
Poster submission to FPSAC'02 (revised Marh 13, 2002).LATTICE PATHS WITH AN INFINITE SET OF JUMPSCYRIL BANDERIER AND DONATELLA MERLINIAbstrat. Whereas walks on N with a �nite set of jumps were the subjet of numerous studies,walks with an in�nite number of jumps remain quite rarely studied. Even for relatively well stru-tured models, the lassial approah with ontext-free grammars fails as we deal with rewritingrules over an in�nite alphabet. However, several lasses of suh walks o�er a surprising struture:we make here expliit the assoiated bivariate funtions, and give several theorems on their nature(rational, algebrai) via the kernel method or Riordan arrays theory. We give some examples ofreent problems in ombinatoris or theoretial omputer siene whih lead to suh rules.R�esum�e. Tandis que les propri�et�es �enum�eratives et asymptotiques des marhes sur N ave un nom-bre �ni de sauts ont fait l'objet de nombreuses �etudes, les marhes ave un nombre in�ni de sautsdemeurent assez peu �etudi�ees. Même pour des mod�eles relativement strutur�es, on ne peut utiliserles approhes lassiques par grammaires alg�ebriques, puisqu'il s'agit de r�egles de r�eriture sur unalphabet in�ni. Toutefois, diverses lasses de telles marhes o�rent une surprenante struture :nous expliitons ii la nature (alg�ebrique, rationnelle) de la s�erie g�en�eratrie bivari�ee assoi�ee (viala m�ethode du noyau ou la th�eorie des tableaux de Riordan). Nous illustrons l'intêret de tellesmarhes en ombinatoire et informatique th�eorique par quelques exemples.
IntrodutionA onsiderable number of problems from omputer siene deals with a sum of independentidential distributed random variables �n = X1 +X2 + � � � +Xn (where eah of the Xi's assumesinteger values). We will onsider here the following model of random walks: the walk starts (at time0) from a point �0 of Z and at time n, one makes a jump Xn 2 Z; so the new position is given bythe reurrene �n = �n�1 +Xn where, when �n�1 = k, the Xn's are onstrained to belong to a�xed set Pk (that is, the possible jumps depend on the position of the walk).These \walks on Z" are homogeneous in time (that is to say, the set of jumps when one is atposition k is independent from the time). When the positions �n's are onstrained to be nonnegative,we talk about \walks on N". The probabilisti model under onsideration here is the uniformdistribution on all paths of length n.When the sets Pk's are equal to a �xed set P (the simplest interesting ase being P = f�1;+1g),the orresponding walks have been deeply studied both in ombinatoris and in probability theory.We refer to [3℄ for asymptoti properties of suh \walks on N with a �nite set of jumps". Whenthe sets Pk's are unbounded, both enumeration and asymptotis beome umbersome: ontrary tothe previous ase, the walks are not spae-homogeneous (the set of available jumps depends on theposition) and it is not possible to generate them by ontext-free grammars. However, if the sets Pk'shave a \ombinatorial" shape, it is reasonable to hope that the generating funtion assoiated to theorresponding walk would have some nie properties. We show here that this hope is legitimate andwe present several lasses of suh walks, for whih we are able to give the nature of their generatingfuntion.Our results have potential impats on the theory of generating trees (generation of ombinatorialobjets), the enumeration of general lasses of lattie paths, and on the study of rewriting rules onan in�nite alphabet.A de�nition of the generating funtion assoiated to the walk is given in Setion 1. In this �rstsetion, we also present the generating tree and Riordan array viewpoints. In Setion 2, we giveseveral theorems related to the nature of the generating funtions assoiated to some walks and thenwe give some asymptoti results. In Setion 3, we give some examples of problems in whih someof the new lasses of walks that we study in this artile appeared.1



