
1. Limit laws for basi parameters oflattie paths with unbounded jumpsCyril BanderierABSTRACT: This paper establishes the asymptotis of a lass of random walkson N with regular but unbounded jumps and studies several basi parameters(returns to zero for meanders, bridges, exursions, �nal altitude for meanders).All these results are generi (obtained by the kernel method for the ombinatorialpart and by singularity analysis for the asymptoti part).This paper ompletes the artile [3℄ whih was only dealing with the ombina-toris (enumeration and bijetions) of walks with unbounded jumps (the so-alled�fatorial walks�), whih play an important r�le for uniform random generation ofsome ombinatorial objets. We fully parallelize the analytial approah from [4℄whih was dealing with walks with bounded jumps only.1 IntrodutionOur main motivation for analyzing a lass of walks with unbounded jumps omesfrom the fat that several lasses of ombinatorial objets an be generated via theso-alled �generating trees�. Enumerating these trees (and prediting the numberof nodes at a given depth) allows uniform random generation. The onept ofgenerating trees has been used from various points of view and has been introduedin the literature by Chung, Graham, Hoggatt and Kleiman [11℄ to examine theredued Baxter permutations. This tehnique has been suessively applied toother lasses of permutations and the main referenes on the subjet are due toWest [14, 25, 26℄, then followed by the Florentine shool [6, 7, 16, 19, 20, 22, 23℄and other authors [3, 12, 18℄. A generating tree is a rooted labeled tree (labels areintegers) with the property that if v1 and v2 are any two nodes with the same labelthen, for eah label `, v1 and v2 have exatly the same number of hildren withlabel `. To speify a generating tree it therefore su�es to speify: 1) the label ofthe root; 2) a set of rules explaining how to derive from the label of a parent thelabels of all of its hildren. Points 1) and 2) de�ne what we all a rewriting rule.Any random walk in the generating tree an also be seen as a lattie path (randomwalk on the integers, with an in�nite number of possible jumps). The regularity ofthe rewriting rules determines the �solvability� (ombinatorially speaking) of theorresponding random walk proess.Few years ago, Pinzani and al. [6℄ exhibited several ases of fatorial-likerewriting rules for whih the generating funtions were algebrai. This was allingfor a general solution of the fatorial-like rewriting rules ase. This problem wassolved in [3℄, by establishing a link between the generating trees and families oflattie paths with unbounded jumps (with respet to a given rewriting rule, thenumber of nodes with label k at depth n in the tree is the number of walks of lengthn ending at altitude k); then, the orresponding generating funtions for walks arealways algebrai and are made expliit via the kernel method (we give more detailsin Setion 3). The asymptoti properties of suh walks were remaining open.The artile [4℄ and an important part of the PhD thesis [2℄ are dediated tothe analysis of several parameters of disrete random walks on Z or N with bounded



6 Cyril Banderierjumps. For this ase (but not for the ase of unbounded jumps), a ontext-freegrammar approah is also possible (as the jumps are bounded and thus an beenoded by a �nite alphabet). However this language theory approah (whihwas previously the main one onsidered in ombinatoris) reveals almost nothingabout the shape of the generating funtion and is even less talkative about theasymptotis. An orthogonal approah (the kernel method) has the merit of givinga diret aess to the generating funtions and their asymptotis.A natural question is: an the same approah be the winning one for the studyof walks with unbounded jumps? We show here that the answer is learly: yes,for a quite general family of walks! What follows is a slightly modi�ed opy/pasteof [4℄ whih gives however some new original results for generating funtions andasymptotis of walks with unbounded jumps.2 Lattie paths and generating funtionsThis setion presents the varieties of lattie paths to be studied as well as theirompanion generating funtions (in the same terms as in [4℄).De�nition 2.1. Fix a set of vetors of Z�Z, S = f(x1; y1); : : :g. (S an be �niteor not). A lattie path or walk relative to S is a sequene v = (v1; : : : ; vn) suhthat eah vj is in S. The geometri realization of a lattie path v = (v1; : : : ; vn)is the sequene of points (P0; P1; : : : ; Pn) suh that P0 = (0; 0) and ����!Pj�1Pj = vj .The quantity n is referred to as the size of the path.In what follows, we fous our attention to a lass of in�nite sets S andwe shall identify a lattie path with the polygonal line admitting P0; : : : ; Pn asverties. The elements of S are alled steps or jumps, and we also refer to thevetors ����!Pj�1Pj = vj as the steps of a partiular path.Various onstraints will be imposed on paths. In partiular we restrit atten-tion throughout this paper to direted paths de�ned by the fat that if (i; j) liesin S, then neessarily one should have i > 0. In other words, a step always entailsprogress along the horizontal axis and the geometri realization of the path natu-rally lives in the half plane N �Z. (This onstraint implies that the paths studiedan be treated essentially as 1-dimensional objets.) The following onditioningsare to be onsidered (Figure 1).De�nition 2.2. A bridge is a path whose end-point Pn lies on the x-axis. Ameander is a path that lies in the quarter plane N�N . An exursion is a path thatis at the same time a meander and a bridge; it thus onnets the origin to a pointlying on the x-axis and involves no point with negative y�oordinate.A family of paths is said to be fatorial if eah allowed step in S (De�ni-tion 2.1) is of the form (1;�y) for any y � 1 or of the form (1; j) with j 2 J agiven �nite subset of Z. We thus simply note S = fZ<0 ;J g.In the fatorial ase the size of a path oinides with its span along thehorizontal diretion, that is, its length. The terminology of bridges, meanders, andexursions is hosen to be onsistent with the standard one adopted in Brownianmotion theory; see, e.g., [24℄. A fatorial walk is simply a walk for whih thereis, at eah step, not only a �nite amount of �bounded� jumps below or above theatual position but also the possibility to go anywhere below the atual position.



