we obtain

x : NL, y : §2d+1WL `LAL M1 : §2d+1Conf ,

which iterates the transition x2d
times. Finally, by using output, length, a

variant of coer1 and dupl, we obtain the desired term M : WL −◦ §2d+2WL

representing the function f .

We remark that it is possible to improve the type of M as WL ( §2d+1WL

for d ≥ 1, by combining prod(2d) and dupl in a clever way.

8 Conclusion and perspectives

We have presented a polymorphic type system for lambda calculus which guar-
antees that typed terms can be reduced in a polynomial number of steps, and
in polynomial time. This system, DLAL, has been designed as a subsystem
of LAL. It offers the advantage of recasting the main ideas and achievements
of light linear logic into a plain lambda calculus setting.

We have also shown that DLAL is not more constrained computationally
than LAL, by describing a generic encoding of LAL typed terms into DLAL
ones, which preserves the denotation of functions over binary integers. This
has shown that DLAL is complete for the class of polynomial time functions.
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We think that the techniques we used to relate DLAL and LAL, based on
logical relations, could probably be applied to similar situations in other linear
logic like or modal type systems, to encode the general language into a smaller
subsystem.

Finally the interest of DLAL has also been confirmed by another work, [3,4],
which showed that type inference in DLAL for system F terms can be per-
formed in polynomial time, using an algorithm based on constraints solving.

Other approaches to characterization of complexity classes in lambda calcu-
lus have considered restrictions on type orders (see [22,29,36]); it would be
interesting to examine the possible relations between this line of work and the
present setting based on linear logic.
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