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1 IntrodutionA onsiderable number of problems from omputer siene deals with a sum ofindependent idential distributed random variables �n = X1 +X2 + : : :+Xn(where eah of the Xi's assumes integer values). We onsider here the followingmodel of random walks: the walk starts (at time 0) from a point �0 of Z andat time n, one makes a jump Xn 2 Z; so the new position is given by thereurrene �n = �n�1+Xn where, when �n�1 = k, the jumpXn is onstrainedto belong to a �xed set Pk (that is, the possible jumps depend on the positionof the walk).These \walks on Z" are homogeneous in time (that is to say, the set of jumpswhen one is at position k is independent from the time). When the positions�n's are onstrained to be nonnegative, we talk about \walks on N". Theprobabilisti model under onsideration here is the uniform distribution on allpaths of length n.When the sets Pk's are equal to a �xed set P (the simplest interesting ase be-ing P = f�1;+1g), the orresponding walks have been deeply studied both inombinatoris (Dyk paths,. . . ) and in probability theory (oin ipping, . . . ).We refer to [4℄ for enumerative and analytial studies of suh \walks on N witha �nite set of jumps". When the sets Pk's are unbounded, both enumerationand asymptotis beome umbersome: ontrary to the previous ase, the walksare not spae-homogeneous (the set of available jumps depends on the posi-tion) and it is not possible to generate them by ontext-free grammars (whihare lassially de�ned for �nite alphabet only). However, if the sets Pk's havea \ombinatorial" shape, it is reasonable to hope that the generating funtionassoiated to the orresponding walk would have some nie properties. Weshow here that this hope is legitimate and we present several lasses of suhwalks, for whih we are able to give the nature of their generating funtion.Our results have potential impats on the theory of generating trees, the enu-meration and generation of ombinatorial objets (general lasses of lattiepaths, onstrained permutations, . . . ) and on the study of rewriting rules onan in�nite alphabet.A de�nition of the generating funtion assoiated to the walk is given in Se-tion 2 where we also present the generating tree and Riordan array viewpoints.In Setion 3, we give several theorems related to the nature of the generatingfuntions assoiated to some walks (whih deeply generalise previously knownresults from [1{8,15,17{22℄). Then, we give some asymptoti results. In Se-tion 4, we give some examples of problems in whih some of the new lassesof walks that we study in this artile appear.2



01010 2 210 2 32 4Fig. 1. The generating tree of the walk on N with jumps P = f+1;�1g startingin 0 (and up to length n = 4). Eah branh orresponds to a path. The branh(0; 1; 2; 1; 2) orresponds to the path drawn on the lattie.2 Lattie paths, generating trees, suession rules and their gen-erating funtionsIn ombinatoris, it is lassial to represent a partiular walk as a path in atwo dimensional lattie. Thus the drawing orresponds to the walk of length nlinking the points ((0;�0); (1;�1); : : : ; (n;�n)). It is also onvenient to repre-sent all the walks of length � n as a tree of height n, where the root (at level0 by onvention) is labelled with the starting point of the walks and wherethe label of eah node at level n enodes a possible position of the walk (seeFigure 1).Let fn;k be the number of walks on N of length n going from the starting pointto k (or, equivalently, the number of nodes with label k at level n in the tree).We want to �nd the bivariate generating funtionF (z; u) = Xn�0 fn(u)zn = Xk2N Fk(z)uk = Xk2N;n�0 fn;kukzn : (1)where u enodes the �nal altitude of the walk (the label in the tree), z thelength of the walk (the level in the tree), and where fn(u) is a Laurent poly-nomial (that is, a polynomial with �nitely many monomials of negative andpositive degree).2.1 Generating trees and suession rulesThe onept of generating trees has been used from various points of view andwas introdued in the literature by Chung, Graham, Hoggatt and Kleiman [10℄to examine the redued Baxter permutations.We de�ne here a generating tree as a rooted labelled tree with the propertythat if two nodes have the same label then, for any integer `, they have exatly3



the same number of hildren with label `. For readability, we often write thelabels in parentheses. Thus, a generating tree is fully de�ned by:1) the label of the root (that we also all \axiom");2) a set of rules f(k);Mkgk2N explaining how to derive from the label of aparent the labels of its hildren. (Mk is a multiset 1 of labels.)Point 2) de�nes what we all a suession rule. The multisetsMk are diretlyrelated to the multisets Pk (the allowed jumps introdued in Setion 1) viathe relation Mk := fk + x; x 2 Pkg. For example, Figure 1 illustrates theupper part of the generating tree whih orresponds to the set of rules f(k);(k � 1)(k + 1)gk2N with 0 as label of the root. That is, one has in this asePk = f�1;+1g and Mk = fk � 1; k + 1g. In what follows, instead of writing((0); f(k); (k � 1)(k + 1)gk2N) ;we use the more readable notation[(0); (k); (k � 1)(k + 1) ℄ ;or alternatively8><>: (0)(k); (k � 1)(k + 1) :Note that we only onsider nonnegative walks, thus when a rule gives a nega-tive label, we simply ignore this label. In the above ase, when k = 0 the ruleis thus (0) ; (1) and not (0) ; (�1)(1). If a label is repeated, we diretlywrite (k)n instead of (k) : : : (k) (n ourrenes). This orresponds to walkswith multipliities, or if one wants, to distinguish two ourrenes of the samelabel in a suession rule by olouring them in two di�erent olours.The method of generating trees was also suessfully used by West [25℄, Du-luq, Gire, and Guibert [12{14℄, for the enumeration of permutations withforbidden sequenes (see Fig. 2). In fat, the kind of rewriting rules underonsideration here were intensively studied partly beause they are useful tosolve some ases of the following famous onjeture:Conjeture 1 (Stanley{Wilf) For any given pattern, there exists a on-stant C suh that there are asymptotially O(Cn) permutations of length navoiding this pattern.1 Multisets are sets in whih repetitions are allowed. E.g., for multisets, one hasf1; 1; 2g [ f1; 2g = f1; 1; 1; 2; 2g. 4
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(a) (b)Fig. 2. The generating tree of 123-avoiding permutations. (a) Nodes labelled by thepermutations. (b) Nodes labelled by the numbers of hildren. It an be provedthat the right tree orresponds to the rule [(2); (k) ; (2) : : : (k + 1)℄.This onjeture shows that to forbid a pattern is a strong onstraint (per-mutations with a forbidden pattern are of density zero in the whole set ofpermutations). For any �xed pattern, the algebraiity of the generating fun-tion of permutations avoiding this pattern would be a proof of this onjeture.However, it is not possible to solve all the ases by this approah (as somepatterns lead to non-D-�nite 2 generating funtions).These last years, the onept of generating tree has been intensively exploitedby Barui, Del Lungo, Ferrari, Pergola, Pinzani, and Rinaldi [6,7,17,18℄ inrelation with the ECO method (ECO stands for enumeration of ombinatorialobjets) whih allows the enumeration and reursive onstrution of variouslasses of ombinatorial objets. In fat, the suession rule approah has sev-eral equivalent interpretations, ECO systems, disrete random walks, in�niteautomata or Riordan arrays (see later). For all these problems, it is interestingto lassify the rules aording to the nature (rational, algebrai, transenden-tal) of the orresponding generating funtion F (z; u). This program has beenproposed by Pinzani and al. [6,7,17,18℄ in the area of ECO systems (the soalled \ECO systems" are the generating trees where eah integer has exatlyk suessors). A lassial and easy result is that �nite suession rules haverational generating funtion sine they orrespond to a regular language. An-other result (proved in [3℄) is that every �nite transformation of the suessionrule (k); (1)(2) : : : (k)(k + 1)leads to an algebrai generating funtion. In the same paper are also de-sribed suession rules leading to exponential generating funtions having a2 A series F (z) is said to be holonomi, or D-�nite, if it satis�es a linear di�erentialequation with polynomial oeÆients in z. Equivalently, its oeÆients fn satisfy alinear reurrene relation with polynomial oeÆients in n.5



