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Abstract

This paper develops a uni(ed enumerative and asymptotic theory of directed two-dimensional
lattice paths in half-planes and quarter-planes. The lattice paths are speci(ed by a (nite set of
rules that are both time and space homogeneous, and have a privileged direction of increase.
(They are then essentially one-dimensional objects.) The theory relies on a speci(c “kernel
method” that provides an important decomposition of the algebraic generating functions involved,
as well as on a generic study of singularities of an associated algebraic curve. Consequences are
precise computable estimates for the number of lattice paths of a given length under various con-
straints (bridges, excursions, meanders) as well as a characterization of the limit laws associated
to several basic parameters of paths. c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Lattice path; Analytic combinatorics; Kernel method; Singularity analysis; Generalized ballot
problem; Catalan numbers

0. Introduction

By a lattice path it is meant in all generality a polygonal line of the discrete Cartesian
plane Z×Z. The lattice paths to be considered here are speci(ed by a (nite set of simple
rules: typically, from each point, there is a (nite set of allowable moves that are both
“time independent” and “space independent”. Throughout this study, we also assume
the existence of some privileged direction of increase (the horizontal axis, say), so
that paths become essentially similar to one-dimensional objects, namely, walks on the
line. Such directed lattice paths intervene in many areas of mathematics and computer
science. They play a rôle, for instance, in probability theory (sums of discrete random
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variables), statistics (non-parametric tests), formal language theory, random generation
of planar diagrams (animals and polyominoes), the analysis of dynamic data structures,
and queueing theory models.

In probability theory, lattice paths describe the evolution of sums of independent
discrete random variables, for instance, the succession of your gains if a die is repeat-
edly cast and your capital is increased by j when face number j shows up. A typical
question in this context is the following: Determine the probability of a “lucky game”
in the sense that, at any time t, the partial gain is at least as large as the “mean
gain”, 7

2 t. Such questions are indeed addressed by classical probability theory, with
Brownian motion entering the game. However, by design, stochastic processes only
provide a (rst-order asymptotic theory, while some purely discrete phenomena remain
out of reach of this theory.

Statistics, though not our primary motivation in this paper, is historically an other im-
portant source of problems regarding lattice paths. We may mention the Kolmogorov–
Smirnov test in non-parametric statistics that aims at discerning as to whether two
random variates have the same distribution (see, e.g., [47]). As a matter of fact,
the early books on lattice path combinatorics and lattice path statistics by
Mohanty and Narayana [57,59] speci(cally draw some of their motivations from such
questions.

In discrete mathematics, all sorts of constrained lattice paths serve to describe ap-
parently complex objects. Two-sorted permutations are for instance equivalent to paths
made of horizontal and vertical steps that connect the origin to a point lying on the
main diagonal—such facts are directly relevant to the analysis of the mergesort and
shellsort algorithms [48,69,74]. Dyck paths that are closely related to diagonal paths
describe traversal sequences of general and binary trees; they belong to what Riordan
has named the “Catalan domain”, that is, the orbit of structures counted by the Cata-
lan numbers, 1=(n + 1)( 2n

n ). The wealth of properties surrounding Dyck paths can be
perceived when examining either Gould’s monograph [41] that lists 243 references or
from Exercise 6.19 in Stanley’s book [72] whose statement alone spans more than 10
full pages. More generally, trees constrained by degrees—e.g., term trees in free mag-
mas, of interest in formal semantics [60]—are known to be bijectively equivalent to
 Lukasiewicz words, themselves isomorphic to lattice paths of a special form; Lothaire’s
book oNers a good description within the framework of combinatorics on words [52,
Chapter 11].

Lattice paths also intervene in the analysis of dynamically evolving structures, and,
as such, they surface in the continuous as well as discrete parts of the theory. On the
discrete side, we have Flajolet’s combinatorial theory of continued fractions [29] moti-
vated by FranPcon’s theory of “histories” of dynamic data structures [32,36] or Knuth’s
dynamic storage allocation model (see [46, 2.2.2–13] for the statement of the prob-
lem and [30,75] for solutions). As regards continuous aspects, the Karlin–McGregor
theory of birth–death processes (of which [33,58] oNer lattice-path perspectives), itself
closely related to various queueing theory models, involves lattice paths that describe
an interesting collection of events (the embedded Markov chain). The recent book by
Fayolle et al. on random walks in the quarter-plane [26] is historically motivated by
such queueing theory questions [25].
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Word representations of lattice paths also provide many examples of context-free
languages. This side of the coin is closely related to encodings of trees by words, so
that Dyck paths (that are associated to general trees and binary trees) and Motzkin
paths (that encode unary-binary trees) play an especially important rôle. The the-
ory of context-free languages and pushdown automata then combines nicely with the
Chomsky–SchQutzenberger theorems [10,73], to the eNect that many types of paths can
be a priori recognized as admitting generating functions that are algebraic. Examples
are provided by Labelle and Yeh [49,50], Merlini et al. [56], and Duchon [22]. (In
return, enumerative studies related to context-free languages can sometimes provide
structural information on generation mechanisms and formal languages as is evidenced
by the analytic theory of inherent ambiguity of [31].)

Finally, because of the rich combinatorics surrounding them, lattice paths intervene
at many places in the random generation of structured objects. The problem there is to
draw a combinatorial object from some class C, and do so uniformly at random amongst
all objects of size n in C. Strong decomposability properties of paths usually make
random generation possible in low polynomial time (usually with a complexity between
O(n) and O(n2)). Consequently, any easily computable bijection between a class C
and a class of simple enough lattice paths induces a random generation algorithm
for C. Known examples include the random generation of two-dimensional diagrams
like polyominoes and animals. For instance, the Delest–Viennot methodology of [18]
allows us to generate parallelogram polyominoes in linear time; the rejection methods
of the “Florence School” [8] make it possible to generate various types of directed
lattice animals in a surprisingly eScient manner. The design of such algorithms is
clearly dependent on the basic combinatorics of lattice paths while the corresponding
performance analyses rely on (ne probabilistic estimates of characteristic properties
of paths; see Louchard’s contribution [53] for a neat example and the paper [4] for
algebraic techniques related to the present paper.

In this introduction, we cannot do more than scratch the surface of such rich com-
binatorial, probabilistic, and algorithmic aspects of lattice paths. Accordingly we cut
short our discussion of motivations at this point.

Scope of the paper. This paper assembles combinatorics of words and paths, some
algebra of formal power series, and complex analysis. Under this angle, we believe the
enterprise to be original. Quite a lot is otherwise known regarding probabilistic proper-
ties of paths, as these represent sums of random variables. Accordingly, our treatment
can be, to some extent, regarded as a parallel of probabilistic–analytic methods in the
realm of enumerative combinatorics.

In Section 2, we show that the counting generating functions of paths of various sorts
are invariably algebraic functions. This algebraic character is predictable since the word
encodings of the object considered are clearly recognizable by deterministic pushdown
automata, hence are deterministic context-free languages. However, for directed lattice
paths, we demonstrate that a strong algebraic decomposability prevails that is obtained
by a speci(c technique, the “kernel method” (historical remarks are given at the end of
Section 2.2) and is not clearly visible on combinatorial and grammatical descriptions.
Our purpose in this paper is to arrive eventually at a complete characterization of
the singular structure of intervening generation functions (Section 3)—by virtue of
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the method of singularity analysis, this leads to very precise asymptotic information
on the counting quantities involved. At this level also, the decomposability granted
by the kernel method is central as it enables us to determine the location and nature
of dominant singularities. Then, once the singular structure of counting generating
functions has been extracted, tight estimates on probability distributions of parameters
follow easily: see Section 4 for a sample of what can be done. Section 5 sketches
extensions to the enumeration of certain types of planar objects provided they satisfy
a strong directedness condition.

1. Lattice paths and generating functions

This section presents the varieties of lattice paths to be studied as well as their
companion generating functions.

De�nition 1. Fix a (nite set of vectors of Z×Z, S= {(a1; b1); : : : ; (am; bm)}. A lattice
path or walk relative to S is a sequence v= (v1; : : : ; vn) such that each vj is in S.
The geometric realization of a lattice path v= (v1; : : : ; vn) is the sequence of points

(P0; P1; : : : ; Pn) such that P0 = (0; 0) and
−→

Pj−1Pj = vj. The quantity n is referred to as the
size of the path.

In the sequel, we shall identify a lattice path with the polygonal line admitting
P0; : : : ; Pn as vertices. The elements of S are called steps or jumps, and we also refer

to the vectors
−→

Pj−1Pj = vj as the steps of a particular path.
Various constraints will be imposed on paths. In particular, we restrict attention

throughout this paper to directed paths de(ned by the fact that if (a; b) lies in S,
then necessarily one should have a¿0. In other words, a step always entails progress
along the horizontal axis and the geometric realization of the path naturally lives in the
half plane Z¿0×Z. (This constraint rules out paths like the ones occurring in PWolya’s
“drunkard problem” as described in the attractive booklet of Doyle and Snell [19];
it also implies that the paths studied can be treated essentially as one-dimensional
objects.) The following conditionings are to be considered (Fig. 1).

De�nition 2. A bridge is a path whose end-point Pn lies on the x-axis. A meander is
a path that lies in the quarter plane Z¿0×Z¿0. An excursion is a path that is at the
same time a meander and a bridge; it thus connects the origin to a point lying on the
x-axis and involves no point with negative y-coordinate.

A family of paths is said to be simple if each allowed step in S (De(nition 1) is
of the form (1; b) with b∈Z. In this case, we also abbreviate S as S= {b1; : : : ; bm}.

In the simple case the size of a path coincides with its span along the horizontal
direction, that is, its length. The terminology of bridges, meanders, and excursions is
chosen to be consistent with the standard one adopted in Brownian motion theory; see,
e.g. [62].
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Fig. 1. The four types of paths: walks, bridges, meanders, and excursions and the corresponding generating
functions.

The main objective of this paper is to enumerate exactly as well as asymptotically
paths, bridges, and meanders, this with special attention to simple families. Once the
set of steps is (xed, we let W and B denote the set of paths and bridges, respectively
(W being reminiscent of “walk”); we denote by M and E the set of meanders and
excursions.

Given a class C of paths, we let Cn denote the subclass of paths that have size n,
and, whenever appropriate, Cn; k ⊂ Cn those that have (nal vertical abscissa (also known
as “(nal altitude”) equal to k. With the convention of using standard fonts to denote
cardinalities of the corresponding sets (themselves in calligraphic style), Cn= card(Cn)
and Cn= card(Cn; k), the corresponding (ordinary) generating functions (GFs) are then

C(z) :=
∑
n
Cnzn; C(z; u) =

∑
n;k

Cn;kukzn:

This paper is entirely devoted to characterizing these generating functions: they are
either rational functions (W ) or algebraic functions (B; E;M). As we shall see, a strong
algebraic decomposition prevails which, as opposed to other approaches, renders the
calculation of the GFs eNective. Even more importantly, the decomposability of GFs
makes it possible to extract their singular structure, and in turn solve the corresponding
asymptotic enumeration problems in a wholly satisfactory fashion.