2 C. BANDERIER AND D. MERLINI01010 2 210 2 32 4Figure 1. The generating tree of the walk on N with jumps P = f+1;�1g startingin 0 (and up to length n = 4). Eah branh orresponds to a path. The branh(0; 1; 2; 1; 2) orresponds to the path drawn on the lattie.1. Lattie paths and generating treesIn ombinatoris, it is lassial to represent a partiular walk as a path in a two dimensional lattie.Thus the drawing orresponds to the walk of length n linking the points �(0;�0); (1;�1); : : : ; (n;�n)�.It is also onvenient to represent all the walks of length � n as a tree of height n, where the root(at level 0 by onvention) is labeled with the starting point of the walks and where the label of eahnode at level n enodes a possible position of the walk (see Figure 1).We note wn;k the number of walks on N of length n going from the starting point to k (or,equivalently, the number of nodes with label k at level n in the tree) and we want to �nd thebivariate generating funtionW (z; u) =Xn�0wn(u)zn =Xk2ZWk(z)uk = Xk2Z;n�0wn;kukzn ;where u enodes the �nal altitude of the walk (the label in the tree), z the length of the walk (thelevel in the tree), and where wn(u) is a Laurent polynomial (that is, a polynomial with �nitely manymonomials of negative and positive degree). When the walk is onstrained to remain nonnegative(or equivalently when negative labels in the tree are not allowed), we onsider similarly the bivariategenerating funtion F (z; u) =Xn�0 fn(u)zn =Xk2NFk(z)uk = Xk2N;n�0 fn;kukzn :(1)Generating trees and rewriting rules. The onept of generating trees has been used fromvarious points of view and was introdued in the literature by Chung, Graham, Hoggatt andKleiman [6℄ to examine the redued Baxter permutations. This tehnique has been suessivelyapplied to other lasses of permutations. A generating tree is a rooted labeled tree with the prop-erty that if v1 and v2 are any two nodes with the same label then, for eah label `, v1 and v2 haveexatly the same number of hildren with label `. To speify a generating tree it therefore suÆes tospeify: 1) the label of the root; 2) a set of rules explaining how to derive from the label of a parentthe labels of all of its hildren. Points 1) and 2) de�ne what we all a rewriting rule. For example,Figure 1 illustrates the upper part of the generating tree whih orresponds to the rewriting rule[(0); f(k) (k � 1)(k + 1)g℄.Riordan arrays We introdue now the onept of matrix assoiated to a generating tree: this isan in�nite matrix fdn;kgn;k2N where dn;k is the number of nodes at level n with label k+ r; r beingthe label of the root. For example, the matrix assoiated to the generating tree of the Figure 1 isthe following: n=k 0 1 2 3 40 11 0 12 1 0 13 0 2 0 14 2 0 3 0 1



LATTICE PATHS WITH AN INFINITE SET OF JUMPS 3Many suh matries an be studied from a Riordan array viewpoint. In fat, the onept of aRiordan array provides a remarkable haraterization of many lower triangular arrays that arise inombinatoris and algorithm analysis. The theory has been introdued in the literature in 1991 byShapiro, Getu, Woan and Woodson [11℄. Riordan arrays are a powerful tool in the study of manyounting problems [7℄.A Riordan array is an in�nite lower triangular array fdn;kgn;k2N; de�ned by a pair of formalpower series D = (d(z); h(z)); suh that the k-th olumn is given by d(z)(zh(z))k; i.e.:dn;k = [zn℄d(z)(zh(z))k; n; k � 0:From this de�nition we have dn;k = 0 for k > n: The bivariate generating funtion for D is:Xn;k�0 dn;kukzn = d(z)1� uzh(z) :In what follows, we always assume that d(0) 6= 0; if we also have h(0) 6= 0 then the Riordan arrayis said to be proper; in the proper-ase the diagonal elements dn;n are