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Abstract

Whereas walks on N with a finite set of jumps were the subject of numerous
studies, walks with an infinite number of jumps remain quite rarely studied, at
least from a combinatorial point of view. A reason is that even for relatively well
structured models, the classical approach with context-free grammars fails as we deal
with rewriting rules over an infinite alphabet. However, several classes of such walks
offer a surprising structure: in this article, we show that one can make explicit the
generating functions of the number of walks (with respect to their length) between
two fixed points. We also give several theorems on their nature (rational, algebraic).
In fact, we mostly deal with succession rules of the type

(k) ~ (0)% (1)1 ... (k — 1) (k)% ... (k + a)°~,

for which we show that the associated generating function F'(z) is algebraic if the
generating function F(z) of the ey’s is rational (via a new combinatorial argument:
a decomposition of the paths which leads to an algebraic equation satisfied by
the noncommutative generating function). Via an analytical argument (the kernel
method), we also show a stronger result: if F(z) is algebraic, then F'(z) is algebraic.
When a = 1, this leads to remarkably simple formulae which can also be proved
with a Riordan array approach. This generalises all the previously known results.

We end with some examples of recent problems in combinatorics or theoretical
computer science which lead to such rules.
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1 Introduction

A considerable number of problems from computer science deals with a sum of
independent identical distributed random variables ¥, = X; + Xo + ... + X,
(where each of the X;’s assumes integer values). We consider here the following
model of random walks: the walk starts (at time 0) from a point Xy of Z and
at time n, one makes a jump X,, € Z; so the new position is given by the
recurrence Y, = ¥, 1+ X, where, when ¥,, | = k, the jump X, is constrained
to belong to a fixed set Py (that is, the possible jumps depend on the position
of the walk).

These “walks on Z” are homogeneous in time (that is to say, the set of jumps
when one is at position £ is independent from the time). When the positions
¥,’s are constrained to be nonnegative, we talk about “walks on N’. The
probabilistic model under consideration here is the uniform distribution on all
paths of length n.

When the sets Py’s are equal to a fixed set P (the simplest interesting case be-
ing P = {—1,+1}), the corresponding walks have been deeply studied both in
combinatorics (Dyck paths,...) and in probability theory (coin flipping, ...).
We refer to [4] for enumerative and analytical studies of such “walks on N with
a finite set of jumps”. When the sets P,’s are unbounded, both enumeration
and asymptotics become cumbersome: contrary to the previous case, the walks
are not space-homogeneous (the set of available jumps depends on the posi-
tion) and it is not possible to generate them by context-free grammars (which
are classically defined for finite alphabet only). However, if the sets P;’s have
a “combinatorial” shape, it is reasonable to hope that the generating function
associated to the corresponding walk would have some nice properties. We
show here that this hope is legitimate and we present several classes of such
walks, for which we are able to give the nature of their generating function.

Our results have potential impacts on the theory of generating trees, the enu-
meration and generation of combinatorial objects (general classes of lattice
paths, constrained permutations, ...) and on the study of rewriting rules on
an infinite alphabet.

A definition of the generating function associated to the walk is given in Sec-
tion 2 where we also present the generating tree and Riordan array viewpoints.
In Section 3, we give several theorems related to the nature of the generating
functions associated to some walks (which deeply generalise previously known
results from [1-8,15,17-22]). Then, we give some asymptotic results. In Sec-
tion 4, we give some examples of problems in which some of the new classes
of walks that we study in this article appear.



Fig. 1. The generating tree of the walk on N with jumps P = {41, -1} starting
in 0 (and up to length n = 4). Each branch corresponds to a path. The branch
(0,1,2,1,2) corresponds to the path drawn on the lattice.

2 Lattice paths, generating trees, succession rules and their gen-
erating functions

In combinatorics, it is classical to represent a particular walk as a path in a
two dimensional lattice. Thus the drawing corresponds to the walk of length n
linking the points ((0, %), (1,%1),...,(n,X,)). It is also convenient to repre-
sent all the walks of length < n as a tree of height n, where the root (at level
0 by convention) is labelled with the starting point of the walks and where
the label of each node at level n encodes a possible position of the walk (see
Figure 1).

Let f,x be the number of walks on N of length n going from the starting point
to k (or, equivalently, the number of nodes with label k£ at level n in the tree).
We want to find the bivariate generating function

Flzyu) =Y falu)z" =Y F)u* = Y fopuFz". (1)

n>0 keN keN,n>0

where u encodes the final altitude of the walk (the label in the tree), z the
length of the walk (the level in the tree), and where f,(u) is a Laurent poly-
nomial (that is, a polynomial with finitely many monomials of negative and
positive degree).

2.1 Generating trees and succession rules

The concept of generating trees has been used from various points of view and
was introduced in the literature by Chung, Graham, Hoggatt and Kleiman [10]
to examine the reduced Baxter permutations.

We define here a generating tree as a rooted labelled tree with the property
that if two nodes have the same label then, for any integer ¢, they have exactly



the same number of children with label /. For readability, we often write the
labels in parentheses. Thus, a generating tree is fully defined by:

1) the label of the root (that we also call “axiom”);

2) a set of rules {(k) ~ My }ren explaining how to derive from the label of a
parent the labels of its children. (M} is a multiset ' of labels.)

Point 2) defines what we call a succession rule. The multisets My, are directly
related to the multisets Py (the allowed jumps introduced in Section 1) via
the relation My = {k + z,x € P;}. For example, Figure 1 illustrates the
upper part of the generating tree which corresponds to the set of rules {(k) ~
(k —1)(k + 1) }ren with 0 as label of the root. That is, one has in this case
Pr={—1,+1} and My, = {k — 1,k + 1}. In what follows, instead of writing

((0), {(k) ~ (k = 1)(k + 1) }ken)

we use the more readable notation

or alternatively

(0)
(k) ~ (k — 1)(k +1).

Note that we only consider nonnegative walks, thus when a rule gives a nega-
tive label, we simply ignore this label. In the above case, when k£ = 0 the rule
is thus (0) ~ (1) and not (0) ~ (—1)(1). If a label is repeated, we directly
write (k)" instead of (k)...(k) (n occurrences). This corresponds to walks
with multiplicities, or if one wants, to distinguish two occurrences of the same
label in a succession rule by colouring them in two different colours.

The method of generating trees was also successfully used by West [25], Du-
lucq, Gire, and Guibert [12-14], for the enumeration of permutations with
forbidden sequences (see Fig. 2). In fact, the kind of rewriting rules under
consideration here were intensively studied partly because they are useful to
solve some cases of the following famous conjecture:

Conjecture 1 (Stanley—Wilf) For any given pattern, there exists a con-
stant C' such that there are asymptotically O(C™) permutations of length n
avoiding this pattern.