Weighted paths. For several applications, it is useful to associate weights to sin-
gle steps. In this case, the set of steps S is coupled with a system of weights
�= {w1; : : : ; wm}, with wj¿0 the weight associated to (aj; bj)∈S; the weight of
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a path is then de(ned as the product of the weights of its individual steps. Then
the quantity Cn, still referred to as number of paths (of size n), represents the total
weight of all paths of size n. Such weighted paths cover several situations of interest:
(i) combinatorial paths in the standard sense above when each wj=1; (ii) paths with
coloured steps, e.g., wj=2 means that the corresponding step (aj; bj) has two possible
coloured incarnations (say blue and yellow); (iii)

∑
wj = 1 corresponds to a proba-

bilistic model of paths where, at each stage, step (aj; bj) is chosen with probability
wj.

2. Algebraic structures and the kernel method

In this section, we characterize the generating functions of the four types of directed
paths (unconstrained, bridges, meanders, and excursions). For ease of exposition, we
restrict attention to simple families of paths till Section 5, where we brie;y discuss
the more general directed models. It will be seen that a speci(c algebraic curve, the
“characteristic curve” plays a central rôle. In this section, a modicum of analysis is
introduced for convenience, but it is limited to the vicinity of z= 0, and consequently,
it is largely equivalent to formal series manipulations. 1

De�nition 3. Let S= {b1; : : : ; bm} be a simple set of jumps, with �= {w1; : : : ; wj} the
corresponding system of weights (wj ≡ 1 in the unweighted case). The characteristic
polynomial of S is de(ned as the polynomial in u; u−1 (a Laurent polynomial)

P(u) :=
m∑
j=1

wjubj :

Let c=−minj bj and d= maxj bj be the two extreme vertical amplitudes of any jump,
and assume throughout c; d¿0. The characteristic curve of the lattice paths determined
by S is the plane algebraic curve de(ned by the equation

1 − zP(u) = 0; or equivalently uc − z(ucP(u)) = 0: (1)

The quantity K(z; u) := uc − zucP(u) is also referred to as the kernel and Eq. (1) as
the kernel equation.

As we shall see the characteristic equation plays a central rôle, the second form
being the entire version (that is, a form without negative powers).

We also need to introduce technical conditions on periodicities. In a coin-tossing
game (S= {−1;+1}) for instance, a bridge or an excursion only exists for even
lengths; consequently, what is observed of a random path at time n depends on the
residue class of n modulo 2 (Fig. 2).

1 Following a remark by a referee, we note that analyticity considerations in this section could be logically
dispensed with; see Gessel’s paper [38] for a proper framework. However, the authors’ feeling is that purely
algebraic proofs, though feasible, tend to be less transparent. More importantly, analyticity considerations
developed here serve as a useful preparation for our “non-local” treatment of singularities in the next section.
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Fig. 2. Fragments of the sublattices accessible from the origin by the Dyck walk (S= {−1;+1}) and
Duchon’s clubs (S= {−2;+3}). The periods are 2 and 5, respectively.

De�nition 4. A Laurent series h(z) =
∑

n¿−a hnz
n is said to admit period p if there

exists a Laurent series H and an integer b such that

h(z) = zbH (zp); (2)

the largest p such that a decomposition (2) holds is called the period of h and is
denoted by per(h). The series h is called aperiodic if per(h)=1.

A simple walk de(ned by the set of jumps S is said have period p if the charac-
teristic polynomial P(u) has period p.

A simple walk is said to be reduced if the gcd of the jumps is equal to 1.

In what follows, we systematically restrict attention to reduced walks since, up
to a linear change of abscissa, any walk can be reduced. For instance, the walks
corresponding to U= {−3;+3} are transformed (upon shrinking the vertical axis by
a factor of 1

3 ) into the reduced form S= {−1;+1}. (Aperiodic walks are from their def-
inition automatically reduced.) Periodic walks live on sublattices: the walks associated
to S= {−1;+1} (Dyck walks) and T= {−1; 0;+1} (Motzkin walks) are naturally re-
duced, but Dyck walks are periodic with p= 2 (since uP(u) = 1 + u2), while Motzkin
walks are aperiodic; “Duchon’s clubs” studied below and de(ned by S= {−2;+3}
have period p= 5 (since u2P(u) = 1 + u5), etc.

Notice that, if we write

P(u) =
m∑
j=1

wjubj ; wj �= 0; bj ∈ Z; (3)

the period of P (and of the set of jumps S) is

p = per(P) = gcd(b2 − b1; : : : ; bm − b1):
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Also, by the strong form of the triangle inequality, for an aperiodic P(u), the strict
inequality holds in

|P(u)| ¡ P(|u|) for all u ∈ C\R¿0: (4)

It proves convenient to rewrite

P(u) =
d∑

k=−c
pkuk :

Examination of the asymptotic regimes consistent with the characteristic equation near
z= 0 shows that the equation can only be satis(ed if one of the two relations

pdzud ∼ 1 or p−czu−c ∼ 1 (z → 0) (5)

is satis(ed. The characteristic equation being of degree c + d in u is known to have
generically c+d roots; these constitute the branches of a single algebraic curve de(ned
by (1) and called the characteristic curve. Then, as suggested by (5), one expects, in
the complex domain (for z near 0), c “small branches” that we write as u1; : : : ; uc and
d “large branches” v1 ≡ uc+1; : : : ; vd≡ uc+d satisfying (Fig. 3)

uj(z) ∼ e2i(j−1) =c(p−c)1=cz1=c; vk(z) ∼ e2i(1−k) =d(pd)−1=dz−1=d: (6)

For determinacy, one restricts attention to the complex plane slit along the negative
real axis, which allows us to talk freely of the individual branches in the sequel.

The informal discussion summarized by (6) is vindicated by the classical theory
of Newton–Puiseux expansions—the fundamental result in the elementary theory of
algebraic curves that determines constructively all the possible behaviours of solutions
of polynomial equations. For an exposition, we refer to one of the many excellent
books on the basic theory of algebraic curves, e.g. [1,45]. Precisely, the general theory
teaches us that the small branches are conjugate of each other at 0, and similarly for
the large branches at ∞. This means that there exist functions A and B analytic at
0 and non-zero there, such that, in a neighbourhood of 0, one has

uj(z) = !j−1z1=cA(!j−1z1=c) = u1(e2i(j−1) z); ! = e2i =c

vk(z) = $1−kz−1=dB($k−1z1=d) = v1(e2i(k−1) z); $ = e2i =d: (7)

In summary, the uj and v‘ organize themselves into two “cycles” of c and d ele-
ments, respectively; for analytic details, we refer to Hille’s crisp presentation based on
monodromy and analytic continuation in [44].

The branch u1 de(ned near 0 by (6) is real positive and is called the principal (small)
branch. The graph of branches is obtained by interchanging the axes in the graph of
1=P(u), with u1 appearing as the real positive branch near the origin; see Fig. 3 for
an example. We shall prove in Section 3 that in a proper sense u1 “dominates” all the
other small branches.
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Fig. 3. Graphs associated to the set of jumps S= {−2;−1; 0; 1; 2; 3}, with characteristic polynomial
P(u) = u−2 + u−1 + 1 + u + u2 + u3: Top: the graphs of P(u) and 1=P(u) for real u. Bottom: the three real
branches of the characteristic curve, one large of order z−1=3, and two small of order ±z1=2 (two complex
branches of order e±2i =3z−1=3 are not shown).

2.1. Walks and bridges

We start with the easy case of unconstrained walks and bridges. This already makes
use of the characteristic curve and some of its branches.

Theorem 1. The bivariate generating function (BGF) of paths (with z marking size
and u marking ;nal altitude) relative to a simple set of steps S with characteristic
polynomial P(u) is a rational function. It is given by

W (z; u) =
1

1 − zP(u)
: (8)

The GF of bridges is an algebraic function given by

B(z) = z
c∑

j=1

u′j(z)
uj(z)

= z
d
dz

log(u1(z) · · · uc(z)); (9)

where the expressions involve all the small branches u1; : : : ; uc of the characteris-
tic curve (1). Generally, the GF Wk(z) of paths terminating at altitude k is, for
−∞¡k¡c,

Wk(z) = z
c∑

j=1

u′j(z)
uj(z)k+1 = − z

k
d
dz

(
c∑

j=1
uj(z)−k

)
(10)
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and for −d¡k¡+∞,

Wk(z) = −z
d∑

j=1

v′j(z)
vj(z)k+1 =

z
k

d
dz

(
d∑

j=1
vj(z)−k

)
; (11)

where v1; : : : ; vd are the large branches.

(For W0(z), the second form is to be taken in the limit sense k→ 0.)

Proof. Set wn(u) = [zn]W (z; u), the Laurent polynomial that describes the possible
altitudes and the number of ways to reach them in n steps. We have w0(u) = 1,
w1(u) =P(u), and wn+1(u) =P(u)wn(u), so that wn(u) =P(u)n for all n. The deter-
mination of W (z; u) in (8) follows from

∑
n¿0

P(u)nzn =
1

1 − zP(u)
;

where the sum converges and represents an analytic function of both arguments for
|z|¡1=P(|u|). Observe that the resulting series is entire in z but of the Laurent type
in u (it involves arbitrary negative powers of u).

For positive u, the radius of convergence of W (z; u) viewed as a function of z
is exactly 1=P(u). Also, by dominance of coeScients (one has Bn6P(1)n), the ra-
dius of convergence of B(z) as a function of z is at least 1=P(1). Consider now
|z|¡r, where r := 1

2P(1)−1. Then, since 1=P(u) is continuous and unimodal for u ∈
(0;+∞) (where P′′(u)¿0, so that P is convex) and 1=P(0) = 1=P(∞) = 0, there ex-
ists an interval (&; ') such that for &6u6', one has 1=P(u)¿r. More generally, by
positivity of the coeScients, the function W (z; u) is seen to be analytic in the product
domain

(z; u) ∈ {z | |z|¡r} × {u | &¡|u|¡'}:

Thus, by Cauchy’s formula applied to the function W (z; u) (viewed now as a function
of u analytic in a crown), one has 2

B(z) = [u0]W (z; u) =
1

2i 

∫
|u|=(&+')=2

W (z; u)
du
u
:

Take z small enough, so that all the large branches that escape to in(nity lie outside
of |u|6(&+')=2 and the small branches are all distinct. Then, only the small branches
remain inside, and, since there are only simple poles, one has

Res
u=uj

(
1

u(1 − zP(u))

)
= − 1

zujP′(uj)
: (12)

2 We make use of the conventional notation for coeScients of entire and Laurent series: [zn]
∑

n fnz
n :=fn.
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The integration contour is shrunk to 0, which is legitimate since W (z; u) remains
O(1), and residues are taken into account. The residue theorem then gives B(z) as
a sum of residues of form (12) over all small branches. The formula simpli(es to (9)
since diNerentiation of the characteristic equation shows that P′(u)−1 =−z2u′ for any
branch u.

The same procedure is applicable to

Wk(z) ≡ [uk ]W (z; u) =
1

2i 

∫
|u|=(&+')=2

W (z; u)
du
uk+1 :

The integration contour can be shrunk to zero provided the integrand (which is of order
uc−k−1) remains bounded as u→ 0, which necessitates k6(c − 1). The result of (10)
follows again from a residue calculation involving small branches. (The proof shows
the formulX to be valid in a small enough neighbourhood of the origin. The identities
are then a posteriori valid as identities between formal (fractional) power series.)

When k¿− d, which covers case (11) of an arbitrary positive k, the residue calcu-
lation is completed by extending the contour to a large circle at ∞; in this case, the
large branches contribute.

The algebraic character of B(z) and the Wk(z) (nally results from the well-known
fact that algebraic functions are closed under sums, products, and multiplicative in-
verses.

