
Verification of Ptime reducibility for
system F terms via Dual Light Affine Logic

Vincent Atassi?, Patrick Baillot?, and Kazushige Terui??

1 LIPN, Univ. Paris 13 / CNRS , France, atassi@lipn.univ-paris13.fr
2 LIPN, Univ. Paris 13 / CNRS, France, pb@lipn.univ-paris13.fr

3 National Institute of Informatics, Japan, terui@nii.ac.jp

Abstract. In a previous work we introduced Dual Light Affine Logic
(DLAL) ([BT04]) as a variant of Light Linear Logic suitable for guaran-
teeing complexity properties on lambda-calculus terms: all typable terms
can be evaluated in polynomial time and all Ptime functions can be rep-
resented. In the present work we address the problem of typing lambda-
terms in second-order DLAL. For that we give a procedure which, start-
ing with a term typed in system F, finds all possible ways to decorate
it into a DLAL typed term. We show that our procedure can be run in
time polynomial in the size of the original Church typed system F term.

1 Introduction

Several works have studied programming languages with intrinsic computational
complexity properties. This line of research, Implicit computational complexity
(ICC), is motivated both by the perspective of automated complexity analysis,
and by foundational goals, in particular to give natural characterizations of com-
plexity classes, like Ptime or Pspace. Different calculi have been used for this
purpose coming from primitive recursion, lambda-calculus, rewriting systems
(e.g. [BC92,MM00,LM93]). . . A convenient way to see these systems is in general
to describe them as a subset of programs of a larger language satisfying certain
criteria: for instance primitive recursive programs satisfying safe/ramified recur-
sion conditions, rewriting systems admitting a termination ordering and quasi
interpretation, etc. . .

Inference. To use such ICC systems for programming purpose it is natural
to wish to automatize the verification of the criterion. This way the user could
stick to a simple programming language and the compiler would check whether
the program satisfies the criterion, in which case a complexity property would
be guaranteed.

In general this decision procedure involves finding a certain witness, like a
type, a proof or a termination ordering. Depending on the system this witness
might be useful to provide more precise information, like an actual bound on the

? Partially supported by projects CRISS (ACI), GEOCAL (ACI), NO-CoST (ANR).
?? Partially supported by Grant-in-Aid for Scientific Research, MEXT, Japan.

running time, or a suitable strategy to evaluate the program. It might be used
as a certificate guaranteeing a particular quantitative property of the program.

Light linear logic. In the present work we consider the approach of Light
linear logic (LLL) ([Gir98]), a variant of Linear logic which characterizes poly-
nomial time computation, within the proofs-as-programs correspondence. It in-
cludes higher-order and polymorphism, and can be extended to a naive set the-
ory ([Ter04a]), in which the provably total functions correspond to the class of
polynomial time functions.

The original formulation of LLL by Girard was quite complicated, but a first
simplification was given by Asperti with Light Affine Logic (LAL) ([AR02]).
Both systems have two modalities (one more than Linear logic) to control dupli-
cation. There is a forgetful map to system F terms (polymorphic types) obtained
by erasing some information (modalities) in types; if an LAL typed term t is
mapped to an F-typed term M we also say that t is a decoration of M .

So an LAL program can be understood as a system F program, together with
a typing guarantee that it can be evaluated in polynomial time. As system F is
a reference system for the study of polymorphically typed functional languages
and has been extensively studied, this seems to offer a solid basis to LAL.

However LAL itself is still difficult to handle and following the previous
idea for the application of ICC methods, we would prefer to use plain lambda-
calculus as a front-end language, without having to worry about the handling
of modalities, and instead to delegate the LAL typing part to a type inference
engine. The study of this approach was started in [Bai02]. For it to be fully
manageable however several conditions should be fulfilled:

1. a suitable way to execute the lambda-terms with the expected complexity
bound,

2. an efficient type inference,
3. a typed language which is expressive enough so that a reasonable range of

programs is accepted.

The language LAL presents some drawback for the first point, because the
LAL typed terms need to be evaluated with a specific graph syntax, proof-nets,
in order to satisfy the polynomial bound, and plain beta reduction can lead
to exponential blow-up. In a previous work ([BT04]) we addressed this issue
by defining a subsystem of LAL, called Dual Light Affine Logic (DLAL). It is
defined with both linear and non-linear function types. It is complete for Ptime
just as LAL and its main advantage is that it is also Ptime sound w.r.t. beta
reduction: a DLAL term admits a bound on the length of all its beta reduction
sequences. Hence DLAL stands as a reasonable substitute for plain LAL for
typing issues.

Concerning point 2, as type inference for system F is undecidable ([Wel99])
we don’t try to give a full-fledged type inference algorithm from untyped terms.
Instead, to separate the polymorphic part issue from the proper DLAL part one,
we assume the initial program is already typed in F. Either the system F typing
work is left to the user, or one could use a partial algorithm for system F typing
for this preliminary phase.

So the contribution of the present work is to define an efficient algorithm
to decide if a system F term can be decorated in a DLAL typed term. This
was actually one of the original motivations for defining DLAL. We show here
that decoration can be performed in polynomial time. This is obtained by taking
advantage of intuitions coming from proof-nets, but it is presented in a standard
form with a first phase consisting in generating constraints expressing typability
and a second phase for constraints solving. One difficulty is that the initial
presentation of the constraints involves disjunctions of linear constraints, for
which there is no obvious Ptime bound. Hence we provide a specific resolution
strategy.

