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1 Introdu
tionA 
onsiderable number of problems from 
omputer s
ien
e deals with a sum ofindependent identi
al distributed random variables �n = X1 +X2 + : : :+Xn(where ea
h of the Xi's assumes integer values). We 
onsider here the followingmodel of random walks: the walk starts (at time 0) from a point �0 of Z andat time n, one makes a jump Xn 2 Z; so the new position is given by there
urren
e �n = �n�1+Xn where, when �n�1 = k, the jumpXn is 
onstrainedto belong to a �xed set Pk (that is, the possible jumps depend on the positionof the walk).These \walks on Z" are homogeneous in time (that is to say, the set of jumpswhen one is at position k is independent from the time). When the positions�n's are 
onstrained to be nonnegative, we talk about \walks on N". Theprobabilisti
 model under 
onsideration here is the uniform distribution on allpaths of length n.When the sets Pk's are equal to a �xed set P (the simplest interesting 
ase be-ing P = f�1;+1g), the 
orresponding walks have been deeply studied both in
ombinatori
s (Dy
k paths,. . . ) and in probability theory (
oin 
ipping, . . . ).We refer to [4℄ for enumerative and analyti
al studies of su
h \walks on N witha �nite set of jumps". When the sets Pk's are unbounded, both enumerationand asymptoti
s be
ome 
umbersome: 
ontrary to the previous 
ase, the walksare not spa
e-homogeneous (the set of available jumps depends on the posi-tion) and it is not possible to generate them by 
ontext-free grammars (whi
hare 
lassi
ally de�ned for �nite alphabet only). However, if the sets Pk's havea \
ombinatorial" shape, it is reasonable to hope that the generating fun
tionasso
iated to the 
orresponding walk would have some ni
e properties. Weshow here that this hope is legitimate and we present several 
lasses of su
hwalks, for whi
h we are able to give the nature of their generating fun
tion.Our results have potential impa
ts on the theory of generating trees, the enu-meration and generation of 
ombinatorial obje
ts (general 
lasses of latti
epaths, 
onstrained permutations, . . . ) and on the study of rewriting rules onan in�nite alphabet.A de�nition of the generating fun
tion asso
iated to the walk is given in Se
-tion 2 where we also present the generating tree and Riordan array viewpoints.In Se
tion 3, we give several theorems related to the nature of the generatingfun
tions asso
iated to some walks (whi
h deeply generalise previously knownresults from [1{8,15,17{22℄). Then, we give some asymptoti
 results. In Se
-tion 4, we give some examples of problems in whi
h some of the new 
lassesof walks that we study in this arti
le appear.2



01010 2 210 2 32 4Fig. 1. The generating tree of the walk on N with jumps P = f+1;�1g startingin 0 (and up to length n = 4). Ea
h bran
h 
orresponds to a path. The bran
h(0; 1; 2; 1; 2) 
orresponds to the path drawn on the latti
e.2 Latti
e paths, generating trees, su

ession rules and their gen-erating fun
tionsIn 
ombinatori
s, it is 
lassi
al to represent a parti
ular walk as a path in atwo dimensional latti
e. Thus the drawing 
orresponds to the walk of length nlinking the points ((0;�0); (1;�1); : : : ; (n;�n)). It is also 
onvenient to repre-sent all the walks of length � n as a tree of height n, where the root (at level0 by 
onvention) is labelled with the starting point of the walks and wherethe label of ea
h node at level n en
odes a possible position of the walk (seeFigure 1).Let fn;k be the number of walks on N of length n going from the starting pointto k (or, equivalently, the number of nodes with label k at level n in the tree).We want to �nd the bivariate generating fun
tionF (z; u) = Xn�0 fn(u)zn = Xk2N Fk(z)uk = Xk2N;n�0 fn;kukzn : (1)where u en
odes the �nal altitude of the walk (the label in the tree), z thelength of the walk (the level in the tree), and where fn(u) is a Laurent poly-nomial (that is, a polynomial with �nitely many monomials of negative andpositive degree).2.1 Generating trees and su

ession rulesThe 
on
ept of generating trees has been used from various points of view andwas introdu
ed in the literature by Chung, Graham, Hoggatt and Kleiman [10℄to examine the redu
ed Baxter permutations.We de�ne here a generating tree as a rooted labelled tree with the propertythat if two nodes have the same label then, for any integer `, they have exa
tly3



the same number of 
hildren with label `. For readability, we often write thelabels in parentheses. Thus, a generating tree is fully de�ned by:1) the label of the root (that we also 
all \axiom");2) a set of rules f(k);Mkgk2N explaining how to derive from the label of aparent the labels of its 
hildren. (Mk is a multiset 1 of labels.)Point 2) de�nes what we 
all a su

ession rule. The multisetsMk are dire
tlyrelated to the multisets Pk (the allowed jumps introdu
ed in Se
tion 1) viathe relation Mk := fk + x; x 2 Pkg. For example, Figure 1 illustrates theupper part of the generating tree whi
h 
orresponds to the set of rules f(k);(k � 1)(k + 1)gk2N with 0 as label of the root. That is, one has in this 
asePk = f�1;+1g and Mk = fk � 1; k + 1g. In what follows, instead of writing((0); f(k); (k � 1)(k + 1)gk2N) ;we use the more readable notation[(0); (k); (k � 1)(k + 1) ℄ ;or alternatively8><>: (0)(k); (k � 1)(k + 1) :Note that we only 
onsider nonnegative walks, thus when a rule gives a nega-tive label, we simply ignore this label. In the above 
ase, when k = 0 the ruleis thus (0) ; (1) and not (0) ; (�1)(1). If a label is repeated, we dire
tlywrite (k)n instead of (k) : : : (k) (n o

urren
es). This 
orresponds to walkswith multipli
ities, or if one wants, to distinguish two o

urren
es of the samelabel in a su

ession rule by 
olouring them in two di�erent 
olours.The method of generating trees was also su

essfully used by West [25℄, Du-lu
q, Gire, and Guibert [12{14℄, for the enumeration of permutations withforbidden sequen
es (see Fig. 2). In fa
t, the kind of rewriting rules under
onsideration here were intensively studied partly be
ause they are useful tosolve some 
ases of the following famous 
onje
ture:Conje
ture 1 (Stanley{Wilf) For any given pattern, there exists a 
on-stant C su
h that there are asymptoti
ally O(Cn) permutations of length navoiding this pattern.1 Multisets are sets in whi
h repetitions are allowed. E.g., for multisets, one hasf1; 1; 2g [ f1; 2g = f1; 1; 1; 2; 2g. 4
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(a) (b)Fig. 2. The generating tree of 123-avoiding permutations. (a) Nodes labelled by thepermutations. (b) Nodes labelled by the numbers of 
hildren. It 
an be provedthat the right tree 
orresponds to the rule [(2); (k) ; (2) : : : (k + 1)℄.This 
onje
ture shows that to forbid a pattern is a strong 
onstraint (per-mutations with a forbidden pattern are of density zero in the whole set ofpermutations). For any �xed pattern, the algebrai
ity of the generating fun
-tion of permutations avoiding this pattern would be a proof of this 
onje
ture.However, it is not possible to solve all the 
ases by this approa
h (as somepatterns lead to non-D-�nite 2 generating fun
tions).These last years, the 
on
ept of generating tree has been intensively exploitedby Bar
u

i, Del Lungo, Ferrari, Pergola, Pinzani, and Rinaldi [6,7,17,18℄ inrelation with the ECO method (ECO stands for enumeration of 
ombinatorialobje
ts) whi
h allows the enumeration and re
ursive 
onstru
tion of various
lasses of 
ombinatorial obje
ts. In fa
t, the su