The quantity B(z)≡W0(z) is equivalently given as the diagonal of a bivariate rational
function,

B(z) =
∑
n

(
[znucn]

1
1 − zucP(u)

)
zn

and as such it must be algebraic: see PWolya’s paper [63] of 1921 and [37] for devel-
opments regarding diagonals of rational functions.

Example 1 (Central binomial and trinomial numbers). These are perhaps the most fa-
mous examples, associated to the sets S= {−1;+1} and T= {−1; 0;+1}. The corre-
sponding polynomials are PS(u) = u−1 + u and PT(u) = u−1 + 1 + u. In this case, the
characteristic curve is of degree 2 and there is only one small branch, namely

uS1 (z) =
1 −√

1 − 4z2

2z
; uT1 (z) =

1 − z −√
1 − 2z − 3z2

2z
:

The algebraic generating functions of bridges are then

BS(z) =
1√

1 − 4z2
= 1 + 2z2 + 6 z4 + 20 z6 + 70 z8 + 252 z10 + · · · ;

BT(z) =
1√

1 − 2z − 3z2
= 1 + z + 3z2 + 7z3 + 19z4 + 51z5 + · · · ;
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the coeScients being 3 EIS A000984 and EIS A002426

[zn]BS(z) = [tn](1 + t2)n ≡
(

2n
n

)
; [zn]BT(z) = [tn](1 + t + t2)n:

The names of central binomial and trinomial numbers are suggested by the usual ex-
pansions of (1 + t2)n and (1 + t + t2)n:

1
1 + t2

1 + 2t2 + t4

1 + 3t2 + 3t4 + t6

1 + 4t2 + 6t4 + 4t6 + t8

1
1 +1t +t2

1 +2t +3t2 +2t3 +t4

1 +3t +6t2 +7t3 +6t4 +3t5 +t6

1 +4t +10t2 +16t3 +19t4 +16t5 10t6 +4t7 +t8

It is notable that these cases were already considered by Euler [24], who also gave
linear recurrences (with polynomial coeScients) satis(ed by BT

n .

2.2. Meanders and excursions

In this section, we consider meanders, that is paths that never go below the horizon-
tal axis. The meanders whose (nal altitude is 0 are called excursions, in accordance
with De(nition 2, and they turn out to be the objects with the richest combinatorial
properties.

We continue with a simple system of paths de(ned by the set of jumps S, possibly
endowed with weights. The new generating functions will again involve the character-
istic curve together with its small and large branches. Let now Fn; k be the number of
meanders of size (i.e., length) n that end at altitude k. The corresponding BGF is

F(z; u) :=
∑
n;k

Fn;kukzn;

which is now an entire series in both z and u. By the combinatorial origin of the
problem, F(z; u) is bivariate analytic for |u|61 and |z|¡1=P(1). We also make use of
the polynomials fn(u) that describe the possible positions after n steps and write

F(z; u) =
∑
n¿0

fn(u)zn =
∑
k¿0

Fk(z)uk : (13)

Combinatorially, the natural decomposition is the one based on the last step added. For
the fn(u), “adding a slice” is translated by the recurrence,

f0(u) = 1; fn+1(u) = P(u)fn(u) − {u¡0}P(u)fn(u): (14)

There, the notation {u¡r}g(u) means the sum of all the monomials with exponent less
than r that appear in the Laurent series g(u) as

{u¡r}
(

+∞∑
j=−a

gjuj
)

:=
r−1∑
j=−a

gjuj: (15)

3 References to EIS point to Sloane’s Encyclopedia of Integer Sequences [70], of which a version also
exists in print [71].
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Then, multiplying the terms of the recurrence by zn and summing yields

F(z; u) = 1 + zP(u)F(z; u) − z{u¡0}(P(u)F(z; u)); (16)

where {u¡0} is to be understood as applied to the u-expansion of F(z; u) in (13).
Relation (16) is the fundamental functional equation de(ning meanders. It reads as
follows: “A path is either the empty path or it consists of a step (zP(u) describes
the possibilities) added to a path except that the steps that would take the walk below
level 0 (the operator {u¡0}) are to be taken out”. Now, P involves only a (nite number
of negative powers, so that

F(z; u)(1 − zP(u)) = 1 − z
c−1∑
k=0

rk(u)Fk(z) (17)

for some Laurent polynomials rk(u) that are immediately computable from P via (16):

rk(u) := {u¡0}(P(u)uk) ≡
−k−1∑
j=−c

pjuj+k : (18)

Theorem 2. For a simple set of steps, the BGF of meanders (with z marking size
and u marking ;nal altitude) relative to a simple set of path S is algebraic. It is
given in terms of the small and large branches of the characteristic curve of S by

F(z; u) =

∏c
j=1(u− uj(z))

uc(1 − zP(u))
= − 1

pdz

d∏
‘=1

1
(u− v‘(z))

: (19)

In particular the GF of excursions, E(z) =F(z; 0); satis;es

E(z) =
(−1)c−1

p−cz

c∏
j=1

uj(z) =
(−1)d−1

pdz

d∏
‘=1

1
v‘(z)

: (20)

Proof. The point is that the fundamental equation in its form (17) looks grossly under-
determined as it involves (c + 1) unknown functions; to wit, the bivariate F(z; u) and
the univariate {Fk(z)}c−1

k=0. The main idea of a method known as the “kernel method”
(see also historical notes below) consists in binding z and u in such a way that the
left-hand side vanishes.

Indeed, substitute in (17) any small branch of the characteristic equation. Take
|z|¡1=P(1) and restrict z to a small neighbourhood of the origin in such a way that: (i)
all the small branches are distinct; (ii) all the small branches satisfy |uj(z)|¡1. Then
the substitution is analytically legitimate and, taking all small branches into account, it
provides a system of c equations in the unknown functions F0; : : : ; Fc−1:

uc1 − z
c−1∑
k=0

uc1rk(u1)Fk = 0

...

ucc − z
c−1∑
k=0

uccrk(uc)Fk = 0:
(21)
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This system is non-singular for the reason that its determinant is a variant of the Van-
dermonde determinant and the small branches are clearly all distinct. This observation
is enough to justify that each of the Fk is an algebraic function expressible rationally
in terms of the algebraic branches uj.

Instead of pursuing in the direction of determinantal calculations, here we make
use of a cute observation of Bousquet-MWelou (introduced in [13] and employed in the
parallel paper [4]). The quantity

N (z; u) := uc − z
c−1∑
k=0

ucrk(u)Fk (22)

is by (21), a polynomial in u whose roots are precisely all the uj. The leading monomial
of this polynomial is uc, so that the polynomial factorizes as

N (z; u) =
c∏

j=1
(u− uj(z)): (23)

Then, the constant term is at the same time the product (−1)cu1 · · · uc and the quantity
−zp−cF0, as is apparent from de(nition (22) and form (18) of the coeScients. The
form of F0 follows.

Finally, the result for the BGF F(z; u) derives from (17) made entire,

F(z; u) =
N (z; u)

uc(1 − zP(u))

and from the factorization (23).

An immediate corollary of Theorems 1 and 2 is the generating function of all paths
and meanders irrespective of their (nal altitude.

Corollary 1. The generating functions of all paths and all meanders are

W (z) ≡ W (z; 1) =
1

1 − zP(1)
;

M (z) ≡ F(z; 1) =
1

1 − zP(1)

c∏
j=1

(1 − uj(z)) = − 1
pdz

d∏
‘=1

1
1 − v‘(z)

:

A somewhat deeper consequence is a direct relation between the GFs of excursions
and bridges that obtains by comparing Eqs. (9) and (20).

Corollary 2. The generating functions of bridges (B) and excursions (E) are re-
lated by

B(z) = 1 + z
d
dz

(logE(z)) = 1 + z
E′(z)
E(z)

;

E(z) = exp
(∫ z

0
(B(t) − 1)

dt
t

)
:
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In the same vein, consider paths whose intermediate steps may be negative, but with
a (nal altitude that is ¿0. Their BGF is

W+(z; u) :=
∞∑
k=0

Wk(z)uk :

Then, comparison of the forms involving large branches for Wk(z) and F(z; u) and a
trite calculation shows that

W+(z; u) = 1 + z
d
dz

(logF(z; u));

F(z; u) = exp
(∫ z

0
(W+(t; u) − 1)

dt
t

)
:

Finally, with Fk(z) being the generating function of meanders that end at altitude k,
one has Fk(z) = [uk ]F(z; u). Since F(z; u) is a rational function of u with a simple
product expression in terms of the large branches, its expansion with respect to u is
easily accessible via a partial fraction decomposition, and one (nds:

Corollary 3. The generating function of meanders terminating at altitude k is

Fk(z) =
1
pdz

d∑
‘=1

.‘v−k−1
‘ ; .‘ :=

∏
j �=‘

1
vj − v‘

:

Some of these relations admit combinatorial interpretations succinctly discussed in
Section 4.1.

Example 2. Ballot problem, Dyck paths, and Motzkin paths. These are the most
famous problems in the area, and they are closely related to Example 1. The bal-
lot problem asks for the probability, in a two candidate election between A and B
that eventually results in a tie, of A dominating B throughout the poll. Recording the
diNerence between the scores of A and B as time evolves, we model the problem as
the counting of excursions associated with S= {−1;+1}. The characteristic curve is
the one examined in Example 1 in connection with central binomial coeScients and
the GF of excursions is

ES(z) =
1 −√

1 − 4z2

2z2 =
∑
n¿0

1
n + 1

(
2n

n

)
z2n;

where the coeScients 1=(n + 1)( 2n
n ) are the Catalan numbers (EIS A000108). For

T= {−1; 0;+1}, one (nds similarly

ET(z) =
1 − z −√

1 − 2z − 3z2

2z2 =
∑
n¿0

ET
n zn;

where the coeScients are the Motzkin numbers (EIS A001006).
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Example 3.  Lukasiewicz paths and tree codes. Consider generally a (nite set / that
contains −1 as single negative value. The corresponding paths are known as  Lukasie-
wicz paths. Set 0(u) := uP(u), which is a polynomial. There is only one small branch
satisfying

u1(z) = z0(u1(z)) (24)

and the GF of excursions is (1=zp−1)u1(z). vukasiewicz paths of type / encode trees
whose node degrees are constrained to lie in 1 + /, this by virtue of a well-known
correspondence [52, Chapter 11]. (Traverse the tree in preorder and output a step
of d − 1 when a node of outdegree d is encountered.) In this way, it is seen that
Eq. (24) gives the GF of trees counted according to the number of their nodes, an
otherwise classical result [55]. By Lagrange inversion, the number of trees comprised
of n nodes is

Tn =
1
n

[wn−1]0(w)n;

where 0 can be directly interpreted as the characteristic polynomial of the allowed
node (out)degrees.