nie losed-form formula whih have been more extensively studied by Corteelin [11℄. Our paper is prinipally devoted to the study of suession rules havingalgebrai generating funtion.In a �rst step, our approah is losely related with Sh�utzenberger's method-ology, whih onsists in �nding �rst a bijetion between the objets and thewords of an algebrai language and then a non ambiguous grammar for thelanguage. Taking the ommutative image leads to an algebrai system for thegenerating funtion. For a suession rule, we de�ne its nonommutative for-mal power series using the in�nite alphabet of positive integers. We use a newoperation � whih allows us to get a non ambiguous deomposition of theformal power series assoiated to the generating tree. We dedue algebraiequation by taking the ommutative image of the formal power series. Thismethod allows us to get an algebrai deomposition of the general suessionrule (k); (1) : : : (k � 1)(k)e0 : : : (k + a)e�a;for any �nite sequene (ei), and more generally for the suession rule(k); (1)ek�1 : : : (k � 1)e1(k)e0 : : : (k + a)e�a;for any sequene (ei)1i=�a proving thereby that the generating funtion of thegenerating tree is algebrai when the sequene (ei) is rational. This gives aombinatorial proof for a generalisation of the results of [3℄.In a seond step, we give some analytial proofs (based on the kernel method)of the algebraiity of the generating funtion assoiated to the generating treewhen the sequene (ei) in the suession rule is algebrai.2.2 Nonommutative generating funtions for suession rulesIt is onvenient to see a generating tree (de�ned in the previous subsetion)as the in�nite tree onstruted with a root labelled by the axiom and whereeah node labelled k has sons labelled aording to the suession rule.For a generating tree T , we de�ne the language L as the set of words over N ,beginning by the axiom r and in whih eah letter (k) is followed by a letter(if any) whih belongs to the multisetMk. Eah word w of L orresponds toat least one branh 3 of T . For eah word w 2 L, let m(w) be the number ofbranhes in the generating tree T orresponding to the word w. We denote byS the nonommutative formal power series S = Xw2Lm(w)w.3 By branh of the in�nite tree T , we mean any sequene of labels orrespondingto a branh of any �nite subtree of T . Figure 1 gives an example.6



(1)

(1) (2)

(2)

(2)(1) (3) (3) (2) (3) (3)(1) (4)

(3)(3)

(2) (3) (3)(1) (4)(3)

(1)

(1)

(1)

(2)

(2)(1) (2)(3)

(1) (2)

Fig. 3. Trunated generating tree of [(1); (k) ; (1)(2)(3)(3)(4) : : : (k)(k + 1)℄. Theassoiated generating funtion is F (z; 1) = z+2z2+6z3+22z4+ : : : and the orre-sponding nonommutative GF is S = 1+11+12+111+112+121+122+2:123+ : : :By onstrution, the generating tree T and the nonommutative formal powerseries S have the same generating funtionF (z; 1) = Xn2N fn(1)zn = Xn2N0� Xw2L;jwj=n+1m(w)1A zn :We use standard external produt and onatenation over the nonommutativeformal power series: For any real x and for any word v, one hasxS := Xw2L(xm(w))w and v:S := Xw2Lm(w)(v:w):We now de�ne the \shift" operation (that we write �) as follows:De�nition 2 For i 2 N, we de�ne i� := i+ 1. By extension if w = w1 : : : wnis a word with n letters, then w� := w�1 : : : w�n and S� := Pw2Lm(w)w�:Clearly, the generating funtions assoiated to S and S� are equal.2.3 Riordan arraysWe introdue now the onept of matrix assoiated to a generating tree: thisis an in�nite matrix fdn;kgn;k2N where dn;k is the number of nodes at level nwith label k + r; where r is the label of the root. For example, the matrixassoiated to the generating tree of the Figure 1 (walk with jumps +1;�1) is7



the following: nnk 0 1 2 3 40 11 0 12 1 0 13 0 2 0 14 2 0 3 0 1Many suh matries an be studied from a Riordan array viewpoint. In fat,the onept of a Riordan array provides a remarkable haraterisation of manylower triangular arrays that arise in ombinatoris and algorithm analysis. Thetheory has been introdued in the literature in 1991 by Shapiro, Getu, Woan,and Woodson [23℄. Riordan arrays are a powerful tool in the study of manyounting problems having a avour of Lagrange inversion [19℄.A Riordan array is an in�nite lower triangular array fdn;kgn;k2N; de�ned by apair of formal power series (d(z); h(z)); suh that the k-th olumn is given byd(z)(zh(z))k, i.e.: dn;k = [zn℄d(z)(zh(z))k; n; k � 0:From this de�nition, one has dn;k = 0 for k > n: The bivariate generatingfuntion for the Riordan array is:Xn;k�0dn;kukzn = d(z)1� uzh(z) :In what follows, we always assume that d(0) 6= 0; if we also have h(0) 6= 0then the Riordan array is said to be proper ; in the proper-ase the diagonalelements dn;n are di�erent from zero for all n 2 N : The most simple exampleis the Pasal triangle for whih one has nk! = [zn℄ 11� z � z1� z�k ;where we reognise the proper Riordan array with d(z) = h(z) = 1=(1 � z):Proper Riordan arrays are haraterised by the existene of a sequene A =(ai)i2N with a0 6= 0; alled the A-sequene; suh that every element dn+1;k+1an be expressed as a linear ombination, with oeÆients in A, of the elementsin the preeding row, starting from the preeding olumn:dn+1;k+1 = a0dn;k + a1dn;k+1 + a2dn;k+2 + : : :8