I Multisets are sets in which repetitions are allowed. E.g., for multisets, one has
{1,1,2} U{1,2} ={1,1,1,2,2}.
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Fig. 2. The generating tree of 123-avoiding permutations. (a) Nodes labelled by the
permutations. (b) Nodes labelled by the numbers of children. It can be proved

that the right tree corresponds to the rule [(2), (k) ~ (2)... (k + 1)].

This conjecture shows that to forbid a pattern is a strong constraint (per-
mutations with a forbidden pattern are of density zero in the whole set of
permutations). For any fixed pattern, the algebraicity of the generating func-
tion of permutations avoiding this pattern would be a proof of this conjecture.
However, it is not possible to solve all the cases by this approach (as some
patterns lead to non-D-finite? generating functions).

These last years, the concept of generating tree has been intensively exploited
by Barcucci, Del Lungo, Ferrari, Pergola, Pinzani, and Rinaldi [6,7,17,18] in
relation with the ECO method (ECO stands for enumeration of combinatorial
objects) which allows the enumeration and recursive construction of various
classes of combinatorial objects. In fact, the succession rule approach has sev-
eral equivalent interpretations, ECO systems, discrete random walks, infinite
automata or Riordan arrays (see later). For all these problems, it is interesting
to classify the rules according to the nature (rational, algebraic, transcenden-
tal) of the corresponding generating function F'(z,w). This program has been
proposed by Pinzani and al. [6,7,17,18] in the area of ECO systems (the so
called “ECO systems” are the generating trees where each integer has exactly
k successors). A classical and easy result is that finite succession rules have
rational generating function since they correspond to a regular language. An-
other result (proved in [3]) is that every finite transformation of the succession
rule

(k) ~ (1)(2)...(k)(kE+1)
leads to an algebraic generating function. In the same paper are also de-
scribed succession rules leading to exponential generating functions having a

2 A series F(z) is said to be holonomic, or D-finite, if it satisfies a linear differential
equation with polynomial coefficients in z. Equivalently, its coefficients f,, satisfy a
linear recurrence relation with polynomial coefficients in n.



nice closed-form formula which have been more extensively studied by Corteel
in [11]. Our paper is principally devoted to the study of succession rules having
algebraic generating function.

In a first step, our approach is closely related with Schiitzenberger’s method-
ology, which consists in finding first a bijection between the objects and the
words of an algebraic language and then a non ambiguous grammar for the
language. Taking the commutative image leads to an algebraic system for the
generating function. For a succession rule, we define its noncommutative for-
mal power series using the infinite alphabet of positive integers. We use a new
operation @& which allows us to get a non ambiguous decomposition of the
formal power series associated to the generating tree. We deduce algebraic
equation by taking the commutative image of the formal power series. This
method allows us to get an algebraic decomposition of the general succession
rule

(B) ~ (1)...(k—1)(k) ... (k +a)*,

for any finite sequence (e;), and more generally for the succession rule
(k) ~ (1)t . (k=D (k)°...(k+a)e,

for any sequence (e;)$° , proving thereby that the generating function of the
generating tree is algebraic when the sequence (e;) is rational. This gives a
combinatorial proof for a generalisation of the results of [3].

In a second step, we give some analytical proofs (based on the kernel method)
of the algebraicity of the generating function associated to the generating tree
when the sequence (e;) in the succession rule is algebraic.

2.2 Noncommutative generating functions for succession rules

It is convenient to see a generating tree (defined in the previous subsection)
as the infinite tree constructed with a root labelled by the axiom and where
each node labelled £ has sons labelled according to the succession rule.

For a generating tree 7, we define the language L as the set of words over N,
beginning by the axiom r and in which each letter (k) is followed by a letter
(if any) which belongs to the multiset M. Each word w of £ corresponds to
at least one branch? of 7. For each word w € L, let m(w) be the number of
branches in the generating tree 7 corresponding to the word w. We denote by

S the noncommutative formal power series S = > m(w)w.
weL

3 By branch of the infinite tree 7, we mean any sequence of labels corresponding
to a branch of any finite subtree of 7. Figure 1 gives an example.
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Fig. 3. Truncated generating tree of [(1), (k) ~ (1)(2)(3)(3)(4) ... (k)(k + 1)]. The
associated generating function is F(z,1) = 2z + 222 + 623 +222* 4 ... and the corre-
sponding noncommutative GF is S = 1+11+12+1114+1124+121+122+2.123+...

By construction, the generating tree 7 and the noncommutative formal power
series S have the same generating function

F(z,1) = Zan(l)z" = ZN ( Z|_ m(w)) 2"

We use standard external product and concatenation over the noncommutative
formal power series: For any real x and for any word v, one has

xS = (zm(w))w and 0.5 : =) m(w)(v.w).

weL weL

We now define the “shift” operation (that we write @) as follows:

Definition 2 Fori € N, we define i := 1+ 1. By extension if w = wy ... w,
is a word with n letters, then w® = w{ ... w® and S® := ¥ e, m(w)w®.

Clearly, the generating functions associated to S and S® are equal.

2.8 Riordan arrays

We introduce now the concept of matriz associated to a generating tree: this
is an infinite matrix {d, j }nren Where d, is the number of nodes at level n
with label k£ + r, where r is the label of the root. For example, the matrix
associated to the generating tree of the Figure 1 (walk with jumps +1, —1) is



the following:

n\k|0 1 2 3 4
0 |1

1 (0 1

2 [1 0 1

310 20 1
412 0 3 0 1

Many such matrices can be studied from a Riordan array viewpoint. In fact,
the concept of a Riordan array provides a remarkable characterisation of many
lower triangular arrays that arise in combinatorics and algorithm analysis. The
theory has been introduced in the literature in 1991 by Shapiro, Getu, Woan,
and Woodson [23]. Riordan arrays are a powerful tool in the study of many
counting problems having a flavour of Lagrange inversion [19].

A Riordan array is an infinite lower triangular array {d,, j }n ren, defined by a
pair of formal power series (d(z), h(2)), such that the k-th column is given by
d(2)(zh(2))F, i.e.:

dn i = [2"]d(2)(zh(2))", n,k > 0.

From this definition, one has d,; = 0 for & > n. The bivariate generating
function for the Riordan array is:

d(2)

dy puf 2" = ——=
2 dngutz 1 —uzh(z)

n,k>0

In what follows, we always assume that d(0) # 0; if we also have h(0) # 0
then the Riordan array is said to be proper; in the proper-case the diagonal
elements d,, ,, are different from zero for all n € N. The most simple example
is the Pascal triangle for which one has

(1) = ()

where we recognise the proper Riordan array with d(z) = h(z) = 1/(1 — 2).
Proper Riordan arrays are characterised by the existence of a sequence A =
(a;)ien with ag # 0, called the A-sequence, such that every element d 1 41
can be expressed as a linear combination, with coefficients in A, of the elements
in the preceding row, starting from the preceding column:

Ayt 1 = Aoy + a1y 1 + Gody 2 + . ..



