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2 LE2I UMR-CNRS 6306, Université de Bourgogne, France.
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We study the iteration of the process of moving values to the right in permutations. We prove that the set of per-
mutations obtained in this model after a given number of iterations from the identity is a class of pattern avoiding
permutations. We characterize the elements of the basis of this class and enumerate it by giving their bivariate expo-
nential generating function: we achieve this via a catalytic variable, the number of left-to-right maxima. We show that
this generating function is a D-finite function satisfying a differential equation of order 2. We give some congruence
properties for the coefficients of this generating function, and show that their asymptotics involves a rather unusual
algebraic exponent (the golden ratio (1 +

√
5)/2) and some closed-form constants. We end by proving a limit law: a

forbidden pattern of length n has typically (lnn)/
√
5 left-to-right maxima, with Gaussian fluctuations.

Keywords: Permutation pattern, left-to-right maximum, insertion sort, generating function, analytic combinatorics,
D-finite function, supercongruence

1 Introduction
In computer science, many algorithms related to sorting a permutation have been analysed and shown to
have behaviours linked to nice combinatorial properties (see e.g. Knuth (1998)). Their complexity can be
analysed in terms of memory needed, or number of key operations (like comparisons or pointer swaps). An
important family of algorithms, like the so-called insertion algorithms, or in situ permutations, are quite
efficient in terms of the number of pointer swaps (but are not the fastest ones in terms of comparisons).
Due to this higher cost, they have been much less studied than the faster stack sorting algorithms. Like
for the stack algorithms, instead of seeing them as an input/output pair, we can see them like a process:
input and set of intermediate steps. This opens a full realm of questions on such processes, and they often
lead to nice links with other parts of mathematics (like the link between trees, birth and death processes,
random walks in probability theory, or permutations and Young tableaux in algebraic combinatorics). Our
article will investigate a link between a sorting algorithm, patterns in permutations, and their asymptotics
counterparts.
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Another motivation to analyse such processes comes from the field of bioinformatics. Indeed, in ge-
nomics, a crucial part of study is to estimate the similarity of two genomes. This consists in finding the
length of a shortest path of evolutionary mutations that transforms one genome into another. Usually, the
main operations used in the rearrangement of a genome are of three different types: substitutions (one
gene is replaced with another), insertions (a gene is added) and deletions (a gene is removed). For in-
stance, we refer to Jones and Pevzner (2004); Meidanis and Setubal (1997) for an explanation of these
operations, and the notions of transposons or jumping genes.

As the problem is too hard in full generality, many simpler mathematical models of the genome are
used (see Ewens et al. (1982)): one of them is using permutations of {1, 2, . . . , n} where each gene is
assigned a number. Following the idea of transposition mutations (see Jones and Pevzner (2004)), our
motivation is to find some combinatorial properties in terms of pattern avoiding permutations whenever
one element is deleted and inserted in a position to its right. This operation will be called a right-jump.

1 2 3 4 5 6 7  1 2 4 5 6 3 7

Figure 1: A right-jump in the permutation σ = 1234567. In this article, we investigate the structure of permutations
obtained after several iterations of such right-jumps.

This operation is a variant of genome duplication, which consists of copying a part of the original
genome inserted into itself, followed by the loss of one copy of each of the duplicated genes. In particular,
it is comparable to the whole duplication-random loss model studied in Chaudhuri et al. (2006). Although
there are many connections between these models, it is surprising that the behaviour of their combinato-
rial properties depends on different parameters: the right-jump model reveals some links with left-to-right
maximum statistics (see Baril (2013); Bóna (2012)), while the whole duplication-random loss model re-
veals links with descent statistics (see Baril and Vernay (2010); Bouvel and Ferrari (2013); Bouvel and
Pergola (2010); Bouvel and Rossin (2009); Chaudhuri et al. (2006); Mansour and Yan (2010)).

In the literature, such right-jumps in permutations are also found in the domain of sorting theory. In-
deed, it corresponds (modulo a mirror symmetry) to the insertion-sorting algorithms on permutations
(see Knuth (1998)). Since the seminal work of Knuth on this subject, many articles related to sorting with
a stack exhibit links with pattern avoiding permutations. In contrast, for insertion sorting algorithms (also
the subject of a vivid literature), only one study exhibits links with pattern avoiding permutations. Indeed,
in his thesis, Magnússon (2013) proves that the set of permutations that can be sorted with one step of the
insertion-sorting operator is the class of permutations avoiding the three patterns 321, 312 and 2143.

Plan of the article. In Section 2, we recall some basic facts on permutations patterns. In Section 3, we
generalize the result of Magnússon by studying the iteration of right-jumps in terms of pattern avoiding
permutations: we prove that the set of permutations obtained from the identity after a given number of
right-jumps is the class of permutations avoiding some patterns, which we characterize. In Section 4, we
enumerate these forbidden patterns by giving their bivariate exponential generating function (involving
an additional parameter: the number of left-to-right maxima), and we give the corresponding asymptotics
and limit law. We also give some modular congruences for our main enumeration sequence. In Section 5,
we conclude with several possible extensions of this work.
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2 Patterns in permutations
In this section, we give some classical definitions and properties on patterns in permutations. For any
permutation σ ∈ Sn (the set of permutations of length n), the graphical representation of σ = σ1σ2 . . . σn
is the set of points in the plane at coordinates (i, σi) for i ∈ JnK(i). For instance, the permutation 53621487

has the graphical representation illustrated in Figure 2. A left-to-right maximum of σ ∈ Sn is a value σi,
1 ≤ i ≤ n, such that σj ≤ σi for j ≤ i. A value σi of σ, 1 ≤ i ≤ n which is not a left-to-right maximum
will be called a non-left-to-right-maximum of σ. For instance, if σ = 53621487 then the left-to-right
maxima are 5, 6, 8 and the non-left-to-right-maxima are 1, 2, 3, 4, 7.