Walks with unbounded jumps 7walks ending anywhere ending in 0
unonstrained(on Z) walk (W)W (z; u) �Xk2ZWk(z)uk= 11� z Q(u)Wn = +1 bridge (B)B(z) �W0(z) = z bXi=0 u0i(z)ui(z)Bn � �0Q(� )np2�n
onstrained(on N) meander (M)M(z) �Xk�0Fk(z)= �1z bYi=0 (1� ui(z))Mn � �0 Q(� )n2p�n3

exursion (E)E(z) � F0(z) = (�1)b+1zp�b bYi=0ui(z)En � �0 Q(� )n2p�n3Figure 1: The four types of paths with unbounded jumps: walks, bridges, me-anders, and exursions. We give the orresponding generating funtions and theasymptotis of their oe�ients. (N.B.: there is an in�nite number of unon-strained walks as jumps are unbounded.)The main objetive of this paper is to enumerate exatly as well as asymptoti-ally paths, bridges, and meanders, this with speial attention to fatorial families.One the set of steps is �xed, we let W and B denote the set of paths and bridgesrespetively (W being reminisent of �walk�); we denote by M and E the set ofmeanders and exursions.Given a lass C of paths, we let Cn denote the sublass of paths that havesize n, and, whenever appropriate, Cn;k � Cn those that have �nal vertial absissa(also known as ��nal altitude�) equal to k. With the onvention of using standardfonts to denote ardinalities of the orresponding sets (themselves in alligraphistyle), Cn = ard(Cn) and Cn;k = ard(Cn;k), the orresponding (ordinary) gener-ating funtions are thenC(z) := Xn2NCnzn; C(z; u) =Xk2ZCk(z)uk = Xn2N;k2ZCn;k ukzn =Xn2N n(u) zn:



8 Cyril BanderierThis paper is entirely devoted to haraterizing these generating funtions: theyare either rational funtions (W ) or algebrai funtions (B;M;E)1. As we shall see,a strong algebrai deomposition prevails whih, as opposed to other approahes,renders the alulation of the generating funtions e�etive. Even more impor-tantly, the deomposability of generating funtions makes it possible to extrattheir singular struture, and in turn solve the orresponding asymptoti enumer-ation problems in a wholly satisfatory fashion.Weighted paths. For several appliations, it is useful to assoiate weightsto single steps. In this ase, the set of steps S is oupled with a system of weights� = fwigi2Z, with wi > 0 the weight assoiated to (1; i) 2 S; the weight of apath is then de�ned as the produt of the weights of its individual steps. Then thequantity Cn, still referred to as number of paths (of size n), represents the sum ofthe weights of all paths of size n. Suh weighted paths over several situations ofinterest: (i) ombinatorial paths in the standard sense above when eah wi = 1;(ii) paths with oloured steps, e.g., wi = 2 means that the orresponding step(1; i) has two possible oloured inarnations (say blue and red); (iii) Pwi = 1orresponds to a probabilisti model of paths where, at eah stage, step (1; i) ishosen with probability wi.3 Funtional equation and the kernel methodIn this setion, we haraterize the generating funtions of the four types of diretedpaths (unonstrained, bridges, meanders, and exursions). It will be seen that aspei� algebrai urve, the �harateristi urve� plays a entral r�le.De�nition 3.1. Let S = fZ<0;J g be a fatorial set of jumps, with � = fwigi2Zthe orresponding system of weights (wi � 1 in the unweighted ase). The hara-teristi series of S is de�ned as the Laurent series2Q(u) := Xi2Z<0[J wi ui :Let b = �minJ [ f0g and a = maxJ be the two extreme vertial amplitudes ofany jump of J , and assume throughout a > 0; b � 0. We restrit now attentionto the unweighted ase (but with possibly oloured jumps in J , see the paragraph�weighted paths� in Setion 2). The harateristi series an be then rewritten asQ(u) = �1Xi=�1ui+P (u) � P (u)� 11� u ; where P (u) := aXj=�b pjuj (pj 2 N): (1)So pj an be seen as the multipliity of the jump (1; j). The kernel is de�ned byK(z; u) := (1� u)ub � z(ub(1� u)P (u)� ub) : (2)1The attentive reader should have understood that this does not stand for the aronym of awell-known Belgian theorem (Brownian Motion Everywhere)!2By Laurent series, we mean objets like +1Xk=m gkuk (m 2 Z) or mXk=�1 gkuk. The readeran hek that our generating funtions are holomorphi/meromorphi funtions; they an beexpanded at 0 or at in�nity, and so they an be seen as belonging either to C [[ 1u ℄℄[u℄ or C [ 1u ℄[[u℄℄.



Walks with unbounded jumps 9The harateristi urve of the lattie paths determined by S is the plane algebraiurve de�ned by the kernel equation1� z Q(u) = 0; or equivalently K(z; u) = 0: (3)As we shall see the harateristi equation plays a entral r�le, the seondform being the entire version (that is, a form without negative powers).Proposition 3.2. The kernel equation (3) admits a + b + 1 roots in u : b + 1roots u0(z); : : : ; ub(z) �nite for z � 0 and a large roots v1(z); : : : ; va(z) in�nite forz � 0.Proof : This polynomial has degree a + b + 1 in u, and hene, admitsa + b + 1 solutions, whih are algebrai funtions of z. The lassial theory ofalgebrai funtions and the Newton polygon onstrution enable us to expandthe solutions near any point as Puiseux series (that is, series involving frationalexponents; see [13℄). The a+ b+1 solutions, expanded around 0, an be lassi�edas follows:� the �unit� branh, denoted by u0, is a power series in z with onstant term1;� b �small� branhes, denoted by u1; : : : ; ub, are power series in z1=b whose �rstnonzero term is �z1=b, with �b + 1 = 0;� a �large� branhes, denoted by v1; : : : ; va, are Laurent series in z1=a whose�rst nonzero term is �z�1=a, with �a + 1 = 0.In partiular, all the roots are distint. �Formulae (4) and (5) in the following theorem were �rst derived in [3℄:Theorem 3.3 (Exursions and meanders.). The generating funtion F (z; u)for fatorial walks starting from 0 is algebrai; it is given by (8), where u0; : : : ; ub(resp. v1; : : : ; va) are the �nite (resp. in�nite) solutions at z = 0 of the equationK(z; u) = 0 and the kernel K is de�ned by (2). In partiular, the generatingfuntion for all walks, irrespetive of their endpoint, isM(z) = F (z; 1) = �1z bYi=0(1� ui); (4)and the generating funtion for exursions, i.e., walks ending at 0, is, for b < 0:E(z) = F (z; 0) = (�1)b+1zp�b bYi=0ui : (5)(For b = 0, the relation beomes F (z; 0) = u01+(1�p0)z .)More generally, the generating funtion for meanders ending at altitude k isFk(z) = 1zpa aXi=1 v�k�1iQj 6=i vj � vi : (6)