It can be proved that h(z) = A(zh(z)), A(z) being the generating function for
the sequence A. For example, for the Pascal triangle one has: A(z) = 14z and
the previous relation reduces to the well-known recurrence relation for bino-
mial coefficients. The A-sequence doesn’t characterise completely (d(z), h(2))
because d(z) is independent of A(z). But it can be proved that there exists a
unique sequence Z = (zp, 21, 22, - - .), such that every element in column 0 can
be expressed as a linear combination of all the elements of the preceding row:

dpy10 = 20dno + 21dp1 + 22dpo + ...

This property has been recently studied in [19], where it is proved that d(z) =
d(0)/(1 — zZ(zh(2))), Z(z) being the generating function for Z. Thus the
triple (d(0), Z(z), A(z)) characterises every proper Riordan array. We use these
claims in Theorem 10.

3 Generating functions of succession rules

This section contains the main results of our article. We give several theorems,
making explicit the generating functions associated to different kind of rules
(“rational” exponents: Theorem 4, “algebraic” exponents: Theorem 9, ...).

3.1  Lattice paths and generating trees

Consider a function e(k,7) which is going from N* to N. We now fix an integer
a > 0 (a corresponds to the largest positive possible jump; so we restrict here
our attention to functions such that e(k, i) = 0 for any & as soon as i > a).
Then the walks with an infinite set of jumps under consideration here are of
the following kind:

(r)

2

(k) ~s (O)e(k,o)(l)e(k,l) o (k _ 1)e(k,k—1)(k)e(k,k) o (k 4 a)e(k,k+a) ( )

where the exponent e(k,7) is the multiplicity of the jumps from £ to 7 and

where r is the starting position of the walk (or equivalently, the root of the

associated generating tree). In what follows, we often (but not always) consider
the case for which e(k,i) = ex_; (where (ex)rez is a fixed sequence).

If the sequence (e(k, 7)) (for a fixed 7) is ultimately 0, then the situation covers
the case of walks with a finite set of jumps [4]. If the sequence is ultimately
1, then this covers the case of “factorial rules” which are of great interests for



the generation of combinatorial objects [8] and for which it was proved in [3]
that the associated generating functions are algebraic.

We still note f, r the number of walks on N of length n going from the starting
point to £ and we want to find the bivariate generating function F(z,u) =
2 on k>0 faxufz". These random walks on N can equivalently be seen as lattice
paths, generating trees, and also as Riordan arrays (when a = 1).

In Tables 1 and 2 (see at the end of this article), we give a list of succession rules
with simple combinatorial patterns, the reference to famous numbers or combi-
natorial problems they refer to, the generating function F(z,1), and the num-
bers identifying the corresponding sequences in the On-Line Encyclopedia of
Integer Sequenceshttp://www.research.att.com/~njas/sequences/; ECS
stands for the Encyclopedia of Combinatorial Structures, a database reachable
via http://algo.inria.fr/encyclopedia/.

3.2 Succession rules: “rational” exponents

In this section, we study succession rules having the following general form
(1), (k) ~ (1% (k= D (R .. (k4 a)*].

“Rational” exponents means here that the generating function E(z) of the
er’s (which are nonnegative integers) is rational.

Using decomposition of paths, we prove the algebraicity of the associated gen-
erating function F'(z,1), first when the sequence (e;);~o is constant equal to
one (Theorem 3), and then when the sequence (e;) follows a linear recurrence,
that is when the e;’s are coefficients of a rational generating function (Theo-
rem 4).

Theorem 3 The noncommutative generating function S associated to the
generating tree

(D), (k) ~ (1)...(k=1)(k)...(k+a)]

satisfies the following equation

S=(1)+(1) éeis@ leo(é + 579,

where S*® = (SG-18)® gpd 0% = G,

Consequently, the (commutative) generating function F(z,1) of the generating

10



tree is algebraic and satisfies

a

F(z,1) = 2+ 2F(2,1) Y _e_i(1 + F(z,1))".

=0

Example: For the generating tree associated to [(1), (k) ~ (1)...(k+1)], this
gives S = (1) + S+ S9(e+ 95).

Remark: The algebraicity of F'(z, 1) for such generating trees was first proved
analytically in [3] (via a proof which is leading to a neat closed-form formula).
We give here a combinatorial proof of this algebraicity (via a neat decompo-
sition of the tree).

Proof. The proof is deduced from the recursive decomposition of the paths
in the generating tree. We need to define (,.S) as the formal sum of the paths
in the generating tree obtained by replacing the axiom by r:

(1), (k) ~ (1)...(k — 1)(k)*...(k + a)*=].

We can write recursively (,.S) using the following non ambiguous decompo-
sition (see Fig. 4). Let w # r be a non trivial path of (,.S), then w can be
written w = r.u

- if each letter of u is > r then v = v(""D® where v is a path of the generating
tree,

- if not, let m the first letter < r in u, so u can be written v%ril)@vg where
v1 is a path of the generating tree and v, is a path of (,,,S), ve being the
longest suffix of u beginning by m.

=Q

m<r

Fig. 4. Decomposition of (,.5).

11



r—1
One has (,5) = STV + Y (,,9)). It is easy to see that
m=1

(;15) = 57 ] (e + S™).

m=0

The equality S = (1) + (1) Y _ e_,(,415) concludes the proof. O

r=0

The algebraic equation satisfied by the algebraic generating function given in
the small catalogue of ECO-systems of [3] can be deduced from the previous
theorem. For instance, this is the case of Motzkin numbers, Schroder numbers
and ternary trees. For the general case, that we consider now, the difficulty is
to deal with the e; jumps from (k) to (k — 7).

Theorem 4 Consider E(z) = Y;5_, €;2". The rationality of E(z) implies the
algebraicity of the generating function F(z,1) of the generating tree

(1), (B) ~ ()% (k= 1) (k) ... (k +a)*].

Proof. We begin by giving the different equations obtained from the recursive
decomposition of the paths in the generating tree. As in the proof of Theo-
rem 3, we need to define (,.S;) as the formal sum of the paths ending by i in
the following generating tree

[(7), (k) ~ (1) (b — 1) (k) ... (k +a)°].

We write (5;) for (15;). Applying the same non ambiguous decomposition as
in Theorem 3 and considering the last letter of each factor (see Fig. 5), we get

(7‘+1Si) = (Sz’—r)T@ + Z Z 6j+r—m(5j)r®(m5i)- (3)
m=1j>1

Let ,Fj(z) be the generating functions of (.S;) (paths beginning in r and
ending in ). By convention, ,F; = 0 for ¢ < 0 or r < 0. One has F; = (1F)
(as 1 is the root of the generating tree). Let G := Y_;51 €;pj 1 Fj for 1 <@ <p
and H,(2) :== Y, i+ 44, Gir (2) ... G, (2) for n > 0 with the convention that
Hy(z) := 1. Note that H, is a polynomial in Gy, ...,G,. From Equation (3),
one gets

F) =Fr() 4 Y Y e Fi(2) (nFi(2))

m=1j5>1

—Fer () + Y oot () (nFi(2))

m=1

12



m<r

Fig. 5. Decomposition of (,S;).