It an be proved that h(z) = A(zh(z)), A(z) being the generating funtion forthe sequene A. For example, for the Pasal triangle one has: A(z) = 1+z andthe previous relation redues to the well-known reurrene relation for bino-mial oeÆients. The A-sequene doesn't haraterise ompletely (d(z); h(z))beause d(z) is independent of A(z). But it an be proved that there exists aunique sequene Z = (z0; z1; z2; : : :); suh that every element in olumn 0 anbe expressed as a linear ombination of all the elements of the preeding row:dn+1;0 = z0dn;0 + z1dn;1 + z2dn;2 + : : :This property has been reently studied in [19℄, where it is proved that d(z) =d(0)=(1 � zZ(zh(z))); Z(z) being the generating funtion for Z. Thus thetriple (d(0); Z(z); A(z)) haraterises every proper Riordan array. We use theselaims in Theorem 10.3 Generating funtions of suession rulesThis setion ontains the main results of our artile. We give several theorems,making expliit the generating funtions assoiated to di�erent kind of rules(\rational" exponents: Theorem 4, \algebrai" exponents: Theorem 9, . . . ).3.1 Lattie paths and generating treesConsider a funtion e(k; i) whih is going from N2 to N . We now �x an integera > 0 (a orresponds to the largest positive possible jump; so we restrit hereour attention to funtions suh that e(k; i) = 0 for any k as soon as i > a).Then the walks with an in�nite set of jumps under onsideration here are ofthe following kind:8><>: (r)(k) ; (0)e(k;0)(1)e(k;1) : : : (k � 1)e(k;k�1)(k)e(k;k) : : : (k + a)e(k;k+a) (2)where the exponent e(k; i) is the multipliity of the jumps from k to i andwhere r is the starting position of the walk (or equivalently, the root of theassoiated generating tree). In what follows, we often (but not always) onsiderthe ase for whih e(k; i) = ek�i (where (ek)k2Z is a �xed sequene).If the sequene (e(k; i))k (for a �xed i) is ultimately 0, then the situation oversthe ase of walks with a �nite set of jumps [4℄. If the sequene is ultimately1, then this overs the ase of \fatorial rules" whih are of great interests for9



the generation of ombinatorial objets [8℄ and for whih it was proved in [3℄that the assoiated generating funtions are algebrai.We still note fn;k the number of walks on N of length n going from the startingpoint to k and we want to �nd the bivariate generating funtion F (z; u) =Pn;k�0 fn;kukzn. These random walks on N an equivalently be seen as lattiepaths, generating trees, and also as Riordan arrays (when a = 1).In Tables 1 and 2 (see at the end of this artile), we give a list of suession ruleswith simple ombinatorial patterns, the referene to famous numbers or ombi-natorial problems they refer to, the generating funtion F (z; 1), and the num-bers identifying the orresponding sequenes in the On-Line Enylopedia ofInteger Sequenes http://www.researh.att.om/�njas/sequenes/; ECSstands for the Enylopedia of Combinatorial Strutures, a database reahablevia http://algo.inria.fr/enylopedia/.3.2 Suession rules: \rational" exponentsIn this setion, we study suession rules having the following general form[(1); (k); (1)ek�1 : : : (k � 1)e1(k)e0 : : : (k + a)e�a℄ :\Rational" exponents means here that the generating funtion E(z) of theek's (whih are nonnegative integers) is rational.Using deomposition of paths, we prove the algebraiity of the assoiated gen-erating funtion F (z; 1), �rst when the sequene (ei)i>0 is onstant equal toone (Theorem 3), and then when the sequene (ei) follows a linear reurrene,that is when the ei's are oeÆients of a rational generating funtion (Theo-rem 4).Theorem 3 The nonommutative generating funtion S assoiated to thegenerating tree [(1); (k); (1) : : : (k � 1)(k)e0 : : : (k + a)e�a℄satis�es the following equationS = (1) + (1) aXi=0 e�iSi� i�1Yj=0(�+ Sj�);where Si� = (S(i�1)�)� and S0� = S.Consequently, the (ommutative) generating funtion F (z; 1) of the generating10



tree is algebrai and satis�esF (z; 1) = z + zF (z; 1) aXi=0 e�i(1 + F (z; 1))i :Example: For the generating tree assoiated to [(1); (k); (1) : : : (k+1)℄, thisgives S = (1) + S + S�(�+ S):Remark: The algebraiity of F (z; 1) for suh generating trees was �rst provedanalytially in [3℄ (via a proof whih is leading to a neat losed-form formula).We give here a ombinatorial proof of this algebraiity (via a neat deompo-sition of the tree).Proof. The proof is dedued from the reursive deomposition of the pathsin the generating tree. We need to de�ne (rS) as the formal sum of the pathsin the generating tree obtained by replaing the axiom by r:[(r); (k); (1) : : : (k � 1)(k)e0 : : : (k + a)e�a℄ :We an write reursively (rS) using the following non ambiguous deompo-sition (see Fig. 4). Let w 6= r be a non trivial path of (rS), then w an bewritten w = r:u- if eah letter of u is � r then u = v(r�1)� where v is a path of the generatingtree,- if not, let m the �rst letter < r in u, so u an be written v(r�1)�1 v2 wherev1 is a path of the generating tree and v2 is a path of (mS), v2 being thelongest suÆx of u beginning by m.
(mS)

m < rr
S(r�1)�

Fig. 4. Deomposition of (rS).11



One has (rS) = S(r�1)�(� + r�1Xm=1(mS)). It is easy to see that(r+1S) = Sr� r�1Ym=0(� + Sm�) :The equality S = (1) + (1) aXr=0 e�r(r+1S) onludes the proof. �The algebrai equation satis�ed by the algebrai generating funtion given inthe small atalogue of ECO-systems of [3℄ an be dedued from the previoustheorem. For instane, this is the ase of Motzkin numbers, Shr�oder numbersand ternary trees. For the general ase, that we onsider now, the diÆulty isto deal with the ei jumps from (k) to (k � i).Theorem 4 Consider E(z) = Pi��a eizi. The rationality of E(z) implies thealgebraiity of the generating funtion F (z; 1) of the generating tree[(1); (k); (1)ek�1 : : : (k � 1)e1(k)e0 : : : (k + a)e�a℄ :Proof. We begin by giving the di�erent equations obtained from the reursivedeomposition of the paths in the generating tree. As in the proof of Theo-rem 3, we need to de�ne (rSi) as the formal sum of the paths ending by i inthe following generating tree[(r); (k); (1)ek�1 : : : (k � 1)e1(k)e0 : : : (k + a)e�a℄ :We write (Si) for (1Si). Applying the same non ambiguous deomposition asin Theorem 3 and onsidering the last letter of eah fator (see Fig. 5), we get(r+1Si)= (Si�r)r� + rXm=1Xj�1 ej+r�m(Sj)r�(mSi): (3)Let rFi(z) be the generating funtions of (rSi) (paths beginning in r andending in i). By onvention, rFi = 0 for i � 0 or r � 0. One has Fi = (1Fi)(as 1 is the root of the generating tree). Let Gi := Pj�1 ei+j�1Fj for 1 � i � pand Hn(z) := Pn=i1+:::+ih Gi1(z) : : : Gih(z) for n � 0 with the onvention thatH0(z) := 1. Note that Hn is a polynomial in G1; : : : ; Ga. From Equation (3),one getsr+1Fi(z)=Fi�r(z) + rXm=1Xj�1 ej+r�m Fj(z) (mFi(z))=Fi�r(z) + rXm=1Gr�m+1(z) (mFi(z)) :12



r e(j+r�1)�m
m < r

(mSi)j + r � 1
i(Sj)(r�1)�

Fig. 5. Deomposition of (rSi).For k � 2, deomposing Fk aording to the �rst positive jump, givesFk = z aXm=0 e�m(m+1Fk):Using the fat that(r+1Fi)=Fi�r + rXm=1Gr�m+1 m�1Xj=0 Hm�1�jFi�j=Fi�r + r�1Xm=0Fi�m r�m�1Xj=0 Gr�m�jHj=Fi�r + r�1Xm=0Fi�mHr�m= rXm=0Hr�mFi�m ;one hasFk = z aXm=0 e�m mXi=0Hm�iFk�i= z aXj=0Fk�j aXi=j e�iHi�j= zFk aXi=0 e�iHi + z aXj=1Fk�j aXi=j e�iHi�j:13