10 Cyril BanderierProof : The allowed jumps imply that from position k (enoded by uk),one an go to the position enoded3 by u0 + u1 + : : : + uk�1 + fu�0gP (u)uk =uk � 1u� 1 +fu�0gP (u)uk, as this is a linear mapping, this leads to the reurrene onthe fn(u)'s (the polynomials enoding the possible walk positions at time n):fn+1(u) = fn(u)� fn(1)u� 1 + fu�0gP (u)fn(u)and equivalently to the following equalityF (z; u) = Xn�0 fn(u)zn= 1 + z�F (z; 1)� F (z; u)1� u + P (u)F (z; u)� fu<0g[P (u)F (z; u)℄� :Thus, F (z; u) satis�es the following funtional equation:F (z; u)�1 + z1� u � zP (u)� = 1 + zF (z; 1)1� u � z b�1Xk=0 rk(u)Fk(z) ; (7)where rk(u) is a Laurent polynomials whose exponents belong to [k � b;�1℄ :rk(u) := fu<0g �P (u)uk� � �k�1Xj=�b pjuj+k:Now omes the seond ingredient of the proof, the so alled �kernel method�. Theright-hand side of (7), one multiplied by ub(1� u), isR(z; u) = ub(1� u) 1 + z1� uF (z; 1)� z b�1Xk=0 rk(u)Fk(z)! :By onstrution, it is a polynomial in u of degree b + 1 and leading oe�ient�1. Hene, it admits b + 1 roots, whih depend on z. Replaing u by the seriesu0; u1; : : : ; ub in Eq. (7) shows that these series are exatly the b+1 roots of R, sothat R(z; u) = � bYi=0(u� ui):Let pa := [ua℄P (u) be the multipliity of the largest forward jump.Then the oe�ient of ua+b+1 in K(z; u) is paz, and we an writeK(z; u) = paz bYi=0(u� ui) aYi=1(u� vi):3We make use of the onventional notations for oe�ients of entire and Laurent series:[zn℄Pn fnzn := fn and fu�0gg(u) is the sum of the monomials of g(u) with a nonnegativeexponent.



Walks with unbounded jumps 11Finally, as K(z; u)F (z; u) = R(z; u), we obtainF (z; u) = �Qbi=0(u� ui)ub(1� u) + zub � zub(1� u)P (u) = � 1pazQai=1(u� vi) : (8)Setting u = 1 and u = 0 gives formulae (4) and (5) and a partial frationdeomposition of the rightmost part of (8) gives (6). �The �kernel method� has been part of the folklore of ombinatorialists forsome time and is related to the what is known as �the quadrati method� inenumeration of planar maps [10℄. Earlier referenes (see [17℄ Ex. 2.2.1.11 for Dykpaths, [21, Se. 15.4℄ for a pebbling game) were dealing with the ase of a singleunknown in the right part of (7). The kernel method in its more general versionwas developed by Banderier, Bousquet-Mélou, Flajolet, Petkov²ek [1, 2, 3, 4, 9℄.A somewhat similar idea (involving a redution to a Riemann�Hilbert problem)was used in [15℄ for a queuing theory appliation.Theorem 3.4 (Bridges). The bivariate generating funtion of paths (with zmarking size and u marking �nal altitude) relative to a simple set of steps S withharateristi series Q(u) is a rational funtion. It is given byW (z; u) = 11� zQ(u) : (9)The generating funtion of bridges is an algebrai funtion given byB(z) = z bXj=0 u0j(z)uj(z) = z ddz log (u0(z) � � �ub(z)) ; (10)where the expressions involve all the small branhes u0; : : : ; ub of the harateristiurve (3). Generally, the generating funtionWk of paths terminating at altitude kis, for �1 < k < b,Wk(z) = z bXj=0 u0j(z)uj(z)k+1 = � zk ddz 0� bXj=0 uj(z)�k1A ; (11)and for �a < k < +1,Wk(z) = �z aXj=1 v0j(z)vj(z)k+1 = zk ddz 0� aXj=1 vj(z)�k1A ; (12)where v1; : : : ; va are the large branhes.(For W0, the seond form in (11) and (12) is to be taken in the limit sense k ! 0.)Proof : The proof of an identity similar to (10) for walks with bounded jumpsis given in [4℄ and holds verbatim for walks with unbounded jumps: Considera bridge and let m (with m � 0) be the minimal altitude of any vertex. Anynonempty bridge � deomposes uniquely into a walk '1 of size � 1 from 0 to mthat only reahes level m at its right end, followed by an exursion ", followed