ession rule approa
h has sev-eral equivalent interpretations, ECO systems, dis
rete random walks, in�niteautomata or Riordan arrays (see later). For all these problems, it is interestingto 
lassify the rules a

ording to the nature (rational, algebrai
, trans
enden-tal) of the 
orresponding generating fun
tion F (z; u). This program has beenproposed by Pinzani and al. [6,7,17,18℄ in the area of ECO systems (the so
alled \ECO systems" are the generating trees where ea
h integer has exa
tlyk su

essors). A 
lassi
al and easy result is that �nite su

ession rules haverational generating fun
tion sin
e they 
orrespond to a regular language. An-other result (proved in [3℄) is that every �nite transformation of the su

essionrule (k); (1)(2) : : : (k)(k + 1)leads to an algebrai
 generating fun
tion. In the same paper are also de-s
ribed su

ession rules leading to exponential generating fun
tions having a2 A series F (z) is said to be holonomi
, or D-�nite, if it satis�es a linear di�erentialequation with polynomial 
oeÆ
ients in z. Equivalently, its 
oeÆ
ients fn satisfy alinear re
urren
e relation with polynomial 
oeÆ
ients in n.5



ni
e 
losed-form formula whi
h have been more extensively studied by Corteelin [11℄. Our paper is prin
ipally devoted to the study of su

ession rules havingalgebrai
 generating fun
tion.In a �rst step, our approa
h is 
losely related with S
h�utzenberger's method-ology, whi
h 
onsists in �nding �rst a bije
tion between the obje
ts and thewords of an algebrai
 language and then a non ambiguous grammar for thelanguage. Taking the 
ommutative image leads to an algebrai
 system for thegenerating fun
tion. For a su

ession rule, we de�ne its non
ommutative for-mal power series using the in�nite alphabet of positive integers. We use a newoperation � whi
h allows us to get a non ambiguous de
omposition of theformal power series asso
iated to the generating tree. We dedu
e algebrai
equation by taking the 
ommutative image of the formal power series. Thismethod allows us to get an algebrai
 de
omposition of the general su

essionrule (k); (1) : : : (k � 1)(k)e0 : : : (k + a)e�a;for any �nite sequen
e (ei), and more generally for the su

ession rule(k); (1)ek�1 : : : (k � 1)e1(k)e0 : : : (k + a)e�a;for any sequen
e (ei)1i=�a proving thereby that the generating fun
tion of thegenerating tree is algebrai
 when the sequen
e (ei) is rational. This gives a
ombinatorial proof for a generalisation of the results of [3℄.In a se
ond step, we give some analyti
al proofs (based on the kernel method)of the algebrai
ity of the generating fun
tion asso
iated to the generating treewhen the sequen
e (ei) in the su

ession rule is algebrai
.2.2 Non
ommutative generating fun
tions for su

ession rulesIt is 
onvenient to see a generating tree (de�ned in the previous subse
tion)as the in�nite tree 
onstru
ted with a root labelled by the axiom and whereea
h node labelled k has sons labelled a

ording to the su

ession rule.For a generating tree T , we de�ne the language L as the set of words over N ,beginning by the axiom r and in whi
h ea
h letter (k) is followed by a letter(if any) whi
h belongs to the multisetMk. Ea
h word w of L 
orresponds toat least one bran
h 3 of T . For ea
h word w 2 L, let m(w) be the number ofbran
hes in the generating tree T 
orresponding to the word w. We denote byS the non
ommutative formal power series S = Xw2Lm(w)w.3 By bran
h of the in�nite tree T , we mean any sequen
e of labels 
orrespondingto a bran
h of any �nite subtree of T . Figure 1 gives an example.6
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Fig. 3. Trun
ated generating tree of [(1); (k) ; (1)(2)(3)(3)(4) : : : (k)(k + 1)℄. Theasso
iated generating fun
tion is F (z; 1) = z+2z2+6z3+22z4+ : : : and the 
orre-sponding non
ommutative GF is S = 1+11+12+111+112+121+122+2:123+ : : :By 
onstru
tion, the generating tree T and the non
ommutative formal powerseries S have the same generating fun
tionF (z; 1) = Xn2N fn(1)zn = Xn2N0� Xw2L;jwj=n+1m(w)1A zn :We use standard external produ
t and 
on
atenation over the non
ommutativeformal power series: For any real x and for any word v, one hasxS := Xw2L(xm(w))w and v:S := Xw2Lm(w)(v:w):We now de�ne the \shift" operation (that we write �) as follows:De�nition 2 For i 2 N, we de�ne i� := i+ 1. By extension if w = w1 : : : wnis a word with n letters, then w� := w�1 : : : w�n and S� := Pw2Lm(w)w�:Clearly, the generating fun
tions asso
iated to S and S� are equal.2.3 Riordan arraysWe introdu
e now the 
on
ept of matrix asso
iated to a generating tree: thisis an in�nite matrix fdn;kgn;k2N where dn;k is the number of nodes at level nwith label k + r; where r is the label of the root. For example, the matrixasso
iated to the generating tree of the Figure 1 (walk with jumps +1;�1) is7



the following: nnk 0 1 2 3 40 11 0 12 1 0 13 0 2 0 14 2 0 3 0 1Many su
h matri
es 
an be studied from a Riordan array viewpoint. In fa
t,the 
on
ept of a Riordan array provides a remarkable 
hara
terisation of manylower triangular arrays that arise in 
ombinatori
s and algorithm analysis. Thetheory has been introdu
ed in the literature in 1991 by Shapiro, Getu, Woan,and Woodson [23℄. Riordan arrays are a powerful tool in the study of many
ounting problems having a 
avour of Lagrange inversion [19℄.A Riordan array is an in�nite lower triangular array fdn;kgn;k2N; de�ned by apair of formal power series (d(z); h(z)); su
h that the k-th 
olumn is given byd(z)(zh(z))k, i.e.: dn;k = [zn℄d(z)(zh(z))k; n; k � 0:From this de�nition, one has dn;k = 0 for k > n: The bivariate generatingfun
tion for the Riordan array is:Xn;k�0dn;kukzn = d(z)1� uzh(z) :In what follows, we always assume that d(0) 6= 0; if we also have h(0) 6= 0then the Riordan array is said to be proper ; in the proper-
ase the diagonalelements dn;n are di�erent from zero for all n 2 N : The most simple exampleis the Pas
al triangle for whi
h one has nk! = [zn℄ 11� z � z1� z�k ;where we re
ognise the proper Riordan array with d(z) = h(z) = 1=(1 � z):Proper Riordan arrays are 
hara
terised by the existen
e of a sequen
e A =(ai)i2N with a0 6= 0; 
alled the A-sequen
e; su
h that every element dn+1;k+1
an be expressed as a linear 
ombination, with 
oeÆ
ients in A, of the elementsin the pre
eding row, starting from the pre
eding 
olumn:dn+1;k+1 = a0dn;k + a1dn;k+1 + a2dn;k+2 + : : :8