di�erent from zero for alln 2 N: The most simple example is the Pasal triangle for whih we have�nk� = [zn℄ 11� z � z1� z�k ;where we reognize the proper Riordan array with d(z) = h(z) = 1=(1� z): Proper Riordan arraysare haraterized by the existene of a sequene A = faigi2N with a0 6= 0; alled the A-sequene;suh that every element dn+1;k+1 an be expressed as a linear ombination, with oeÆients in A,of the elements in the preeding row, starting from the preeding olumn:dn+1;k+1 = a0dn;k + a1dn;k+1 + a2dn;k+2 + � � �It an be proved that h(z) = A(zh(z)), A(z) being the generating funtion for A: For example,for the Pasal triangle we have: A(z) = 1 + z and the previous relation redues to the well-known reurrene relation for binomial oeÆients. The A-sequene doesn't haraterize ompletely(d(z); h(z)) beause d(z) is independent of A(z). But it an be proved that there exists a uniquesequene Z = fz0; z1; z2; : : : g; suh that every element in olumn 0 an be expressed as a linearombination of all the elements of the preeding row:dn+1;0 = z0dn;0 + z1dn;1 + z2dn;2 + � � �This property has been reently studied in [7℄, where it is proved that d(z) = d(0)=(1� zZ(zh(z)));Z(z) being the generating funtion for Z: Thus the triple (d(0); Z(z); A(z)) haraterizes everyproper Riordan array.2. Walks on Z with an infinite set of negative jumps2.1. Lattie paths and generating trees. Consider a sequene (ei(k))i��a (for a given integera > 0) of polynomials assuming nonnegative integers values then the walk with an in�nite set ofjumps under onsideration here are of the following kind:[(r); f(k) (0)ek(k)(1)ek�1(k)(2)ek�2(k) : : : (k � 1)e1(k)(k)e0(k) : : : (k + a)e�a(k)g℄ ;(2)where the exponent ei(k) is the multipliity of the jumps �i when one is at position k and where ris the starting position of the walk (or equivalently, the root of the assoiated generating tree).If the sequene of polynomials (ei(k))i��a is ultimately ei(k) = 0, then the situation overs thease of walks with a �nite set of jumps. If the sequene is ultimately ei(k) = 1, then this overs thease of \fatorial rules" whih are of great interests for the generation of ombinatorial objets [4℄and for whih it was proven in [2℄ that the assoiated generating funtions are algebrai.We still note fn;k the number of walks on N of length n going from the starting point to k andwe want to �nd the bivariate generating funtion F (z; u) =Pn;k�0 fn;kukzn. These random walkson N an equivalently be seen as lattie paths, generating trees and also as Riordan arrays (whena = 1).



4 C. BANDERIER AND D. MERLINIRule EIS approximate desription Generating Funtion F (z; u)Rational OGF OGF(0); f(k) (0)k(k + 1)g F0, F (z; 1): powers of 2 1� 2z � z21� (u+ 2)z � 2uz2(0); f(k) (0)2k(k + 1)g F (z; 1):A001333 ontinuedfration onvergents to p2F0: A052542 (ECS) 1� 2z + z21� (u+ 2)z + (2u� 1)z2 + uz3(0); f(k) (0)3k(k + 1)g F (z; 1): A026150 (ECS) 1� 2z + z21� (u+ 2)z + (2u� 2)z2 + 2uz3(0); f(k) (0)4k(k + 1)g F (z; 1): A046717 half of 3n 1� 2z + z21� (u+ 2)z + (2u� 3)z2 + 3uz3(0); f(k) (0)k(k + 1)(k + 2)g F (z; 1): A001075 andF0: A005320 Pell's equation 1� 4z + 4z21� (4 + u+ u2)z + (4u2 + u� 1)z2 � : : :(1); f(k) (0)(1)2(k)(k + 2)2(k + 3)5g 6n and A003464 (6n � 1)=5 (4u� 1)z � u(1� 6z)((2u2 + 1)z � 1)(0); f(k) (0)k2(2)3k�1(3)(k)(k + 1)2(k + 3)5g see Theorem 1Algebrai OGF OGF(1); f(k) (1) : : : (k + s� 2)(k + s� 1)g F (z; 1): s-ary trees(1); f(k) (1)2 : : : (k)2(k + 1)g F (z; 1): A001003 Shr�oder'sseond problem u2 1� (2u+ 1)z �p1� 6z � z2(1� u)z + (u2 + u)z2(0); f(k) (0)k2(2)3k�1(3)(k)(k + 1)2(k + 3)5g(0); f(k) (0)k(1)k�1 : : : (k � 1)1(k)0(k + 1)g A036765 F (z; 1): rooted treeswith a degree onstraint equation of degree 3(0); f(k) (0)k+2(1)k+1 : : : (k � 1)3(k)2(k + 1)g F0: A006013 A046648nonrossing trees on a irleF (z; 1): A001764 ternary trees