1 2 3 4 5 6 7 8
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Figure 2: The graphical representation of σ = 53621487. We show an occurrence of a pattern 213 with a dashed
line; big green points are the left-to-right maxima and small black points are non-left-to-right-maxima.

A permutation π of length k, is a pattern of a permutation σ ∈ Sn if there is a subsequence of σ which
is order-isomorphic to π, i.e., if there is a subsequence σi1 . . . σik of σ with 1 ≤ i1 < · · · < ik ≤ n and
such that σij < σi` whenever πj < π`. We write π ≺ σ to denote that π is a pattern of σ. A permutation
σ that does not contain π as a pattern is said to avoid π. For example, σ = 2413 contains the patterns
231, 132, 213 and 312, but σ avoids the patterns 123 and 321. The set of all permutations avoiding
the patterns π1, . . . , πm is denoted by Avoid(π1, . . . , πm). We say that Avoid(π1, . . . , πm) is a class
of pattern avoiding permutations with basis {π1, . . . , πm}. For instance, we refer to the book of Kitaev
(2011) and Bóna (2012) to deepen these notions. A set C of permutations is stable for the involvement
relation ≺ if, for any σ ∈ C, for any π ≺ σ, then we also have π ∈ C.

Now, we formulate a definition that is crucial for the present study.

(i) In this article, we write JnK for {1, 2, . . . , n}.
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Definition 1 (Permutation basis and basis permutations). If a set C of permutations is stable for the
involvement relation ≺, then C is a class of pattern avoiding permutations: C = Avoid(B). The basis B
of forbidden patterns is then given by B = {σ /∈ C,∀π ≺ σ with π 6= σ, π ∈ C} . In other words, the basis
B is the set of minimal permutations σ that do not belong to C, where minimal is intended in the sense of
the pattern-involvement relation ≺ on permutations, that is: if π ≺ σ and π 6= σ then π ∈ C. Notice that
B might be infinite. We call basis permutations the permutations belonging to B.

Equipped with these definitions, our mission consists now in giving a description of the permutations
belonging to the basis Bp (the permutations which are the minimal forbidden patterns) for the set Cp of
permutations at distance at most p from the identity, i.e., permutations obtained from the identity after at
most p right-jumps.

3 Iteration of right-jumps in permutations: a structural description
of the forbidden patterns

In this section we study the iteration of right-jumps in terms of pattern avoiding permutations. We es-
tablish that the set Cp of permutations obtained from the identity after at most p right-jumps is a class of
permutations avoiding some patterns that we characterize.

Lemma 1 (Characterization of the distance). A permutation obtained from the identity after p right-jumps
contains at most p non-left-to-right-maxima.

Proof: The result holds for p = 1; indeed a right-jump transformation of the identity permutation creates
the permutation 1 2 . . . (i− 1) (i+ 1) . . . (j − 1) i j . . . n for 1 ≤ i < j, where i is the only one non-left-
to-right-maximum. Now, let us assume that each permutation π obtained from the identity after (p − 1)

right-jumps contains at most p − 1 non-left-to-right-maxima. Let σ be a permutation obtained from the
identity after p right-jumps. Using the recurrence hypothesis, σ is obtained from a permutation π with at
most p− 1 non-left-to-right-maxima by moving an element πi, 1 ≤ i < n, in a position to its right.

We distinguish two cases: (1) πi is a non-left-to-right-maximum, and (2) πi is a left-to-right maximum.
Case (1): Since πi is a non-left-to-right-maximum, there exists j < i such that πj is a left-to-right

maximum satisfying πj > πi. Since we move πi to its right, πj remains on the left of πi in σ which implies
that πi is a non-left-to-right-maximum in σ. Using the same argument, any non-left-to-right-maximum
πk in π remains a non-left-to-right-maximum in σ. Moreover, let πk be a left-to-right maximum in π,
i.e., πj < πk for all j < k. Since the right-jump transformation moves to the right of a non-left-to-right-
maximum, all values on the left of πk in σ are lower than πk, which proves that πk remains a left-to-right
maximum in σ. Therefore, σ contains at most p− 1 non-left-to-right-maxima (as π does).

Case (2): πi is a left-to-right maximum, i.e., πj < πi for all j < i. Since πi is moved to its right, any
left-to-right maximum located on the left of πi in π remains a left-to-right maximum in σ. On the other
hand, any left-to-right maximum located on the right of πi in π is greater than πi and thus, it remains a
left-to-right maximum in σ. Therefore, the number of left-to-right maxima in σ is at least the number of
left-to-right maxima in π minus one (we do not consider πi). This means that the number of non-left-to-
right-maxima in σ is at most p.

Considering the two previous cases allows to complete the proof, by induction.
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We now derive our first enumeration result for the setDp of permutations at distance p from the identity,
i.e., the set of permutations reachable from the identity with p right-jumps, but that one cannot reach with
less than p right-jumps: Cp = ∪k∈JpKDk, and this union is disjoint.