Example 4. Walks with steps in {−2;−1; 0;+1;+2}. This is our (rst example in-
volving inherently more than one branch. The characteristic equation is

u2 − z(1 + u + u2 + u3 + u4) = 0:

The two small branches are conjugate and given by

u1(z) = +z1=2 + 1
2 z + 5

8 z
3=2 + z2 + 231

128 z
5=2 + 3z6 + · · · ;

u2(z) = −z1=2 + 1
2 z − 5

8 z
3=2 + z2 − 231

128 z
5=2 + 3z6 + · · · :

Then, by (20), the (rst few terms of E(z) are easily determined as

E(z) = −u1(z)u2(z)
z

= 1 + z + 3z2 + 9z3 + 32z4 + 120z5

+473z6 + 1925z7 + · · · :
Similarly, for meanders, one has

M (z) =
(1 − u1(z))(1 − u2(z))

1 − 5z
= 1 + 3z+12z2+51z3+226z4 + 1025z5 + · · · :

It is then a natural question to ask for an equation satis(ed directly by E(z) or
F(z; 1). Regarding excursions, an equation may be obtained by elimination of u1; u2

from the system

zE + u1u2 = 0; u2
1 − z(1 + u2

1 + u3
1 + u4

1) = 0;

u2
2 − z(1 + u2u2

2 + u3
2 + u4

2) = 0:
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Either resultants or GrQobner bases do the job. For instance, resultants give a polynomial
equation of degree 12 satis(ed by E(z). The polynomial factorizes (this is expected as
we did not impose conditions like u1 �= u2 in the process). Eventually, it is found that
E(z) satis(es a polynomial equation of degree 4:

z4y4 − z2(1 + z)y3 + z(2 + z)y2 − (1 + z)y + 1 = 0: (25)

We shall examine shortly a much better way to perform such computations.

Example 5. Duchon’s clubs and underdiagonal paths. The following problem 4 was
considered by Duchon [22] (under a diNerent formulation): A club opens in the evening
and closes in the morning. People arrive by pairs and leave in threesomes. What is
the possible number of scenarios from dusk to dawn as seen from the club’s entry?
For instance, an event may be +2 (two enter), +2 (two more enter), −3 (three leave),
+2 (two, again arrive), −3 (and the club closes). Naturally, the population inside the
club is never negative and a business night starts with the empty club and ends with the
empty club. The generalized problem then calls for the number of excursions with step
set {−c; d} (where Duchon’s case is Ŝ= {−3;+2} or, equivalently by time reversal,
S= {−2;+3}). We assume here without loss of generality that c and d are coprime
integers, so that the system of paths is reduced.

The characteristic polynomial is P(u) = u−c + ud and the kernel equation is equiva-
lent to

uc = z(1 + ue) with e = c + d:

Thus, the period is e= c+ d and the horizontal axis is only touched at places that are
a multiple of e. Set z= t c, where t is a local uniformizing parameter at 0. Then, the
quantity y(t) := u1(t c) satis(es the equation y= t(1 + ye)1=c; which is Lagrangean. By
Lagrange inversion [42], one (nds

y(t) =
∑
n¿1

1
n

(
n=c

(n− 1)=e

)
tn: (26)

(By convention, ( ab) = 0 if b is non-integral.) Let ! be a primitive cth root of unity;
then all the branches admit an expansion similar to y(z). Indeed, by conjugacy, one
has

uj+1(tc) = y(!jt) =
∑
n¿1

yn!njtn;

where yn= [tn]y(t) is given by (26). Then, the number of excursions is a convolution:

(−1)c−1En =
∑

n1+···+nc=c(n+1)
yn1yn2 · · ·ync!0n1+1n2+···+(c−1)nc :

4 After this paper had been submitted, Christian Krattenthaler pointed us to Ref. [68] by Sato, dating from
1989. In that paper, Sato derives directly our Eq. (27) by matrix generating function methods and provides
valuable additional results regarding underdiagonal paths in a strip.
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It can be checked that En is automatically zero unless n≡ 0 (mod e) (see also the
discussion on periodicities in Section 3.3 below). In summary, taking ! any primitive
cth root of unity, and setting nj = 1 + e3j, n= e3, we (nd

Ee3 =
∑

31+···+3c=c3

1
1 + 31e

(
(1 + 31e)=c

31

)

· · · 1
1 + 3ce

(
(1 + 3ce)=c

3c

)
!031+132+(c−1)3c : (27)

In particular, for c= 1, no summation is needed and

1
1 + ne

(
1 + ne

n

)

gives the number of excursions of length n and type {−1; e − 1}, which is also the
number of e-ary trees having n internal nodes (Example 3). If c= 2 formula (27)
yields a single convolution. For S= {−2; 3}, the result is

E5n =
2n∑
3=0

(−1)3

1 + 53

(
(1 + 53)=2

3

)
1

1 + 5(2n− 3)

(
(1 + 5(2n− 3))=2

2n− 3

)

to be compared to

E5n =
n∑
i=0

1
5n + i + 1

(
5n + 1

n− i

)(
5n + 2i

i

)
; (28)

which Duchon obtained from quite speci(c series manipulations. In general, if the jump
in the negative direction is −c, formula (27) is a (c− 1)-fold convolution of binomial
coeScients.

Duchon’s clubs can also be interpreted as underdiagonal paths. Consider paths in
the Z¿0 ×Z¿0 lattice whose allowed steps are of type either East (horizontal) or
North (vertical), with a straight line barrier 5. It is assumed that 5 passes through the
origin and has a rational slope, p=q61. The number of ways Nm;n of reaching point
(m; n) by North and East steps then satis(es a recurrence of the same type as Pascal’s
triangle but with boundary conditions. For instance, the case of slope 1 gives rise to
the original formulation [54] of the ballot problem (Example 2).

If one measures at each step of a path the vertical distance to 5, then, this distance
can only evolve by +(p=q) for a horizontal step and −1 for a vertical step. Thus,
up to rescaling, such an underdiagonal path is equivalent to a Duchon path of type
{−q;+p}. The numbers Nm;n are then amenable to the analysis of the paper since their
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determination is equivalent to counting meanders and excursions. For instance, here is
a table of values for slope 2

3 :

377 1144
136 377 767

23 66 136 241 390
9 23 43 70 105 149

2 5 9 14 20 27 35 44
1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1 1

The sequence of numbers in this array that correspond to the number of ways of
touching the boundary line is (EIS A060941)

1; 2; 23; 377; 7229; 151491; 3361598; 77635093; 1846620581; : : : ;

which precisely coincides with the sequence of Duchon numbers, {E5n}n¿0, in (28).
Related enumerative results have been obtained by Durand [23] in the context of the

“klam” recurrence that arises in complexity theory. Mohanty [57, p. 22] even quotes
results of TakWacs relative to underdiagonal paths under a line of arbitrary slope.

As the last example shows, the decomposability aNorded by the kernel method pro-
vides a grasp on the structural complexity of summatory formulX expressing the number
of walks, excursions, etc. Following Comtet [15, p. 216], we observe that the “rank”
(de(ned as the minimal number of summations) of the excursion formula in the general
case is at most c(q − 1) − 1 if P(u) comprises q terms. For instance, Catalan num-
bers ((c; q) = (1; 2)) are of rank 0, Motzkin numbers ((c; q) = (1; 3)) and the Duchon
numbers En of (28) (having (c; q) = (2; 2)) are of rank 1, etc.

Some origins of the kernel method. What we named here the “kernel method” has
been part of the folklore of combinatorialists for some time. Earlier references usually
deal with the case of a functional equation of the form

K(z; u)F(z; u) = A(z; u) + B(z; u)G(z)

(with F;G the unknown functions), when there is only one small branch, u1, such that
K(z; u1(z)) = 0. In that case, a single substitution does the job, and G(z) =−A(z; u1)=
B(z; u1). One clear source of this is the exercise section of the (rst edition (in 1968)
of Knuth’s book [46]: the detailed solution to Exercise 2.2.1–4 (see [46, pp. 536–537]
and also Example 2.2.1.11) presents a “new method for solving the ballot problem”,
for which the characteristic equation is quadratic. See also Odlyzko’s splendid sur-
vey [61, Section 15.4] for a discussion of a pebbling game and Prodinger’s recent
note [64] for an original application to a quadratic problem arising from queueing
theory.

The kernel method in its more general version was used recently in a few unpub-
lished works by the authors, including a systematization to directed lattice paths by
Banderier in his memoir [2]. Independent combinatorial developments at the end of
the last century are due to Bousquet-MWelou and PetkoYsek whose recent paper oNers
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a penetrating perspective on the subject of multidimensional walks, recurrences, and
kernels [13]. In fact, as indicated earlier, a remark of Bousquet-MWelou has been used
to simplify our proof of Theorem 2 (see also [4] for another application).

That probabilists had known a lot since the early 1950s regarding related ques-
tions is manifest upon reading Chapter XII of Fellers’ book [28]. It appears that
our presentation parallels in some ways what is obtained by the famous Wiener–
Hopf approach: refer in particular to the example on bounded arithmetic distribu-
tions in [28, pp. 407–408]. Such techniques prove in turn valuable in the theory
of queueing systems: see, e.g., Robert’s book [66] for an account. The synthesis
by Fayolle et al. [26] exposes the deep rami(cations of the theory in the harder
case of walks in a quarter plane not satisfying directedness restrictiction (thus, a
“pure” two-dimensional problem), but their methods only apply to nearest-neighbour
moves. The book [26] itself draws some of its inspiration from the early paper [25]
where a sophisticated use of the kernel method already plays a central rôle (amongst
other techniques like conjugacy and Riemann–Hilbert problems); see also the refer-
ences to Flatto and Malyshev’s works in [61, p. 1208] and the historical comments
in [26, pp. VII–XI].

2.3. Computational aspects

We discuss now a way to determine directly the equations satis(ed by the alge-
braic functions encountered so far. Because of Corollary 2, we know that bridges
and excursions are tightly coupled, and the case of excursions will be detailed
here.

It is assumed that the characteristic polynomial P(u) is (xed. Then, what is needed
in view of Theorem 2 is the equation satis(ed by the product Y= u1 · · · uc of c distinct
roots of a polynomial of degree c + d. As roots are in general “indistinguishable”, we
expect a polynomial of degree ( c+d

c ) to cancel Y .
Take a polynomial Q(u) of degree e in C(z)[u] normalized by Q(0) = 1 and assume

it has distinct roots u1; : : : ; ue. For us, e= c + d, and

Q(u) = − 1
zp−c

(uc − zucP(u));

yet another reformulation of the kernel. We (rst develop the computational process
when c= 2, so that the equation for Y= u1u2 with u1; u2 two distinct roots of Q is
sought. Write &; &′ for generic roots of Q. Then, since Q(0) = 1, one has

Q(u) =
∏
&

(
1 − u

&

)
;

while what we need to determine is

R(u) =
∏

{&;&′}

(
1 − u

&&′
)
:
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(A sum or product over {&; &′} means a sum or product over all unordered pairs of
distinct elements.) Now, take logarithms. One has

log
(

1
Q(u)

)
=
∑
n¿1

Sn
un

n
with Sn :=

∑
&

1
&n
;

log
(

1
R(u)

)
=
∑
n¿1

S(2)
n

un

n
with S(2)

n :=
∑

{&;&′}

1
&n&′n

:

Then, a simple combinatorial reasoning shows that∑
{&;&′}

1
&n&′n

=
1
2
∑

(&;&′)

1
&n&′n

− 1
2
∑
&

1
&2n ;

so that

S(2)
n = 1

2S
2
n − 1

2S2n: (29)

The degree of R is ; := ( e2 ) a priori, and R can be recovered from the formula (“I am
always the exponential of my logarithm!”)

R(u) := {u6;}
[
exp

(
−

;∑
n=1

1
2

(S2
n − S2n)

un

n

)]
; (30)

where {u6;}f means the truncation of the series expansion of f with all terms of
degree 6; included (see the analogous notation (15)).