For k£ > 2, decomposing F}, according to the first positive jump, gives

Fk =z Z 6—m(m+1Fk)-

m=0
Using the fact that
r m—1
(r-l—lﬂ) :E—r + Z Gr—m-H Z Hm—l—jﬂ—j
m=1 7=0
r—1 r—m—1
=F_,+ Z Fi m Z GrfmfjHj
m=0 7=0

r—1
=F_,+ Z Fi mHy

m=0
r

= Z He mFim ,

m=0

one has

a m
Fp==z Z €_m Z H,, _iFy_;
m=0 =0
a a
=23 Fij) el
Jj=0 i=j

a a a
=zF} Z e_;H; + =z Z Fk:fj Z 671Hi7j-
i=0 =1 i—j

13



For k =1, one gets Iy = 2+ 2 Y{_ge_i(i41F1). Let bj = 37 e_;H;_j, one has

F1: z

1—2zbo
Iy, = 1fzb0 iy 2by Fy_s for k> 1.

Let M be the following a by a matrix (whose entries are rational functions in
Gi,...,G,),

2b1 zbo 2ba—1 2bg
1—zbp 1—2zbg ~ " 1—2zby 1—zbg
1 0O ... 0 0
M = 0 1 ... 0 0
0 0 1 0
F, Fi Fi = 5
Fr—1 Y Fy—s _ e 0
Fi—at1 Fi—a 0

Before to go on, one needs the following lemma.

Lemma 5 The rationality of the sequence (e;) implies the algebraicity of the
sequence (G}).

Proof. If the sequence (e;);>_, is rational, then the sequence (ej);>1 is also ra-
tional and there exist two polynomials P and @) such that 3, epzt ! = g%z;a
with Q(0) # 0. Thus one has Y45, e, M*~' = P(M)Q(M)™", because Q(M)
is invertible. Indeed, decomposing Q(z) in C leads to Q(z) = ¢ TI™? (z — p;),
so that Det(Q(M)) = cT1%%Y Det(M — p;I), which is obviously nonzero by
computing,

a

> bp™ ™).

m=1

Det(M — pI) = (—1)*H (—=p®
et(M = pI) = (=)™ (=" + 5= -

14



Thus we can write an algebraic system of a equations for Gy, ..., G,

Gi Fy 17Zzb0 1jzb0
Go Fr_1 el 0 P(M) 0
=) e =) eM"™ = —
72 2 - |Taoon|
Ga Fk_(a_1) 0 0

The Jacobian of this system is equal to the identity for z = 0 so the G;’s are
algebraic functions of z. 0l

Moreover F}, is algebraic for all k£ > 1:

1—2zbg

Fy _ 0

Fk—a-l—l 0
Finally, this leads to

Fk 1—Zzb0

Fi 4 0

Y1 | =(M-1)" ) ;

Fk—a-l—l 0

taking the first entry gives that F'(z,1) = 3>, Fr(2) is algebraic. O

Remark: In fact Lemma 5 can be extended. Indeed, if F(z) is algebraic, then
the G;’s are still algebraic. For this, let P the bivariate polynomial such that
P(E,z) = 0. Now, consider the first and the third member in last formula in
the proof of the Lemma. Multiplying them by adequate monomials E (M ) M7
and summing over adequate values of (7, j) allows to get P(F (M), M) in the
third member. As this is equal to 0, one thus gets a system of a equations for
the G;’s (with algebraic coefficients). The rest of the proof still implies the
algebraicity of F'(z,1). We don’t push the proof in this direction because, in
Theorem 9 hereafter, we give another proof which leads to a neat closed-form
formula for F'(z,u).

15



3.8 Succession rules with “rational” exponents: finite modifications

Theorem 4 above allows us to generalise a result from [3] concerning finite
transformations of (k) ~ (1)...(k—1)(k)(k+1). A finite transformation of a
rule consists in adding a fixed integer to one (resp. all) succession rule(s). The
noncommutative formal power series approach allows us to interpret finite
transformations and show that they do not change the algebraicity of the
generating function. Moreover, the property of algebraicity does not depend
on the choice of the axiom.

Theorem 6 Consider E(z) = Y.;5 , €;2". If E(2) is algebraic, then all “finite
transformations” (as defined above) of the succession rule

(k) ~ ()% (k= D (R) . (k- a)

lead to an algebraic associated generating function F(z,1). More generally,
all finite transformations of the succession rule (k) ~ My, lead to an alge-
braic associated generating function F(z,u) as soon as the original bivariate
generating function is algebraic.

Proof. For any fixed nonnegative integer ¢, let 7, 7', and 7" be the following
the generating trees:

T:

T" =4 (ko) ~ My, U (c)
(k) ~ My,  for k+#k.

Thus, 7' and T" are finite transformations of 7. Let S, S', and S” (resp. F,
F', and F") be the formal sum of paths (resp. the commutative generating
functions) associated to 7, 7', and 7". As in the proofs of Theorem 3 and
Theorem 4, let (Sk) be the formal sum of paths ending by & and (.S) be
the formal sum of the paths in the generating tree [(c), (k) ~ (1)%-t...(k —
1)e (k) ... (k+a)®<], that is the original generating tree 7 where the axiom
r has been replaced by c.
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F F(z,
As S" = S+ Sky-(cSk)*(eS), this gives F"(z,u) = F(z,u) + kol(z) 7 ((Z) u)
— L\ 2
where the right member involves only functions which are known to be alge-
braic, thus F" is also algebraic. Similarly, the relation S” = S.(.5)*, gives the
algebraicity of F”. O

By duality, similar results hold if you remowve a label from one (or all) rule(s).
Note also that there is no difficulty to apply the same kind of proofs to other
transformations like [(r), (ko) ~ My, (k) ~ My U (c)].

3.4 Succession rules: polynomial exponents and no negative bounded jump
allowed

Theorem 7 For any constant B > 0, the generating tree

(), (k) ~ (0)5F0 _ (B)e®B)  (k)eo  (k +a)* ]
(where e(k,0),...,e(k, B) are polynomial in k, e(k,i) = 0 for B < i < k
and e(k,i) = ex_;, some fized constants, for i > k) has a rational generating

function F(z,u).

Proof. First, we illustrate the general case by the following example:

(0)
(k) ~ (0)%(2)* " (3) (k) (k + 1)*(k +3)°,

—
e~
~

~—

for which B = 3, the polynomials in k are e(k,0) = k%, e(k,1) = 0, e(k,2
3k — 1,e(k,3) = 1, and the fixed constants are ¢ = 1, e 1 = 2, e
€_3 = 5.