The complete algorithm is already implemented in ML, in a way that fol-
lows closely the specification given in the article. It is modular and usable with
any linear constraints solver. The code is commented, and available for public
download (Section 6). With this program one might thus write terms in system
F and verify if they are Ptime and obtain a time upper bound. It should in par-
ticular be useful to study further properties of DLAL and to experiment with
reasonable size programs.

The point 3 stressed previously about expressivity of the system remains an
issue which should be explored further. Indeed the DLAL typing discipline will
in particular rule out some nested iterations which might in fact be harmless for
Ptime complexity. This is related to the line of work on the study of intensional
aspects of Implicit computational complexity ([MM00,Hof03]).

However it might be possible to consider some combination of DLAL with
other systems which could allow for more flexibility, and we think a better un-
derstanding of DLAL and in particular of its type inference, is a necessary step
in that direction.

Related work. Inference problems have been studied for several ICC sys-
tems (e.g. [Ama05], [HJ03]). Elementary linear logic (EAL, [Gir98,DJ03]) in par-
ticular is another variant of Linear logic which characterizes Kalmar elementary
time and has applications to optimal reduction. Type inference for propositional
EAL (without second-order) has been studied in [CM01],[CRdR03],[CDLRdR05]
and [BT05] which gives a polynomial time procedure. Type inference for LAL
was also investigated, in [Bai02,Bai04]. To our knowledge the present algorithm
is however the first one for dealing with polymorphic types in a EAL-related
system, and also the first one to infer light types in polynomial time.

Due to space constraints some proofs are omitted in this paper, but can be
found in [ABT06].

Ackowledgements. The authors wish to thank Laurent Régnier for useful
discussions related to the topic of this paper.

2 From system F to DLAL

The language LF of system F types is given by:

T,U ::= α | T → U | ∀α.T .

We assume that a countable set of term variables xT , yT , zT , . . . is given for
each type T . The terms of system F are built as follows (here we write MT to
indicate that the term M has type T):

xT (λxT .MU)T→U ((MT→U)NT)U (Λα.MU)∀α.U ((M∀α.U)T)U [T/α]

with the proviso that when building a term Λα.MU , α may not occur free in the
types of free term variables of M (the eigenvariable condition). The set of free
variables of M is denoted FV (M).

It is well known that there is no sensible resource bound (i.e. time/space) on
the execution of system F terms in general. On the other hand, we are practically
interested in those terms which can be executed in polynomial time. Since the
class P of such terms is not recursively enumerable (as can be easily shown by
reduction of the complement of Hilbert’s 10th problem), we are naturally led to
the study of sufficiently large subclasses of P. The system DLAL gives such a
class in a purely type-theoretic way.

The language LDLAL of DLAL types is given by:

A,B ::= α | A (B | A⇒ B | §A | ∀α.A .

We note §0A = A and §k+1A = §§kA. The erasure map (.)− from LDLAL to
LF is defined by: (§A)− = A−, (A (B)− = (A⇒ B)− = A− → B−, and
(.)− commutes with the other connectives. We say A ∈ LDLAL is a decoration
of T ∈ LF if A− = T .

A declaration is a pair of the form xT : B with B− = T . It is often written
as x : B for simplicity. A judgement is of the form Γ ;∆ ` M : A, where M is
a system F term, A ∈ LDLAL and Γ and ∆ are disjoint sets of declarations.
When ∆ consists of x1 : A1, . . . , xn : An, §∆ denotes x1 : §A1, . . . , xn : §An.
The type assignment rules are given on Figure 1. Here, we assume that the
substitution M [N/x] used in (§ e) is capture-free. Namely, no free type variable
α occurring in N is bound in M [N/x]. We write Γ ;∆ `DLAL M : A if the
judgement Γ ;∆ `M : A is derivable.

An example of concrete program typable in DLAL is given in Section 6.
Recall that binary words, in {0, 1}∗, can be given in system F the type:

WF = ∀α.(α→ α) → (α→ α) → (α→ α) .

A corresponding type in DLAL, containing the same terms, is given by:

WDLAL = ∀α.(α−◦ α) ⇒ (α−◦ α) ⇒ §(α−◦ α) .

The depth d(A) of a DLAL type A is defined by:

d(α) = 0, d(A (B) = max(d(A), d(B)), d(∀α.B) = d(B),
d(§A) = d(A) + 1, d(A⇒ B) = max(d(A) + 1, d(B)).

A type A is said to be Π1 if it does not contain a negative occurrence of ∀; like
for instance WDLAL.

The fundamental properties of DLAL are the following [BT04]:

; xA−
: A ` xA−

: A
(Id)

Γ ; xA−
: A, ∆ ` M : B

Γ ; ∆ ` λxA−
.M : A (B

((i) Γ1; ∆1 ` M : A (B Γ2; ∆2 ` N : A

Γ1, Γ2; ∆1, ∆2 ` (M)N : B
((e)

xA−
: A, Γ ; ∆ ` M : B

Γ ; ∆ ` λxA−
.M : A ⇒ B

(⇒ i) Γ ; ∆ ` M : A ⇒ B ; z : C ` N : A

Γ, z : C; ∆ ` (M)N : B
(⇒ e) (*)

Γ1; ∆1 ` M : A

Γ1, Γ2; ∆1, ∆2 ` M : A
(Weak)

x1 : A, x2 : A, Γ ; ∆ ` M : B

x : A, Γ ; ∆ ` M [x/x1, x/x2] : B
(Cntr)

; Γ, ∆ ` M : A

Γ ; §∆ ` M : §A (§ i)
Γ1; ∆1 ` N : §A Γ2; x : §A, ∆2 ` M : B

Γ1, Γ2; ∆1, ∆2 ` M [N/x] : B
(§ e)

Γ ; ∆ ` M : A

Γ ; ∆ ` Λα.M : ∀α.A
(∀ i) (**)

Γ ; ∆ ` M : ∀α.A

Γ ; ∆ ` (M)B− : A[B/α]
(∀ e)

(*) z : C can be absent.
(**) α does not occur free in Γ, ∆.