For k = 1, one gets F1 = z+ zPai=0 e�i(i+1F1). Let bj = Pai=j e�iHi�j, one has8><>:F1 = z1�zb0Fk = z1�zb0 Pai=1 zbi Fk�i ; for k > 1:Let M be the following a by a matrix (whose entries are rational funtions inG1; : : : ; Ga),
M := 0BBBBBBBBBBBB�

zb11�zb0 zb21�zb0 : : : zba�11�zb0 zba1�zb01 0 : : : 0 00 1 : : : 0 0... ... . . . ... ...0 0 : : : 1 0
1CCCCCCCCCCCCA

0BBBBBBBB�FkFk�1...Fk�a+1
1CCCCCCCCA =M 0BBBBBBBB�Fk�1Fk�2...Fk�a

1CCCCCCCCA = Mk�1 0BBBBBBBB�F1 = z1�zb00...0
1CCCCCCCCA

Before to go on, one needs the following lemma.Lemma 5 The rationality of the sequene (ei) implies the algebraiity of thesequene (Gi).Proof. If the sequene (ei)i��a is rational, then the sequene (ek)k�1 is also ra-tional and there exist two polynomials P and Q suh that Pk�1 ekzk�1 = P (z)Q(z) ,with Q(0) 6= 0. Thus one has Pk�1 ekMk�1 = P (M)Q(M)�1, beause Q(M)is invertible. Indeed, deomposing Q(z) in C leads to Q(z) = Qdeg(Q)i=1 (z��i),so that Det(Q(M)) = Qdeg(Q)i=1 Det(M � �iI), whih is obviously nonzero byomputing, Det(M � �I) = (�1)a+1(��a + z1� zb0 aXm=1 bm�a�m):14



Thus we an write an algebrai system of a equations for G1; : : : ; Ga,0BBBBBBBB�G1G2...Ga
1CCCCCCCCA =Xk ek 0BBBBBBBB�FkFk�1...Fk�(a�1)

1CCCCCCCCA =Xk ekMk�10BBBBBBBB� z1�zb00...0
1CCCCCCCCA = P (M)Q(M) 0BBBBBBBB� z1�zb00...0

1CCCCCCCCA :
The Jaobian of this system is equal to the identity for z = 0 so the Gi's arealgebrai funtions of z. �Moreover Fk is algebrai for all k � 1:0BBBBBBBB�FkFk�1...Fk�a+1

1CCCCCCCCA = Mk�1 0BBBBBBBB� z1�zb00...0
1CCCCCCCCA :

Finally, this leads toPk�1 0BBBBBBBB�FkFk�1...Fk�a+1
1CCCCCCCCA = (M � 1)�1 0BBBBBBBB� z1�zb00...0

1CCCCCCCCA ;
taking the �rst entry gives that F (z; 1) = Pk�1 Fk(z) is algebrai. �Remark: In fat Lemma 5 an be extended. Indeed, if E(z) is algebrai, thenthe Gi's are still algebrai. For this, let P the bivariate polynomial suh thatP (E; z) = 0. Now, onsider the �rst and the third member in last formula inthe proof of the Lemma. Multiplying them by adequate monomials E(M)iM jand summing over adequate values of (i; j) allows to get P (E(M);M) in thethird member. As this is equal to 0, one thus gets a system of a equations forthe Gi's (with algebrai oeÆients). The rest of the proof still implies thealgebraiity of F (z; 1). We don't push the proof in this diretion beause, inTheorem 9 hereafter, we give another proof whih leads to a neat losed-formformula for F (z; u).

15



3.3 Suession rules with \rational" exponents: �nite modi�ationsTheorem 4 above allows us to generalise a result from [3℄ onerning �nitetransformations of (k); (1) : : : (k� 1)(k)(k+1). A �nite transformation of arule onsists in adding a �xed integer to one (resp. all) suession rule(s). Thenonommutative formal power series approah allows us to interpret �nitetransformations and show that they do not hange the algebraiity of thegenerating funtion. Moreover, the property of algebraiity does not dependon the hoie of the axiom.Theorem 6 Consider E(z) = Pi��a eizi. If E(z) is algebrai, then all \�nitetransformations" (as de�ned above) of the suession rule(k); (1)ek�1 : : : (k � 1)e1(k)e0 : : : (k + a)e�alead to an algebrai assoiated generating funtion F (z; 1). More generally,all �nite transformations of the suession rule (k) ; Mk lead to an alge-brai assoiated generating funtion F (z; u) as soon as the original bivariategenerating funtion is algebrai.Proof. For any �xed nonnegative integer , let T , T 0, and T 00 be the followingthe generating trees:T = 8><>: (r)(k);Mk ;T 0 = 8><>: (r)(k);Mk [ () ;
T 00 = 8>>>>><>>>>>: (r)(k0);Mk0 [ ()(k);Mk ; for k 6= k0 :Thus, T 0 and T 00 are �nite transformations of T . Let S, S 0, and S 00 (resp. F ,F 0, and F 00) be the formal sum of paths (resp. the ommutative generatingfuntions) assoiated to T ; T 0, and T 00. As in the proofs of Theorem 3 andTheorem 4, let (Sk) be the formal sum of paths ending by k and (S) bethe formal sum of the paths in the generating tree [(); (k); (1)ek�1 : : : (k �1)e1(k)e0 : : : (k+a)e�a℄; that is the original generating tree T where the axiomr has been replaed by . 16



As S 00 = S + Sk0 :(Sk0)�(S), this gives F 00(z; u) = F (z; u) + Fk0(z) F (z; u)1� Fk0(z)where the right member involves only funtions whih are known to be alge-brai, thus F 00 is also algebrai. Similarly, the relation S 0 = S:(S)�, gives thealgebraiity of F 0. �By duality, similar results hold if you remove a label from one (or all) rule(s).Note also that there is no diÆulty to apply the same kind of proofs to othertransformations like [(r); (k0);Mk0; (k);Mk [ ()℄ :3.4 Suession rules: polynomial exponents and no negative bounded jumpallowedTheorem 7 For any onstant B � 0, the generating tree[(r); (k); (0)e(k;0) : : : (B)e(k;B) (k)e0 : : : (k + a)e�a℄(where e(k; 0); : : : ; e(k; B) are polynomial in k, e(k; i) = 0 for B < i < kand e(k; i) = ek�i, some �xed onstants, for i � k) has a rational generatingfuntion F (z; u).Proof. First, we illustrate the general ase by the following example:8><>: (0)(k) ; (0)k2(2)3k�1(3)(k)(k + 1)2(k + 3)5 ; (4)for whih B = 3, the polynomials in k are e(k; 0) = k2; e(k; 1) = 0; e(k; 2) =3k � 1; e(k; 3) = 1, and the �xed onstants are e0 = 1, e�1 = 2, e�2 = 0,e�3 = 5.The part (k) ; (0)k2 implies a transformation uk ; k2u0. The part (k) ;(2)3k�1 implies a transformation uk ; (3k� 1)u2. The part (k); (3) impliesa transformation uk ; u3. It is possible to perform all these transformationsusing the derivation 4 , evaluation in u = 1 and multipliation by a mono-mial: in the �rst ase, the multipliity k2 is obtained by �(u�(uk)) and thenevaluating in u = 1; for the seond ase, the multipliity 3k � 1 is obtainedby taking �(u3k)=u and then evaluating in u = 1; for the third ase simplyevaluate in u = 1 and multiply by u3. The part (k) ; (k)(k + 1)2(k + 3)5gives uk ; P (u)uk where P (u) = 1 + 2u+ 5u3. All these transformations arein fat linear, so to at on uk or a polynomial in u (like fn(u)) is the same.4 We denote the derivation with respet to u by �u or by � or 0 when there is noambiguity. We also write abusively �uF (z; 1) for (�uF )(z; 1).17