equation of degree 3(0); f(k) (0)k+3 : : : (k � 1)4(k)3(k + 1)2(k + 2)g F (z; 1): A066357 planar treeswith root parity onstraint equation of degree 4(0); f(k) (0)Ck : : : (k � 1)C1(k)C0(k + 1)g(where Ck is the k-th Catalan number) F0: A006318large Shr�oder numbers 12 3� (4u+ 1)z �p1� 6z � z21� 3uz + (2u2 + u)z2(0); f(k) (0)Ck : : : (k � 1)C1 (k + 1)g F0: A052705 (ECS) 12 3� (4u+ 2)z �p1� 4z � 4z21� (3u+ 2)z + (2u2 � 2u+ 1)z2(0); f(k) (0)Tk : : : (k � 1)T1 (k)T0(k + 1)g(where Tk is the k-th tri-Catalan number) F0: A054727 nonrossingforests of rooted trees equation of degree 3Table 1. Some rewriting rules with simple ombinatorial patterns. The ordinarygenerating funtions F (z; 1) and F0(z) are de�ned as in Equation 1.In Table 1, we give a list of rewriting rules with simple ombinatorial patterns, the refereneto famous numbers or ombinatorial problems they refer to, the generating funtion F (z; 1), andthe numbers identifying the orresponding sequenes in the On-Line Enylopedia of Integer Se-quenes http://www.researh.att.om/�njas/sequenes/; ECS stands for the Enylopedia ofCombinatorial Strutures http://algo.inria.fr/enylopedia/.2.2. Rationality and algebraiity of lasses of rewriting rules.Theorem 1. For any onstant B � 0, the rule[(r); f(k) (0)ek(k) : : : (B)ek�B (k) (k)e0 : : : (k + a)e�ag℄(where ek(k); : : : ; ek�B(k) are polynomial in k, ei(k) = 0 for 0 < i < k � B and ei(k) = ei, some�xed onstants, for i � 0) has a rational generating funtion F (z; u).Proof. First, we illustrate the general ase by the following example:[(0); f(k) (0)k2 (2)3k�1(3)(k)(k + 1)2(k + 3)5g℄ ;for whih B = 3, the polynomials in k are ek(k) = k2; ek�1 = 0; ek�2 = 3k � 1; ek�3 = 1, and the�xed onstants are e0 = 1, e�1 = 2, e�2 = 0, e�3 = 5.



LATTICE PATHS WITH AN INFINITE SET OF JUMPS 5The part (k)  (0)k2 implies a transformation uk  k2u0. The part (k)  (2)3k�1 impliesa transformation uk  (3k � 1)u2. The part (k)  (3) implies a transformation uk  u3. Itis possible to perform all these transformations using the derivation, evaluation in u = 1 andmultipliation by a monomial: in the �rst ase, the multipliity k2 is obtained by �(u�(uk)) andthen evaluating in u = 1; for the seond ase, the multipliity 3k�1 is obtained by taking �u(u3k)=uand then evaluating in u = 1; for the third ase simply evaluate in u = 1 and multiply by u3.The part (k)  (k)(k + 1)2(k + 3)5 gives uk  P (u)uk where P (u) = 1 + 2u + 5u3. All thesetransformations are in fat linear, so to at on uk or a polynomial in u (like fn(u)) is the same.Finally, evaluating �(u�fn(u)) in u = 1 gives f 00n (1) + f 0n(1) and evaluating u2�ufn(u3)=u in u = 1gives u2(3f 0n(1)� fn(1)), so these trivial simpli�ations gives the following reurrene:fn+1(u) = P (u)fn(u) + u0(f 00n (1) + f 0n(1)) + u2(3f 0n(1)� fn(1)) + u3fn(1) :Multiplying by zn+1 and summing for n � 0 leads to the funtional equation(1� zP (u))F (z; u) = 1 + z(u3 � 1)F (z; 1) + z(3u2 + 1)F 0(z; 1) + zF 00(z; 1) :Taking the �rst 2 derivatives and instantiating in u = 1 gives a rational system of full rank, heneF (z; u) is rational:F (z; u) = u3(22z2 � 112z3 � z) + u2(480z3 � 60z2) + 528z3 � 250z2 + 31z � 1(1� zP (u))(872z3 � 212z2 + 30z � 1) :For the general ase, one has the following funtional equation(1� zP (u))F (z; u) = ur + z dXi=0 ti(u)�iuF (z; 1)(d is the largest degree of the polymonials ei(k), and the ti's are some Laurent polynomials whihan be made expliit). Taking the �rst d derivatives and instantiating in u = 1 gives a system (form = 0; : : : ; d):�mu ur +  m�1Xi=0 �z�mu ti(1) + z�mi ��m�iu P (1)� �iuF (z; 1)!