It 
an be proved that h(z) = A(zh(z)), A(z) being the generating fun
tion forthe sequen
e A. For example, for the Pas
al triangle one has: A(z) = 1+z andthe previous relation redu
es to the well-known re
urren
e relation for bino-mial 
oeÆ
ients. The A-sequen
e doesn't 
hara
terise 
ompletely (d(z); h(z))be
ause d(z) is independent of A(z). But it 
an be proved that there exists aunique sequen
e Z = (z0; z1; z2; : : :); su
h that every element in 
olumn 0 
anbe expressed as a linear 
ombination of all the elements of the pre
eding row:dn+1;0 = z0dn;0 + z1dn;1 + z2dn;2 + : : :This property has been re
ently studied in [19℄, where it is proved that d(z) =d(0)=(1 � zZ(zh(z))); Z(z) being the generating fun
tion for Z. Thus thetriple (d(0); Z(z); A(z)) 
hara
terises every proper Riordan array. We use these
laims in Theorem 10.3 Generating fun
tions of su

ession rulesThis se
tion 
ontains the main results of our arti
le. We give several theorems,making expli
it the generating fun
tions asso
iated to di�erent kind of rules(\rational" exponents: Theorem 4, \algebrai
" exponents: Theorem 9, . . . ).3.1 Latti
e paths and generating treesConsider a fun
tion e(k; i) whi
h is going from N2 to N . We now �x an integera > 0 (a 
orresponds to the largest positive possible jump; so we restri
t hereour attention to fun
tions su
h that e(k; i) = 0 for any k as soon as i > a).Then the walks with an in�nite set of jumps under 
onsideration here are ofthe following kind:8><>: (r)(k) ; (0)e(k;0)(1)e(k;1) : : : (k � 1)e(k;k�1)(k)e(k;k) : : : (k + a)e(k;k+a) (2)where the exponent e(k; i) is the multipli
ity of the jumps from k to i andwhere r is the starting position of the walk (or equivalently, the root of theasso
iated generating tree). In what follows, we often (but not always) 
onsiderthe 
ase for whi
h e(k; i) = ek�i (where (ek)k2Z is a �xed sequen
e).If the sequen
e (e(k; i))k (for a �xed i) is ultimately 0, then the situation 
oversthe 
ase of walks with a �nite set of jumps [4℄. If the sequen
e is ultimately1, then this 
overs the 
ase of \fa
torial rules" whi
h are of great interests for9



the generation of 
ombinatorial obje
ts [8℄ and for whi
h it was proved in [3℄that the asso
iated generating fun
tions are algebrai
.We still note fn;k the number of walks on N of length n going from the startingpoint to k and we want to �nd the bivariate generating fun
tion F (z; u) =Pn;k�0 fn;kukzn. These random walks on N 
an equivalently be seen as latti
epaths, generating trees, and also as Riordan arrays (when a = 1).In Tables 1 and 2 (see at the end of this arti
le), we give a list of su

ession ruleswith simple 
ombinatorial patterns, the referen
e to famous numbers or 
ombi-natorial problems they refer to, the generating fun
tion F (z; 1), and the num-bers identifying the 
orresponding sequen
es in the On-Line En
y
lopedia ofInteger Sequen
es http://www.resear
h.att.
om/�njas/sequen
es/; ECSstands for the En
y
lopedia of Combinatorial Stru
tures, a database rea
hablevia http://algo.inria.fr/en
y
lopedia/.3.2 Su

ession rules: \rational" exponentsIn this se
tion, we study su

ession rules having the following general form[(1); (k); (1)ek�1 : : : (k � 1)e1(k)e0 : : : (k + a)e�a℄ :\Rational" exponents means here that the generating fun
tion E(z) of theek's (whi
h are nonnegative integers) is rational.Using de
omposition of paths, we prove the algebrai
ity of the asso
iated gen-erating fun
tion F (z; 1), �rst when the sequen
e (ei)i>0 is 
onstant equal toone (Theorem 3), and then when the sequen
e (ei) follows a linear re
urren
e,that is when the ei's are 
oeÆ
ients of a rational generating fun
tion (Theo-rem 4).Theorem 3 The non
ommutative generating fun
tion S asso
iated to thegenerating tree [(1); (k); (1) : : : (k � 1)(k)e0 : : : (k + a)e�a℄satis�es the following equationS = (1) + (1) aXi=0 e�iSi� i�1Yj=0(�+ Sj�);where Si� = (S(i�1)�)� and S0� = S.Consequently, the (
ommutative) generating fun
tion F (z; 1) of the generating10



tree is algebrai
 and satis�esF (z; 1) = z + zF (z; 1) aXi=0 e�i(1 + F (z; 1))i :Example: For the generating tree asso
iated to [(1); (k); (1) : : : (k+1)℄, thisgives S = (1) + S + S�(�+ S):Remark: The algebrai
ity of F (z; 1) for su
h generating trees was �rst provedanalyti
ally in [3℄ (via a proof whi
h is leading to a neat 
losed-form formula).We give here a 
ombinatorial proof of this algebrai
ity (via a neat de
ompo-sition of the tree).Proof. The proof is dedu
ed from the re
ursive de
omposition of the pathsin the generating tree. We need to de�ne (rS) as the formal sum of the pathsin the generating tree obtained by repla
ing the axiom by r:[(r); (k); (1) : : : (k � 1)(k)e0 : : : (k + a)e�a℄ :We 
an write re
ursively (rS) using the following non ambiguous de
ompo-sition (see Fig. 4). Let w 6= r be a non trivial path of (rS), then w 
an bewritten w = r:u- if ea
h letter of u is � r then u = v(r�1)� where v is a path of the generatingtree,- if not, let m the �rst letter < r in u, so u 
an be written v(r�1)�1 v2 wherev1 is a path of the generating tree and v2 is a path of (mS), v2 being thelongest suÆx of u beginning by m.
(mS)

m < rr
S(r�1)�

Fig. 4. De
omposition of (rS).11



One has (rS) = S(r�1)�(� + r�1Xm=1(mS)). It is easy to see that(r+1S) = Sr� r�1Ym=0(� + Sm�) :The equality S = (1) + (1) aXr=0 e�r(r+1S) 
on
ludes the proof. �The algebrai
 equation satis�ed by the algebrai
 generating fun
tion given inthe small 
atalogue of ECO-systems of [3℄ 
an be dedu
ed from the previoustheorem. For instan
e, this is the 
ase of Motzkin numbers, S
hr�oder numbersand ternary trees. For the general 
ase, that we 
onsider now, the diÆ
ulty isto deal with the ei jumps from (k) to (k � i).Theorem 4 Consider E(z) = Pi��a eizi. The rationality of E(z) implies thealgebrai
ity of the generating fun
tion F (z; 1) of the generating tree[(1); (k); (1)ek�1 : : : (k � 1)e1(k)e0 : : : (k + a)e�a℄ :Proof. We begin by giving the di�erent equations obtained from the re
ursivede
omposition of the paths in the generating tree. As in the proof of Theo-rem 3, we need to de�ne (rSi) as the formal sum of the paths ending by i inthe following generating tree[(r); (k); (1)ek�1 : : : (k � 1)e1(k)e0 : : : (k + a)e�a℄ :We write (Si) for (1Si). Applying the same non ambiguous de
omposition asin Theorem 3 and 
onsidering the last letter of ea
h fa
tor (see Fig. 5), we get(r+1Si)= (Si�r)r� + rXm=1Xj�1 ej+r�m(Sj)r�(mSi): (3)Let rFi(z) be the generating fun
tions of (rSi) (paths beginning in r andending in i). By 
onvention, rFi = 0 for i � 0 or r � 0. One has Fi = (1Fi)(as 1 is the root of the generating tree). Let Gi := Pj�1 ei+j�1Fj for 1 � i � pand Hn(z) := Pn=i1+:::+ih Gi1(z) : : : Gih(z) for n � 0 with the 
onvention thatH0(z) := 1. Note that Hn is a polynomial in G1; : : : ; Ga. From Equation (3),one getsr+1Fi(z)=Fi�r(z) + rXm=1Xj�1 ej+r�m Fj(z) (mFi(z))=Fi�r(z) + rXm=1Gr�m+1(z) (mFi(z)) :12



r e(j+r�1)�m
m < r

(mSi)j + r � 1
i(Sj)(r�1)�

Fig. 5. De
omposition of (rSi).For k � 2, de
omposing Fk a

ording to the �rst positive jump, givesFk = z aXm=0 e�m(m+1Fk):Using the fa
t that(r+1Fi)=Fi�r + rXm=1Gr�m+1 m�1Xj=0 Hm�1�jFi�j=Fi�r + r�1Xm=0Fi�m r�m�1Xj=0 Gr�m�jHj=Fi�r + r�1Xm=0Fi�mHr�m= rXm=0Hr�mFi�m ;one hasFk = z aXm=0 e�m mXi=0Hm�iFk�i= z aXj=0Fk�j aXi=j e�iHi�j= zFk aXi=0 e�iHi + z aXj=1Fk�j aXi=j e�iHi�j:13