Theorem 1 (Permutations after p right-jumps). The set Dp of permutations at distance p from the iden-
tity is the set of permutations with exactly p non-left-to-right-maxima. Accordingly, the number dn,p of
permutations of length n in Dp is counted by the Stirling numbers s(n, n− p):

dn,p = s(n, n− p) =
∑

0≤j≤h≤p

(−1)j
(
h

j

)(
n− 1 + h

p+ h

)(
n+ p

p− h

)
(j − h)p+h

h!
.

Proof: After considering Lemma 1, it suffices to prove that any permutation σ with at most p non-left-
to-right-maxima can be obtained from the identity after p right-jumps. Let σ be a permutation with
p ≥ 1 non-left-to-right-maxima. Let us assume that the leftmost non-left-to-right-maximum is σi and
let j < i be the position of the smallest left-to-right maximum σj such that σj > σi. Then we set
σ′ = σ1 . . . σj−1σiσj . . . σi−1σi+1 . . . σn. Since we have σj > σi and also σi > σj−1 (if σj−1 exists),
σi becomes a left-to-right maximum in σ′. Thus, σ′ contains exactly p− 1 non-left-to-right-maxima and
by construction, σ can be obtained from σ′ by a right-jump. This proves that permutations at distance p
from the identity are exactly the permutations with n − p left-to-right-maxima, which are known to be
counted by s(n, n− p), the signless Stirling number of the first kind (see Flajolet and Sedgewick (2009)
for the closed-form formula due to Schlömilch, and sequence OEIS A094638 in Sloane and collaborators
(2016) for many occurrences of the corresponding triangular array).

For instance, the values of dn,p for n = 7 and 0 ≤ p < 7 are 1, 21, 175, 735, 1624, 1764, 720.

The following corollary says a little more on the lattice structure associated to our process ”a particle
jumps to the right”.

Corollary 1 (Changing the starting point and sorting algorithms). For any permutation p, one denotes
by tp its number of non-left-to-right-maxima. Let σ and π be two permutations, then tσ−1·π right-jumps
are necessary to obtain π from σ. In particular, tσ−1 right-jumps are necessary and sufficient to sort by
insertion the permutation σ into the identity.

Proof: Firstly, tσ right-jumps are necessary and sufficient to obtain σ from the identity. Therefore, tσ−1·π
transformations are sufficient and necessary to obtain σ−1 · π from the identity. We set t = tσ−1·π and
let Id = χ0, χ1, . . . , χt−1, χt = σ−1 · π be a shortest path between the identity and σ−1 · π. Now,
let us prove that if a permutation β is obtained from α by one right-jump, then for any permutation
γ, γ · β is also obtained from γ · α by one right-jump. Indeed, if we have α = α1α2 . . . αn then β
can be written as β = α1 . . . αi−1αi+1 . . . αj−1αiαj . . . αn. Composing by a permutation γ, we obtain
γ · α = γ(α1)γ(α2) . . . γ(αn) and γ · β = γ(α1) . . . γ(αi−1)γ(αi+1) . . . γ(αj−1)γ(αi)γ(αj) . . . γ(αn)

which proves that γ · β is also obtained from γ · α by one right-jump. So if we compose by σ at each
step of the above shortest path, then we obtain a shortest path of tσ−1·π right-jumps from σ to π, which
completes the proof.

https://oeis.org/A094638
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Since the set Cp of permutations obtained after p right-jumps is stable for the relation≺, Cp is also a class
Avoid(Bp) of pattern avoiding permutations where Bp is the basis consisting of minimal permutations σ
that are not in Cp (see Definition 1). Theorem 2 gives the explicit description of these basis permutations.

Theorem 2 (Structural description of the basis permutations). A permutation σ ∈ Sn belongs to the basis
Bp of forbidden patterns, if and only if the following conditions hold:

(i) σ contains exactly p+ 1 non-left-to-right-maxima.

(ii) n− 1 is a non-left-to-right-maximum.

(iii) σ2 is a non-left-to-right-maximum.

(iv) For any three left-to-right maxima, σi, σj and σk (with i < j < k) such that there is no left-to-right
maximum between them, there exists a non-left-to-right-maximum σt (with j < t < k) satisfying
σt > σi.

Proof: N.B.: Figure 3 on next page illustrates the different claims and notations of this theorem.
Let σ ∈ Sn be a permutation belonging to the basis Bp, i.e., σ /∈ Cp and π ≺ σ implies π ∈ Cp.

Throughout this proof, we refer to Figure 3 for an illustration of the three conditions (ii), (iii) and (iv).
- First, the deletion of a non-left-to-right-maximum in σ decreases the number of non-left-to-right-

maxima by one exactly. Therefore, the minimality of σ implies that σ necessarily contains exactly p + 1

non-left-to-right-maxima, which proves (i).
- For a contradiction, assume that (ii) is not satisfied, i.e., n − 1 is a left-to-right maximum. Since n

is always a left-to-right maximum, n is on the right of n − 1 in σ. Thus, the permutation π obtained by
deleting n from σ also contains p+ 1 non-left-to-right-maxima (a non-left-to-right-maximum on the right
of n in σ remains a non-left-to-right-maximum on the right of n− 1 in π). Therefore, π does not belong
to Cp; this gives a contradiction with the minimality of σ.