The general formulX for c¿2 are easily found from the usual relations between el-
ementary and power sum symmetric functions. Set xj = &−n

j . What is sought is plainly
a formula expressing the sum <c of all products xj1 · · · xjc taken over all distinct sub-
sets {j1; : : : ; jc} when the power sums sk :=

∑
j x

k
j are known. Then, one has (by

exponentials of logarithms again)

<c = [tc]
∏
j

(1 + txj) = [tc] exp

(∑
k¿1

(−1)k−1sk
tk

k

)
: (31)

Thus, <c is a computable polynomial in s1; : : : ; sc, obtained from extracting the co-
eScient [t c] in the exponential form of (31) that we write as <c(s1; : : : ; sc). De(ne
(nally

S(c)
n :=

∑
{j1 ;:::;jc}

u−n
j1 · · · u−n

jc ;

the sum being on all subsets of c elements. Then we have

S(c)
n = <c(Sn; S2n; : : : ; Scn):

For instance, the formulX analogous to (29) for c= 3; 4 are found to be

S(3)
n = 1

6S
3
n − 1

2SnS2n + 1
3S3n;

S(4)
n = 1

24S
4
n − 1

4S
2
nS2n + 1

3SnS3n + 1
8S

2
2n − 1

4S4n: (32)
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These considerations give rise to a simple algorithm for computing the polynomial
cancelled by the product of all small branches.

Platypus Algorithm. Computes the polynomial R(u)∈C(z)[u] of degree ;= ( ec ) such
that R(Y ) = 0, where Y= u1 · · · uc = (−1)c−1zpcE(z) is the product of all small
branches of the characteristic curve. The input is the characteristic polynomial of
steps, P(u).

1. Set up the symbolic formulX of type (29) and (32) appropriate for the given value
of c. To this eNect, perform the symbolic expansion of (31) with <c(s1; : : : ; sc)
denoting the coeScient of t c in the exponential form.

2. Take the normalized kernel Q(u) = (−zpc)−1(uc − zucP(u)). Set ;= ( ec ) and de-
termine the expansion

log
(

1
Q(u)

)
=

c;∑
n=1

Sn
un

n
+ O(uc;+1):

3. Recover R(u) from the truncated series

R(u) := {u6;}
[
exp

(
−

;∑
n=1

<c(Sn; S2n; : : : ; Scn)
un

n

)]
:

Half a dozen instructions in a symbolic manipulation language are suScient to trans-
late the algorithm. In contrast to GrQobner basis or resultant calculations, the process is
eScient, whenever the degree of the result remains reasonable. For instance, we could
successfully determine polynomials R of degree 45 = ( 10

2 ) in a matter of seconds on
a machine with a 500 MHz clock.

On coe@cients of algebraic functions. As it is well known [14], any algebraic
function f(z) satis(es a linear diNerential equation L(f) = 0 with coeScients that are
rational functions of the variable. This in turn translates into a linear recurrence with
polynomial coeScients in n for the quantities [zn]f. Thus, the coeScient of index
n of any algebraic function is computable in a number of operations that is lin-
ear in n. (The procedure is implemented in Salvy and Zimmermann’s Gfun package
[67].) This remark applies to all the generating functions considered in this paper.
For instance, the excursion generating function E(z) corresponding to the set of jumps
{−2;−1; 0;+1;+2} (Example 4) satis(es an inhomogeneous diNerential equation of
order 3

z3(5z + 4)(5z + 1)(z − 1)2(5z − 1)2 d3E
dz3 + · · · + (−100z2 + 56z − 4) = 0; (33)

and its coeScients can be obtained from a recurrence of order 6,

2(n + 7)(n + 8)(2n + 13)En+6 + · · · + 625(n + 1)(n + 2)(n + 3)En = 0: (34)

3. Singular structures

We now examine paths, bridges, meanders and excursions under the angle of asymp-
totics. As is well known, the asymptotic behaviour of counts is closely related to the
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Fig. 4. A rendering of the modulus of the (ve branches of the characteristic curve in the example of Fig. 3
illustrates the domination properties of the principal small and large branches.

singular structure of the corresponding generating functions [34,61]. Thanks to the fac-
torizations aNorded by the kernel method, the singular forms of intervening generating
functions become manageable. This part of the analysis makes use of global properties
of branches followed by local analysis in the vicinity of a quantity called the “structural
radius” ?.

Lemma 1. Let P(u) be the polynomial associated to the steps of a simple walk. Then,
there exists a unique number @, called the structural constant, such that

P′(@) = 0; @ ¿ 0:

The structural radius is de;ned by the quantity

? :=
1

P(@)
:

Proof. DiNerentiating P twice as given in (3), we see that P′′(x)¿0 for all x¿0. Thus,
the real function x �→ P(x) is strictly convex. Since it satis(es P(0) =P(+∞) = +∞,
it must have a unique positive minimum attained at some @, and P′(@) = 0.

Structural constants a priori live in a (eld of degree e := c + d over the base (eld
of weights. However, for symmetric walks (P(u) =P(u−1)), they automatically reduce
to the value @= 1 and ? becomes automatically a member of the (eld of coeScients
of P.

In Section 2, we have de(ned the principal branch u1(z) near the origin by means of
its expansion at 0. We show here that this branch satis(es a useful domination property
for 06z6?. Cf. Fig. 4 for an illustration.

Lemma 2. For an aperiodic walk, the principal small branch u1(z) is analytic on the
open interval z ∈ (0; ?). It dominates strictly in modulus all the other small branches,
u2(z); : : : ; uc(z), throughout the half-closed interval z ∈ (0; ?].
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Proof. By the discussion of Lemma 1, the function 1=P(z) is continuously increasing
for z ∈ [0; @]. Hence the equation (in u) z= 1=P(u) admits a unique positive solution,
say u+(z), that is less than @ when z ∈ [0; ?]. This positive solution u+(z) must coincide
with the branch u1 at 0+ (since the expansions at 0+ are the same). Also, the analytic
version of the implicit function theorem guarantees that the positive solution u+(z)
remains analytic all along z ∈ (0; ?), so that the principal small branch u1 and the
positive solution u+ must coincide throughout this interval. Consequently, u1 (originally
only de(ned near 0+) increases from 0 to @ as ? increases from 0 to ?.

Next, a general fact about polynomials with positive coeScients enters the game: if
P(u) is aperiodic, then one has for positive r

|P(reiA)| ¡ P(r) for all A �≡ 0 (mod 2 ) (35)

as seen from the strong form of the triangle inequality. Fix z= x, with x real positive
and x¡?, and let w be an arbitrary solution of the kernel equation 1− xP(w) = 0 that
is at most @ in modulus and not equal to u1(x) (i.e., not real and positive). Then, one
has by the strict inequality in (35) that

x =
1

P(u1(x))
=

1
P(w)

¿
1

P(|w|) ;

which implies |w|¡u1(x) since 1=P is increasing in the region considered, [0; @]. Thus,
near 0+ and since the non-principal small branches u2; : : : ; uc are majorized by @ in
modulus (they tend to 0), they must satisfy |uj(x)|¡u1(x). Additionally, the domination
property cannot cease to hold on (0; ?): by continuity of the modulus of any branch,
this would imply that u1(x) itself reaches the value @ for some x¡?, yielding a clear
contradiction. Domination must (nally continue to hold at ?, since otherwise, there
would be a contradiction with the strong triangle inequality (35).

Stronger domination properties are in fact derivable from similar uses of the strong
triangle inequality, under the aperiodicity condition (see also [3] for details). For |z|6?,
one has: |uj(z)|¡u1(|z|) for j= 2; : : : ; c; also, |u1(z)|¡|v1(z)| safe at z= ?. Simply put,
the principal small branch u1 is the “largest” of all the small branches.

In Section 4, it will also prove handy to have available the corresponding prop-
erties of large branches. For instance, the principal large branch, v1, is in a simi-
lar sense the smallest of all large branches. Generally, the domination properties of
large branches are counterparts of those of small branches, as can be seen by mim-
icking the arguments. Alternatively, one can introduce duality: If P(u) is a Laurent
polynomial, then P̃(u) =P(u−1) is called its dual. It is then easy to see that the
small and large branches, ũj and ṽ‘ of the dual are, respectively, the inverses of
the large and small branches of the primal: ũjvj = 1 and ṽ‘u‘ = 1. Duality thus ex-
changes small and large branches. (Combinatorially, duality may be realized either
as a symmetry along the horizontal axis applied to steps, or by the time-reversal
transformation that changes a path into another path obtained by reading steps
backwards.)
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3.1. Bridges and excursions

We (rst address the important problem of estimating the numbers of bridges and
excursions. The discussion makes use of the assumption that the walk is reduced and
aperiodic.

Theorem 3. Consider a simple system of walks that is aperiodic. Let @ be the struc-
tural constant determined by P′(@) = 0; @¿0. The number of bridges of size n admits
a complete asymptotic expansion

Bn ∼ '0
P(@)n√

2 n

(
1 +

a1

n
+

a2

n2 + · · ·
)
; '0 =

1
@

√
P(@)
P′′(@)

: (36)

The number of excursions of size n satis;es

En ∼ B0
P(@)n

2
√
 n3

(
1 +

b1

n
+

b2

n2 + · · ·
)
; (37)

where (the uj are the small branches, with u1 the principal branch)

B0 =
(−1)c−1

p−c

√
2P(@)3

P′′(@)
Y1(?); Y1(z) :=

c∏
j=2

uj(z); ? =
1

P(@)
: (38)

By Lemma 2, the constant Y1(?) is equivalently characterized as

Y1(?) =
∏

|C|¡@;P(C)=?−1

C:

Proof. The result for bridges is known as it is equivalent to the local limit theorem
for sums of discrete random variables [40, Chapter 9], of which the (rst proof goes
back to Laplace 5 in [51]. For completeness, we brie;y sketch the argument here.

Start from the fact that the number of bridges of length n is [u0]P(u)n. By Cauchy’s
coeScient formula, one has

Bn =
1

2i 

∫
D
P(u)n

du
u
;

where the contour D is any positively oriented loop about the origin. The positive real
point @ is a simple saddle-point of P(u) (hence of P(u)n), so that the choice of the
circle |u|= @ as integration contour suggests itself by the saddle-point method [16]. By
the aperiodicity condition, P(u) is uniquely maximal in modulus along the contour at

5 Quite remarkably, in his ThAeorie analytique des probabilitAes, in 1812 Laplace expresses the problem
as a Cauchy coeScient formula presented by its Fourier series counterpart (analytic functions are not yet
invented by Cauchy!) and proceeds with a saddle-point argument expressed as an application of the “Laplace
method” that was speci(cally developed for that occasion (saddle-point integrals will only emerge half-a-
century later!).
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u= @; see (4). Therefore, the following saddle-point approximations are justi(ed:

Bn =
1

2i 

∫
|u|=@

P(u)n
du
u

∼ 1
2i 

∫ @e+iB

@e−iB
exp

(
n
(

log P(@) +
1
2
P′′(@)
P(@)

(u− @)2 + O((u− @)3)
))

du
u

∼ P(@)n

2 @

∫ +∞

−∞
e−nht2=2 dt =

P(@)n

@
√

2 nh
; h =

P′′(@)
P(@)

:

By the usual process, the contribution is (rst localized near @, taking for instance
B= (log n)=

√
n, and local expansions are applied; then the contour is extended back

to yield a complete Gaussian integral. This streamlined version of the method is then
extended to a full asymptotic expansion in the usual way [43, p. 419], so that (36)
results.