Finally, evaluating �(u�fn(u)) in u = 1 gives f 00n(1) + f 0n(1) and evaluatingu2�ufn(u3)=u in u = 1 gives u2(3f 0n(1)� fn(1)), so these trivial simpli�ationsgives the following reurrene:fn+1(u) = P (u)fn(u) + u0(f 00n(1) + f 0n(1)) + u2(3f 0n(1)� fn(1)) + u3fn(1) :Multiplying by zn+1 and summing for n � 0 leads to the funtional equation(1� zP (u))F (z; u) = 1+ z(u3� 1)F (z; 1)+ z(3u2+1)�uF (z; 1)+ z�2uF (z; 1) :Taking the �rst 2 derivatives and instantiating in u = 1 gives a rational systemof full rank, hene F (z; u) is rational:F (z; u) = u3(22z2�112z3�z) + u2(480z3 � 60z2) + 528z3 � 250z2 + 31z � 1(1� zP (u))(872z3 � 212z2 + 30z � 1) :For the general ase, one has the following funtional equation(1� zP (u))F (z; u) = ur + z dXi=0 ti(u)�iuF (z; 1)(d is the largest degree of the polynomials e(k; i), and the ti's are some Laurentpolynomials whih an be made expliit). Taking the �rst d derivatives andinstantiating in u = 1 gives a system (for m = 0; : : : ; d):�mu ur +  m�1Xi=0  z�mu ti(1) + z mi !�m�iu P (1)! �iuF (z; 1)!+(z�mu ti(1)� (1� zP (1))) �mu F (z; 1) + z dXi=m+1 �mu ti(1)�iuF (z; 1) = 0 :This gives a matriial equation M:�!F = �!v where �!v = (ur; 0; : : : ; 0)T and�!F = (�0uF (z; 1); : : : ; �duF (z; 1))T . The oeÆients of the main diagonal of Mare �1 + z : : : (as they are the oeÆients of the �mu F (z; 1) summand) andall the other oeÆient of M are monomials in z of degree 1. Thus, one has[z0℄ detM = �1 and then detM 6= 0. Consequently, this system is of full rank.Solving it gives rational expressions for the �iuF (z; 1) and for F (z; u). �3.5 Suession rules: polynomial exponents and negative jumps allowedWe now give a generalisation of a result of [3℄ whih was giving the algebraiityof \fatorial rules": we allow here initial multipliities whih are not spae-homogeneous. 18



Theorem 8 For any onstant B � 0, the generating tree[(r); (k); (0)e(k;0) : : : (B)e(k;B)(B + 1) : : : (k � b� 1)(k � b)eb : : : (k + a)e�a℄(where e(k; 0); : : : ; e(k; B) are polynomial in k, e(k; i) = 1 for B < i < k � band e(k; i) = ek�i, some �xed onstants, for i � k � b) has an algebraigenerating funtion F (z; u).Proof. We illustrate the general ase by the following example:[(0); (k); (0)k2(2)3k5�2(6)(7) : : : (k � 5)(k � 4)2(k � 2)3(k)(k + 3)2(k + 23)℄ ;for whih B = 5; b = 4; a = 23, the polynomials in k are e(k; 0) = k2, e(k; 2) =3k5 � 2, e(k; 1) = e(k; 3) = e(k; 4) = e(k; 5) = 0 and the �xed onstants aree4 = 2, e2 = 3, e0 = 1, e�3 = 2, e�23 = 1. One sets P (u) = 2u�4 + 3u�2 + 1 +2u3 + u23, the reurrene isfn+1(u) = P (u)fn(u)� fu<0gP (u)fn(u) + 5Xi=0 ti(u)�iufn(1) ;where fu<0g stands for the sum of the monomials in u with a negative degree.Multiplying by zn+1 and summing for n � 0 leads to the funtional equation(1� zP (u))F (z; u) = 1� z 4�1Xk=0 rk(u)Fk(z) + z 5Xi=0 ti(u)�iuF (z; 1) ; (5)where rk(u) := fu<0gP (u)uk and ti(u) are (Laurent) polynomials whih anbe made expliit.One an use the kernel method (we refer to [4,9℄ for reent appliations of thismethod) to solve this equation. We all 1� zP (u) the kernel of the equation.Solving 1� zP (u) = 0 with respet to u gives 4 roots u1(z), u2(z), u3(z) andu4(z) whih are Puiseux series in z1=4 and whih tend to zero in 0. There arealso 23 others roots whih behave like z�1=23 around 0, so we all u1; : : : ; u4 thesmall roots of the kernel. Plugging the 4 small roots of the kernel in Equation 5and onsidering the 6 other equations obtained by taking the �rst 5 derivativesof Equation 5 (and then setting u = 1) gives a system of full rank with 10equations with 10 unknown univariate generating funtions, whih are thusall algebrai, and then one has a formula for F (z; u), involving the ui, whihimplies its algebraiity. For the general ase, simply replae 4 by b and 5 byd in Equation 5. Then, one an argue as in Theorem 7 above, with a newmatriial equation M:�!F = �!v ; looking at the valuation in z of eah entriesin M (some of them involves the small roots ui's, but at most a produt ofb of them) gives detM 6= 0 and thus a system of full rank, so F (z; u) anbe expressed as a rational funtion in z, u, and the small roots ui's. As theseroots are algebrai, F (z; u) is algebrai. �19



3.6 Suession rules: \algebrai" exponentsConsider now the ase where, for eah i, the exponent e(k; i) of the rule (2) isa onstant (that is, e(k; i) := ek�i for a �xed sequene (ek)k2Z). \Algebrai"exponents means here that the generating funtion of the ek's (whih arenonnegative integers) is algebrai. How far an we relate the behaviour of thewalk[(0); (k); (0)ek : : : (k � 1)e1(k)e0(k + 1)e�1 : : : (k + a)e�a℄ (6)to the generating funtion of the exponents E(u) = Pi��a eiui ? We give herea �rst element of answer:Theorem 9 Consider the generating tree[(0); (k); (0)ek(1)ek�1 : : : (k � 1)e1(k)e0 : : : (k + a)e�a℄ : (7)For a = 1, one hasF (z; u) = F0(z)1� u e�1z F0(z) with F0(z) = 1e�1z E<�1>(1z )where E<�1> is the ompositional inverse of E(u) and where e�1 is the mul-tipliity of the +1 jump. More generally, for a � 1, the generating funtionF (z; u) is expressed in terms of the a solutions u1(z); : : : ; ua(z) of 1�zE(u) =0 whih satisfy uk(z) � e2ik�=ae1=a�a z1=a for z � 0:F (z; u) = F0(z) aYi=1 11� uui(z) = Xk�0F0(z)0� Xi1+:::+ia=k ui11 : : : uiaa 1A uk :One hasF0(z) = (�1)a+1ze�a aYi=1ui(z) and F (z; 1) = �1ze�a aYi=1 11� 1ui(z) :Consequently, if the generating funtion of the exponents E(u) is algebraithen the bivariate generating funtion F (z; u) is algebrai.Proof. For a = 1, the �rst identity reets the ombinatorial deomposition(one to one orrespondene, in fat) \a walk from 0 to k+ 1" is \a walk from0 to k" then followed by a jump +1 then followed by \a walk from k + 1 tok+ 1 never going below k+ 1". The generating funtion of these last walks islearly F0(z), thus one has Fk+1(z) = Fk(z)e�1zF0(z) = F0(z)(ze�1F0(z))k+1.For the walks orresponding to the rule (7), the set of jumps is given byE(1=u); if one reverses the time diretion, one gets a new walk where the20