Fig. 1. Typing system F terms in DLAL

Theorem 1.

1. For every function f : {0, 1}∗ −→ {0, 1}∗ in DTIME[nk], there exists a
closed term M of type WDLAL −◦ §dWDLAL with d = O(log k) representing
f .

2. Let M be a closed term of system F that has a Π1 type A in DLAL. Then
M can be normalized in O(|M |2d

) steps by β-reduction, where d = d(A) and
|M | is the structural size of M . Moreover, the size of any intermediary term
occuring in normalization is also bounded by O(|M |2d

).

Although DLAL does not capture all Ptime algorithms P, the result 1 guar-
antees that DLAL is at least expressive enough to represent all Ptime functions.
In fact, DLAL is as expressive as LAL even at the level of algorithms, because
there exists a generic translation from LAL to DLAL given by:

(!A)o = ∀α.((Ao ⇒ α) (α), (.)o commutes with other connectives than !.

See [Ter04b] for details.
The result 2 on the other hand implies that if we ignore the embedded types

occurring in M , the normal form of M can be computed in polynomial time (by
ordinary β-reduction; that is the difference from LAL).

Now, let MWF→WF be a system F typed term and suppose that we know
that it has a DLAL type WDLAL −◦ §dWDLAL for some d ≥ 0. Then, by the
consequence of the above theorem, we know that the term M is Ptime. In fact,
given a binary word w ∈ {0, 1}∗, consider its Church coding w of type WDLAL.
Then we have that (M)w has type §dWDLAL, and can thus be evaluated in
O(|w|2d+1

) steps. Thus by assigning a DLAL type to a given system F term, one
can statically verify a polynomial time bound for its execution.

In order to use DLAL for resource verification of system F terms, we address
the following problem:

Problem 2 (DLAL typing). Given a closed term MT of system F, determine if
there is a decoration A of T such that `DLAL M : A.

(Here the closedness assumption is only for readability.)
In the sequel, we show that there is a polynomial time algorithm for solving

the DLAL typing problem.

3 Characterizing DLAL typability

3.1 Pseudo-terms

To address the DLAL typing problem, it is convenient to introduce an inter-
mediary syntax which is more informative than system F terms (but not more
informative than DLAL derivations themselves).

First we decompose A⇒ B into !A (B. The language LDLAL? of DLAL?
types is given by:

A ::= α | D (A | ∀α.A | §A , D ::= A | !A .

There is a natural map (.)? from LDLAL to LDLAL? such that (A ⇒ B)? =
!A? (B? and commutes with the other operations. The erasure map (.)− from
LDLAL? to LF can be defined as before. A DLAL? type is called a bang type
if it is of the form !A, and otherwise called a linear type. In the sequel, A,B,C
stand for linear types, and D for either bang or linear types.

We assume there is a countable set of term variables xD, yD, zD, . . . for each
D ∈ LDLAL?. The pseudo-terms are defined by the following grammar:

t, u ::= xD | λxD.t | (t)u | Λα.t | (t)A | §t | §̄t,

where A is a linear type and D is an arbitrary one. The idea is that § corresponds
to the main door of a §-box (or a !-box) in proof-nets ([Gir87,AR02]) while §̄
corresponds to auxiliary doors. But note that there is no information in the
pseudo-terms to link occurrences of § and §̄ corresponding to the same box, nor
distinction between §-boxes and !-boxes.

There is a natural erasure map from pseudo-terms to system F terms, which
we will also denote by (.)−, consisting in removing all occurrences of §, §̄, replac-
ing xD with xD−

and (t)A with (t)A−. When t− = M , t is called a decoration
of M .

For our purpose, it is sufficient to consider the class of regular pseudo-terms,
given by:

t ::= §mu, u ::= xD | λxD.t | (t)t | Λα.t | (t)A ,

where m is an arbitrary value in Z and §mu is § · · · §u (resp. §̄ · · · §̄u) with m
(resp. −m) occurrences of § (resp. §̄) if m ≥ 0 (resp. m < 0). So a pseudo-term
is regular if and only if it does not contain any subterm of the form §§̄u or §̄§u.

3.2 Local typing condition

We now try to assign types to pseudo-terms in a locally compatible way. A
delicate point in DLAL is that it is sometimes natural to associate two types to
one variable x. For instance, we have x : A;`DLAL x : §A in DLAL, and this
can be read as x : !A ` x : §A in terms of DLAL? types. We thus distinguish
between the input types, which are inherent to variables, and the output types,
which are inductively assigned to all pseudo-terms. The condition (i) below is
concerned with the output types. In the sequel, D◦ denotes §A if D is of the
form !A, and otherwise denotes D itself.