For k = 1, one gets F1 = z+ zPai=0 e�i(i+1F1). Let bj = Pai=j e�iHi�j, one has8><>:F1 = z1�zb0Fk = z1�zb0 Pai=1 zbi Fk�i ; for k > 1:Let M be the following a by a matrix (whose entries are rational fun
tions inG1; : : : ; Ga),
M := 0BBBBBBBBBBBB�

zb11�zb0 zb21�zb0 : : : zba�11�zb0 zba1�zb01 0 : : : 0 00 1 : : : 0 0... ... . . . ... ...0 0 : : : 1 0
1CCCCCCCCCCCCA

0BBBBBBBB�FkFk�1...Fk�a+1
1CCCCCCCCA =M 0BBBBBBBB�Fk�1Fk�2...Fk�a

1CCCCCCCCA = Mk�1 0BBBBBBBB�F1 = z1�zb00...0
1CCCCCCCCA

Before to go on, one needs the following lemma.Lemma 5 The rationality of the sequen
e (ei) implies the algebrai
ity of thesequen
e (Gi).Proof. If the sequen
e (ei)i��a is rational, then the sequen
e (ek)k�1 is also ra-tional and there exist two polynomials P and Q su
h that Pk�1 ekzk�1 = P (z)Q(z) ,with Q(0) 6= 0. Thus one has Pk�1 ekMk�1 = P (M)Q(M)�1, be
ause Q(M)is invertible. Indeed, de
omposing Q(z) in C leads to Q(z) = 
Qdeg(Q)i=1 (z��i),so that Det(Q(M)) = 
Qdeg(Q)i=1 Det(M � �iI), whi
h is obviously nonzero by
omputing, Det(M � �I) = (�1)a+1(��a + z1� zb0 aXm=1 bm�a�m):14



Thus we 
an write an algebrai
 system of a equations for G1; : : : ; Ga,0BBBBBBBB�G1G2...Ga
1CCCCCCCCA =Xk ek 0BBBBBBBB�FkFk�1...Fk�(a�1)

1CCCCCCCCA =Xk ekMk�10BBBBBBBB� z1�zb00...0
1CCCCCCCCA = P (M)Q(M) 0BBBBBBBB� z1�zb00...0

1CCCCCCCCA :
The Ja
obian of this system is equal to the identity for z = 0 so the Gi's arealgebrai
 fun
tions of z. �Moreover Fk is algebrai
 for all k � 1:0BBBBBBBB�FkFk�1...Fk�a+1

1CCCCCCCCA = Mk�1 0BBBBBBBB� z1�zb00...0
1CCCCCCCCA :

Finally, this leads toPk�1 0BBBBBBBB�FkFk�1...Fk�a+1
1CCCCCCCCA = (M � 1)�1 0BBBBBBBB� z1�zb00...0

1CCCCCCCCA ;
taking the �rst entry gives that F (z; 1) = Pk�1 Fk(z) is algebrai
. �Remark: In fa
t Lemma 5 
an be extended. Indeed, if E(z) is algebrai
, thenthe Gi's are still algebrai
. For this, let P the bivariate polynomial su
h thatP (E; z) = 0. Now, 
onsider the �rst and the third member in last formula inthe proof of the Lemma. Multiplying them by adequate monomials E(M)iM jand summing over adequate values of (i; j) allows to get P (E(M);M) in thethird member. As this is equal to 0, one thus gets a system of a equations forthe Gi's (with algebrai
 
oeÆ
ients). The rest of the proof still implies thealgebrai
ity of F (z; 1). We don't push the proof in this dire
tion be
ause, inTheorem 9 hereafter, we give another proof whi
h leads to a neat 
losed-formformula for F (z; u).

15



3.3 Su

ession rules with \rational" exponents: �nite modi�
ationsTheorem 4 above allows us to generalise a result from [3℄ 
on
erning �nitetransformations of (k); (1) : : : (k� 1)(k)(k+1). A �nite transformation of arule 
onsists in adding a �xed integer to one (resp. all) su

ession rule(s). Thenon
ommutative formal power series approa
h allows us to interpret �nitetransformations and show that they do not 
hange the algebrai
ity of thegenerating fun
tion. Moreover, the property of algebrai
ity does not dependon the 
hoi
e of the axiom.Theorem 6 Consider E(z) = Pi��a eizi. If E(z) is algebrai
, then all \�nitetransformations" (as de�ned above) of the su

ession rule(k); (1)ek�1 : : : (k � 1)e1(k)e0 : : : (k + a)e�alead to an algebrai
 asso
iated generating fun
tion F (z; 1). More generally,all �nite transformations of the su

ession rule (k) ; Mk lead to an alge-brai
 asso
iated generating fun
tion F (z; u) as soon as the original bivariategenerating fun
tion is algebrai
.Proof. For any �xed nonnegative integer 
, let T , T 0, and T 00 be the followingthe generating trees:T = 8><>: (r)(k);Mk ;T 0 = 8><>: (r)(k);Mk [ (
) ;
T 00 = 8>>>>><>>>>>: (r)(k0);Mk0 [ (
)(k);Mk ; for k 6= k0 :Thus, T 0 and T 00 are �nite transformations of T . Let S, S 0, and S 00 (resp. F ,F 0, and F 00) be the formal sum of paths (resp. the 
ommutative generatingfun
tions) asso
iated to T ; T 0, and T 00. As in the proofs of Theorem 3 andTheorem 4, let (Sk) be the formal sum of paths ending by k and (
S) bethe formal sum of the paths in the generating tree [(
); (k); (1)ek�1 : : : (k �1)e1(k)e0 : : : (k+a)e�a℄; that is the original generating tree T where the axiomr has been repla
ed by 
. 16



As S 00 = S + Sk0 :(
Sk0)�(
S), this gives F 00(z; u) = F (z; u) + Fk0(z) 
F (z; u)1� 
Fk0(z)where the right member involves only fun
tions whi
h are known to be alge-brai
, thus F 00 is also algebrai
. Similarly, the relation S 0 = S:(
S)�, gives thealgebrai
ity of F 0. �By duality, similar results hold if you remove a label from one (or all) rule(s).Note also that there is no diÆ
ulty to apply the same kind of proofs to othertransformations like [(r); (k0);Mk0; (k);Mk [ (
)℄ :3.4 Su

ession rules: polynomial exponents and no negative bounded jumpallowedTheorem 7 For any 
onstant B � 0, the generating tree[(r); (k); (0)e(k;0) : : : (B)e(k;B) (k)e0 : : : (k + a)e�a℄(where e(k; 0); : : : ; e(k; B) are polynomial in k, e(k; i) = 0 for B < i < kand e(k; i) = ek�i, some �xed 
onstants, for i � k) has a rational generatingfun
tion F (z; u).Proof. First, we illustrate the general 
ase by the following example:8><>: (0)(k) ; (0)k2(2)3k�1(3)(k)(k + 1)2(k + 3)5 ; (4)for whi
h B = 3, the polynomials in k are e(k; 0) = k2; e(k; 1) = 0; e(k; 2) =3k � 1; e(k; 3) = 1, and the �xed 
onstants are e0 = 1, e�1 = 2, e�2 = 0,e�3 = 5.The part (k) ; (0)k2 implies a transformation uk ; k2u0. The part (k) ;(2)3k�1 implies a transformation uk ; (3k� 1)u2. The part (k); (3) impliesa transformation uk ; u3. It is possible to perform all these transformationsusing the derivation 4 , evaluation in u = 1 and multipli
ation by a mono-mial: in the �rst 
ase, the multipli
ity k2 is obtained by �(u�(uk)) and thenevaluating in u = 1; for the se
ond 
ase, the multipli
ity 3k � 1 is obtainedby taking �(u3k)=u and then evaluating in u = 1; for the third 
ase simplyevaluate in u = 1 and multiply by u3. The part (k) ; (k)(k + 1)2(k + 3)5gives uk ; P (u)uk where P (u) = 1 + 2u+ 5u3. All these transformations arein fa
t linear, so to a
t on uk or a polynomial in u (like fn(u)) is the same.4 We denote the derivation with respe
t to u by �u or by � or 0 when there is noambiguity. We also write abusively �uF (z; 1) for (�uF )(z; 1).17