set of available jumps is given by E(u). De�ne eF (z; u) as the orrespondinggenerating funtion (one starts at altitude 0), one has:efn+1(u) = fu�0gE(u) efn(u); ef0(u) = 1where fu�0g stands for the sum of all monomials in u with a nonnegativedegree. Multiplying by zn+1 and summing for n � 0 giveseF (z; u) = ef0(u) + zE(u) eF (z; u)� zfu�1ge�1u eF (z; u) ;that one rewrites as the following funtional equation(1� zE(u)) eF (z; u) = 1� z e�1u eF0(z) :Then solving the \kernel" 1 � zE(u) = 0 with respet to u gives a seriesu1(z) = E<�1>(1=z), whih is algebrai as the ompositional inverse of aninvertible algebrai funtion is algebrai (simply plug the inverse in the poly-nomial equation �(E(u); u) = 0 satis�ed by E(u) to hek this fat). Notethat E is invertible beause a � 1 implies E 0(0) 6= 0.If one then evaluates the above funtional equation at u = u1(z), one gets0 = 1 � z e�1u1 eF0(z) and thus eF0(z) = u1e�1z . As one has eF0(z) = F0(z) (a walkfrom 0 to 0 from left to right is still a walk from 0 to 0 from right to left),one gets the result from the theorem. Note that if one sets ef0(u) = 11�u , eF0enumerates walks from anywhere to 0, so eF0(z) = u1=(ze�1)1�u1 = F (z; 1), whihis oherent with the theorem (ase a = 1).For a � 1, one sets P (u) := P�1i=�a eiui; one has(1� zE(u)) eF (z; u) = ef0(u)� zfu<0gP (u) eF (z; u) :This is rewritten as(1� zE(u)) eF (z; u) = ef0(u)� z a�1Xk=0 rk(u) eFk(z) : (8)where rk(u) := fu<0gP (u)uk is a Laurent polynomial with monomials of de-gree going from �1 down to k � a.E(u) being algebrai, there exists a bivariate polynomial P 2 Q [E; u℄ suh thatP (E; u) = 0. Now, as one has the kernel equation 1 � zE(u) = 0, it meansthat the roots ui(z) of the kernel are algebrai and satisfy P (1z ; ui(z)) = 0.The lassial theory of Newton polygon then gives the Puiseux expansion ofthese roots. Among these roots, the kernel equation 1 � zE(u) = 0 has a21



roots u1(z); : : : ; ua(z) whih are Puiseux series in z1=a and whih tend to 0when z tends to 0. When ef0(u) = 1, plugging these roots in the funtionalequation shows that they orrespond to the a roots of the polynomial ua �zuaPa�1k=0 rk(u)Fk(z), whose leading term is ua and whose onstant term is�ze�a eF0(z). This gives eF0(z) = �Qai=1 ui�ze�a . When ef0(u) = 11�u , this gives asystem of a equations for a unknowns (the eFk's). Solving it for eF0 gives F (z; 1).Solving the eF0 for ef0(u) = uk gives the Fk(z). This onludes Theorem 9. �Remark: as D-�nite funtions are not neessarily losed under ompositionalinverse, it is not true that if E(u) is D-�nite, then F (z; 1) or F0(z) (and afortiori F (z; u)) are D-�nite, even in the ase a = 1.For a = 1, the Riordan arrays approah that we presented in Subsetion 2.3also gives the algebraiity of F (z; u). In fat, a theorem from [22℄ says:Theorem 10 If (aj)j2N and (zj)j2N are two nonnegative integer sequenes,with a0 6= 0, then the matrix assoiated to the generating tree8><>: (r)(k) ; (r)zk�r(r + 1)ak�r(r + 2)ak�r�1 : : : (k + 1)a0 (9)is a proper Riordan Array D de�ned by the triple (d0; A; Z); suh thatd0 = 1; A = (a0; a1; a2; : : :); Z = (z0; z1; z2; : : :):Aordingly, this givesF (z; u) = d(z)1� uzh(z) where h(z) = A(zh(z)) and d(z) = 1=(1� zZ(zh(z))) :For a > 1, the matrix assoiated (see Setion 2) to the rule (6) is alled a hori-zontally strethed Riordan array. The algebraiity of the orresponding gener-ating funtion F (z; u) then depends on the algebraiity of A(z) = Pk�0 akzkand F0(z); : : : ; Fa�1(z) (the generating funtions of the �rst a olumns of thematrix). However, while the theory of Riordan arrays has been intensivelystudied, the theory of strethed Riordan arrays, from a generating funtionpoint of view, is still in progress.We end with a last appliation of the kernel method.Theorem 11 Consider the suession rule (6) when the ei's are ultimatelyonstants (say, equal to a onstant C after rank b):[(0); (k); (0)C : : : (k � b� 1)C(k � b)eb : : : (k)e0 : : : (k + a)e�a℄ :22



Then F (z; u) is algebrai and satis�esF (z; u) = Qbi=0 u� ui(z)K(z; u) ;where the ui's and K are de�ned as below.Proof. One has the reurrene fn+1(u) = C fn(u)�fn(1)u�1 +P (u)fn(u) this leadsto the funtional equation�1� zP (u)� z Cu� 1�F (z; u) =1� zCu� 1F (z; 1)� z b�1Xk=0fu<0gP (u)ukFk(z) ; (10)where P (u) = Pbi=1(ei � C) 1ui +Pai=0 e�iui. De�ne the kernel K as K(u; z) =ub(1� u)(1� zP (u)� zCu�1). It has b roots u1(z); : : : ; ub(z) whih are Puiseuxseries in z1=b and whih tend to 0 in 0 and one root u0(z) whih tends to 1in 0. These are exatly the b + 1 roots of the right hand part of (10) (onemultiplied by (1�u)ub). So F (z; u) = Qbi=0 u�ui(z)K(z;u) , where the ui's are the b+1small roots of the kernel. �3.7 AsymptotisGiven a partiular rule for Theorems 7, 8, 9, 10 or 11, it is possible to �ndan asymptoti expansion for the number of walks. It is not really possibleto merge all these results in a single one, as the rules are too unonstrained.However, for the algebrai ase, a kind of universality holds for the behaviourof the roots of the kernel. This leads to following theorem, whih has to beadapted ase by ase for rules of Theorems 8 and 9 (and is easily applied torules of Theorem 11).Theorem 12 The number of walks of length n for the \fatorial" rule[(0); (k); (0)(1) : : : (k � b� 1)(k � b)eb : : : (k)e0 : : : (k + a)e�a℄(where e(k; i) = 1 for 0 � i < k�b and e(k; i) = ek�i, some �xed onstants, fori � k� b) has the following asymptotis A ��np2�n3 , where A and � are algebraionstants depending on the �nite multiset of jumps P = f�b; : : : ;+ag.Proof. See [2℄ for a proof and appliations to the limit laws of �nal altitudeand number of fators. The approah is similar to the one used for walks witha �nite number of jumps but there are some ompliations due to the fatthat the kernel is now of the kind 1� z�(u) where �(u) is not unimodal. Onean however establish that the real positive root u0 now dominates and has asquare-root behaviour. �23