- For a contradiction, assume that (iii) is not satisfied, i.e., σ2 is a left-to-right maximum and thus,
σ1 is smaller than σ2. Thus, the permutation π obtained by deleting σ1 from σ also contains p + 1

non-left-to-right-maxima. Indeed, a non-left-to-right-maximum σi in σ such that σi < σ1 becomes a
non-left-to-right-maximum σi < σ2 − 1 in π. Moreover, a non-left-to-right-maximum σi in σ such that
σi > σ1 (there is `, 2 ≤ ` < i, with σi < σ`) becomes a non-left-to-right-maximum σi − 1 in π with
σi − 1 < σ` − 1. Therefore, π does not belong to Cp; this gives a contradiction with the minimality of σ.

- For a contradiction, assume that (iv) is not satisfied; i.e., there are (i, j, k), 1 ≤ i < j < k ≤ n,
such that σi, σj and σk are three consecutive left-to-right maxima of σ (consecutive means that there is
no other left-to-right maximum between σi and σj and between σj and σk), and such that there is no
non-left-to-right-maximum σ`, j < ` < k, satisfying σi < σ`. Let π be the permutation obtained from σ

by deleting σj . It is clear that any non-left-to-right-maximum on the left of σj in σ remains a non-left-to-
right-maximum in π. Let σ`, ` > k, be a non-left-to-right-maximum on the right of σk in σ. If σ` < σj
then σ` < σj ≤ σk − 1 and σ` remains a non-left-to-right-maximum in π. If σ` > σj then there is σt,
t ≥ k, such that σ` ≤ σt ≥ σk, and thus, there is σt − 1 on the left of σk − 1 in π with σt − 1 > σk − 1

which means that σ` − 1 is a non-left-to-right-maximum in π. Let σ`, j < ` < k, be a non-left-to-right-
maximum between σj and σk in σ. Assuming that (iv) is not satisfied, we deduce that σ` < σi, and σ`
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remains a non-left-to-right-maximum in π. Finally, π also contains p + 1 non-left-to-right-maxima; this
gives a contradiction with the minimality of σ.

Conversely, let σ be a permutation satisfying (i), (ii), (iii) and (iv) and π be a permutation obtained
by deleting σi, 1 ≤ i ≤ n, from σ. Let us prove that π belongs to Cp, that is, π contains at most p
non-left-to-right-maxima.

- If σi is a non-left-to-right-maximum of σ, then π has p non-left-to-right-maxima and thus, π ∈ Cp.
- Now, let us assume that σi is a left-to-right maximum of σ. If σi = n, then (ii) implies that n− 1 is a

non-left-to-right-maximum of σ and a left-to-right maximum in π; this implies that π contains p non-left-
to-right-maxima and thus, π ∈ Cp. If σi = σ1, then (iii) implies that σ2 is a non-left-to-right-maximum
of σ and σ2 − 1 is a left-to-right maximum in π; this implies that π contains p non-left-to-right-maxima
and thus, π ∈ Cp. If there exists (j, k), 1 ≤ j < i < k ≤ n, such that σj and σk are left-to-right maxima
(we choose j the greatest possible and k the lowest possible with this property). Then, (iv) implies that
there is σ`, i < ` < k, such that σj < σ` < σi (we choose the lowest possible ` > i). Thus, σ` is a
non-left-to-right-maximum in σ and becomes a left-to-right maximum in π, which implies that π contains
exactly p non-left-to-right-maxima, and thus π ∈ Cp.

Finally, the permutation π necessarily belongs to Cp, which completes the proof.

(iii)

σ2 σi σj σt σk

(ii) n− 1

(iv)

Figure 3: An illustration of Theorem 2 that characterizes the basis permutations of Bp. Condition (i) states such a
basis permutation has p+1 non-left-to-right maxima (drawn with a small black point, while left-to-right maxima are
drawn with a big green point), condition (ii) states that n − 1 is not a left-to-right maximum, condition (iii) states
that σ2 is not a left-to-right maximum, and condition (iv) states that there is a ”higher” non-left-to-right maximum
between 3 left-to-right maxima.
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Corollary 2 (Length of the forbidden patterns). Permutations in Bp have length ≤ 2(p+ 1) and ≥ p+ 2.
As a consequence, Bp is a finite set.

Proof: Theorem 2 implies that the number of left-to-right maxima in a basis permutation is at most the
number of non-left-to-right-maxima. Since a basis permutation of Bp has p+ 1 non-left-to-right-maxima,
its length is at most 2(p+ 1).

For instance, the basis for p = 0, 1, 2 are respectively B0 = {21}, B1 = {312, 321, 2143} (recov-
ering the result of Magnússon), and B2 = {4123, 4132, 4213, 4231, 4312, 4321, 21534, 21543, 31254,

32154, 31524, 31542, 32514, 32541, 214365}.

4 Enumerative results for basis permutations
In order to obtain a recursive formula for the number bn,p of permutations of length n in the basis Bp, we
present the following preliminary lemma.

Lemma 2 (A recursive description). Let σ ∈ Sn be a basis permutation having p ≥ 1 non-left-to-right-
maxima and such that σk+1 = n, k ≥ 0. Let α be the subsequence σ1σ2 . . . σk and π be the permutation
in Sk isomorphic to α. Then, π is a basis permutation with p− n+ k + 1 non-left-to-right-maxima.

Proof: Any permutation σ can be uniquely written as σ = αnβ where α and β are two subsequences of
Jn− 1K. Let k be the length of α and let π = π1π2 . . . πk be the permutation of JkK that is isomorphic to
the subsequence α. Let us prove that π is minimal.

Since σ is minimal, it satisfies the three conditions (ii), (iii) and (iv) of Theorem 2. Since all elements
in β are non-left-to-right-maxima in σ, π contains exactly p− (n− 1− k) non-left-to-right-maxima and
thus, n− p− 1 left-to-right maxima.