A pseudo-term t satisfies the local typing condition if the following holds:
(i) one can inductively assign a linear type to each subterm of t in the following

way (here the notation tA indicates that t has the output type A):

(xD)D◦ (§tA)§A (§̄t§A)A (λxD.tB)D(B

((tD(B)uD◦)B (Λα.tA)∀α.A ((t∀α.A)B)A[B/α] ,

(ii) when a variable x occurs more than once in t, it is typed as x!A,
(iii) t satisfies the eigenvariable condition.
We also say that t is locally typed.

Notice that when D is a bang type, there is a type mismatch between D and
D◦ in the case of application. For instance, (t!A(B)u§A satisfies (i) whenever t
and u do. This mismatch will be settled by the bang condition below. Observe
also that the local typing rules are syntax-directed.

3.3 Boxing conditions

We now recall definitions and results from [BT05] giving some necessary condi-
tions for a pseudo-term to be typable (in [BT05] these conditions are used for El-
ementary Affine Logic typing). We consider words over the language L = {§, §̄}?

and ≤ the prefix ordering. If t is a pseudo-term and u is an occurrence of subterm
in t, let doors(t, u) be the word inductively defined as follows. If t = u, define
doors(t, u) = ε. Otherwise:

doors(§t, u) = § :: (doors(t, u)),
doors(§̄t, u) = §̄ :: (doors(t, u)),
doors(λyD.t1, u) = doors(Λα.t1, u) = doors((t1)A, u) = doors(t1, u),
doors((t1)t2, u) = doors(ti, u) where ti is the subterm containing u.

That is to say, doors(t, u) collects the modal symbols §, §̄ occurring on the path
from the root to the node u in the term tree of t. We define a map s : L → Z
by:

s(ε) = 0, s(§ :: l) = 1 + s(l), s(§̄ :: l) = −1 + s(l).

A word l ∈ L is weakly well-bracketed if ∀l′ ≤ l, s(l′) ≥ 0, and is well-bracketed
if this condition holds and moreover s(l) = 0: think of § and §̄ resp. as opening
and closing brackets.

Bracketing condition. Let t be a pseudo-term. We say that t satisfies the
bracketing condition if:

(i) for any occurrence of free variable x in t, doors(t, x) is well-bracketed;
moreover for any occurrence of an abstraction subterm λx.v of t,
(ii) doors(t, λx.v) is weakly well-bracketed, and
(iii) for any occurrence of x in v, doors(v, x) is well-bracketed.

This condition is sufficient to rule out the canonical morphisms for dereliction
and digging, which are not valid in DLAL (nor in EAL):

(λx§A.§̄x)§A(A, (λx§A.§x)§A(§§A .

Since doors(§̄x, x) = §̄ and doors(§x, x) = §, they do not satisfy the bracketing
condition (iii).

Bang condition. A subterm u is called a bang subterm of t if it occurs as
(t′!A(B)u§A in t. We say that a locally typed pseudo-term t satisfies the bang
condition if for any bang subterm u of t,
(i) u contains at most one free variable x!C , having a bang type !C.
(ii) for any subterm v of u such that v 6= u and v 6= x, s(doors(u, v)) ≥ 1.

This condition is sufficient to rule out the canonical morphisms for monoidal-
ness !A⊗!B−◦!(A ⊗ B) and §A−◦!A which are not valid in LAL (the following
terms and types are slightly more complicated since LDLAL? does not explicitly
contain a type of the form A−◦ !B):

λx!(A(B).λy!B(C .λz!A.(y)§((§̄x)§̄z) , λx§A.λy!A(B .(y)§(§̄x) .

In the first pseudo-term, the bang subterm §((§̄x)§̄z) contains more than one
free variable. In the second pseudo-term, the bang subterm §(§̄x) contains a free
variable typed by a linear type. Hence they both violate the bang condition (i).

Λ-Scope condition. The previous conditions, bracketing and bang, would
be enough to deal with boxes in the propositional fragment of DLAL. For han-
dling second-order quantification though, we need a further condition to take
into account the sequentiality enforced by the quantifiers. For instance consider
the following two formulas (the second one is known as Barcan’s formula):

(1) §∀α.A (∀α.§A , (2) ∀α.§A (§∀α.A .

Assuming α occurs free in A, formula (1) is provable while (2) is not. Observe
that we can build the following pseudo-terms which are locally typed and have
respectively type (1) and (2):

t1 = λx§∀α.A.Λα.§((§̄x)α) , t2 = λx∀α.§A.§Λα.§̄((x)α) .

Both pseudo-terms satisfy the previous conditions, but t2 does not correspond
to a DLAL derivation.

Let u be a locally typed pseudo-term. We say that u depends on α if the
type of u contains a free variable α. We say that a locally typed pseudo-term t
satisfies the Λ-scope condition if: for any subterm Λα.u of t and for any subterm
v of u that depends on α, doors(u, v) is weakly well-bracketed.

Coming back to our example: t1 satisfies the Λ-scope condition, but t2 does
not, because (x)α depends on α and nevertheless doors(§̄((x)α), (x)α) = §̄ is not
weakly well-bracketed.

So far we have introduced four conditions on pseudo-terms: local typing,
bracketing, bang and Λ-scope. Let us call a regular pseudo-term satisfying these
conditions well-structured. It turns out that the well-structured pseudo-terms
exactly correspond to the DLAL typing derivations.

Theorem 3. Let M be a system F term. Then x1 : A1, . . . , xm : Am; y1 :
B1, . . . , yn : Bn `M : C is derivable in DLAL if and only if there is a decoration
t of M with type C? and with free variables x!A?