Finally, evaluating �(u�fn(u)) in u = 1 gives f 00n(1) + f 0n(1) and evaluatingu2�ufn(u3)=u in u = 1 gives u2(3f 0n(1)� fn(1)), so these trivial simpli�
ationsgives the following re
urren
e:fn+1(u) = P (u)fn(u) + u0(f 00n(1) + f 0n(1)) + u2(3f 0n(1)� fn(1)) + u3fn(1) :Multiplying by zn+1 and summing for n � 0 leads to the fun
tional equation(1� zP (u))F (z; u) = 1+ z(u3� 1)F (z; 1)+ z(3u2+1)�uF (z; 1)+ z�2uF (z; 1) :Taking the �rst 2 derivatives and instantiating in u = 1 gives a rational systemof full rank, hen
e F (z; u) is rational:F (z; u) = u3(22z2�112z3�z) + u2(480z3 � 60z2) + 528z3 � 250z2 + 31z � 1(1� zP (u))(872z3 � 212z2 + 30z � 1) :For the general 
ase, one has the following fun
tional equation(1� zP (u))F (z; u) = ur + z dXi=0 ti(u)�iuF (z; 1)(d is the largest degree of the polynomials e(k; i), and the ti's are some Laurentpolynomials whi
h 
an be made expli
it). Taking the �rst d derivatives andinstantiating in u = 1 gives a system (for m = 0; : : : ; d):�mu ur +  m�1Xi=0  z�mu ti(1) + z mi !�m�iu P (1)! �iuF (z; 1)!+(z�mu ti(1)� (1� zP (1))) �mu F (z; 1) + z dXi=m+1 �mu ti(1)�iuF (z; 1) = 0 :This gives a matri
ial equation M:�!F = �!v where �!v = (ur; 0; : : : ; 0)T and�!F = (�0uF (z; 1); : : : ; �duF (z; 1))T . The 
oeÆ
ients of the main diagonal of Mare �1 + z : : : (as they are the 
oeÆ
ients of the �mu F (z; 1) summand) andall the other 
oeÆ
ient of M are monomials in z of degree 1. Thus, one has[z0℄ detM = �1 and then detM 6= 0. Consequently, this system is of full rank.Solving it gives rational expressions for the �iuF (z; 1) and for F (z; u). �3.5 Su

ession rules: polynomial exponents and negative jumps allowedWe now give a generalisation of a result of [3℄ whi
h was giving the algebrai
ityof \fa
torial rules": we allow here initial multipli
ities whi
h are not spa
e-homogeneous. 18



Theorem 8 For any 
onstant B � 0, the generating tree[(r); (k); (0)e(k;0) : : : (B)e(k;B)(B + 1) : : : (k � b� 1)(k � b)eb : : : (k + a)e�a℄(where e(k; 0); : : : ; e(k; B) are polynomial in k, e(k; i) = 1 for B < i < k � band e(k; i) = ek�i, some �xed 
onstants, for i � k � b) has an algebrai
generating fun
tion F (z; u).Proof. We illustrate the general 
ase by the following example:[(0); (k); (0)k2(2)3k5�2(6)(7) : : : (k � 5)(k � 4)2(k � 2)3(k)(k + 3)2(k + 23)℄ ;for whi
h B = 5; b = 4; a = 23, the polynomials in k are e(k; 0) = k2, e(k; 2) =3k5 � 2, e(k; 1) = e(k; 3) = e(k; 4) = e(k; 5) = 0 and the �xed 
onstants aree4 = 2, e2 = 3, e0 = 1, e�3 = 2, e�23 = 1. One sets P (u) = 2u�4 + 3u�2 + 1 +2u3 + u23, the re
urren
e isfn+1(u) = P (u)fn(u)� fu<0gP (u)fn(u) + 5Xi=0 ti(u)�iufn(1) ;where fu<0g stands for the sum of the monomials in u with a negative degree.Multiplying by zn+1 and summing for n � 0 leads to the fun
tional equation(1� zP (u))F (z; u) = 1� z 4�1Xk=0 rk(u)Fk(z) + z 5Xi=0 ti(u)�iuF (z; 1) ; (5)where rk(u) := fu<0gP (u)uk and ti(u) are (Laurent) polynomials whi
h 
anbe made expli
it.One 
an use the kernel method (we refer to [4,9℄ for re
ent appli
ations of thismethod) to solve this equation. We 
all 1� zP (u) the kernel of the equation.Solving 1� zP (u) = 0 with respe
t to u gives 4 roots u1(z), u2(z), u3(z) andu4(z) whi
h are Puiseux series in z1=4 and whi
h tend to zero in 0. There arealso 23 others roots whi
h behave like z�1=23 around 0, so we 
all u1; : : : ; u4 thesmall roots of the kernel. Plugging the 4 small roots of the kernel in Equation 5and 
onsidering the 6 other equations obtained by taking the �rst 5 derivativesof Equation 5 (and then setting u = 1) gives a system of full rank with 10equations with 10 unknown univariate generating fun
tions, whi
h are thusall algebrai
, and then one has a formula for F (z; u), involving the ui, whi
himplies its algebrai
ity. For the general 
ase, simply repla
e 4 by b and 5 byd in Equation 5. Then, one 
an argue as in Theorem 7 above, with a newmatri
ial equation M:�!F = �!v ; looking at the valuation in z of ea
h entriesin M (some of them involves the small roots ui's, but at most a produ
t ofb of them) gives detM 6= 0 and thus a system of full rank, so F (z; u) 
anbe expressed as a rational fun
tion in z, u, and the small roots ui's. As theseroots are algebrai
, F (z; u) is algebrai
. �19



3.6 Su

ession rules: \algebrai
" exponentsConsider now the 
ase where, for ea
h i, the exponent e(k; i) of the rule (2) isa 
onstant (that is, e(k; i) := ek�i for a �xed sequen
e (ek)k2Z). \Algebrai
"exponents means here that the generating fun
tion of the ek's (whi
h arenonnegative integers) is algebrai
. How far 
an we relate the behaviour of thewalk[(0); (k); (0)ek : : : (k � 1)e1(k)e0(k + 1)e�1 : : : (k + a)e�a℄ (6)to the generating fun
tion of the exponents E(u) = Pi��a eiui ? We give herea �rst element of answer:Theorem 9 Consider the generating tree[(0); (k); (0)ek(1)ek�1 : : : (k � 1)e1(k)e0 : : : (k + a)e�a℄ : (7)For a = 1, one hasF (z; u) = F0(z)1� u e�1z F0(z) with F0(z) = 1e�1z E<�1>(1z )where E<�1> is the 
ompositional inverse of E(u) and where e�1 is the mul-tipli
ity of the +1 jump. More generally, for a � 1, the generating fun
tionF (z; u) is expressed in terms of the a solutions u1(z); : : : ; ua(z) of 1�zE(u) =0 whi
h satisfy uk(z) � e2ik�=ae1=a�a z1=a for z � 0:F (z; u) = F0(z) aYi=1 11� uui(z) = Xk�0F0(z)0� Xi1+:::+ia=k ui11 : : : uiaa 1A uk :One hasF0(z) = (�1)a+1ze�a aYi=1ui(z) and F (z; 1) = �1ze�a aYi=1 11� 1ui(z) :Consequently, if the generating fun
tion of the exponents E(u) is algebrai
then the bivariate generating fun
tion F (z; u) is algebrai
.Proof. For a = 1, the �rst identity re
e
ts the 
ombinatorial de
omposition(one to one 
orresponden
e, in fa
t) \a walk from 0 to k+ 1" is \a walk from0 to k" then followed by a jump +1 then followed by \a walk from k + 1 tok+ 1 never going below k+ 1". The generating fun
tion of these last walks is
learly F0(z), thus one has Fk+1(z) = Fk(z)e�1zF0(z) = F0(z)(ze�1F0(z))k+1.For the walks 
orresponding to the rule (7), the set of jumps is given byE(1=u); if one reverses the time dire
tion, one gets a new walk where the20