=

—92 =

The part (k) ~ (0)¥* implies a transformation u* ~» k>u°. The part (k) ~»
(2)3~! implies a transformation u* ~ (3k — 1)u?. The part (k) ~ (3) implies
a transformation u* ~» u?. It is possible to perform all these transformations
using the derivation?, evaluation in v = 1 and multiplication by a mono-
mial: in the first case, the multiplicity k% is obtained by d(ud(u*)) and then
evaluating in v = 1; for the second case, the multiplicity 3k — 1 is obtained
by taking 0(u®*)/u and then evaluating in v = 1; for the third case simply
evaluate in v = 1 and multiply by u®. The part (k) ~ (k)(k + 1)%(k + 3)°
gives u* ~» P(u)u* where P(u) = 1+ 2u + 5u®. All these transformations are
in fact linear, so to act on u* or a polynomial in u (like f,(u)) is the same.

4 We denote the derivation with respect to u by d, or by @ or ’ when there is no
ambiguity. We also write abusively 0, F(z, 1) for (0,F)(z,1).
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Finally, evaluating d(udf,(u)) in v = 1 gives f/(1) + f/(1) and evaluating
w0y fr(u?) Ju in uw =1 gives u?(3f] (1) — f,(1)), so these trivial simplifications
gives the following recurrence:

Fos1(u) = P(u) falu) +u®(£7(1) + fr(1) +u*(3F1 (1) = fa(1)) + v’ fu(1) .

Multiplying by z"*! and summing for n > 0 leads to the functional equation
(1—2Pu)F(z,u) = 1+ z(u® = 1)F(2,1) + 2(3u® + 1)0,F (2,1) + 202 F(2,1) .

Taking the first 2 derivatives and instantiating in u = 1 gives a rational system
of full rank, hence F'(z,u) is rational:

Flou) u3(2222—11223—2) + u?(48023 — 602%) + 52823 — 2502% + 312 — 1
z,u) = :
’ (1 — 2P(u))(8722% — 21222 + 30z — 1)

For the general case, one has the following functional equation

(1 —2P(u)F(z,u) =u"+ 2 t;(u)d,F(z,1)

1=0

(d is the largest degree of the polynomials e(k, ), and the ¢;’s are some Laurent
polynomials which can be made explicit). Taking the first d derivatives and

instantiating in u = 1 gives a system (for m =0, ...,d):
m—1 m ) )
otu" + <Z (z@’;’lti(l) + z( _ >8T1P(1)> 0! F(z, 1)>
i=0 v

4 (207,(1) — (1 — 2P(1)) 9" F(2,1) + 2 i omt,(1)9 F(2,1) = 0.

i=m—+1

This gives a matricial equation M.F = % where ¥ = (u”,0,...,0)T and
F = (00F(2,1),...,0%F (2,1))T. The coefficients of the main diagonal of M
are —1 + z... (as they are the coefficients of the 0!"F(z,1) summand) and
all the other coefficient of M are monomials in z of degree 1. Thus, one has
[2°] det M = +1 and then det M # 0. Consequently, this system is of full rank.
Solving it gives rational expressions for the 9! F'(z,1) and for F(z, u). O

3.5 Succession rules: polynomial exponents and negative jumps allowed

We now give a generalisation of a result of [3] which was giving the algebraicity
of “factorial rules”: we allow here initial multiplicities which are not space-
homogeneous.
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Theorem 8 For any constant B > 0, the generating tree

(), (k) ~ (0)*®0  (B)¥EB(B4+1)...(k—b—1)(k =) ...(k+a)*]
(where e(k,0),...,e(k, B) are polynomial in k, e(k,i) =1 for B<i<k—b
and e(k,i) = eg_;, some fized constants, for i > k — b) has an algebraic

generating function F(z,u).

Proof. We illustrate the general case by the following example:
[(0), (k) ~ (0)" (2™ 2(6)(7) ... (k = 5)(k — 4)*(k — 2)* (k) (k + 3)(k + 23)],

for which B = 5,b = 4,a = 23, the polynomials in k are e(k,0) = k2, e(k,2) =
3k — 2, e(k,1) = e(k,3) = e(k,4) = e(k,5) = 0 and the fixed constants are
es=2,e5=3,eg=1,e 3=2 ¢ 93=1.Onesets P(u) =2u""+3u2+1+
2u3 + u?3, the recurrence is

Fas(u) = P(u) faw) — {u="}P(u) fu(u) + ZO ti(u)0,fu(1)

where {u<%} stands for the sum of the monomials in v with a negative degree.
Multiplying by z"*! and summing for n > 0 leads to the functional equation

(1—2P(u))F(z,u) =1— z]; rr(u)Fr(z) + thi(u)ﬁiF(z, 1), (5)

where 7y, (u) := {u<°} P(u)u* and t;(u) are (Laurent) polynomials which can
be made explicit.

One can use the kernel method (we refer to [4,9] for recent applications of this
method) to solve this equation. We call 1 — 2P (u) the kernel of the equation.
Solving 1 — 2P (u) = 0 with respect to u gives 4 roots ui(2), us(2), us(z) and
uy(z) which are Puiseux series in z'/* and which tend to zero in 0. There are
also 23 others roots which behave like z~/2 around 0, so we call uy, ..., u4 the
smallroots of the kernel. Plugging the 4 small roots of the kernel in Equation 5
and considering the 6 other equations obtained by taking the first 5 derivatives
of Equation 5 (and then setting u = 1) gives a system of full rank with 10
equations with 10 unknown univariate generating functions, which are thus
all algebraic, and then one has a formula for F(z,u), involving the u;, which
implies its algebraicity. For the general case, simply replace 4 by b and 5 by
d in Equation 5. Then, one can argue as in Theorem 7 above, with a new
matricial equation MTF = 7'; looking at the valuation in z of each entries
in M (some of them involves the small roots u;’s, but at most a product of
b of them) gives det M # 0 and thus a system of full rank, so F(z,u) can
be expressed as a rational function in z, u, and the small roots u;’s. As these
roots are algebraic, F'(z,u) is algebraic. O
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3.6 Succession rules: “algebraic” exponents

Consider now the case where, for each i, the exponent e(k, ) of the rule (2) is
a constant (that is, e(k,7) := e,_; for a fixed sequence (eg)gez). “Algebraic”
exponents means here that the generating function of the e;’s (which are
nonnegative integers) is algebraic. How far can we relate the behaviour of the
walk

[(0), (k) ~ (0)* ... (k=D (k)*(k+ 1) ...(k+a)] (6)

to the generating function of the exponents F(u) = ;5 _, e;u’ 7 We give here
a first element of answer:

Theorem 9 Consider the generating tree

[(0), (B) ~ (0)* (1)~ (k = )" (R)* ... (k +a)"]. (7)

Fora =1, one has

Fo(2) : 1 o1
F = th  Fy(z) = — E<7"7 (=
(2, ) 1—ue_1z Fy(2) A () e_12 (z)

where E<~'> is the compositional inverse of E(u) and where e_y is the mul-
tiplicity of the +1 jump. More generally, for a > 1, the generating function
F(z,u) is expressed in terms of the a solutions uy(z), ..., us(2) of 1 —zE(u) =
0 which satisfy ug(z) ~ e2ik”/“el_/,fz1/“ for z ~ 0:

a 1 ) )
F(z,u) = Fy(2) =) Fy(2) T VL R T
2.21—11 1 — uu;(2) ]g) Z.1+___Z+ia:k !
One has
(_1)a+1 a _1 a 1
Fo(z) = 2T u d F(z1) =
e | (I

Consequently, if the generating function of the exponents E(u) is algebraic
then the bivariate generating function F(z,u) is algebraic.