1
1 , . . . , x

!A?
m

m , yB?
1

1 , . . . , y
B?

n
n which

is well-structured.

The ‘only-if’ direction can be shown by induction on the length of the deriva-
tion. To show the converse, we observe that whenever pseudo-terms λxD.t, (t)u,
Λα.t, (t)A are well-structured, so are the immediate subterms t and u. The case
of §t is handled by the following key lemma (already used for EAL? in [BT05]):

Lemma 4 (Boxing). If §(tA) is a well-structured pseudo-term, then there ex-
ist pseudo-terms vA, (u1)§B1 , . . . , (un)§Bn , unique (up to renaming of v’s free
variables) such that:
1. FV (v) = {xB1

1 , . . . , xBn
n } and each xi occurs exactly once in v,

2. §t = §v[§̄u1/x1, . . . , §̄un/xn] (substitution is assumed to be capture-free),
3. v, u1, . . . , un are well-structured.

As a consequence of Theorem 3, our DLAL typing problem boils down to:

Problem 5 (decoration). Given a system F term M , determine if there exists a
decoration t of M which is well-structured.

4 Parameterization and constraints

4.1 Parameterized terms and instantiations

To solve the decoration problem (Problem 5), one needs to explore the infinite
set of decorations. This can be effectively done by introducing an abstract kind
of types and terms with symbolic parameters, and expressing the conditions for
such abstract terms to be materialized by boolean and integer constraints over
those parameters (like in the related type inference algorithms for EAL or LAL
mentioned in the introduction).

We use two sorts of parameters: integer parameters n,m, . . . meant to range
over Z, and boolean parameters b1,b2, . . . meant to range over {0, 1}. We also
use linear combinations of integer parameters c = n1 + · · · + nk, where k ≥ 0
and each ni is an integer parameter. In case k = 0, it is written as 0.

The set of parameterized types (p-types for short) is defined by:

F ::= α | D (A | ∀α.A, A ::= §cF, D ::= §b,cF ,

where b is a boolean parameter and c is a linear combination of integer param-
eters. Informally speaking, in §b,cF the c stands for the number of modalities

ahead of the type, while the boolean b serves to determine whether the first
modality, if any, is § or !. In the sequel, A,B,C stand for linear p-types of the
form §cF , and D for bang p-types of the form §b,cF , and E for arbitrary p-types.

When A is a linear p-type §cF , B[A/α] denotes a p-type obtained by replac-
ing each §c′α in B with §c′+cF and each §b,c′α with §b,c′+cF . When D = §b,cF ,
D◦ denotes the linear p-type §cF .

We assume that there is a countable set of variables xD, yD, . . . for each
bang p-type D. The parameterized pseudo-terms (p-terms for short) t, u . . . are
defined by the following grammars:

t ::= §mu, u ::= xD | λxD.t | (t)t | Λα.t | (t)A .

We denote by parbool(t) the set of boolean parameters of t, and by parint(t)
the set of integer parameters of t. An instantiation φ = (φb, φi) for a p-term
t is given by two maps φb : parbool(t) → {0, 1} and φi : parint(t) → Z. The
map φi can be naturally extended to linear combinations c = n1 + · · ·+ nk by
φi(c) = φi(n1) + · · · + φi(nk). An instantiation φ is said to be admissible for a
p-type E if for any linear combination c occurring in E, we have φi(c) ≥ 0, and
moreover whenever §b,cF occurs in E, φb(b) = 1 implies φi(c) ≥ 1. When φ is
admissible for E, a type φ(E) of DLAL? is obtained as follows:

φ(§cF) = §φi(c)φ(F), φ(§b,cF) = §φi(c)φ(F) if φb(b) = 0,
= !§φi(c)−1φ(F) otherwise,

and φ commutes with the other connectives. An instantiation φ for a p-term t is
said to be admissible for t if it is admissible for all p-types occurring in t. When
φ is admissible for t, a regular pseudo-term φ(t) can be obtained by replacing
each §mu with §φi(m)u, each xD with xφ(D), and each (t)A with (t)φ(A).

As for pseudo-terms there is an erasure map (.)− from p-terms to system F
terms consisting in forgetting modalities and parameters.

A free linear decoration (free bang decoration, resp.) of a system F type T
is a linear p-type (bang p-type, resp.) E such that (i) E− = T , (ii) each linear
combination c occurring in E consists of a single integer parameter m, and (iii)
the parameters occurring in E are mutually distinct. Two free decorations T 1

and T 2 are said to be distinct if the set of parameters occurring in T 1 is disjoint
from the set of parameters in T 2.

The free decorationM of a system F term M (which is unique up to renaming
of parameters) is obtained as follows: first, to each type T of a variable xT used in
M , we associate a free bang decoration T , and to each type U occurring as (N)U
in M , we associate a free linear decoration U with the following proviso:
(i) one and the same T is associated to all occurrences of the same variable xT ;
(ii) otherwise mutually distinct free decorations T 1, . . . , Tn are associated to

different occurrences of T .
M is now defined by induction on the construction of M :

xT = §mxT , λxT .M = §mλxT .M, (M)N = §m((M)N),
Λα.M = §mΛα.M, (M)T = §m((M)T),

where all newly introduced parameters m are chosen to be fresh. The key prop-
erty of free decorations is the following:

Lemma 6. Let M be a system F term and t be a regular pseudo-term. Then t
is a decoration of M if and only if there is an admissible instantiation φ for M
such that φ(M) = t.