- The condition (iii) of Theorem 2 on σ does not involve the part nβ. Therefore, π satisfies (iii).
- The deletion of nβ from σ preserves the condition (iv) on π. Thus, π satisfies (iv).
- Let σi, σj and σk+1 = n, 1 ≤ i < j ≤ k, be the last three left-to-right maxima of σ. After the

deletion of nβ, the two left-to-right maxima of σ, σi and σj , are respectively transported in π into πi and
πj = k. Condition (iv) on σ ensures that there is σ`, between σj and n such that σ` > σi. The greatest
value σ` satisfying this property is then transported in π into k− 1, which proves that k− 1 is on the right
of k in π. Thus, π satisfies (ii).

Using Theorem 2, the permutation π is a basis permutation with p + ` − n + 1 non-left-to-right-
maxima.

Theorem 3 (An infinite recursion). The number bn,p of basis permutations of length n in Bp (or equiv-
alently having exactly p + 1 non-left-to-right-maxima) is given by the following recurrence relation (for
p < n− 2):

bn,p =

p−1∑
`=0

(`+ 1)! ·
(
n− 2

`

)
· bn−`−2,p−`−1

anchored with bn,p = 0 if p < (n− 2)/2 or p > n− 2, and bn,n−2 = (n− 1)! for n > 1.
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Proof: Any permutation σ of length n ≥ 1 contains at least one left-to-right maximum and thus, at most
n−1 non-left-to-right-maxima which implies that bn,p = 0 for n ≤ p+1. Using the proof of Corollary 2,
we also have bn,p = 0 for n > 2(p+1). Moreover, the basis permutations of length n with n−1 non-left-
to-right-maxima are the permutations of the form nα where α ∈ Sn−1. So, we have bn,n−2 = (n − 1)!

for n > 1.
Now, let us prove the recursive relation. Let σ ∈ Sn be a basis permutation with p + 1 non-left-to-

right-maxima. We consider its unique decomposition σ = αnβ where α and β are some subsequences of
Jn − 1K. Let ` + 2, ` ≥ 0, be the length of nβ and let π be the permutation in Sn−`−2 isomorphic to α.
Using Lemma 2 with k = n − ` − 2, π is minimal with p − ` − 1 non-left-to-right-maxima. So, we can
associate to σ = αnβ the pair (π, γ) where π ∈ Sn−`−2 is minimal with p−`−1 non-left-to-right-maxima
and γ ∈ S`+1 is isomorphic to β.

Conversely, let π be a basis permutation of length n − ` − 2 with p − ` − 1 non-left-to-right-maxima
and γ ∈ S`+1. We construct a basis permutation σ of length n with p + 1 non-left-to-right-maxima as
follows. From γ ∈ S`+1, we construct a subsequence β of Jn − 1K of length ` + 1 such that β contains
the value n − 1 and such that β is isomorphic to γ. Since n − 1 belongs to β, its position in β also is
the position of the greatest value of γ. So, β is characterized by the choice of ` values among Jn − 2K.
Now, we define the unique subsequence α of Jn − 2K\X isomorphic to π where X is the set of values
used in β. This construction ensures that σ = αnβ is a basis permutation of length n with p+ 1 non-left-
to-right-maxima, and so σ ∈ Bp. So, there are

(
n−2
`

)
possibilities to choose the values of β and (` + 1)!

possibilities to choose γ and bn−`−2,p−`−1 possibilities to choose a basis permutation π ∈ Sn−`−2 with
p− `− 1 non-left-to-right-maxima. Varying ` from 0 to p− 1, we obtain the recursive formula.

Theorem 3 allows us to find the bivariate exponential generating function for the number of basis
permutations according to the number of non-left-to-right-maxima.

Theorem 4 (Closed-form for the bivariate generating function). Consider the bivariate exponential gen-
erating function B(x, y) =

∑
n≥0,p≥0 bn,p

xnyp

n! where the coefficient of x
nyp

n! is the number bn,p of basis
permutations of length n in Bp. Then, we have

B(x, y) =
1

2y

(
1− 1

V

)
(1− xy)

1
2 (1+V ) +

1

2y

(
1 +

1

V

)
(1− xy)

1
2 (1−V ) − 1

y
,

where V :=
√

1 + 4/y .

Proof: SettingFp(x) :=
∑
n≥0 bn,n−p

xn

n! andF (x, y) :=
∑
p≥0 Fp(x)yp, we haveB(x, y) = F (xy, 1/y).

(We work with the generating function Fp(x) of the (bn,n−p)’s rather than the generating function of the
(bn,p)’s because then the derivation of the proof is simpler to write).

Taking the second derivative of F (x, y) with respect to x gives

∂2xF (x, y) = ∂2x

∑
p≥0

Fp(x)yp

 = ∂2xF0(x) + ∂2xF1(x)y + ∂2xF2(x)y2 +
∑
p≥3

∂2xFp(x)yp . (1)
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Now, the recursive relation of Theorem 3 for bn+2,n−p+2 implies for p ≥ 3:

∂2xFp(x) =
∑
n≥0

bn+2,n−p+2
xn

n!
=
∑
n≥0

xn

n!

n−p+1∑
`=0

(`+ 1)! ·
(
n

`

)
· bn−`,(n−`)−(p−1)

=
∑
n≥0

(n+ 1)!
xn

n!
·
∑
n≥0

bn,n−p+1
xn

n!
=

1

(1− x)2
Fp−1(x).