The saddle-point method thus provides an easy access to the enumeration of bridges.
This gives indirectly valuable information on the small branches that can be translated
into the singular structure of the GF B(z). First, the relation that determines the branches
of the characteristic curve can be put under the form

z =
1

P(u)
: (39)

This shows that a branch can become in(nite only at z= 0; in fact, the corresponding
solutions give rise precisely to the large branches v1; : : : ; vd. By general principles (the
inverse of an analytic function at a point where the derivative is non-zero is analytic),
relation (39) is invertible analytically in the neighbourhood of any point C such that
P′(C) �= 0. Accordingly, a singularity (in the sense of analytic functions) must occur at
any value E such that P′(E) = 0.

At u= @, with @ the structural constant, one has P′(@) = 0 by construction, while
P′′(@)¿0. Then, the local form of (39), reads

z = ?− 1
2
P′′(@)(u− @)2 + O((u− @)3); ? :=

1
P(@)

: (40)

This is readily inverted, yielding two local solutions

u(z) = @±
√

2
P(@)
P′′(@)

√
1 − z=? + · · · (z → ?−): (41)

In particular, the principal branch u1(z) has a square root singularity; it takes as value
the structural constant @ at the place

? =
1

P(@)
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and the −√
determination must be adopted in (41) since u1(z) increases as z → ?−:

u1(z) = @−
√

2
P(@)
P′′(@)

√
1 − z=? + · · · (z → ?−): (42)

Next, for z �= 0, all singularities of the solutions of (39), since they correspond to
(nite values of u, can only be (nite branch points E with a local expansion of the
form a0 +b0(z−E)1=r for some rami(cation index r¿1. (This is easily seen directly by
a suitable generalization of (40) and (41) upon taking into account the (rst non-zero
derivative of 1=P.)

We can now confront the result of (42) with the the saddle-point estimation (36),
remembering that one has by (9)

B(z) = z
d
dz

log Y (z); Y (z) := (u1(z) · · · uc(z)):

First, Y (z) that is analytic near 0 must remain analytic throughout the disk |z|¡?,
since otherwise B(z) would be singular for some value inside the disk and this would
contradict the asymptotic growth (36) that is of type P(@)n for Bn. Next, Y (z) can-
not have any (algebraic) singularity other than z= ? on the circle |z|= ?, since, by
singularity analysis, 6 this would entail the presence of oscillating terms in the asymp-
totic expansion of Bn, again contradicting (36). Also, Y (z) can only have a branch
point of rami(cation index r = 2 at z= ?, since otherwise some term of the form
n−1+1=r would have been present in the expansion of Bn. Finally, the de;ated prod-
uct Y1(z) = u2(z) · · · uc(z) must be analytic at ? since otherwise, being capable only
of having a branch point with rami(cation index 2, one would reach a contradiction
regarding the leading coeScient of Bn (as checked from comparing (36) against the
consequences of (42) on coeScients).

In other words, this sequence of indirect arguments shows the following: 7 The
product of all the non-principal small branches

Y1(z) = u2(z) · · · uc(z) (43)

is analytic at all points of the closed disk |z|6?.
It is now an easy matter to complete the estimate of the number of excursions by

singularity analysis applied to (20) in Theorem 2. The unique dominant singularity of
E(z) must be at z= ? where the local expansion (42) gives

E(z) ∼ E(?) − B0

√
1 − z=?; B0 =

(−1)c−1

p−c?
Y1(?)

√
2
P(@)
P′′(@)

6 Singularity analysis [34,61] allows us to transfer a singular element of the form (1−z=&)F in the expansion
of a function f(z) at a singularity & into a corresponding asymptotic element of the form &−nn−F−1=G(−F)
in the expansion of the coeScient [zn]f(z) at in(nity. It is applicable unconditionally to algebraic functions.

7 An alternative argument based on the re(nement of domination relations evoked after the proof of
Lemma 2 is possible; see Banderier’s thesis [3] for details.
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with Y1 given by (43). A full expansion of u1(z) in powers of (1 − z=?)1=2 being
available, and Y1(z) being analytic on the whole of |z|6?, the proof of (37) is at last
completed.

Example 6. Asymptotics of tree codes. The case of walks with only one type of
descending step equal to −1 corresponds to tree codes, as discussed in Example 3.
In this very special case, there is only one small branch, and the GF of excursions is
E(z) = u1(z)=(p1−z). For aperiodic walks, result (37) of Theorem 3, or plainly estimate
(41), gives us

@: P′(@) = 0;

En ∼ 1
p−1

1√
2 n3

√
P(@)3

P′′(@)
P(@)n: (44)

In terms of trees, the principal branch u1(z) is precisely the GF of trees correspond-
ing to the degree set 1 + S with generating polynomial 0(u) := uP(u) and one has
T (z) =p−1zE(z) = u1(z). Estimate (44) then coincides with the well-known asymptotic
estimate of the number Tn of trees of size n,

@: 0(@) − @0′(@) = 0;

Tn ∼ 1√
2 n3

√
0(@)
0′′(@)

(
0(@)
@

)n

; (45)

which was (rst discovered by Meir and Moon [55].

As soon as c¿1, there are several small branches, and, in this case, the algebraic
constant Y1(?) intervenes. Numerically, this constant can be determined easily as it
only involves the product of the small solutions to the kernel equation taken at z= ?.
Algebraically, since Y1(?) is the product of c− 1 solutions to an algebraic equation of
degree c+d, it is an algebraic number of degree at most ( c+d

c−1 ) over Q(?)≡Q(@) that is
computable by the techniques of Section 2.3 (upon changing c to c−1 in the Platypus
Algorithm). However, since @ is a double root of the kernel equation instantiated at
z= ?, further simpli(cations accrue. This explains that constants involving radicals are
often to be observed when analysing problems of relatively low “complexity”. The
next example is typical of this state of aNairs.

Example 7. Asymptotics of the {−2;−1; 0; 1; 2}-excursions. The walk introduced in
Example 4 is symmetric, and like for any symmetric walk system, the structural con-
stant is equal to 1 while the structural radius is the rational number, ?= 1=P(1) = 1

5 .
The product of the non-principal small branches at ? reduces to u2(?). This quantity
is a priori one of the roots of an equation of degree 4 (Eq. (25) instantiated at z= ?),
but since this equation has already @= 1 as a double root, the equation satis(ed by
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u2(?) is in fact of degree 2 (it is u2 + 3u + 1 = 0) so that

u2(?) = −3
2

+
1
2

√
5

and this quantity is precisely Y1(?) of (38). Thus, we can conclude and get easily

En =
5
4

(3 −
√

5)
5n√
 n3

(
1 + O

(
1
n

))
:

The quality of the asymptotic approximation provided by the (rst term is 11% when
n= 10 and 1.2% when n= 100, where the En are conveniently determined by (34). The
estimate is also consistent with the nature of the singularity at ?= 1

5 of the diNerential
equation (33).

3.2. Paths and meanders

Now that the bulk of the work is done, asymptotic estimates of the basic counts of
paths and meanders fall as a ripe fruit. The result for unconstrained paths is trivial,
since the number of possibilities for size n is P(1)n, a fact consistent with the simple
pole of W (z; 1) = (1 − zP(1))−1. For meanders, three cases are to be distinguished
depending upon the value of a quantity called the drift.

De�nition 5. Given a simple walk with characteristic polynomial P(u), the drift is
de(ned by the quantity

; = P′(1):

In the unweighted case, the drift is thus the sum of all the possible values of the
jumps, which constitutes an indicator of the “tendency” for the walk to go up or down.
In the probabilistic case (P(1) = 1), the drift represents exactly the expected movement
in the y-direction of any single step. For a symmetric walk, the drift is ;= 0, while
@= 1.

Theorem 4. Consider a simple aperiodic walk. The number of paths of length n,
[zn]W (z; 1), is P(1)n exactly. Set

_Y 1(z) :=
c∏

j=2
(1 − uj(z)):

The asymptotic number of meanders depends on the sign of the drift ;=P′(1) as
follows:

; = 0: Mn ∼ H0
P(1)n√
 n

(
1 +

c1

n
+

c2

n2 + · · ·
)

H0 :=

√
2
P(1)
P′′(1)

_Y 1(?); ? = P(@)−1 =P(1)−1;
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; ¡ 0: Mn ∼ H−0
P(@)n

2
√
 n3

(
1 +

c−1
n

+
c−2
n2 + · · ·

)

H−0 := −
√

2
P(@)3

P′′(@)

_Y 1(?)
P(@) − P(1)

; ?=P(@)−1;

; ¿ 0: Mn ∼ H+
0 P(1)n + H−0

P(@)n

2
√
 n3

(
1 +

c+
1

n
+

c+
2

n2 + · · ·
)

H+
0 := (1 − u1(?1)) _Y 1(?1); ?1 := P(1)−1:

The formulX have an intuitive meaning. In the case of a positive drift, a fraction
close to H+

0 of all the (unconstrained) walks is a meander, in accordance with the
natural tendency of walks to go up. For negative drift, most paths tend to go down
and the proportion of meanders is exponentially small, roughly like (P(@)=P(1))n. For
zero drift, the proportion becomes as large as 1=

√
n, while the walks tend to oscillate

not too far from the horizontal axis.

Proof. The discussion is based on the formula of Corollary 1 rewritten as

M (z) = F(z; 1) =
1 − u1(z)
1 − zP(1)

_Y 1(z); _Y 1(z) :=
c∏

j=2
(1 − uj(z)):

It suSces to examine the position of the zeros and the dominant singularity of the
numerator in relation to 1=P(1) that is always a zero of the denominator. By proof,
arguments similar to Lemma 2, the quantity _Y1(z) being a symmetric function of small
branches each of which is dominated by u1, must remain analytic throughout |z|6?.

In the case ;= 0, one has P′(1) = 0, @= 1, and ?= 1=P(@) = 1=P(1). Thus, (1− u1)
contributes a term of the form (1− z=?)1=2 at z= ? while the denominator (1− zP(1))
has a simple zero there. Globally, the singularity of F(z; 1) is thus of type 1=√, and
the result follows.

For a negative drift, meaning P′(1)¡0, one must have @¿1, since P′(u) increases
from −∞ to +∞ when u ranges from 0+ to +∞. With ?= 1=P(@) (the structural
radius) and ?1:= 1=P(1), one then has ?1¡?. In this case, the prefactor (1− zP(1))−1

has a pole at ?1; this pole is however cancelled by a zero in the numerator induced
by the numerator (1 − u1(z)) (since u1(?1)= 1), so that ?1 is a removable singularity
of F(z; 1). Consequently, the dominant singularity of F(z; 1) is at ?, where F(z; 1) is
of the square-root type.

For a positive drift, one must have @¡1, so that the prefactor induces a pole at
?1 := 1=P(1) before _Y1 or 1 − u1 become singular. The argument concludes by “sub-
tracting singularities”, since the function,

F(z; 1) −
_Y 1(?1)(1 − u1(?1))

1 − zP(1)
; ?1 :=

1
P(1)

now has a dominant singularity of the square-root type at ?.
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The earlier discussion about the algebraic character of asymptotic constants ap-
plies: quantities like _Y1(?1) and _Y1(?) can be determined by adapting the Platypus
Algorithm of Section 2.3. Should the degrees of the algebraic numbers involved be-
come fairly large, one can always resort to numerical analysis as the next example
illustrates.