Proof. For a =1, the first identity reflects the combinatorial decomposition
(one to one correspondence, in fact) “a walk from 0 to £+ 17 is “a walk from
0 to k” then followed by a jump +1 then followed by “a walk from £+ 1 to
k + 1 never going below k + 1”. The generating function of these last walks is
clearly Fy(z), thus one has Fy(2) = Fp(2)e_12Fy(2) = Fy(2)(ze_1 Fy(2))FL.

For the walks corresponding to the rule (7), the set of jumps is given by
E(1/u); if one reverses the time direction, one gets a new walk where the
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set of available jumps is given by F(u). Define F(z,u) as the corresponding
generating function (one starts at altitude 0), one has:

fur(u) = {u=*}YE(u) fu(u),  fo(u) =1

where {uZ%} stands for the sum of all monomials in u with a nonnegative
degree. Multiplying by 2"*! and summing for n > 0 gives

F(z,u) = fo(u) + zE(u)F(z,u) — z{u” 1}— F(z,u),

that one rewrites as the following functional equation

€1

(1-— zE(u))F(z u)=1-— ZTFO( z).

Then solving the “kernel” 1 — zF(u) = 0 with respect to u gives a series
ui(2) = E<7'>(1/z), which is algebraic as the compositional inverse of an
invertible algebraic function is algebraic (simply plug the inverse in the poly-
nomial equation ®(E(u),u) = 0 satisfied by E(u) to check this fact). Note
that E is invertible because a > 1 implies E’(0) # 0.

If one then evaluates the above functional equation at u = u;(z), one gets
0=1-25t F[)( ) and thus Fy(z) = p—y Fo(z) = Fy(z) (a walk
from 0 to 0 from left to right is still a walk from 0 to 0 from right to left),
one gets the result from the theorem. Note that if one sets fo( ) = = u, Ey

enumerates walks from anywhere to 0, so Fy(z) = %jl‘l) = F(z,1), which
is coherent with the theorem (case a = 1).

For a > 1, one sets P(u) := >;.', e;u’; one has

(1 = 2E(u)F(z,u) = Jo(u) — 2{u="}P(u) F(z,u).

This is rewritten as

(1= 2B(@) () = Jolw) = = 3 ne(u) i), ®)

where ry.(u) := {u<°} P(u)u* is a Laurent polynomial with monomials of de-
gree going from —1 down to k£ — a.

E(u) being algebraic, there exists a bivariate polynomial P € Q[F, u| such that
P(E,u) = 0. Now, as one has the kernel equation 1 — zE(u) = 0, it means
that the roots u;(z) of the kernel are algebraic and satisfy P(,u;(z)) = 0.
The classical theory of Newton polygon then gives the Puiseux expansion of
these roots. Among these roots, the kernel equation 1 — zE(u) = 0 has a
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roots u;(2),...,uq(2) which are Puiseux series in z'/¢ and which tend to 0
when z tends to 0. When fg(u) = 1, plugging these roots in the functional
equation shows that they correspond to the a roots of the polynomial u® —
2u® Y ¢Zo re(u) Fi.(2), whose leading term is u® and whose constant term is

—ze_oFy(2). This gives Fy(z) = “Ili™ hen fo(u) = L, this gives a

system of a equations for a unknowns (the F’s). Solving it for Fy gives F/(z,1).
Solving the Fy for fo(u) = u* gives the F},(z). This concludes Theorem 9. [

Remark: as D-finite functions are not necessarily closed under compositional
inverse, it is not true that if E(u) is D-finite, then F(z,1) or Fy(z) (and a
fortiori F(z,u)) are D-finite, even in the case a = 1.

For a = 1, the Riordan arrays approach that we presented in Subsection 2.3
also gives the algebraicity of F'(z,u). In fact, a theorem from [22] says:

Theorem 10 If (a;)jen and (z;)jen are two nonnegative integer sequences,
with ag # 0, then the matrixz associated to the generating tree

(7)

(k) ~> (r)2=r(r 4+ 1)%—r(r 4+ 2)%-—r-t . (k+1)%

(9)

is a proper Riordan Array D defined by the triple (dy, A, Z), such that
d():l, A:(ao,al,ag,...), Z:(Zo,ZI,ZQ,...).

Accordingly, this gives

F(z,u) = #21(2) where h(z) = A(zh(2)) and d(z) = 1/(1 — 2Z(zh(z))) .

For a > 1, the matrix associated (see Section 2) to the rule (6) is called a hori-
zontally stretched Riordan array. The algebraicity of the corresponding gener-
ating function F(z,u) then depends on the algebraicity of A(z) = 450 ap2”
and Fy(2),...,F,_i(2) (the generating functions of the first a columns of the
matrix). However, while the theory of Riordan arrays has been intensively
studied, the theory of stretched Riordan arrays, from a generating function
point of view, is still in progress.

We end with a last application of the kernel method.

Theorem 11 Consider the succession rule (6) when the e;’s are ultimately
constants (say, equal to a constant C after rank b):

[(0), (k) ~ (0)° ... (k—=b—1) k—=b)*...(k)...(k+a)].
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Then F(z,u) is algebraic and satisfies

ot — 1i(2)

K(z,u)

F(z,u) =

where the u;’s and K are defined as below.

Proof. One has the recurrence f,1(u) = C’w + P(u) fr(u) this leads
to the functional equation

(1 — 2P (u) — zuf 1) F(z,u) =
2C = <0 k
1- — 1F(z, 1) — z];){u FP(u)u"Fi(z), (10)

where P(u) = Y0_ (e; — C)-% + Y% e_ju’. Define the kernel K as K (u,z) =
ub(1 —u)(1 — 2P (u) — 2%). It has b roots u;(2), ..., us(z) which are Puiseux
series in z'/* and which tend to 0 in 0 and one root ug(z) which tends to 1
in 0. These are exactly the b + 1 roots of the right hand part of (10) (once

u—u;(z)

b
multiplied by (1 —u)u®). So F(z,u) = Hi:f?T’ where the u;’s are the b+ 1

small roots of the kernel. O
3.7  Asymptotics

Given a particular rule for Theorems 7, 8, 9, 10 or 11, it is possible to find
an asymptotic expansion for the number of walks. It is not really possible
to merge all these results in a single one, as the rules are too unconstrained.
However, for the algebraic case, a kind of universality holds for the behaviour
of the roots of the kernel. This leads to following theorem, which has to be
adapted case by case for rules of Theorems 8 and 9 (and is easily applied to
rules of Theorem 11).