This result is the �rst step towards limit laws of several parameters (like �nalaltitude, loal time, . . . ). It would be interesting (but muh more diÆult)to get the asymptotis of parameter like height and area. Note that for theseparameters, it is possible to get losed-form formulae (partiularly in the asea = 1 for the area and for any value of a for the height, via the kernel method,see [1℄)... but this is another story!3.8 Algebrai equationsIn Theorems 3 and 4, we gave a diret way to obtain an algebrai equationsatis�ed by F (z; 1) when the generating funtion of the exponents is ratio-nal. For the other theorems, as the algebrai generating funtion F (z; u) isexpressed in terms of the roots of the kernel, it is possible to get an algebraiequation for F (z; u) via resultant or Gr�obner bases omputations. Note thata more eÆient way, the so-alled Platypus algorithm, is presented in [4℄. Italso relies on an exploitation of the roots of the kernel.3.9 Variations...As a �rst variation, it is possible to play with the root r of the tree (thestarting point of the paths). We gave above results mostly for r = 0 or r = 1,but it is also possible to follow our proofs for other values of r.As a next variation, it is also possible to remove the non-negativity onstraint.In this ase, the walks are on Z and thus one gets diretly F (z; u) = 11�zE(u�1) .If one then onsiders walks ending at a given altitude k, it is possible to get alosed-form formula for their generating funtion Fk(z) (whih is algebrai),via residue omputation and a onjugay priniple (simply follow the sameproofs as in [2,4℄ and get Spitzer-like formulae and losed-form formulae stillinvolving the roots of the kernel).As a third variation, in Rule (2), it also possible to onsider exponents e(k; i)from Z2 to Z, even if the ombinatorial meaning of a \negative multipliity"is not lear... It is also possible to onsider the ase e(k; i) = ei (instead ofe(k; i) = ek�i as we did in this artile). The sequenes inrease very quikly, itis then then natural to look for exponential generating funtions. Some nieformulae were given in [1,3℄ and ombinatorial proofs were given in [11℄.As a last variation, it is also possible (see [1℄) to reonsider all the above resultsfor walks of higher Markovian order, that is for walks for whih fn+1(u) de-pends not only on fn(u) but also on fn�1(u), and on �nitely many other fn's.Here again, our approahes are still working. For example, with a Markovianrandom walk of order 2 (positions one step before are involved with multi-pliities enoded by E(u), and positions two steps before are involved withmultipliities enoded by E2(u)), formulae roughly involves something likeA1�zE(u)�z2E2(u) instead of A1�zE(u) . There are already ombinatorial interestsfor suh walks, see [18℄. 24



4 ExamplesWe now give a series of examples from ombinatoris or omputer siene inwhih suession rules studied in Setion 3 appear.Example 1. Fully direted ompat animals.They are also alled Diagonally direted onvex polyominoes (see [16℄ andFig. 6). They are known to be ounted aording to their number of diag-onals by 12n+1�3nn � whih orresponds to the the generating tree [(1); (k) ;(1)k+1(2)k : : : (k � 1)3(k)2(k + 1)℄ : �Example 2. A new generating tree for Catalan numbers.From [24℄ (see the exerise on Catalan numbers pp.221-247), the generatingtree [(1); (k); (1)2k�2(2)2k�3 : : : (k � 2)2(k � 1)(k + 1)℄generates the partition fB1; : : : ; Bpg of [n℄ suh that the numbers 1; 2; : : : ; nare arranged in order around a irle, then the onvex hulls of the bloksB1; : : : ; Bp are pairwise disjoint. Indeed, let k be the number of isolated pointsaround 1. The 2k�1 suessors of this on�guration are obtained by taking allthe subset of f�1 = 1; �2; : : : ; �k; n+ 1g ontaining n + 1. �

Fig. 6. Generating trees for (fully direted ompat) animals and Catalan bloks.25



Example 3. Two families of rules leading to an algebrai generating funtion.For the rule [(0); (k); (0)ek(1)ek�1 : : : (k�1)e1(k)e0(k+1)℄, where ek for k � 0is the number of t-ary trees with k nodes, F (z; u) satis�es a algebrai equationof degree t. E.g., for t = 3, one has:1� (3 + (4� 3u)z)F (z; u)� (� 3 + (6u� 7)z + (�3u2 + 8u� 3)z2)F (z; u)2�(1 + (3� 3u)z + (3u2 � 7u+ 3)z2 + (�u3 + 4u2 � 3u+ 1)z3)F (z; u)3 = 0:For the rule [(0); (k) ; (0)+k(1)+k�1 : : : (k � 2)+2(k � 1)+1(k)(k + 1)℄,F (z; u) satis�es an algebrai equation of degree 3:((1� 2u)z2 + (� (+1) + 2u2))F 3+ ((u� 2)z + (�� 2+ 4u� 2u2)z2)F 2 +(1 + (2� 2u)z)F = 1.Similar examples for a > 1 lead to expressions whih are perhaps a bit large tobe written here in extenso. However, the reader interested by suh examplesan have a look at http://algo.inria.fr/banderier/Papers/dm03.mws.This is a Maple worksheet where we get the equations for F (z; u), plot theroots of the kernel, give the asymptotis for di�erent kind of walks. �Example 4. Tennis ball problem.Let s � 2 be an integer and onsider the following problem known as thes-tennis ball problem. At the �rst turn one is given balls numbered 1 to s. Onethrows one of them out of the window onto the lawn. At the seond turn ballsnumbered s + 1 through 2s are brought in and now one throws out on thelawn any of the 2s� 1 remained. Then balls 2s+1 through 3s are brought inand one throws out one of the 3s� 2 available balls. The game ontinues forn turns. At this point, one piks up the n balls in the lawn and onsider theordered sequene B = (b1; b2; : : : ; bn) with b1 < b2 < : : : < bn: This sequeneis alled a tennis ball s-sequene and the �rst question is: how many tennisball s-sequenes of length n exist? The seond question is: what is the sumof all the balls in all the possible s-sequenes of length n ? Obviously, if weanswer to both these questions, we also know the average sum of the balls inan s-sequene of length n: The general ase s � 1 has been studied in [21℄from a generating funtion viewpoint. In fat, the authors onsider an in�nitetree with root 0 and with s hildren. Eah (n + 1)-length path in this treeorresponds to an s-sequene of length n. This in�nite tree is isomorphi tothe generating tree with spei�ation [(1); (k); (1) : : : (k+ s� 2)(k+ s� 1)℄.By using this result the authors �nd that the number of tennis ball s-sequenesof length n are ounted by Tn+1; where Tn = 11+(s�1)n�snn � (the number of s-arytrees with n-nodes) and the umulative sum of all the balls thrown onto the26