Plugging this recurrence into the equation (1) (and using F0(x) = F1(x) = 0) gives:

∂2xF (x, y) = ∂2xF2(x)y2 +
∑
p≥2

y

(1− x)2
Fp(x)yp.

It remains to simplify F2(x); the initial conditions of Theorem 3 (bn,n−2 = (n − 1)! and bn,p = 0 for
n < 2) imply that

F2(x) =
∑
n≥2

bn,n−2
xn

n!
=
∑
n≥2

(n− 1)!

n!
xn = − ln(1− x)− x .

This leads to the main differential equation:

∂2xF (x, y) = ∂2xF2(x)y2 +
y

(1− x)2
F (x, y) =

y

(1− x)2
(y + F (x, y)) . (2)

First, by plug & prove, the solutions of ∂2xF (x) = yF (x)/(1−x)2 are a linear combination of (1−x)α,
with α = (1 +

√
1 + 4y)/2, or α = (1−

√
1 + 4y)/2. Now, F (x, y) = −y is a trivial particular solution

of the non-homogeneous differential equation (2), so the general solution of this differential equation is
of the form:

F (x, y) = K(y) · (1− x)
1
2 (1+

√
1+4y) + L(y) · (1− x)

1
2 (1−

√
1+4y) − y.

Since F (0, y) = 0 and ∂F (x,y)
∂x cx=0 = 0, we respectively deduce the two equations

K(y) + L(y)− y = 0 and −K(y) · (1 +
√

1 + 4y)− L(y) · (1−
√

1 + 4y) = 0 ,

thus we obtain

K(y) =
y

2

√
1 + 4y − 1√

1 + 4y
and L(y) =

y

2

√
1 + 4y + 1√

1 + 4y
.

This gives

F (x, y) =
y

2

√
1 + 4y − 1√

1 + 4y
· (1− x)

1
2 (1+

√
1+4y) +

y

2

√
1 + 4y + 1√

1 + 4y
· (1− x)

1
2 (1−

√
1+4y) − y ,

and therefore the theorem, as B(x, y) = F (xy, 1/y).
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Theorem 5 (Asymptotics). The exponential generating function for the number of basis permutations
with respect to their length is given by

B(x) = B(x, 1) =
∑
n≥0

bn
xn

n!
=

√
5− 1

2
√

5
· (1− x)

1+
√

5
2 +

√
5 + 1

2
√

5
· (1− x)

1−
√

5
2 − 1

=
x2

2!
+ 2

x3

3!
+ 7

x4

4!
+ 32

x5

5!
+ 179

x6

6!
+ 1182

x7

7!
+ 8993

x8

8!
+O(x9).

It is a D-finite transcendental function satisfying the following differential equation

B(x)− (1− x)2∂2xB(x) + 1 = 0, B(0) = B′(0) = 0 . (3)

Equivalently, its coefficients bn satisfy the recurrence

bn+2 = 2nbn+1 + (1 + n− n2)bn, b0 = b1 = 0, b2 = 1 , (4)

and the asymptotics are given by

bn
n!
∼ φ√

5 Γ(φ− 1)

1

n2−φ
(1 + o(1)) ,

where φ is the golden ratio φ = (1 +
√

5)/2, and Γ(z) :=
∫ +∞
0

tz−1 exp(−t)dt is the Euler gamma
function.

Accordingly, a permutation of length n has a probability asymptotically 0 to be an element of the basis
of forbidden patterns, however, this probability is not “very small” as it decays only polynomially:

Prob(s ∈ Sn belongs to ∪p∈N Bp) =
bn
n!
≈ 0.499/n0.381(1 + o(1)) .

Proof: Setting y = 1 in the bivariate exponential generating function given in Theorem 4 gives B(x).
If a function B(z) =

∑
bnz

n is D-finite (it is satisfying a linear differential equation, with polynomial
coefficients in z), then its coefficients bn are polynomially recursive (in short, P-recursive): they satisfy
a linear recurrence, with polynomial coefficients in n. See e.g. Flajolet and Sedgewick (2009); Stanley
(2012) for more on these two equivalent notions. Starting from the building blocks (1 − x)a, which
are D-finite, and then using the closure properties of D-finite functions (by sum and product) gives the
differential equation (3) (this is e.g. implemented in the Gfun Maple package, see Salvy and Zimmermann
(1994)). The recurrence is obtained by extracting the coefficient of xn on both sides of the differential
equation. The asymptotics follows from a singularity analysis (see Flajolet and Sedgewick (2009)) on
each term of the shape (1− x)a, indeed, for any a ∈ R which is not an integer, one has:

[xn](1− x)a =
1

Γ(−a)n1+a

(
1 +

1

2
a(a+ 1)

1

n
+O(

1

n2
)

)
.
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Note that B(x, y) is D-finite in the variable x:

1 + yB(x, y)− (1− xy)2∂2xB(x, y) = 0 with B(0, y) = (∂xB)(0, y) = 0,

but it is not D-finite in the variable y. This follows from a saddle point analysis on B(1, y) =
∑
n βny

n,
indeed the asymptotics of βn involve arbitrarily large (lnn)d, while the asymptotics of a D-finite function
can only have a finite sum of such powers of log, see Flajolet and Sedgewick (2009). This argument is
thus similar to a proof that (1− y)1−y is not D-finite.