Theorem 12 The number of walks of length n for the “factorial” rule
[(0), (k) ~ (0)(1)...(k=b—=1)(k=b)"...(k)*...(k+a)°]

(where e(k,i) =1 for0 < i < k—b and e(k,i) = ex—;, some fized constants, for
i >k —0b) has the following asymptotics A\/%, where A and p are algebraic
constants depending on the finite multiset of jumps P = {—b, ..., +a}.

Proof. See [2] for a proof and applications to the limit laws of final altitude
and number of factors. The approach is similar to the one used for walks with
a finite number of jumps but there are some complications due to the fact
that the kernel is now of the kind 1 — z¢(u) where ¢(u) is not unimodal. One
can however establish that the real positive root ug now dominates and has a
square-root behaviour. O
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This result is the first step towards limit laws of several parameters (like final
altitude, local time, ...). It would be interesting (but much more difficult)
to get the asymptotics of parameter like height and area. Note that for these
parameters, it is possible to get closed-form formulae (particularly in the case
a = 1 for the area and for any value of a for the height, via the kernel method,
see [1])... but this is another story!

3.8 Algebraic equations

In Theorems 3 and 4, we gave a direct way to obtain an algebraic equation
satisfied by F(z,1) when the generating function of the exponents is ratio-
nal. For the other theorems, as the algebraic generating function F(z,u) is
expressed in terms of the roots of the kernel, it is possible to get an algebraic
equation for F'(z,u) via resultant or Grobner bases computations. Note that
a more efficient way, the so-called Platypus algorithm, is presented in [4]. Tt
also relies on an exploitation of the roots of the kernel.

3.9 Variations...

As a first variation, it is possible to play with the root r of the tree (the
starting point of the paths). We gave above results mostly for r =0 or r = 1,
but it is also possible to follow our proofs for other values of r.

As a next variation, it is also possible to remove the non-negativity constraint.
In this case, the walks are on Z and thus one gets directly F(z,u) = #(u_l)
If one then considers walks ending at a given altitude k, it is possible to get a
closed-form formula for their generating function Fj(z) (which is algebraic),
via residue computation and a conjugacy principle (simply follow the same
proofs as in [2,4] and get Spitzer-like formulae and closed-form formulae still

involving the roots of the kernel).

As a third variation, in Rule (2), it also possible to consider exponents e(k, 7)
from Z2? to Z, even if the combinatorial meaning of a “negative multiplicity”
is not clear... Tt is also possible to consider the case e(k,i) = e; (instead of
e(k,i) = ex_; as we did in this article). The sequences increase very quickly, it
is then then natural to look for exponential generating functions. Some nice
formulae were given in [1,3] and combinatorial proofs were given in [11].

As a last variation, it is also possible (see [1]) to reconsider all the above results
for walks of higher Markovian order, that is for walks for which f,,(u) de-
pends not only on f,(u) but also on f,_1(u), and on finitely many other f,’s.
Here again, our approaches are still working. For example, with a Markovian
random walk of order 2 (positions one step before are involved with multi-
plicities encoded by F(u), and positions two steps before are involved with
multiplicities encoded by Fs(u)), formulae roughly involves something like
ngxu) instead of #j‘i(u)' There are already combinatorial interests
for such walks, see [18].
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4 Examples

We now give a series of examples from combinatorics or computer science in
which succession rules studied in Section 3 appear.

EXAMPLE 1. Fully directed compact animals.

They are also called Diagonally directed convex polyominoes (see [16] and
Fig. 6). They are known to be counted according to their number of diag-

onals by 5-1- (3:) which corresponds to the the generating tree [(1), (k) ~

(DEFL2)F (k= 1)3(k)%(k +1)]. O
EXAMPLE 2. A new generating tree for Catalan numbers.

From [24] (see the exercise on Catalan numbers pp.221-247), the generating
tree . .
—2 -3
[(1), (k) ~ (1" (2)* ... (k= 2)*(k = 1)(k + 1)]
generates the partition {By,..., B,} of [n] such that the numbers 1,2,...,n
are arranged in order around a circle, then the convex hulls of the blocks

By, ..., B, are pairwise disjoint. Indeed, let £ be the number of isolated points
around 1. The 2¥~! successors of this configuration are obtained by taking all
the subset of {ay = 1,3, ...,ax,n+ 1} containing n + 1. O
@®
® .® — —
® ®
.@
LI NO) .
*@® .C:) p/ ® \
@®
® .@®

Fig. 6. Generating trees for (fully directed compact) animals and Catalan blocks.
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EXAMPLE 3. Two families of rules leading to an algebraic generating function.

For the rule [(0), (k) ~ (0)% (1)%-1...(k—1)(k)*(k+1)], where e for k > 0
is the number of ¢-ary trees with k nodes, F(z, u) satisfies a algebraic equation
of degree t. E.g., for t = 3, one has:

1— (34 (4—3u)2)F(z,u) — (= 3+ (6u—T)z+ (—3u® +8u—3)2*)F(2,u)* —
(1+ (3 —3u)z+ (3u* — Tu+3)2” + (—v’ + 4u® — 3u + 1)2*)F(z,u)* = 0.

For the rule [(0), (k) ~» (0)tF(1)eth=1 . (k — 2)*2(k — 1)t (k)°(k + 1)],
F(z,u) satisfies an algebraic equation of degree 3:

(1=2u)2?+ (c— (c+ 1)+ 2u®))F3+ ((u—2)z+ (—c — 2+ 4u — 2u?)2*)F? +
(14 (2—2u)2)F = 1.

Similar examples for a > 1 lead to expressions which are perhaps a bit large to
be written here in extenso. However, the reader interested by such examples
can have a look at http://algo.inria.fr/banderier/Papers/dm03.mws.
This is a Maple worksheet where we get the equations for F'(z,u), plot the
roots of the kernel, give the asymptotics for different kind of walks. O

ExAMPLE 4. Tennis ball problem.

Let s > 2 be an integer and consider the following problem known as the
s-tennis ball problem. At the first turn one is given balls numbered 1 to s. One
throws one of them out of the window onto the lawn. At the second turn balls
numbered s + 1 through 2s are brought in and now one throws out on the
lawn any of the 2s — 1 remained. Then balls 2s 4+ 1 through 3s are brought in
and one throws out one of the 3s — 2 available balls. The game continues for
n turns. At this point, one picks up the n balls in the lawn and consider the
ordered sequence B = (by,bs,...,b,) with by < by < ... < b,. This sequence
is called a tennis ball s-sequence and the first question is: how many tennis
ball s-sequences of length n exist? The second question is: what is the sum
of all the balls in all the possible s-sequences of length n ? Obviously, if we
answer to both these questions, we also know the average sum of the balls in
an s-sequence of length n. The general case s > 1 has been studied in [21]
from a generating function viewpoint. In fact, the authors consider an infinite
tree with root 0 and with s children. Each (n + 1)-length path in this tree
corresponds to an s-sequence of length n. This infinite tree is isomorphic to
the generating tree with specification [(1), (k) ~ (1)...(k+s—2)(k+s—1)].