Example 8. Lucky periods in die casting. In [63, p. 45], PWolya introduces the fol-
lowing problem: “En jetant 2n dAes Ba la fois, on peut obtenir diCAerentes sommes de
points de 2n Ba 12n. Le cas le plus probable est celui de 7n points. DAesignons par An
le nombre de combinaisons oBu se produit cet AevAenement.” Imagine that at each of n
rounds two dice are cast and the score of the round is the sum of the two dice’s values.
PWolya thus considers the number of ways An (and probability An=36n) of reaching the
balanced score 7n at the end of a game of dice consisting of n rounds. PWolya proceeds
by an integral representation (precisely of the type used in the proof of Theorem 1)
from which he concludes that the GF A(z) has the character of an algebraic function,
but does not make the calculation explicit.

By centring around the mean score of a round, which equals 7, it is easily realized
that the problem is equivalent to a walk whose characteristic polynomial is

P(u) = u−5(1 + u + u2 + u3 + u4 + u5)2:

Let Bn be the number of bridges. (The quantity Bn is exactly PWolya’s An.) Here, c=−5,
d=+5; also @= 1 as the walk is symmetric, and ?= 1=36. The asymptotic number of
bridges is simply

Bn ∼ 6 · 36n√
22 · 3 · 5 · 7 n

;

which is nothing but an avatar of the local limit gaussian law.
Consider next the modi(cation of PWolya’s problem where we ask for the number of

“lucky” games, in the sense that at any time t the score is at least 7t. This is equivalent
to (nding the number of meanders. Excursions surface if we further impose the (nal
score to be 7n exactly. We have @= 1 and ?= 1

36 . One should then examine the kernel
equation at z= ?,

u5 − 1
36

u5P(u) = 0

as this gives all the values of the small branches there. We (nd that there are 10
roots, amongst which @= 1 is a double root. The eight other go by pairs of complex
conjugates, with

E := −0:36381 + 0:22924i; E′ := 0:06208 + 0:47622i;

E′′ := −1:96746 + 1:23976i; E′′′ := 0:26919 + 2:06476i:
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Then, the quantity Y1(?) is determined numerically as the product of the roots of
modulus less than @= 1, namely, E _E E′ E′. We (nd Y1(?) := 0:42648, so that the
constant in the asymptotic formula for excursions can be determined to great
accuracy:

En ∼ C · 36n√
n3
; C := 0:35865 42111 34518 86172: (46)

In the same vein, we determine _Y1(?) = (1 − E)(1 − _E)(1 − E′)(1 − E′) to be _Y1(?) :=
2:11615, and

1
36n

[zn]F(z; 1) ∼ C′
√
n
; C′ := 0:93071 59694 87799 20216

gives the probability of a lucky game (a meander).

PWolya’s example is interesting structurally. For instance, the excursion constant C
in (46) involves Y1(?) that is a root of a self-reciprocal polynomial I(y) of degree
16 (found by Platypus Algorithm and factorization), itself equivalent to a resolvent of
degree 8 that turns out to be irreducible,

I(y) = y8Î(y + y−1);

Î(v) = v8 − 17v7 − 152v6 + 34v5 − 551v4 − 12053v3

+ 8038v2 + 38692v + 12664;

but algebra stops there. In contrast, analysis based on the decomposability devolving
from the kernel method provides fully satisfactory numerical answers.

3.3. Periodicities

The discussion above has been conducted under the assumption of aperiodicity. As
we explain now, similar results hold for periodic walks provided suitable congruence
conditions are imposed on the indices of coeScients of generating function. For reasons
explained after De(nition 4, we freely assume the set of jumps to be at least reduced,
as this implies no loss in generality.

Take a set S corresponding to period p. We sketch the discussion in the case
of excursions, with E(z) the corresponding GF. Then, E(z) is periodic with period
p, meaning that it is of the form E(z) = Ê(zp) for some Ê(z) that is analytic at 0.
The foregoing discussion of small branches continues to apply as long as |z| stays in-
side the disk |z|¡?, and the local analysis (42) of u1 continues to hold as z→ ?.
However, it appears now that there are p conjugate dominant singularities at the
points

?j := ?Jj; J = e2i =p:
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Indeed, E(z) satis(es E(z) =E(Jz), while Eq. (42) describes the behaviour of u1(z)
at ?j upon changing z into z=Jj. Then, each of the p singular elements cumulate and
contribute jointly to [zn]E(z) provided n≡ 0 modp. One (nds in this way that

En ∼ pB0
P(@)n

2
√
 n3

; n = p3; 3 ∈ Z¿0;

where B0 is (still) given by (38).
The analysis easily adapts to the other types of paths considered, and is summa-

rized by a simple rule: For a system of jumps of period p, the asymptotic form of
the count of index n must be restricted to a suitable congruence class of nmodp
in order for objects to exists; then the corresponding asymptotic formula is ob-
tained from the estimate of the aperiodic case through multiplication by a factor
of p.

Example 9. Asymptotics of generalized Duchon’s clubs. We return to Example 5.
The kernel equation is 1 − z(u−c + ud) = 0, which gives the structural constant

@ =
( c
d

)1=e
; e = c + d:

The period is equal to e. The number of excursions of length n is non-zero only if
n≡ 0 (mod e) and it satis(es (with r = ?e)

Ee3 ∼ Dc;dr−3
c;d 3

−3=2; rc;d =
ccdd

ee

for some computable constant Dc;d. This generalizes the estimate of Duchon [22] who
determined D2;3 by a particular grammar construction followed by a speci(c algebraic
elimination.

4. Basic parameters and limit laws

The singular structure of basic generating functions of paths, bridges, meanders,
and excursions is well-established by Section 3. On the other hand, many parame-
ters “decompose” combinatorially, so that their GFs are expressible in terms of the
basic generating functions, or equivalently, they lie in Q(z; X ; u1; : : : ; uc) for some
set X of markers. In this paper, we only exhibit few sample cases of appli-
cation of this methodology. As pointed by Philippe Robert (private communication),
the whole combinatorial-analytic apparatus largely parallels what probabilists do by
means of Wiener–Hopf decompositions (this is analogous to the separation bet-
ween small and large branches) and Tauberian theorems (instead of singularity
analysis that aNords greater asymptotic accuracy through complete asymptotic
expansions).
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4.1. Arches and contacts

De(ne an arch as an excursion of size ¿0 whose only contact with the horizontal
axis is at its end points and let A be the set of arches. The set E of excursions satis(es
the combinatorial equation

E ∼= S{A};
where S denotes the combinatorial construction that freely forms sequences. By well-
known mechanisms this translates directly into the GF equation

E(z) =
1

1 − A(z)
or equivalently A(z) = 1 − 1

E(z)
: (47)

The singular form of A(z) then reads immediately:

E(z) ∼ E(?) − B0

√
1 − z=?; implying A(z) ∼

(
1 − 1

E(?)

)
− B0

E(?)2

√
1 − z=?:

Thus, the number of arches An is asymptotically proportional to ?−nn−3=2, hence also
to the number of excursions En.

De(ne a vertex of an excursion not equal to one of the end points to be a contact
if its altitude is 0. Then, A(z)k+1 is the GF of excursions having k contacts. For
any (xed k, the function Ak+1 has again a singularity of the square root type that is
amenable to singularity analysis. An easy calculation then gives:

Theorem 5. The probability that a random excursion of size n has k contacts is for
any ;xed k of the form

1
E(?)2 (k + 1)

(
1 − 1

E(?)

)k

+ O
(

1
n

)
:

The number of contacts is thus asymptotically distributed like the sum of two inde-
pendent geometric random variables with parameter 1 − E(?)−1. In particular,

An ∼ 1
E(?)2En:

The constant E(?) is expressible in terms of the quantity Y1(?) and is thus a close
relative of '0 introduced in Theorem 3.

On the relation between bridges and excursions. We brie;y discuss here a construc-
tion that relates excursions to arches. Consider a bridge and let m (with m60) be the
minimal altitude of any vertex. Any non-empty bridge ' decomposes uniquely into a
walk ’1 of size ¿1 from 0 to m that only reaches level m at its right end, followed by
an excursion ” (this is the part where one wanders around but above level m), followed
by a path ’2 of size ¿0 from m to 0 that only touches level m at its beginning. By
rearrangement, one can write '= ” · (’2|’1), where the glueing of ’2’1 is an arch and
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the bar keeps track of where the splitting should occur. This construction is illustrated
by the following diagram:

In other words, the set of non-empty bridges is combinatorially isomorphic to the
product of the set of excursions by the set of arches with a split step that is distin-
guished. This construction is then nothing but the combinatorial re;ex of the iden-
tity

bridges︷ ︸︸ ︷
B(z) − 1 =

excursions︷︸︸︷
E(z) ·

split arches︷ ︸︸ ︷(
z

d
dz

A(z)
)
; (48)

which, in view of (47) is equivalent to

B(z) − 1 = E(z) · z d
dz

(
1 − 1

E(z)

)
= z

E′(z)
E(z)

:

(Thus, combinatorics of arches gives back Corollary 2.) Such relations are ubiquitous
in the theory of paths, the most famous ones being known by the names of Spitzer and
Sparre Andersen: see Kittel’s appendix to [35] and Lothaire’s book [52, Section 5.3]
for a summary. Raney’s classic [65] and Gessel’s papers [38,39] make use of similar
ideas (inter alia, the “cycle lemma”) in combinatorial proofs of the Lagrange inver-
sion formula. One of the many consequences of this orbit of ideas is for instance
the possibility of analysing the number of times a bridge attains its minimum value
by adapting the decomposition (48) and closely mimicking the proof of Theorem 5.
Louchard’s analyses in [53] provide many striking illustrations of such an interplay
between probabilistic and combinatorial properties.

4.2. Final altitude of a meander

The ;nal altitude of a path is the abscissa of its end point. For unconstrained
paths, the usual local and central limit theorems for discrete random variables apply
[40, Chapter 9], so that the limit law, after normalization, is Gaussian, the underlying
technology being plainly the saddle-point method. We consider now meanders. The
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random variable associated to (nite altitude when taken over the set of all meanders
of length n is denoted by Xn, and it satis(es

Pr(Xn = k) =
[znuk ]F(z; u)
[zn]F(z; 1)

:

We state:

Theorem 6. The ;nal altitude of a random meander of size n admits a limit distri-
bution, with the limit law being dictated by the value of the drift ;.

(i) For a negative drift, ;¡0, the limit distribution is a discrete one characterized
in terms of the large branches:

lim
n→∞ Pr(Xn = k) = [uk ]$(u); where $(u) =

(1 − @)2

(u− @)2

∏
‘¿2

1 − v‘(?)
u− v‘(?)

:

(ii) In the case of zero drift, ;= 0, the normalized random variable

Xn
#
√
n
; # =

√
P′′(1)
P(1)

converges in law to a Rayleigh distribution de;ned by the density xe−x2=2:

lim
n→∞Pr

(
Xn
#
√
n
6 x

)
= 1 − e−x2=2:

(iii) In the case of a positive drift, ;¿0, the standardized version of Xn,

Xn − Hn
P
√
n

; H =
P′(1)
P(1)

; P2 =

(
P′′(1)
P(1)

+
P′(1)
P(1)

−
(
P′(1)
P(1)

)2
)

converges in law to a Gaussian variable N(0; 1):

lim
n→∞ Pr

(
Xn − Hn
P
√
n

6 x
)

=
1√
2 

∫ x

−∞
e−y2=2 dy:

In the case of a negative drift, the limiting distribution admits an explicit form

[uk ]$(u) = @−k(c0 + c1k) +
∑
‘¿2

c‘v‘(?)−k

for a set of constants cj that can be made explicit by a partial fraction expansion of
$(u).