Hence our decoration problem boils down to:

Problem 7 (instantiation). Given a system F term M , determine if there exists
an admissible instantiation φ for M such that φ(M) is well-structured.

For that we will need to be able to state the four conditions (local typing,
bracketing, bang, and Λ-scope) on p-terms; they will yield some constraints on
parameters. We will speak of linear inequations, meaning in fact both linear
equations and linear inequations.

4.2 Local typing constraints

First of all, we need to express the unifiability of two p-types E1 and E2. We
define a set U(E1, E2) of constraints by

U(α, α) = ∅, U(D1 (A1, D2 (A2) = U(D1, D2) ∪ U(A1, A2),
U(∀α.A1,∀α.A2) = U(A1, A2), U(§c1F1, §c2F2) = {c1 = c2} ∪ U(F1, F2),

U(§b1,c1F1, §b2,c2F2) = {b1 = b2, c1 = c2} ∪ U(F1, F2).

and undefined otherwise. It is straightforward to observe:

Lemma 8. Let E1, E2 be two p-types such that U(E1, E2) is defined, and φ be
an admissible instantiation for E1 and E2. Then φ(E1) = φ(E2) if and only if
φ is a solution of U(E1, E2).

For any p-type E, M(E) denotes the set {c ≥ 0 : c occurs in E} ∪ {b =
1 ⇒ c ≥ 1 : §b,cF occurs in E}. Then φ is admissible for E if and only if φ is
a solution of M(E).

Now consider the free decoration M of a system F typed term M . We assign
to each subterm t of M a linear p-type B (indicated as tB) and a set M(t) of
constraints as on Figure 2. Notice that any linear p-type is of the form §cF .
Moreover, since t comes from a system F typed term, we know that F is an
implication when t occurs as (t§cF)u, and F is a quantification when t occurs
as (t§cF)A. The set U(D◦, A) used in M((t)u) is always defined, and finally, M
satisfies the eigenvariable condition.

Let Ltype(M) be M(M) ∪ {b = 1 : x§
b,cF occurs more than once in M}.

4.3 Boxing constraints

In this section we need to recall some definitions from [BT05]. We consider the
words over integer parameters m, n . . . , whose set we denote by Lp.

(xD)D◦ M(x) = M(D)
(§mt§cF)§m+cF M(§mt) = {m + c ≥ 0} ∪M(t)

(λxD.tA)§0(D(A) M(λxD.t) = M(D) ∪M(t)
((t§c(D(B))uA)B M((t)u) = {c = 0} ∪ U(D◦, A) ∪M(t) ∪M(u)

(Λα.tA)§0∀α.A M(Λα.t) = M(t)
((t§c∀α.B)A)B[A/α] M((t)A) = {c = 0} ∪M(A) ∪M(t)

Fig. 2. M(t) constraints.

Let t be a p-term and u an occurrence of subterm of t. We define, as for
pseudo-terms, the word doors(t, u) in Lp as follows. If t = u, define doors(t, u) =
ε. Otherwise:

doors(§mt, u) = m :: (doors(t, u)),
doors(λyD.t1, u) = doors(Λα.t1, u) = doors((t1)A, u) = doors(t1, u),
doors((t1)t2, u) = doors(ti, u) when ti is the subterm containing u.

The sum s(l) of an element l of Lp is a linear combination of integer parame-
ters defined by: s(ε) = 0, s(m :: l) = m + s(l). For each list l ∈ Lp, define
wbracket(l) = {s(l′) ≥ 0 | l′ ≤ l} and bracket(l) = wbracket(l) ∪ {s(l) = 0}.

Given a system F term M , we define the following sets of constraints:
Bracketing constraints. Bracket(M) is the union of the following sets:
(i) bracket(doors(M,x)) for each free variable x in M ,
and for each occurrence of an abstraction subterm λx.v of M ,
(ii) wbracket(doors(M,λx.v)),
(iii) bracket(doors(v, x)) for each occurrence of x in v.
Bang constraints. A subterm uA that occurs as (t§c′ (§b,cF(B))uA in M is
called a bang subterm of M with the critical parameter b. Now Bang(M) is
the union of the following sets: for each bang subterm u of M with a critical
parameter b,
(i) {b = 0} if u has strictly more than one occurrence of free variable, and

{b = 1 ⇒ b′ = 1} if u has exactly one occurrence of free variable x§
b′,c′F ′

.
(ii) {b = 1 ⇒ s(doors(u, v)) ≥ 1 : v subterm of u such that v 6= u and v 6= x}.
Λ-Scope constraints. Scope(M) is the union of the following sets:
(i) wbracket(doors(u, v)) for each subterm Λα.u of M and for each subterm v of

u that depends on α.
We denote Const(M) = Ltype(M)∪Bracket(M)∪Bang(M)∪Scope(M). Then:

Theorem 9. Let M be a system F term and φ be an instantiation for M . Then:
φ is admissible for M and φ(M) is well-structured if and only if φ is a solution
of Const(M). Moreover, the number of (in)equations in Const(M) is quadratic
in the size of M .

5 Solving the constraints

From a proof-net point of view, naively one might expect that finding a DLAL
decoration could be decomposed into first finding a suitable EAL decoration
(that is to say a box structure) and then determining which boxes should be !

ones. This however cannot be turned into a valid algorithm because there can
be an infinite number of EAL decorations in the first place.