+ (z�mu ti(1)� (1� zP (1)))�mu F (z; 1) + z dXi=m+1 �mu ti(1)�iuF (z; 1) = 0 :This gives a matriial equation M:�!F = �!v where �!F = (�0uF (z; 1); : : : ; �duF (z; 1))T and �!v =(ur; 0; : : : ; 0)T . The oeÆients of the main diagonal ofM are �1+z : : : (as they are the oeÆientsof the �mu F (z; 1) summand) and all the other oeÆient of M are monomials in z of degree 1. Thus,one has [z0℄ detM = �1 and then detM 6= 0. Consequently, this system is of full rank. Solving itgives rational expressions for the �iuF (z; 1) and for F (z; u).We now give a generalization of a result of [2℄ whih was giving the algebraiity of \fatorialrules": we allow here initial multipliities whih are not spae-homogeneous.Theorem 2. For a onstant B � 0, the rule[(r); f(k)  (0)ek(k) : : : (B)ek�B(k)(B + 1) : : : (k � b� 1)(k � b)eb : : : (k + a)e�ag℄(where ek(k); : : : ; ek�B(k) are polynomial in k, ei(k) = 1 for b < i < k � B and ei(k) = ei, some�xed onstants, for i � b) has an algebrai generating funtion F (z; u).Proof. We illustrate the general ase by the following example:[(0); f(k) (0)k2(2)3k5�2(6)(7) : : : (k � 5)(k � 4)2(k � 2)3(k)(k + 3)2(k + 23)g℄for whih B = 5; b = 4; a = 23, the polynomials in k are ek(k) = k2, ek�2(k) = 3k5 � 2, ek�1(k) =ek�3(k) = ek�4(k) = ek�5(k) = 0 and the �xed onstants are e4 = 2, e2 = 3, e0 = 1, e�3 = 2,



6 C. BANDERIER AND D. MERLINIe�23 = 1. One sets P (u) = 2u�4 + 3u�2 + 1 + 2u3 + u23, the reurrene isfn+1(u) = P (u)fn(u)� fu<0gP (u)fn(u) + 5Xi=0 ti(u)�iufn(1) ;where fu<0g stands for the sum of the monomials in u with a negative degree. Multiplying by zn+1and summing for n � 0 leads to the funtional equation(1� zP (u))F (z; u) = 1� z 4�1Xk=0 rk(u)Fk(z) + z 5Xi=0 ti(u)�iuF (z; 1) ;(3)where rk(u) := fu<0gP (u)uk and ti(u) are (Laurent) polynomials whih an be made expliit.One an use the kernel method (we refer to [3, 5℄ for reent appliations of this method) to solvethis equation. We all 1 � zP (u) the kernel of the equation. Solving 1 � zP (u) = 0 with respetto u gives 4 roots u1(z), u2(z), u3(z) and u4(z) whih are Puiseux series in z1=4 and whih tend tozero in 0. There are also 23 others roots whih behave like z�1=23 around 0, so we all u1; : : : ; u4 thesmall roots of the kernel. Plugging the 4 small roots of the kernel in Equation 3 and onsidering the6 other equations obtained by taking the �rst 5 derivatives of Equation 3 (and then setting u = 1)gives a system of full rank with 10 equations with 10 unknown univariate generating funtions, whihare thus all algebrai, and then one has a formula for F (z; u), involving the ui, whih implies itsalgebraiity. For the general ase, simply replae 4 by b and 5 by d in Equation 3 and then one anargue as in Theorem 1 above, with a new matriial equation M:�!F = �!v ; looking at the valuationin z of eah entries in M (some of them involves the small roots ui's, but at most a produt of bof them) gives detM 6= 0 and thus a system of full rank, so F (z; u) an be expressed as a rationalfuntion in z, u and the small roots ui's. As these roots are algebrai, F (z; u) is algebrai.Consider now the ase where, for eah i, the exponent ei(k) of the rule (2) is a onstant (that is,the polynomial in ei(k) does not depend on k, so one simply writes ei). How far an we relate thebehavior of the walk[(0); f(k) (0)ek (1)ek�1 : : : (k � 2)e2(k � 1)e1(k)e0 (k + 1)e�1 : : : (k + a)e�ag℄(4)to the generating funtion of the exponents E(u) = Pi��a eiui ? We give here a �rst element ofanswer:Theorem 3. Consider the rule[(0); f(k) (0)ek (1)ek�1 : : : (k � 1)e1(k)e0 : : : (k + a)e�ag℄ :(5)If the generating funtion of the exponents E(u) is algebrai then the bivariate generating funtionof the walk F (z; u) is algebrai. For a = 1, one hasF (z; u) = F0(z)1� u e�1z F0(z) with F0(z) = 1e�1z E<�1>(1z )where E<�1> is the ompositional inverse of E(u) and where e�1 is the multipliity of the +1 jump.More generally, for a � 1, the generating funtion F (z; u) is expressed in terms of the a solutionsu1(z); : : : ; ua(z) of 1� zE(u) = 0 whih satisfy ui(z) � 0 for z � 0:F (z; u) = F0(z) aYi=1 11� uui(z) =Xk�0F0(z) Xi1+���+ia=k ui11 : : : uiaa !uk :One has F0(z) = (�1)a+1ze�a aYi=1ui(z) and F (z; 1) = �1ze�a aYi=1 11� 1ui(z) :Proof. For a = 1, the �rst identity reets the ombinatorial deomposition (one to one orrespon-dene, in fat) \a walk from 0 to k + 1" is \a walk from 0 to k" then followed by a jump +1 thenfollowed by \a walk from k+1 to k+1 never going below k+1". The generating funtion of theselast walks is learly F0(z), thus one has Fk+1(z) = Fk(z)e�1zF0(z) = F0(z)(ze�1F0(z))k+1.