Remark [Irrational critical exponent]: It is very seldom that a combinatorial problem leads to some
asympotics involving an irrational number as exponent. In fact, in combinatorics and in statistical physics,
most of the asymptotics of integer sequences are of the shape bn ∼ CnαAn, and the exponent α which
appears there is a key quantity: its value is often the signature of some universal phenomena (in physics,
it is called a critical exponent). For D-finite sequences, the theory implies that it is an algebraic number,
however, this exponent is very often -3/2, or a dyadic number (for the reasons explained in Banderier and
Drmota (2015)), or a rational number (due to a result on G-functions). Indeed, a theorem (resulting from
the works of Katz, André, Chudnovsky & Chudnovsky, see Chambert-Loir (2002)) states that G-functions
(D-finite functions with integer coefficients and non-zero radius of convergence) have a rational critical
exponent. Now, instead of considering the exponential generating function B(x) =

∑
bnx

n/n!, we may
consider its inverse Borel transform, i.e., the ordinary generating function

∑
bnx

n. It is also a D-finite
function, because D-finite functions are closed by Hadamard product, and therefore the Borel transform
(and the inverse Borel transform) of a D-finite function is D-finite (i.e., if the sequence bn is P-recursive,
so are n!bn and bn/n!). We have thus a new D-finite function with integer coefficients and irrational
critical exponent (involving the golden ratio φ), but this is not contradicting the G-function theorem,
because, due to the multiplication by n!, we now have a 0 radius of convergence. In conclusion, we have
the pleasure to have here one of the few examples in combinatorics of a problem leading to an irrational
critical exponent. Other examples are given via the KPZ formula in physics, or via quantities related to
quadtrees, see Flajolet and Sedgewick (2009).

Pushing further the asymptotics from Theorem 5, we get the following limit law:

Theorem 6 (Limit Law). In the model where all permutations of length n are equidistributed, a random
permutation of length n in ∪p∈NBp is typically a member of Bp, for p ∼ n − (lnn)/

√
5, with Gaussian

fluctuations. Equivalently, the average number of left-to-right-maxima in a random basis permutation is
p ∼ (lnn)/

√
5 with Gaussian fluctuations.

Proof: This follows from the closed-expression for B(x, y), or from a singularity analysis of the differ-
ential equation. Indeed, the average and standard deviation follow from the computation of ∂yB(x, y)

and ∂2yB(x, y) at y = 1. The Gaussian limit law follows from the quasi-power theorem applied to a vari-
able exponent perturbation or to our non-confluent differential equation (see Theorem IX.11 and Theorem
IX.18 from Flajolet and Sedgewick (2009)).

As a random permutation of Sn has lnn left-to-right maxima on average, the above theorem quantifies
to what extent the right-jump process kills the left-to-right maxima when one starts from the identity
permutation.
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Figure 4: This histogram illustrates Theorem 6: the average number of left-to-right-maxima in a random basis
permutation is p ∼ (lnn)/

√
5 with Gaussian fluctuations. However the speed of convergence and the small amplitude

of the variance makes that large values of n have to be considered to recognize clearly the bell curve of the Gaussian
(above, this is a histogram for n = 4000).

For the combinatorial structure Bp, it could be possible that its complementary set has a nicer structure.
Those permutations not in the basis are for sure counted by un = n!− bn; this sequence satisfies un+3 =

(n + 1)(n2 − n − 1)un − (3n2 + 3n − 1)un+1 + 3(n + 1)un+2, which is still a nice recurrence but of
order one more than the recurrence for bn, so it is a heuristic confirmation than bn is a more fundamental
sequence than un.

The first values of bn (the number of basis permutations of length n) are 1, 2, 7, 32, 179, 1182, 8993,
77440 for 2 ≤ n ≤ 9. We added this sequence to the On-line Encyclopedia of Integer Sequences (hereafter
abbreviated OEIS), see Sloane and collaborators (2016):

p\n 2 3 4 5 6 7 8 9 10 11 #Bp
0 1 1
1 2 1 3
2 6 8 1 15
3 24 58 18 1 101
4 120 444 244 32 1 841
5 720 3708 3104 700 50 8232
6 5040 33984 39708 13400 78732
Σ 1 2 7 32 179 1182 8993 77440 744425 7901410

Table 1: Number bn,p of basis permutations of length n (the ”minimal forbidden patterns” of Bp, or equivalently,
with p + 1 non-left-to-right-maxima) where 2 ≤ n ≤ 11 and 0 ≤ p ≤ 6 (OEIS A265163). The last column
contains βp :=

∑
n bn,p (OEIS A265164); the last line contains bn :=

∑
p bn,p (OEIS A265165).

There is a vast literature in number theory analysing the modular congruences of famous sequences

https://oeis.org/A265163
https://oeis.org/A265164
https://oeis.org/A265165
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(Pascal triangle, Fibonacci, Catalan, Motzkin, Apéry numbers, see Deutsch and Sagan (2006); Xin and Xu
(2011); Rowland and Zeilberger (2014); Kauers et al. (2011)). The properties of bn modm are sometimes
called ”supercongruences” when m is the power of a prime number: many articles consider m = 2r, or
m = 3r. We now give a result which holds for any m (not necessarily the power of a prime number).

Theorem 7 (Supercongruences for D-finite functions).
Consider any P-recurrence of order r:

P0(n)un =

r∑
i=1

Pi(n)un−i .

If the polynomial P0(n) is ultimately invertible modm (i.e., gcd(P0(n),m) = 1, for all n large
enough), then the sequence (un) is ultimately periodic(ii) modm, and there is an algorithm to get this
period.