set of available jumps is given by E(u). De�ne eF (z; u) as the 
orrespondinggenerating fun
tion (one starts at altitude 0), one has:efn+1(u) = fu�0gE(u) efn(u); ef0(u) = 1where fu�0g stands for the sum of all monomials in u with a nonnegativedegree. Multiplying by zn+1 and summing for n � 0 giveseF (z; u) = ef0(u) + zE(u) eF (z; u)� zfu�1ge�1u eF (z; u) ;that one rewrites as the following fun
tional equation(1� zE(u)) eF (z; u) = 1� z e�1u eF0(z) :Then solving the \kernel" 1 � zE(u) = 0 with respe
t to u gives a seriesu1(z) = E<�1>(1=z), whi
h is algebrai
 as the 
ompositional inverse of aninvertible algebrai
 fun
tion is algebrai
 (simply plug the inverse in the poly-nomial equation �(E(u); u) = 0 satis�ed by E(u) to 
he
k this fa
t). Notethat E is invertible be
ause a � 1 implies E 0(0) 6= 0.If one then evaluates the above fun
tional equation at u = u1(z), one gets0 = 1 � z e�1u1 eF0(z) and thus eF0(z) = u1e�1z . As one has eF0(z) = F0(z) (a walkfrom 0 to 0 from left to right is still a walk from 0 to 0 from right to left),one gets the result from the theorem. Note that if one sets ef0(u) = 11�u , eF0enumerates walks from anywhere to 0, so eF0(z) = u1=(ze�1)1�u1 = F (z; 1), whi
his 
oherent with the theorem (
ase a = 1).For a � 1, one sets P (u) := P�1i=�a eiui; one has(1� zE(u)) eF (z; u) = ef0(u)� zfu<0gP (u) eF (z; u) :This is rewritten as(1� zE(u)) eF (z; u) = ef0(u)� z a�1Xk=0 rk(u) eFk(z) : (8)where rk(u) := fu<0gP (u)uk is a Laurent polynomial with monomials of de-gree going from �1 down to k � a.E(u) being algebrai
, there exists a bivariate polynomial P 2 Q [E; u℄ su
h thatP (E; u) = 0. Now, as one has the kernel equation 1 � zE(u) = 0, it meansthat the roots ui(z) of the kernel are algebrai
 and satisfy P (1z ; ui(z)) = 0.The 
lassi
al theory of Newton polygon then gives the Puiseux expansion ofthese roots. Among these roots, the kernel equation 1 � zE(u) = 0 has a21



roots u1(z); : : : ; ua(z) whi
h are Puiseux series in z1=a and whi
h tend to 0when z tends to 0. When ef0(u) = 1, plugging these roots in the fun
tionalequation shows that they 
orrespond to the a roots of the polynomial ua �zuaPa�1k=0 rk(u)Fk(z), whose leading term is ua and whose 
onstant term is�ze�a eF0(z). This gives eF0(z) = �Qai=1 ui�ze�a . When ef0(u) = 11�u , this gives asystem of a equations for a unknowns (the eFk's). Solving it for eF0 gives F (z; 1).Solving the eF0 for ef0(u) = uk gives the Fk(z). This 
on
ludes Theorem 9. �Remark: as D-�nite fun
tions are not ne
essarily 
losed under 
ompositionalinverse, it is not true that if E(u) is D-�nite, then F (z; 1) or F0(z) (and afortiori F (z; u)) are D-�nite, even in the 
ase a = 1.For a = 1, the Riordan arrays approa
h that we presented in Subse
tion 2.3also gives the algebrai
ity of F (z; u). In fa
t, a theorem from [22℄ says:Theorem 10 If (aj)j2N and (zj)j2N are two nonnegative integer sequen
es,with a0 6= 0, then the matrix asso
iated to the generating tree8><>: (r)(k) ; (r)zk�r(r + 1)ak�r(r + 2)ak�r�1 : : : (k + 1)a0 (9)is a proper Riordan Array D de�ned by the triple (d0; A; Z); su
h thatd0 = 1; A = (a0; a1; a2; : : :); Z = (z0; z1; z2; : : :):A

ordingly, this givesF (z; u) = d(z)1� uzh(z) where h(z) = A(zh(z)) and d(z) = 1=(1� zZ(zh(z))) :For a > 1, the matrix asso
iated (see Se
tion 2) to the rule (6) is 
alled a hori-zontally stret
hed Riordan array. The algebrai
ity of the 
orresponding gener-ating fun
tion F (z; u) then depends on the algebrai
ity of A(z) = Pk�0 akzkand F0(z); : : : ; Fa�1(z) (the generating fun
tions of the �rst a 
olumns of thematrix). However, while the theory of Riordan arrays has been intensivelystudied, the theory of stret
hed Riordan arrays, from a generating fun
tionpoint of view, is still in progress.We end with a last appli
ation of the kernel method.Theorem 11 Consider the su

ession rule (6) when the ei's are ultimately
onstants (say, equal to a 
onstant C after rank b):[(0); (k); (0)C : : : (k � b� 1)C(k � b)eb : : : (k)e0 : : : (k + a)e�a℄ :22



Then F (z; u) is algebrai
 and satis�esF (z; u) = Qbi=0 u� ui(z)K(z; u) ;where the ui's and K are de�ned as below.Proof. One has the re
urren
e fn+1(u) = C fn(u)�fn(1)u�1 +P (u)fn(u) this leadsto the fun
tional equation�1� zP (u)� z Cu� 1�F (z; u) =1� zCu� 1F (z; 1)� z b�1Xk=0fu<0gP (u)ukFk(z) ; (10)where P (u) = Pbi=1(ei � C) 1ui +Pai=0 e�iui. De�ne the kernel K as K(u; z) =ub(1� u)(1� zP (u)� zCu�1). It has b roots u1(z); : : : ; ub(z) whi
h are Puiseuxseries in z1=b and whi
h tend to 0 in 0 and one root u0(z) whi
h tends to 1in 0. These are exa
tly the b + 1 roots of the right hand part of (10) (on
emultiplied by (1�u)ub). So F (z; u) = Qbi=0 u�ui(z)K(z;u) , where the ui's are the b+1small roots of the kernel. �3.7 Asymptoti
sGiven a parti
ular rule for Theorems 7, 8, 9, 10 or 11, it is possible to �ndan asymptoti
 expansion for the number of walks. It is not really possibleto merge all these results in a single one, as the rules are too un
onstrained.However, for the algebrai
 
ase, a kind of universality holds for the behaviourof the roots of the kernel. This leads to following theorem, whi
h has to beadapted 
ase by 
ase for rules of Theorems 8 and 9 (and is easily applied torules of Theorem 11).Theorem 12 The number of walks of length n for the \fa
torial" rule[(0); (k); (0)(1) : : : (k � b� 1)(k � b)eb : : : (k)e0 : : : (k + a)e�a℄(where e(k; i) = 1 for 0 � i < k�b and e(k; i) = ek�i, some �xed 
onstants, fori � k� b) has the following asymptoti
s A ��np2�n3 , where A and � are algebrai

onstants depending on the �nite multiset of jumps P = f�b; : : : ;+ag.Proof. See [2℄ for a proof and appli
ations to the limit laws of �nal altitudeand number of fa
tors. The approa
h is similar to the one used for walks witha �nite number of jumps but there are some 
ompli
ations due to the fa
tthat the kernel is now of the kind 1� z�(u) where �(u) is not unimodal. One
an however establish that the real positive root u0 now dominates and has asquare-root behaviour. �23