LATTICE PATHS WITH AN INFINITE SET OF JUMPS 7For the walks orresponding to the rule (5), the set of jumps is given by E(1=u); if one reversesthe time diretion, one gets a new walk where the set of available jumps is given by E(u). De�neeF (z; u) as the orresponding generating funtion (one starts at altitude 0), one has:efn+1(u) = fu�0gE(u) efn(u); ef0(u) = 1where fu�0g stands for the sum of all monomials in u with a nonnegative degree. Multiplying byzn+1 and summing for n � 0 giveseF (z; u) = ef0(u) + zE(u) eF (z; u)� zfu�1ge�1u eF (z; u) ;that one rewrites as the following funtional equation(1� zE(u)) eF (z; u) = 1� z e�1u eF0(z) :Then solving the \kernel" 1 � zE(u) = 0 with respet to u gives a series u1(z) = E<�1>(1=z),whih is algebrai as the ompositional inverse of an invertible algebrai funtion is algebrai (simplyplug the inverse in the polynomial equation �(E(u); u) = 0 satis�ed by E(u) to hek this fat).If one then evaluates the above funtional equation at u = u1(z), one gets 0 = 1 � z e�1u1 eF0(z)and thus eF0(z) = u1e�1z . As one has eF0(z) = F0(z) (a walk from 0 to 0 from left to right is still awalk from 0 to 0 from right to left), one gets the result from the theorem. Note that if one setsef0(u) = 11�u , eF0 enumerates walks from anywhere to 0, so eF0(z) = u1=(ze�1)1�u1 = F (z; 1), whih isoherent with the theorem (ase a = 1).For a � 1, one sets P (u) :=P�1i=�a eiui; one has(1� zE(u)) eF (z; u) = ef0(u)� zfu<0gP (u) eF (z; u) :This is rewritten as (1� zE(u)) eF (z; u) = ef0(u)� z a�1Xk=0 rk(u) eFk(z) :(6)where rk(u) := fu<0gP (u)uk is a Laurent polynomial with monomials of degree going from �1down to k � a.The kernel equation 1� zE(u) = 0 has a roots u1(z); : : : ; ua(z) whih are Puiseux series in z1=aand whih tend to 0 when z tends to 0. When ef0(u) = 1, plugging these roots in the funtionalequation shows that they orrespond to the a roots of the polynomial ua � zuaPa�1k=0 rk(u)Fk(z),whose leading term is za and whose onstant term is so �ze�a eF0(z). This gives eF0(z) = �Qai=1 ui�ze�a .When ef0(u) = 11�u this gives a system of a equations for a unknowns (the eFk's). Solving it for eF0gives F (z; 1). Solving the eF0 for ef0(u) = uk gives the Fk(z).For a = 1, the Riordan arrays approah that we presented in Setion 1 also gives the algebraiityof F (z; u). In fat, a theorem from [10℄ gives F (z; u) = d(z)1�uzh(z) where h(z) = A(zh(z)) andd(z) = 1=(1� zZ(zh(z))) for the rule [(0); f(k) (0)zk(1)ak (2)ak�1 : : : (k)a1(k + 1)a0g℄. For a > 1,the matrix assoiated (see Setion 1) to the rule (4) is alled a horizontally strethed Riordanarray. With this onept, it an be shown, like with the kernel method, that the algebraiity ofthe orresponding generating funtion F (z; u) depends on the algebraiity of A(z) = Pk�0 akzkand F0(z); : : : ; Fa�1(z) (the generating funtions of the �rst a olumns of the matrix). While thetheory of Riordan arrays has been intensively studied, the theory of strethed Riordan arrays, froma generating funtion point of view, is still in progress.Remark: as D-�nite funtions are not neessarily losed under ompositional inverse, it is nottrue that if E(u) is D-�nite, then F (z; 1) or F0(z) (and a fortiori F (z; u)) are D-�nite, even in thease a = 1.We end with a last appliation of the kernel method.