Our method will thus proceed in the opposite way: first solve the boolean
constraints, which corresponds to determine which !-boxes are necessary, and
then complete the decoration by finding a suitable box structure.

5.1 Solving boolean constraints

We split Const(M) into three disjoint sets Constb(M), Consti(M), Constm(M):

• A boolean constraint s ∈ Constb(M) consists of only boolean parameters. s is
of one of the following forms:
b1 = b2 (in Ltype(M)), b = 1 (in Ltype(M)),
b = 0 (in Bang(M)), b = 1 ⇒ b′ = 1 (in Bang(M)).

• A linear constraint s ∈ Consti(M) deals with integer parameters only. A
linear constraint s is of one of the following forms:
c1 = c2 (in Ltype(M)), c = 0 (in Ltype(M) and Bracket(M)),
c ≥ 0 (in Ltype(M), Bracket(M), Scope(M)).

• A mixed constraint s ∈ Constm(M) contains a boolean parameter and a linear
combination and is of the following form:
b = 1 ⇒ c ≥ 1 (in Ltype(M) and Bang(M)).
We consider the set of instantiations on boolean parameters and the exten-

sional order ≤ on these maps: ψb ≤ φb if for any b, ψb(b) ≤ φb(b).

Lemma 10. Constb(M) has a solution if and only if it has a minimal solution
ψb. Moreover one can decide in time polynomial in the cardinality of Constb(M)
if there exists a solution, and in that case provide a minimal one.

5.2 Solving integer constraints

When φb is a boolean instantiation, φbConstm(M) denotes the set of linear con-
straints defined as follows: for any constraint of the form b = 1 ⇒ c ≥ 1 in
Constm(M), c ≥ 1 belongs to φbConstm(M) if and only if φb(b) = 1. It is then
clear that (*) (φb, φi) is a solution of Const(M) if and only if φb is a solution of
Constb(M) and φi is a solution of φbConstm(M) ∪ Consti(M).

Proposition 11. Const(M) admits a solution if and only if it has a solution
ψ = (ψb, ψi) such that ψb is the minimal solution of Constb(M).

Proof. Suppose that Const(M) admits a solution (φb, φi). Then by the previ-
ous lemma, there is a minimal solution ψb of Constb(M). Since ψb ≤ φb, we
have ψbConstm(M) ⊆ φbConstm(M). Since φi is a solution of φbConstm(M) ∪
Consti(M) by (*) above, it is also a solution of ψbConstm(M)∪Consti(M). This
means that (ψb, φi) is a solution of Const(M).

Coming back to the proof-net intuition, Proposition 11 means that given a
syntactic tree of term there is a most general (minimal) way to place ! boxes (and
accordingly ! subtypes in types), that is to say: if there is a DLAL decoration
for this tree then there is one with precisely this minimal distribution of ! boxes.

Now notice that ψbConstm(M)∪Consti(M) is a linear inequation system, for
which a polynomial time procedure for searching a rational solution is known.

Lemma 12. ψbConstm(M)∪Consti(M) has a solution in Q if and only if it has
a solution in Z.

Theorem 13. Let M be a System F term. Then one can decide in time poly-
nomial in the cardinality of Const(M) whether Const(M) admits a solution.

Proof. First decide if there is a solution of Constb(M), and if it exists, let ψb

be the minimal one (Lemma 10). Then apply the polynomial time procedure to
decide if ψbConstm(M) ∪ Consti(M) admits a solution in Q. If it does, then we
also have an integer solution (Lemma 12). Otherwise, Const(M) is not solvable.

By combining Theorem 3, Lemma 6, Theorems 9 and 13, we finally get:

Theorem 14. Given a system F term MT , it is decidable in time polynomial
in the size of M whether there is a decoration A of T such that `DLAL M : A.

6 Implementation

Overview. We designed an implementation of the type inference algorithm. The
program is written in functional Caml and is quite concise (less than 1500 lines).
A running program not only shows the actual feasibility of our method, but also
is a great facility for building examples, and thus might allow for a finer study
of the algorithm.

Data types as well as functions closely follow the previous description of the
algorithm: writing the program in such a way tends to minimise the number of
bugs, and speaks up for the robustness of the whole proof development.

The program consists of several successive parts:
1. Parsing phase: turns the input text into a concrete syntax tree. The input is

an F typing judgement, in a syntax à la Church with type annotations at the
binders. It is changed into the de Bruijn notation, and parameterized with
fresh parameters. Finally, the abstract tree is decorated with parameterized
types at each node.

2. Constraints generation: performs explorations on the tree and generates the
boolean, linear and mixed constraints.

3. Boolean constraints resolution: gives the minimal solution of the boolean
constraints, or answers negatively if the set admits no solution.

4. Constraints printing: builds the final set of linear constraints.
We use the simplex algorithm to solve the linear constraints. It runs in O(2n),

which comes in contrast with the previous result of polynomial time solving, but

has proven to be the best in practice (with a careful choice of the objective
function).

Example of execution. Let us consider the reversing function on binary
words. It can be defined by a single higher-order iteration, and thus represented
by the following system F term, denoted rev:

λlW .Λβ.λsoβ→β .λsiβ→β .(l (β → β))
λaβ→β .λxβ .(a)(so)x
λaβ→β .λxβ .(a)(si)x (Λα.λzα.z)β

We apply it to : Λα.λsoα→α.λsiα→α.λxα.(si)(so)(si)(so)x, representing the word
1010, in order to force a meaningful typing. Since rev involves higher-order
functionals and polymorphism, it is not so straightforward to tell, just by looking
at the term structure, whether it works in polynomial time or not.