In particular, recurrences such that P0(n) = 1 are periodic modm.
Accordingly, our sequence bn modm (defined by recurrence (4)) is periodic for any m.

Proof: Indeed, as the leading term P0 is invertible, we can write:

un modm =

r∑
i=1

Pi(n) modm

P0(n) modm
(un−i modm) ,

in which each term has just a finite set of possible values. What is more, for any polynomial P (n)

with integer coefficients, P (n) modm is of period p, for some p|m. (This follows from the fact that
the sum and the product is preserving periodicity modm, as we did not require in the definition of ”pe-
riod” that m is the smallest m such that the sequence is m periodic). Therefore, one can then con-
struct a Markov chain (an automaton): the states are all the possible 2r + 1-tuples of values modm for
(P0(n), . . . , Pr(n), un−1, . . . , un−r), and the recurrence dictates the transitions in this Markov chain.
The pigeonhole principle implies that there is a loop in this finite graph, and our period is thus one of the
divisors of the length of this loop.

Besides, the smallest period p and the first integer n1 satisfying un = un+p modm for n ≥ n1
are such that p + n1 is smaller than the number of states in the automaton, i.e. smaller than m2r+1, or
more precisely smaller than φ(m)m2r where φ(m) is the Euler totient function (the number of invertible
elements modulo m, as P0(n) is ultimately invertible).

This theorem explains the periodic behaviour of bn modm. By brute-force computation, we can get
bn modm, for any given m. For example bn mod 15 is periodic of period 12: for n ≥ 9, one has

bn mod 15 = (10, 5, 10, 10, 0, 10, 5, 10, 5, 5, 0, 5)∞.

The period can be quite large, for example bn mod 3617 has period 26158144. We say more on this
phenomenon for P-recursive sequences in Banderier and Luca (2018).

(ii) In the sequel, we will omit the word ”ultimately”: a periodic sequence of period p is thus a sequence for which un+p = un for
all large enough n. Some authors use the terminology ”eventually periodic” instead.
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5 Conclusion
In this article, we analysed the iteration of the process ”a particle jumps to the right” in a permutation, and
we gave the typical properties of the patterns which are not reached after pmoves. We expect our approach
(introducing a catalytic variable and getting a D-finite function) to work in many other cases. However,
we already know a nice permutation class for which the basis is not D-finite. Indeed, as an extension of
this work, an interesting question is to consider a model in which both right-jumps and left-jumps are
allowed: this is a very natural process, also related to sorting algorithms and bioinformatics processes.
In a forthcoming work, we show that for this new model, the basis of forbidden minimal patterns for
permutations obtained by p iterations of the process is related to Young Tableaux with 2 equally long first
rows (but it is no longer D-finite, unlike the pure right-jump iteration process that we considered in this
article).

Another natural question is: is it the case that using e.g. the correspondence between records and
cycles in permutations, there is an elegant process corresponding to a ”particle jumps to the right”, with
permutations at distance p from identity being counted in terms of cycles in the permutation? To get direct
”bijective” proofs of our formulae is also an interesting question: as a credo, it cannot be the case that such
nice formulae/recurrences are only reached by solving differential equations (like we did in this article).
It may be the case that a generating tree approach leads to the simple recurrence (4) we get for bn (see
e.g. Banderier et al. (2002) or Barcucci et al. (1999)). With respect to the asymptotics, it is noteworthy that
the process analysed in the present article involves the golden ratio (this is very unusual in combinatorics
to have this constant as critical exponent): is it the trace of some universality class? (Like it is sometimes
the case for problems coming from statistical mechanics, see our remark after Theorem 5.)

Last but not least, we already mentioned a vast literature of publications in number theory analysing
the modular congruences of famous sequences (Pascal triangle, Fibonacci, Catalan, Motzkin, Apéry num-
bers, . . . , Deutsch and Sagan (2006); Xin and Xu (2011)). It seems to us that our approach to tackle them
at the level of D-finite functions is new (see also Kauers et al. (2011); Rowland and Zeilberger (2014)),
and it would be worth analysing these properties in full generality. In this article, we proved by a mixture
of Ansatz and brute force proof that bn modm (where m can be any integer) is a periodic function (of
period bounded by a polynomial in m). In fact, we prove in Banderier and Luca (2018) that this period
and the values of bn modm for any given m can be made explicit.

Acknowledgments: We thank our laboratories (LE2I and LIPN) for funding this collaboration, and
presentation of preliminary results at the conferences AofA’15 and Permutation Patterns’15. We also
thank the two referees for their careful reading.
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Miklós Bóna. Combinatorics of permutations. Discrete Mathematics and its Applications. CRC Press,
Boca Raton, FL, second (1st ed: 2004) edition, 2012. URL http://dx.doi.org/10.1201/
b12210.

Mathilde Bouvel and Luca Ferrari. On the enumeration of d-minimal permutations. Discrete Math. Theor.
Comput. Sci., 15(2):33–48, 2013. [online pdf].

Mathilde Bouvel and Elisa Pergola. Posets and permutations in the duplication-loss model: minimal
permutations with d descents. Theoret. Comput. Sci., 411(26-28):2487–2501, 2010. URL http:
//dx.doi.org/10.1016/j.tcs.2010.03.008.

Mathilde Bouvel and Dominique Rossin. A variant of the tandem duplication–random loss model of
genome rearrangement. Theoret. Comput. Sci., 410(8-10):847–858, 2009. URL http://dx.doi.
org/10.1016/j.tcs.2008.11.017.
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