8 C. BANDERIER AND D. MERLINITheorem 4. Consider the rewriting rule (4) when the ei's are ultimately onstants (say, equal toa onstant C after rang b): [(0); f(k) (0)C : : : (k� b� 1)C(k� b)eb : : : (k)e0 : : : (k+ a)e�ag℄. ThenF (z; u) is algebrai and satis�es F (z; u) = Qbi=0 u� ui(z)K(z; u) ;where the ui's and K are de�ned as below.Proof. One has the reurrene fn+1(u) = C fn(u)�fn(1)u�1 + P (u)fn(u) this leads to the funtionalequation �1� zP (u)� z Cu� 1�F (z; u) = 1� zCu� 1F (z; 1)� z b�1Xk=0fu<0gP (u)ukFk(z)(7)where P (u) =Pbi=1(ei � C) 1ui +Pai=0 e�iui. De�ne the kernelK asK(u; z) = ub(1�u)(1�zP (u)�zCu�1 ). It has b roots u1(z); : : : ; ub(z) whih are Puiseux series in z1=b and whih tend to 0 in 0 andone root u0(z) whih tends to 1 in 0. These are exatly the b+1 roots of the right hand part of (7)(one multiplied by (1 � u)ub). So F (z; u) = Qbi=0 u�ui(z)K(z;u) , where the ui's are the b+ 1 small rootsof the kernel.2.3. Asymptotis. Given a peuliar rule for Theorem 1, 2, 3 or 4, it is possible to �nd an asymp-toti expansion for the number of walks. It is not really possible to merge all these results in a singleone, as the rules are too unonstrained. However, for the algebrai ase, a kind of universality holdsfor the behavior of the roots of the kernel. This leads to following theorem, whih has to be adaptedase by ase for rules of Theorems 2 and 3 (and is easily applied to rules of Theorem 4).Theorem 5. The number of walks of length n for the \fatorial" rule[(0); f(k) (0)(1) : : : (k � b� 1)(k � b)eb : : : (k)e0 : : : (k + a)e�ag℄(where ei(k) = 1 for b < i � k and ei(k) = ei, some �xed onstants, for i � b) has the followingasymptotis A ��np2�n3 , where A and � are algebrai onstants depending on the �nite set of jumps P.Proof. See [1℄ for a proof and appliations to the limit laws of �nal altitude and number of fators.The approah is similar to the one used for walks with a �nite number of jumps but there aresome ompliations due to the fat that the kernel is now of the kind 1 � z�(u) where �(u) isnot unimodal. One an however establish that the real positive root u0 now dominates and has asquare-root behavior. 3. ExamplesWe now give a series of examples from ombinatoris or omputer siene in whih rewriting rulesstudied in Setion 2 appear.Example 1. Two families of rules leading to an algebrai generating funtion.For the rule [(0); f(k) (0)ek (1)ek�1 : : : (k � 1)e1(k)e0(k + 1)g℄, where ek for i � 0 is the number oft-ary trees with k nodes, F (z; u) satis�es a algebrai equation of degree t. E.g., for t = 3, one has:1� �3+ (4� 3u)z�F (z; u)� �� 3+ (6u� 7)z+(�3u2+8u� 3)z2�F (z; u)2� �1+ (3� 3u)z+(3u2�7u+ 3)z2 + (�u3 + 4u2 � 3u+ 1)z3�F (z; u)3 = 0:For the rule [(0); f(k) (0)+k(1)+k�1 : : : (k � 2)+2(k � 1)+1(k)(k +1)g℄, F (z; u) satis�es analgebrai equation of degree 3:�(1� 2u)z2+(� (+1)+2u2)�F 3+ �(u� 2)z+(�� 2+4u� 2u2)z2�F 2+ �1+ (2� 2u)z�F = 1.�Example 2. Tennis ball problem. Let s � 2 be an integer and onsider the following problemknown as the s-tennis ball problem. At the �rst turn one is given balls numbered one through s:One throws one of them out of the window onto the lawn. At the seond turn balls numbered s+1