Given rev(1010) as input (coded by ASCII characters), our program pro-
duces 177 (in)equations on 79 variables. After constraint solving, we obtain the
result:

(λlW .Λβ.λso!(β−◦β).λsi!(β−◦β).
§(§̄((l (β −◦ β))
§λaβ−◦β .λxβ .(a)(§̄so)x
§λaβ−◦β .λxβ .(a)(§̄si)x)
(Λα.λzα.z)β)

Λα.λso!α→α.λsiα→α.§λxα.(§̄si)(§̄so)(§̄si)(§̄so)x
It corresponds to the natural depth-1 typing of the term rev, with conclusion
type WDLAL (WDLAL. The solution ensures polynomial time termination, and
in fact its depth guarantees normalization in a quadratic number of β-reduction
steps. Further examples and the program are available at:

http://www-lipn.univ-paris13.fr/~atassi/

7 Conclusion

We showed that typing of system F terms inDLAL can be performed in a feasible
way, by reducing typability to a constraints solving problem and designing a
resolution algorithm. This demonstrates a practical advantage of DLAL over
LAL, while keeping the other important properties. Other typing features could
still be automatically infered, like coercions (see [Ata05] for the case of EAL).

This work illustrates how Linear logic proof-net notions like boxes can give
rise to techniques effectively usable in type inference, even with the strong boxing
discipline of DLAL, which extends previous work on EAL. We expect that some
of these techniques could be adapted to other variants of Linear logic, existing
or to be defined in the future.

References

[ABT06] V. Atassi, P. Baillot, and K. Terui. Verification of Ptime reducibility
for system F terms via Dual Light Affine Logic. Technical Report HAL
ccsd-00021834, july 2006.

[Ama05] R. Amadio. Synthesis of max-plus quasi-interpretations. Fundamenta
Informaticae, 65:29–60, 2005.

[AR02] A. Asperti and L. Roversi. Intuitionistic light affine logic. ACM Trans-
actions on Computational Logic, 3(1):1–39, 2002.

[Ata05] V. Atassi. Inférence de type en logique linéaire élémentaire. Master’s
thesis, Université Paris 13, 2005.

[Bai02] P. Baillot. Checking polynomial time complexity with types. In Proceed-
ings of IFIP TCS’02, Montreal, 2002. Kluwer Academic Press.

[Bai04] P. Baillot. Type inference for light affine logic via constraints on words.
Theoretical Computer Science, 328(3):289–323, 2004.

[BC92] S. Bellantoni and S. Cook. New recursion-theoretic characterization of
the polytime functions. Computational Complexity, 2:97–110, 1992.

[BT04] P. Baillot and K. Terui. Light types for polynomial time computation in
lambda-calculus. In Proceedings LICS’04. IEEE Computer Press, 2004.

[BT05] P. Baillot and K. Terui. A feasible algorithm for typing in elementary
affine logic. In Proceedings of TLCA’05, volume 3461 of LNCS, pages
55–70. Springer, 2005.

[CDLRdR05] P. Coppola, U. Dal Lago, and S. Ronchi Della Rocca. Elementary affine
logic and the call-by-value lambda calculus. In Proceedings of TLCA’05,
volume 3461 of LNCS, pages 131–145. Springer, 2005.

[CM01] P. Coppola and S. Martini. Typing lambda-terms in elementary logic
with linear constraints. In Proceedings TLCA’01, volume 2044 of LNCS,
2001.

[CRdR03] P. Coppola and S. Ronchi Della Rocca. Principal typing in Elementary
Affine Logic. In Proceedings TLCA’03, LNCS, 2003.

[DJ03] V. Danos and J.-B. Joinet. Linear logic and elementary time. Information
and Computation, 183(1):123–137, 2003.

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
[Gir98] J.-Y. Girard. Light linear logic. Information and Computation, 143:175–

204, 1998.
[HJ03] M. Hofmann and S. Jost. Static prediction of heap space usage for first-

order functional programs. In Proc. ACM POPL’03, 2003.
[Hof03] M. Hofmann. Linear types and non-size-increasing polynomial time com-

putation. Information and Computation, 183(1):57–85, 2003.
[LM93] D. Leivant and J.-Y. Marion. Lambda-calculus characterisations of poly-

time. Fundamenta Informaticae, 19:167–184, 1993.
[MM00] J.-Y. Marion and J.-Y. Moyen. Efficient first order functional program

interpreter with time bound certifications. In Proceedings of LPAR 2000,
volume 1955 of LNCS, pages 25–42. Springer, 2000.

[Ter01] K. Terui. Light Affine Lambda-calculus and polytime strong normaliza-
tion. In Proceedings LICS’01. IEEE Computer Society, 2001. Full version
available at http://research.nii.ac.jp/∼ terui.

[Ter04a] K. Terui. Light affine set theory: a naive set theory of polynomial time.
Studia Logica, 77:9–40, 2004.

[Ter04b] K. Terui. A translation of LAL into DLAL. Preprint,
http://research.nii.ac.jp/∼ terui, 2004.

[Wel99] J. B. Wells. Typability and type checking in system F are equivalent and
undecidable. Ann. Pure Appl. Logic, 98(1-3), 1999.