This result is the �rst step towards limit laws of several parameters (like �nalaltitude, lo
al time, . . . ). It would be interesting (but mu
h more diÆ
ult)to get the asymptoti
s of parameter like height and area. Note that for theseparameters, it is possible to get 
losed-form formulae (parti
ularly in the 
asea = 1 for the area and for any value of a for the height, via the kernel method,see [1℄)... but this is another story!3.8 Algebrai
 equationsIn Theorems 3 and 4, we gave a dire
t way to obtain an algebrai
 equationsatis�ed by F (z; 1) when the generating fun
tion of the exponents is ratio-nal. For the other theorems, as the algebrai
 generating fun
tion F (z; u) isexpressed in terms of the roots of the kernel, it is possible to get an algebrai
equation for F (z; u) via resultant or Gr�obner bases 
omputations. Note thata more eÆ
ient way, the so-
alled Platypus algorithm, is presented in [4℄. Italso relies on an exploitation of the roots of the kernel.3.9 Variations...As a �rst variation, it is possible to play with the root r of the tree (thestarting point of the paths). We gave above results mostly for r = 0 or r = 1,but it is also possible to follow our proofs for other values of r.As a next variation, it is also possible to remove the non-negativity 
onstraint.In this 
ase, the walks are on Z and thus one gets dire
tly F (z; u) = 11�zE(u�1) .If one then 
onsiders walks ending at a given altitude k, it is possible to get a
losed-form formula for their generating fun
tion Fk(z) (whi
h is algebrai
),via residue 
omputation and a 
onjuga
y prin
iple (simply follow the sameproofs as in [2,4℄ and get Spitzer-like formulae and 
losed-form formulae stillinvolving the roots of the kernel).As a third variation, in Rule (2), it also possible to 
onsider exponents e(k; i)from Z2 to Z, even if the 
ombinatorial meaning of a \negative multipli
ity"is not 
lear... It is also possible to 
onsider the 
ase e(k; i) = ei (instead ofe(k; i) = ek�i as we did in this arti
le). The sequen
es in
rease very qui
kly, itis then then natural to look for exponential generating fun
tions. Some ni
eformulae were given in [1,3℄ and 
ombinatorial proofs were given in [11℄.As a last variation, it is also possible (see [1℄) to re
onsider all the above resultsfor walks of higher Markovian order, that is for walks for whi
h fn+1(u) de-pends not only on fn(u) but also on fn�1(u), and on �nitely many other fn's.Here again, our approa
hes are still working. For example, with a Markovianrandom walk of order 2 (positions one step before are involved with multi-pli
ities en
oded by E(u), and positions two steps before are involved withmultipli
ities en
oded by E2(u)), formulae roughly involves something likeA1�zE(u)�z2E2(u) instead of A1�zE(u) . There are already 
ombinatorial interestsfor su
h walks, see [18℄. 24



4 ExamplesWe now give a series of examples from 
ombinatori
s or 
omputer s
ien
e inwhi
h su

ession rules studied in Se
tion 3 appear.Example 1. Fully dire
ted 
ompa
t animals.They are also 
alled Diagonally dire
ted 
onvex polyominoes (see [16℄ andFig. 6). They are known to be 
ounted a

ording to their number of diag-onals by 12n+1�3nn � whi
h 
orresponds to the the generating tree [(1); (k) ;(1)k+1(2)k : : : (k � 1)3(k)2(k + 1)℄ : �Example 2. A new generating tree for Catalan numbers.From [24℄ (see the exer
ise on Catalan numbers pp.221-247), the generatingtree [(1); (k); (1)2k�2(2)2k�3 : : : (k � 2)2(k � 1)(k + 1)℄generates the partition fB1; : : : ; Bpg of [n℄ su
h that the numbers 1; 2; : : : ; nare arranged in order around a 
ir
le, then the 
onvex hulls of the blo
ksB1; : : : ; Bp are pairwise disjoint. Indeed, let k be the number of isolated pointsaround 1. The 2k�1 su

essors of this 
on�guration are obtained by taking allthe subset of f�1 = 1; �2; : : : ; �k; n+ 1g 
ontaining n + 1. �

Fig. 6. Generating trees for (fully dire
ted 
ompa
t) animals and Catalan blo
ks.25



Example 3. Two families of rules leading to an algebrai
 generating fun
tion.For the rule [(0); (k); (0)ek(1)ek�1 : : : (k�1)e1(k)e0(k+1)℄, where ek for k � 0is the number of t-ary trees with k nodes, F (z; u) satis�es a algebrai
 equationof degree t. E.g., for t = 3, one has:1� (3 + (4� 3u)z)F (z; u)� (� 3 + (6u� 7)z + (�3u2 + 8u� 3)z2)F (z; u)2�(1 + (3� 3u)z + (3u2 � 7u+ 3)z2 + (�u3 + 4u2 � 3u+ 1)z3)F (z; u)3 = 0:For the rule [(0); (k) ; (0)
+k(1)
+k�1 : : : (k � 2)
+2(k � 1)
+1(k)
(k + 1)℄,F (z; u) satis�es an algebrai
 equation of degree 3:((1� 2u)z2 + (
� (
+1) + 2u2))F 3+ ((u� 2)z + (�
� 2+ 4u� 2u2)z2)F 2 +(1 + (2� 2u)z)F = 1.Similar examples for a > 1 lead to expressions whi
h are perhaps a bit large tobe written here in extenso. However, the reader interested by su
h examples
an have a look at http://algo.inria.fr/banderier/Papers/dm03.mws.This is a Maple worksheet where we get the equations for F (z; u), plot theroots of the kernel, give the asymptoti
s for di�erent kind of walks. �Example 4. Tennis ball problem.Let s � 2 be an integer and 
onsider the following problem known as thes-tennis ball problem. At the �rst turn one is given balls numbered 1 to s. Onethrows one of them out of the window onto the lawn. At the se
ond turn ballsnumbered s + 1 through 2s are brought in and now one throws out on thelawn any of the 2s� 1 remained. Then balls 2s+1 through 3s are brought inand one throws out one of the 3s� 2 available balls. The game 
ontinues forn turns. At this point, one pi
ks up the n balls in the lawn and 
onsider theordered sequen
e B = (b1; b2; : : : ; bn) with b1 < b2 < : : : < bn: This sequen
eis 
alled a tennis ball s-sequen
e and the �rst question is: how many tennisball s-sequen
es of length n exist? The se
ond question is: what is the sumof all the balls in all the possible s-sequen
es of length n ? Obviously, if weanswer to both these questions, we also know the average sum of the balls inan s-sequen
e of length n: The general 
ase s � 1 has been studied in [21℄from a generating fun
tion viewpoint. In fa
t, the authors 
onsider an in�nitetree with root 0 and with s 
hildren. Ea
h (n + 1)-length path in this tree
orresponds to an s-sequen
e of length n. This in�nite tree is isomorphi
 tothe generating tree with spe
i�
ation [(1); (k); (1) : : : (k+ s� 2)(k+ s� 1)℄.By using this result the authors �nd that the number of tennis ball s-sequen
esof length n are 
ounted by Tn+1; where Tn = 11+(s�1)n�snn � (the number of s-arytrees with n-nodes) and the 
umulative sum of all the balls thrown onto the26