LATTICE PATHS WITH AN INFINITE SET OF JUMPS 9through 2s are brought in and now one throws out on the lawn any of the 2s� 1 remained. Thenballs 2s+1 through 3s are brought in and one throws out one of the 3s�2 available balls. The gameontinues for n turns. At this point, one piks up the n balls in the lawn and onsider the orderedsequene B = (b1; b2; : : : ; bn) with b1 < b2 < � � � < bn: This sequene will be alled a tennis balls-sequene and the �rst question is: how many tennis ball s-sequenes of length n exist? The seondquestion is: what is the sum of all the balls in all the possible s-sequenes of length n ? Obviously,if we answer to both these questions, we also know the average sum of the balls in an s-sequeneof length n: The general ase s � 1 has been studied in [8℄ from a generating funtion viewpoint.In fat, the authors onsider an in�nite tree with root 0 and with s hildren. Eah (n + 1)-lengthpath in this tree orresponds to an s-sequene of length n. This in�nite tree is isomorphi to thegenerating tree with spei�ation [(1); f(k) (1) : : : (k + s� 2)(k + s� 1)g℄.By using this result the authors �nd that the number of tennis ball s-sequenes of length nare ounted by Tn+1; where Tn = 11+(s�1)n�snn � (the number of s-ary trees with n-nodes) and theumulative sum of all the balls thrown onto the lawn in n turn is�n = 12(sn2 + (3s� 1)n+ 2s)Tn+1 � 12 n+1Xk=0�skk ��s(n+ 1� k)n+ 1� k �: �Example 3. A new rewriting rule for (4; 2)-tennis ball problem.The problem of balls on the lawn admits many other variants. For example, one ould be suppliedwith s balls at eah turn but now throw out t balls at a time with t < s: The general (s; t) ase isan open problem while the (4; 2) ase has been treated in [8℄, where the authors study the problemby introduing a bilabeled generating tree tehnique. Anyway, reently Merlini and Sprugnoli foundthat the problem an be expressed by the rule (4) with ei = i+ 3 and a = 2, namely:[(0); f(k) (0)k+3(1)k+2(2)k+1 : : : (k + 2)g℄(8) 00 0 0 10 0 0 0 1 1 1 2 2 31 20 0 0 0 0 1 1 1 1 2 2 2 3 3 4Figure 2. The partial generating tree for the spei�ation (8)In fat, if we don't are of the order of the balls thrown away, so that the on�guration (1; 4),(5; 8), (2; 10) is onsidered to be the same as (1; 2), (4; 5), (8; 10); it an be proved that the numberof (4; 2)-sequenes of length 2n in whih the last-but-one element is 2n+ k � 1 orresponds to thenumber of nodes with label k at level n in the generating tree of Figure 2 (for example, the possiblesequenes of length 2 are (1; 2); (1; 3); (1; 4); (2; 3); (2; 4) and (3; 4)). �Example 4. Printers.In [9℄ the authors present a ombinatorial model for studying the harateristis of job shedulingin a slow devie, for example a printer in a loal network. The poliy usually adopted by spoolingsystems is alled First Come First Served (FCFS) and an be realized by queuing the proessesaording to their arrival time and by using a FIFO algorithm. A job (printing a �le) onsistsin a �nite number of ations (printing-out a single page). Eah ation takes onstant time to beperformed (a time slot). If we �x n time slots, and suppose that at the end of the period the queuebeomes empty, while it was never empty before, the suessive states of the jobs queue an be
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