By using this result the authors find that the number of tennis ball s-sequences
of length n are counted by 7T},,1, where T,, = m (S:) (the number of s-ary
trees with n-nodes) and the cumulative sum of all the balls thrown onto the
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lawn in n turn is

1 1w sk (s(n+1—k)
Y, = ~(sn? —1 28) i1 — = :
2(sn + (35— 1)n+28)Th41 2k:0<k><n+1—k>

EXAMPLE 5. A new succession rule for (4,2)-tennis ball problem.

The problem of balls on the lawn admits many other variants. For example,
one could be supplied with s balls at each turn but now throw out ¢ balls
at a time with ¢ < s. The general (s,¢) case is an open problem while the
(4,2) case has been treated in [21], where the authors study the problem by
introducing a bilabelled generating tree technique. Anyway, recently Merlini
and Sprugnoli found that the problem can be expressed by the rule (6) with
e; =1+ 3 and a = 2, namely:

[(0), (k) ~ (0)F2(1)M2(2) .. (k +2)] (11)

In fact, if we don’t care of the order of the balls thrown away, so that the
configuration (1,4), (5,8), (2,10) is considered to be the same as (1, 2), (4,5),
(8,10), it can be proved that the number of (4,2)-sequences of length 2n in
which the last-but-one element is 2n + k£ — 1 corresponds to the number of
nodes with label & at level n in the generating tree of Figure 7 (for example,
the possible sequences of length 2 are (1,2), (1,3), (1,4), (2,3), (2,4) and
(3,4)). O

o o o o1 1 1 2 2 3 0 0O O0OO1 1 1 1 2 2 2 3 3 4

Fig. 7. The partial generating tree for the specification (11).

EXAMPLE 6. Printers.

In [20] the authors present a combinatorial model for studying the charac-
teristics of job scheduling in a slow device, for example a printer in a local
network. The policy usually adopted by spooling systems is called First Come
First Served (FCFS) and can be realised by queueing the processes according
to their arrival time and by using a FIFO algorithm. A job (printing a file)
consists in a finite number of actions (printing-out a single page). Each action
takes constant time to be performed (a time slot). If we fix n time slots, and
suppose that at the end of the period the queue becomes empty, while it was
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never empty before, the successive states of the jobs queue can be described
by a combinatorial structure called labelled 1-histograms. A 1-histogram of
length n is a histogram whose last column only contains 1 cell and, when-
ever a column is composed by k cells, then the next column contains at least
k — 1 cells. It is at all obvious that a 1-histogram corresponds to a path in
the generating tree produced by the specification [(1), (k) ~ (1)...(k + 1)].
A labelled 1-histograms of length n is a 1-histogram in which we label each
cell according to some rules (see [20] for the details). Figure 8 illustrates the
possible schedules for two particular 1-histograms of length 3: the first one,
for example, corresponds to i) a first job which consists in printing two pages
and a second job, which starts at time slot 2, and corresponds to printing a
page at time slot 3, and ii) three different jobs which consist in printing a
single page, the first at time slot 1, the second at time slot 2 and the third at
time slot 3, after queueing at time slot 2. It can be proved that the number of
schedules of length n with £ jobs request at the first time slot corresponds to
the number of nodes at level n having label £ + 1 in the generating tree with
specification:
[(1), (k) ~ (17 (k) (k + 1)

This gives that the number S, of possible schedules corresponds to the n
small Schréder number, that is, the generating function for S, is (1 — 3z —

V1—62z+22)/(42). O

3
| | - [1]2]s]
2
] - ESEN

Fig. 8. The schedules corresponding to two particular 1-histograms.
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6¢

Rule EIS description Generating Function F(z,u)
1—2z — 22

(0), (k) ~ (0)F(k +1) Fy, F(z,1): powers of 2 1— (ut2)z - 2u?

F(2z,1):A001333 continued
(0), (k) ~ (0)*(k +1) fraction convergents to v/2
Fo: A052542 (ECS)

1—2z+2°
1—(u+2)z+ (2u —1)22 + uzd

(0), () ~ (0% (k + 1) F(z,1): A026150 (ECS) T 2);2(;;2)% =
(0), () ~ (0)*(k + 1) F(z,1): AO46T17 half of 3 T 2)1,2;?;;?;),22 T
(0), (k) ~ (0 (k + 1)(k +2) ;(;;()gzzlfinzmn T ui);fz(;zﬁzj e
(1), (k) ~ (0)(1)2 (k) (k + 2)2(k + 3)° 6" and A003464 (6" — 1)/5 i éj;‘((;igi_l;‘z =Y
(0). (k) ~ (0% 2% 1(3) (k) (k + 12(k + 3)° see Theorem 7
Table 1

Some succession rules leading to rational generating functions. The generating functions F'(z,1) and Fy(z) are defined as in Equation 1.



0€

Rule
(1), (k)~Q)...(k+s—2)(k+s—1)

EIS description

F(z,1): s-ary trees

Generating Function F(z,u)

See also Ex. 4

(1), (k) ~ (1)2...(k)?(k+1)
(0), (k) ~ (0)%*(2)*k=1(3)(k — 1) (k) (k + 1)2(k + 3)°

(0), (k) ~ (O)F (M)t (k=)' (k) (k + 1)

(0), (k) ~ (OM2()* (k= 1)*(k)*(k + 1)

F(z,1): A001003 Schroder’s

second problem

A036765 F(z,1): rooted trees
with a degree constraint

Fy: A006013 A046648
noncrossing trees on a circle

F(z,1): A001764 ternary trees

ul—(2u+1)z —V1—6z—27
2 (1—-u)z+ (u? +u)z?

(see also Ex. 6)

see Theorem 8

equation of degree 3

equation of degree 3 (see Ex. 1 for a variant)

(0), (k) ~ (0)k+3 .. (k — D*(E)3(k + 1)2(k +2)

(0), (k) ~ (0) ... (k = ) (k) (k + 1)
(where Cj is the k-th Catalan number)

(0), (k) ~ (0)% ... (k — 1)1 (k+1)

F(z,1): A066357 planar trees
with root parity constraint
Fy: A006318

large Schroder numbers

Fo: A052705 (ECS)

equation of degree 4 (see also Ex. 5)

13— (du+1)z — V1 —6z — 22
2 1-3uz+ (2u?+u)z?
13- (du+2)z—V1—4z—422
21— (Bu+2)z+ (2u? — 2u + 1)22

(0); (k) ~ (0)7* ... (k = )T (k)"0 (k + 1)}

(where T}, is the k-th tri-Catalan number)

Fy: A054727 noncrossing

forests of rooted trees

equation of degree 3 (see Ex. 3)

Table 2

Some succession rules leading to algebraic generating functions.
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