lawn in n turn is�n = 12(sn2 + (3s� 1)n+ 2s)Tn+1 � 12 n+1Xk=0 skk ! s(n+ 1� k)n+ 1� k !: �Example 5. A new suession rule for (4; 2)-tennis ball problem.The problem of balls on the lawn admits many other variants. For example,one ould be supplied with s balls at eah turn but now throw out t ballsat a time with t < s: The general (s; t) ase is an open problem while the(4; 2) ase has been treated in [21℄, where the authors study the problem byintroduing a bilabelled generating tree tehnique. Anyway, reently Merliniand Sprugnoli found that the problem an be expressed by the rule (6) withei = i+ 3 and a = 2, namely:[(0); (k); (0)k+3(1)k+2(2)k+1 : : : (k + 2)℄ (11)In fat, if we don't are of the order of the balls thrown away, so that theon�guration (1; 4), (5; 8), (2; 10) is onsidered to be the same as (1; 2), (4; 5),(8; 10); it an be proved that the number of (4; 2)-sequenes of length 2n inwhih the last-but-one element is 2n + k � 1 orresponds to the number ofnodes with label k at level n in the generating tree of Figure 7 (for example,the possible sequenes of length 2 are (1; 2); (1; 3); (1; 4); (2; 3); (2; 4) and(3; 4)). �00 0 0 10 0 0 0 1 1 1 2 2 31 20 0 0 0 0 1 1 1 1 2 2 2 3 3 4Fig. 7. The partial generating tree for the spei�ation (11).Example 6. Printers.In [20℄ the authors present a ombinatorial model for studying the hara-teristis of job sheduling in a slow devie, for example a printer in a loalnetwork. The poliy usually adopted by spooling systems is alled First ComeFirst Served (FCFS) and an be realised by queueing the proesses aordingto their arrival time and by using a FIFO algorithm. A job (printing a �le)onsists in a �nite number of ations (printing-out a single page). Eah ationtakes onstant time to be performed (a time slot). If we �x n time slots, andsuppose that at the end of the period the queue beomes empty, while it was27



never empty before, the suessive states of the jobs queue an be desribedby a ombinatorial struture alled labelled 1-histograms. A 1-histogram oflength n is a histogram whose last olumn only ontains 1 ell and, when-ever a olumn is omposed by k ells, then the next olumn ontains at leastk � 1 ells. It is at all obvious that a 1-histogram orresponds to a path inthe generating tree produed by the spei�ation [(1); (k) ; (1) : : : (k + 1)℄.A labelled 1-histograms of length n is a 1-histogram in whih we label eahell aording to some rules (see [20℄ for the details). Figure 8 illustrates thepossible shedules for two partiular 1-histograms of length 3: the �rst one,for example, orresponds to i) a �rst job whih onsists in printing two pagesand a seond job, whih starts at time slot 2; and orresponds to printing apage at time slot 3; and ii) three di�erent jobs whih onsist in printing asingle page, the �rst at time slot 1; the seond at time slot 2 and the third attime slot 3; after queueing at time slot 2: It an be proved that the number ofshedules of length n with k jobs request at the �rst time slot orresponds tothe number of nodes at level n having label k + 1 in the generating tree withspei�ation: [(1); (k); (1)2 : : : (k)2(k + 1)℄ :This gives that the number Sn of possible shedules orresponds to the nthsmall Shr�oder number, that is, the generating funtion for Sn is (1 � 3z �p1� 6z + z2)=(4z): �
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Rule EIS desription Generating Funtion F (z; u)(0); (k); (0)k(k + 1) F0, F (z; 1): powers of 2 1� 2z � z21� (u+ 2)z � 2uz2(0); (k); (0)2k(k + 1) F (z; 1):A001333 ontinuedfration onvergents to p2F0: A052542 (ECS) 1� 2z + z21� (u+ 2)z + (2u� 1)z2 + uz3(0); (k); (0)3k(k + 1) F (z; 1): A026150 (ECS) 1� 2z + z21� (u+ 2)z + (2u� 2)z2 + 2uz3(0); (k); (0)4k(k + 1) F (z; 1): A046717 half of 3n 1� 2z + z21� (u+ 2)z + (2u� 3)z2 + 3uz3(0); (k); (0)k(k + 1)(k + 2) F (z; 1): A001075 andF0: A005320 Pell's equation 1� 4z + 4z21� (4 + u+ u2)z + (4u2 + u� 1)z2 � : : :(1); (k); (0)(1)2(k)(k + 2)2(k + 3)5 6n and A003464 (6n � 1)=5 (4u� 1)z � u(1� 6z)((2u2 + 1)z � 1)(0); (k); (0)k2(2)3k�1(3)(k)(k + 1)2(k + 3)5 see Theorem 7Table 1Some suession rules leading to rational generating funtions. The generating funtions F (z; 1) and F0(z) are de�ned as in Equation 1.
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Rule EIS desription Generating Funtion F (z; u)(1); (k); (1) : : : (k + s� 2)(k + s� 1) F (z; 1): s-ary trees See also Ex. 4(1); (k); (1)2 : : : (k)2(k + 1) F (z; 1): A001003 Shr�oder'sseond problem u2 1� (2u+ 1)z �p1� 6z � z2(1� u)z + (u2 + u)z2 (see also Ex. 6)(0); (k); (0)k2(2)3k�1(3)(k � 1)(k)(k + 1)2(k + 3)5 see Theorem 8(0); (k); (0)k(1)k�1 : : : (k � 1)1(k)0(k + 1) A036765 F (z; 1): rooted treeswith a degree onstraint equation of degree 3(0); (k); (0)k+2(1)k+1 : : : (k � 1)3(k)2(k + 1) F0: A006013 A046648nonrossing trees on a irleF (z; 1): A001764 ternary trees equation of degree 3 (see Ex. 1 for a variant)(0); (k); (0)k+3 : : : (k � 1)4(k)3(k + 1)2(k + 2) F (z; 1): A066357 planar treeswith root parity onstraint equation of degree 4 (see also Ex. 5)(0); (k) ; (0)Ck : : : (k � 1)C1(k)C0(k + 1)(where Ck is the k-th Catalan number) F0: A006318large Shr�oder numbers 12 3� (4u+ 1)z �p1� 6z � z21� 3uz + (2u2 + u)z2(0); (k); (0)Ck : : : (k � 1)C1(k + 1) F0: A052705 (ECS) 12 3� (4u+ 2)z �p1� 4z � 4z21� (3u+ 2)z + (2u2 � 2u+ 1)z2(0); (k) ; (0)Tk : : : (k � 1)T1(k)T0(k + 1)g(where Tk is the k-th tri-Catalan number) F0: A054727 nonrossingforests of rooted trees equation of degree 3 (see Ex. 3)Table 2Some suession rules leading to algebrai generating funtions.
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