lawn in n turn is�n = 12(sn2 + (3s� 1)n+ 2s)Tn+1 � 12 n+1Xk=0 skk ! s(n+ 1� k)n+ 1� k !: �Example 5. A new su

ession rule for (4; 2)-tennis ball problem.The problem of balls on the lawn admits many other variants. For example,one 
ould be supplied with s balls at ea
h turn but now throw out t ballsat a time with t < s: The general (s; t) 
ase is an open problem while the(4; 2) 
ase has been treated in [21℄, where the authors study the problem byintrodu
ing a bilabelled generating tree te
hnique. Anyway, re
ently Merliniand Sprugnoli found that the problem 
an be expressed by the rule (6) withei = i+ 3 and a = 2, namely:[(0); (k); (0)k+3(1)k+2(2)k+1 : : : (k + 2)℄ (11)In fa
t, if we don't 
are of the order of the balls thrown away, so that the
on�guration (1; 4), (5; 8), (2; 10) is 
onsidered to be the same as (1; 2), (4; 5),(8; 10); it 
an be proved that the number of (4; 2)-sequen
es of length 2n inwhi
h the last-but-one element is 2n + k � 1 
orresponds to the number ofnodes with label k at level n in the generating tree of Figure 7 (for example,the possible sequen
es of length 2 are (1; 2); (1; 3); (1; 4); (2; 3); (2; 4) and(3; 4)). �00 0 0 10 0 0 0 1 1 1 2 2 31 20 0 0 0 0 1 1 1 1 2 2 2 3 3 4Fig. 7. The partial generating tree for the spe
i�
ation (11).Example 6. Printers.In [20℄ the authors present a 
ombinatorial model for studying the 
hara
-teristi
s of job s
heduling in a slow devi
e, for example a printer in a lo
alnetwork. The poli
y usually adopted by spooling systems is 
alled First ComeFirst Served (FCFS) and 
an be realised by queueing the pro
esses a

ordingto their arrival time and by using a FIFO algorithm. A job (printing a �le)
onsists in a �nite number of a
tions (printing-out a single page). Ea
h a
tiontakes 
onstant time to be performed (a time slot). If we �x n time slots, andsuppose that at the end of the period the queue be
omes empty, while it was27



never empty before, the su

essive states of the jobs queue 
an be des
ribedby a 
ombinatorial stru
ture 
alled labelled 1-histograms. A 1-histogram oflength n is a histogram whose last 
olumn only 
ontains 1 
ell and, when-ever a 
olumn is 
omposed by k 
ells, then the next 
olumn 
ontains at leastk � 1 
ells. It is at all obvious that a 1-histogram 
orresponds to a path inthe generating tree produ
ed by the spe
i�
ation [(1); (k) ; (1) : : : (k + 1)℄.A labelled 1-histograms of length n is a 1-histogram in whi
h we label ea
h
ell a

ording to some rules (see [20℄ for the details). Figure 8 illustrates thepossible s
hedules for two parti
ular 1-histograms of length 3: the �rst one,for example, 
orresponds to i) a �rst job whi
h 
onsists in printing two pagesand a se
ond job, whi
h starts at time slot 2; and 
orresponds to printing apage at time slot 3; and ii) three di�erent jobs whi
h 
onsist in printing asingle page, the �rst at time slot 1; the se
ond at time slot 2 and the third attime slot 3; after queueing at time slot 2: It 
an be proved that the number ofs
hedules of length n with k jobs request at the �rst time slot 
orresponds tothe number of nodes at level n having label k + 1 in the generating tree withspe
i�
ation: [(1); (k); (1)2 : : : (k)2(k + 1)℄ :This gives that the number Sn of possible s
hedules 
orresponds to the nthsmall S
hr�oder number, that is, the generating fun
tion for Sn is (1 � 3z �p1� 6z + z2)=(4z): �
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32Fig. 8. The s
hedules 
orresponding to two parti
ular 1-histograms.A
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Rule EIS des
ription Generating Fun
tion F (z; u)(0); (k); (0)k(k + 1) F0, F (z; 1): powers of 2 1� 2z � z21� (u+ 2)z � 2uz2(0); (k); (0)2k(k + 1) F (z; 1):A001333 
ontinuedfra
tion 
onvergents to p2F0: A052542 (ECS) 1� 2z + z21� (u+ 2)z + (2u� 1)z2 + uz3(0); (k); (0)3k(k + 1) F (z; 1): A026150 (ECS) 1� 2z + z21� (u+ 2)z + (2u� 2)z2 + 2uz3(0); (k); (0)4k(k + 1) F (z; 1): A046717 half of 3n 1� 2z + z21� (u+ 2)z + (2u� 3)z2 + 3uz3(0); (k); (0)k(k + 1)(k + 2) F (z; 1): A001075 andF0: A005320 Pell's equation 1� 4z + 4z21� (4 + u+ u2)z + (4u2 + u� 1)z2 � : : :(1); (k); (0)(1)2(k)(k + 2)2(k + 3)5 6n and A003464 (6n � 1)=5 (4u� 1)z � u(1� 6z)((2u2 + 1)z � 1)(0); (k); (0)k2(2)3k�1(3)(k)(k + 1)2(k + 3)5 see Theorem 7Table 1Some su

ession rules leading to rational generating fun
tions. The generating fun
tions F (z; 1) and F0(z) are de�ned as in Equation 1.
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Rule EIS des
ription Generating Fun
tion F (z; u)(1); (k); (1) : : : (k + s� 2)(k + s� 1) F (z; 1): s-ary trees See also Ex. 4(1); (k); (1)2 : : : (k)2(k + 1) F (z; 1): A001003 S
hr�oder'sse
ond problem u2 1� (2u+ 1)z �p1� 6z � z2(1� u)z + (u2 + u)z2 (see also Ex. 6)(0); (k); (0)k2(2)3k�1(3)(k � 1)(k)(k + 1)2(k + 3)5 see Theorem 8(0); (k); (0)k(1)k�1 : : : (k � 1)1(k)0(k + 1) A036765 F (z; 1): rooted treeswith a degree 
onstraint equation of degree 3(0); (k); (0)k+2(1)k+1 : : : (k � 1)3(k)2(k + 1) F0: A006013 A046648non
rossing trees on a 
ir
leF (z; 1): A001764 ternary trees equation of degree 3 (see Ex. 1 for a variant)(0); (k); (0)k+3 : : : (k � 1)4(k)3(k + 1)2(k + 2) F (z; 1): A066357 planar treeswith root parity 
onstraint equation of degree 4 (see also Ex. 5)(0); (k) ; (0)Ck : : : (k � 1)C1(k)C0(k + 1)(where Ck is the k-th Catalan number) F0: A006318large S
hr�oder numbers 12 3� (4u+ 1)z �p1� 6z � z21� 3uz + (2u2 + u)z2(0); (k); (0)Ck : : : (k � 1)C1(k + 1) F0: A052705 (ECS) 12 3� (4u+ 2)z �p1� 4z � 4z21� (3u+ 2)z + (2u2 � 2u+ 1)z2(0); (k) ; (0)Tk : : : (k � 1)T1(k)T0(k + 1)g(where Tk is the k-th tri-Catalan number) F0: A054727 non
rossingforests of rooted trees equation of degree 3 (see Ex. 3)Table 2Some su

ession rules leading to algebrai
 generating fun
tions.
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