Proof. (i) For a negative drift, one directly shows that the probability generating func-
tion of Xn at u converges pointwise to a limit that precisely equals $(u), the con-
vergence holding for u∈ (0; 1). By the fundamental continuity theorem [27, p. 280]
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for probability generating functions (PGFs), this entails convergence in law of the
corresponding discrete distributions.

We now (x a value of u taken arbitrarily in (0; 1) and treated as a parameter. The
PGF of Xn is

[zn]F(z; u)
[zn]F(z; 1)

;

where F(z; u) is given by Theorem 2. In the case of a negative drift we know from
the proof of Theorem 4 that @= v1(?) satis(es @¿1 while the radius of convergence
of F(z; 1) coincides with the structural radius ?. Then, the quantity

Y1(z; u) =
d∏

‘¿2

1
u− v‘(z)

is analytic in the closed disk |z|6?: being a symmetric function of the non-principal
large branches, it has no algebraic singularity there; given the already known domina-
tion relations between the large branches (Lemma 2), the denominators cannot vanish.

It then suSces to analyse the factor containing the principal large branch v1. This
factor has a branch point at ?, where

1
u− v1(z)

∼ 1
u− @

+
1

(u− @)2

√
2
P(@)
P′′(@)

√
1 − z=?

as follows directly from (42) and the fact that v1 is conjugate to u1 at z= ?. Singularity
analysis then gives instantly the fact that, for some non-zero constant C,

[zn]F(z; u) ∼ C?−nn−3=2/(u); where /(u) =
1

(u− @)2 Y1(?; u)

and the result follows after normalization by [zn]F(z; 1).
For the remaining two cases, it will prove convenient (rst to estimate the mean

value (expectation E(·)) of Xn,

E(Xn) =
[zn]F ′

u(z; 1)
[zn]F(z; 1)

; (49)

where F ′
u indicates diNerentiation with respect to u. Logarithmic diNerentiation gives

F ′
u(z; 1) = F(z; 1)

d∑
‘=1

1
1 − v‘(z)

; (50)

from which one attains singularities easily.
(ii) In the case of a zero drift, the value of the structural constant is @= 1 and

the radius of convergence of F(z; 1) is ?= 1=P(@) = 1=P(1). Then, the singularity at ?
of F ′

u (z; 1) combines a factor 1=
√

1 − z=? that arises from F(z; 1) and another similar
factor that arises from the term (1 − v1(z))−1. This singularity is thus, to (rst-order
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asymptotics, similar to a simple pole. A computation based again on (42) reveals that
the mean value of Xn is of the order of

√
n. Precisely, one (nds

E(Xn) ∼ #

√
 n
2
; # =

√
P′′(1)
P(1)

:

(Note that
√
 =2 is the mean of the standard Rayleigh distribution.)

The formula of Corollary 3 then suggests that Fk(z) should behave very much like
vk1, implying that the coeScients should resemble, up to scaling, the coeScients in the
large power [zn](1−√

1 − z)k . Such a situation is known to be conducive to Rayleigh
laws: it is covered extensively in Drmota and Soria’s study [21] and revisited in the
paper [5]; see also [20]. In particular, Theorem 1 of [21] gives us the convergence in
distribution to the Rayleigh law, while a simple adaptation of the results of Appendix B
in [5] provides corresponding density estimates (a “local” limit law). We omit the
tedious but routine details.

(iii) For a positive drift, probabilistic intuition indicates that there are relatively few
chances for a walk to ever come under the negative axis, and when this happens, it
only tends to do so early in the history of the walk. Consequently, the (nal altitude
should be only marginally aNected by the meander conditioning.

In this case, one has @¡1 and the radius of convergence of F(z; 1) is ?1 = 1=P(1)
while the structural radius satis(es ?¿?1. By de(nition, one has v1(?1) = 1. Conse-
quently, the function F ′

u (z; 1) in (50) admits a double pole at ?1, with

F ′
u(z; 1) ∼ F(z; 1)

1
v′1(?1)(z − ?1)

:

so that (one has v′1(?1) =−(?2
1P

′(1))−1),

E(Xn) =
[zn]F ′

u(z; 1)
[zn]F(z; 1)

= n
P′(1)
P(1)

+ O(1):

In the probabilistic case, the coeScient of n in the estimate reduces to the drift, and
this estimate does agree with the probabilistic argument sketched above. Similarly, the
variance is found to satisfy

Var Xn =

(
P′′(1)
P(1)

+
P′(1)
P(1)

−
(
P′(1)
P(1)

)2
)
n + O(1):

Finally, the Gaussian law is established from the power-sum form of Corollary 3
upon applying Cauchy’s coeScient formula. One has

[zn]Fk(z) =
1

2i 

∫
|z|=?1

.1(z)v1(z)−k−1 dz
zn+1 + Rn;k :

The error term Rn; k that arises from all the non-principal branches is exponentially
smaller than ?−n

1 because of the domination properties of 1=v1(z) (see the proof of
Lemma 2, once more). The main integral is then treated by the saddle-point method



C. Banderier, P. Flajolet / Theoretical Computer Science 281 (2002) 37–80 75

in the range considered, k = Hn+ O(
√
n) with H :=P′(1)=P(1). The saddle-point of the

integrand is at ?1, very nearly. The Gaussian density then comes out from a standard
saddle-point perturbation analysis.

5. Directed two-dimensional models

The kernel method is generally well suited to problems where all the jumps are of
the form (aj; bj) with aj¿0. In this case, each choice of a step implies progression
along the horizontal axis. One considers the trivariate GF

F(z; x; y) :=
∑
n;p;q

Fn;p;qznxpyq;

where Fn;p; q is the number of meander paths in Z¿0 ×Z¿0 with size (number of
steps) equal to n that connect the origin to the point of coordinates (p; q). The walk is
thus directed in the sense of Section 1. As we now explain such enumeration problems,
though formulated in two-dimensional space, are in fact fake one-dimensional problems
amenable to the kernel method.

In the directed case, the method of “adding a slice” encountered in Eqs. (14) and (16)
gives rise to the fundamental equation

F(z; x; y)(1 − zP(x; y)) = 1 − z{y¡0}(P(x; y)F(z; x; y)); (51)

where the characteristic polynomial is now

P(x; y) :=
∑
j
xajybj ;

which is entire in x but of Laurent type with respect to y. The parameters of size
(marked by z) and horizontal displacement (marked by x) are bound by linear inequal-
ities, and one of them can be treated as the basic variable, the other as an auxiliary
parameter or even the constant 1. Then, the adaptation of the kernel method consists
in binding the Laurent variable, here y, to the basic variable chosen (x or z) by

1 − zP(x; y) = 0: (52)

Newton’s polygon then shows that, for the bound equation, the number of “small” roots
of the kernel equation coincides with the maximum negative vertical span, namely,
c := |minj bj|, and this number is precisely the number of unknown functions on the
right-hand side of (51). We let uj represent these small branches. The treatment of
walks and bridges adapts easily from what has been done earlier. Regarding excursions
and meanders, substitution of the uj then shows the following: The GF of excursions
(de;ned by ;nal altitude 0) and the BGF of meanders (de;ned by ;nal altitude ¿0)
depend rationally on the variables z; x and the set of small branches {uj} of the
associated “kernel equation” (52).

Example 10. Chess moves of Labelle and Yeh. In two papers [49,50], Labelle and
Yeh develop an interesting set of decompositions for generalized knight moves on a
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chessboard. The standard version of the problem is: Consider the Z¿0×Z¿0 chess-
board. How many sequences of Eastbound knight moves (S= {(1; 2); (1;−2); (2; 1);
(2;−1)}) are there from (0; 0) to (n; 0)? By de(nition, the moves are not allowed to
involve points with negative coordinates.

As size is not needed, we take x as the independent variable and set z= 1. The
kernel equation is then

1 − (xy2 + xy−2 + x2y + x2y−1) = 0;

so that the characteristic curve is a quartic. The vertical symmetry of the moves implies
that the kernel equation can be rewritten as a combination of two quadratic equations,

1 − x(W 2 + xW − 2) = 0; W := y +
1
y
:

There results that the four branches of the characteristic equation are given by

y±(W ) =
1
2

(W ±
√
W 2 − 4); W±(x) =

1
2x

(−x2 ±
√
x4 + 8x2 + 4x):

It appears that the two small branches u1; u2 correspond to taking opposite signs in the
determinations of y(W ) and W (x), and one (nds for the GF of excursions (i.e., paths
terminating at altitude 0), in complete analogy to the simple walk,

E(x) = −1
x

(u1(x)u2(x)) = −1
x
y−(W+(x)) · y+(W−(x))

= 1 + x2 + 3x4 + 2x5 + 12x6 + 14x7 + 54x8 + 86x9 + · · · :
This is the sequence (an) of [49] and also EIS A005220. Decomposability renders es-
pecially easy the asymptotic analysis of the number of excursions and of corresponding
parameters. More general knight moves can be treated similarly by the kernel method.
In particular, the equation satis(ed by the excursion generating functions tends to be
of a degree exponential in c; see [49,50]. Here, the kernel method yields a reduction to
an equation of degree 2c, which even reduces to a resolvent of degree c when symme-
try is taken into account via the W -parameterization. This illustrates a sharp contrast
between the exponential blow-up in combinatorial complexity and the linear character
of the analytic complexity.

6. Conclusion

In this paper, we have aimed at illustrating the analytic tractability of many one-
dimensional path problems, a boon of the kernel method. The reduction in the
asymptotic–analytic complexity of the problem is often spectacular, as exempli(ed by
Duchon’s clubs or the Labelle–Yeh knight moves. Parameters that are easily readable on
paths lead to generating functions whose singularities arise simply from the branches
of a characteristic curve of low degree. The method applies to all one-dimensional
problems as well as to two-dimensional problems provided they remain directed. For
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a thorough discussion of the algebraic power of the kernel method, we refer once
more to the study by Bousquet-MWelou and PetkovYsek [13]. (The kernel technique is
also reminiscent of Tutte’s quadratic method much of use in the enumerative theory
of planar maps [42]; see Bousquet-MWelou’s paper [11] for a perspective.)

The case of undirected two-dimensional problems, where one can go back and forth
in all four cardinal directions, is appreciably harder. Even in the case of movement
of amplitude 61, Fayolle et al. show [26] that stationary solutions involve elliptic
functions and integrals. Some directed path problems in dimension higher than 2 can
however still be successfully treated by speci(c combinatorial decompositions; see [12]
for an example.

A tribute to Maurice Nivat. As is apparent from the bibliography of this paper, many
papers directly relevant to our study have been published in the journal Theoretical
Computer Science along the years. We owe much for this to the Editor-in-Chief,
Maurice Nivat. His openness of mind has been a constant help in the emergence
and shaping up of sub-communities within theoretical computer science. Examples are
the GASCOM (Generation of Random Combinatorial Objects) and AofA (Analysis of
Algorithms) communities which have greatly bene(tted from special issues of TCS, this
at the invariably encouraging initiative of Maurice. In view of this and of Maurice’s
long-standing interest in similar discrete geometrical objects (see, e.g., [6,7,9,17]), we
kindly dedicate this study to him.
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