12 Cyril Banderierby a path '2 of size � 0 from m to 0 that only touhes level m at its beginning.By rearrangement, one an write � = " � ('2j'1), where the gluing of '2'1 is anarh (that is, an exursion whih reahes 0 only at its beginning and its end) andthe bar keeps trak of where the splitting should our. This links bridges andexursions: bridgesz }| {B(z)� 1 = exursionsz }| {E(z) � split arhesz }| {�z ddzA(z)�; (13)as E(z) = 1=(1�A(z)) (A(z) stands for the generating funtion of arhes), this isequivalent to B(z)� 1 = E(z) � z ddz �1� 1E(z)� = zE0(z)E(z) ;using Formula (5) for E(z) gives the identity (10).This reinfores the disussion of [4℄ about ubiquitous Spitzer, Andersen-likerelations and here also, this gives the possibility of analysing the number of times abridge attains its minimum or maximum value by adapting the deomposition (13).Set wn(u) = [zn℄W (z; u), the Laurent series that desribes the possible al-titudes and the number of ways to reah them in n steps. We have w0(u) = 1,w1(u) = Q(u), and wn+1(u) = Q(u)wn(u), so that wn(u) = Q(u)n for all n. Thedetermination of W (z; u) in (9) follows fromXn�0Q(u)nzn = 11� zQ(u) :Observe that the resulting series is entire in z but of the Laurent type in u (itinvolves arbitrary negative powers of u).For positive Q(u), the radius of onvergene of W (z; u) viewed as a funtionof z is exatly 1=Q(u). Also, by the link between E(z) and B(z) (see above),the radius of onvergene of B(z) as a funtion of z is � = 1=Q(�), the radius ofonvergene of E(z) (� > 1, as it is proven in the next setion). Consider nowjzj < r, where r := �2 and then follow the sheme of the proof from [4℄. �4 AsymptotisLemma 4.1. Let Q(u) = P (u)� 1=(1�u) be the rational series assoiated to thejumps a fatorial walk. Then, there exists a unique number � , alled the struturalonstant, suh that Q0(�) = 0; � > 1. The strutural radius is by de�nition thequantity � := 1Q(�) :The following domination amongst the roots holdsjui(z)j < u0(z) � v1(z) < jvj(z)j 8jzj � � for i = 1; : : : ; b and j = 2; : : : ; a :(14)



Walks with unbounded jumps 13Proof : Di�erentiating twie Q as given in (1), we see that Q00(x) > 0 forall x > 1. Thus, the real funtion x 7! Q(x) is stritly onvex on [1;+1℄. Sineit satis�es Q(1+) = Q(+1) = +1, it must have a unique positive minimumattained at some � , and Q0(�) = 0.As Q is aperiodi, a strong version of the triangular inequality givesQ(v1) = 1z = jQ(vi)j < Q(jvij)sine Q is stritly inreasing on the interval [1;+1℄ and sine jvij > � > 1 belongsto this interval for z 2 [0; �℄, one has the three last inequalities of (14); a dualityargument gives the �rst inequality of (14). �As one of the referee pointed out, the strutural onstant � is suh that thejumps with law wj�jQ(�) are entered. Similarly, the fatoriality assumption results insteps whih an be seen as a mixture of a geometri probability law and a �nitelysupported one.Theorem 4.2. The asymptotis for the number of bridges, meanders, exursionsis given by Bn � �0Q(�)np2�n (1 + �1n + �2n2 + : : :) ; �0 = 1�s Q(�)Q00(�) ;Mn � �0 Q(�)n2p�n3 (1 + �1n + �2n2 + : : :) ; �0 = eU(�)s2Q3(�)Q00(�) ;En � �0 Q(�)n2p�n3 (1 + �1n + �2n2 + : : :) ; �0 = U(�)(�1)bs2Q3(�)Q00(�) ;where U(�) = u1(�) : : : ub(�) and eU(�) = (1� u1(�)) : : : (1� ub(�)).Proof : Here again, the approah used in [4℄ is the winning one. A saddlepoint method givesBn = 12i� Zjuj=� Q(u)n duu� 12i� Z �e+i��e�i� exp�n�logQ(�) + 12Q00(�)Q(�) (u� �)2 +O((u� �)3)�� duu� Q(�)n2�� Z +1�1 e�nht2=2 dt = Q(�)n�p2�nh; h = Q00(�)Q(�) :The approximation is valid as Q(�) dominates on the irle of integration (thisan be seen by the Laurent series expression of Q(u)).Contrary to what is observed for the bounded jumps ase, it may happenthat the small roots ross for jzj < � (but their produt remains analyti). Wefollow the sheme of proof from [4℄ whih uses the link between B(z) and E(z).One has, by loal inversion of the kernel equation,u0(z) = � �s2 Q(�)Q00(�)p1� z=�+ � � � (z ! ��): (15)



14 Cyril BanderierThen the only possible behaviour ompatible with the above asymptotis for Bnis that U(z) := u1(z) : : : ub(z) is analytial for jzj < �; the same hold for eU(z) :=(1� u1(z)) : : : (1� ub(z)).Singularity analysis on the following expressions then gives the asymptotiexpansions from the theoremEn � [zn℄U(�) (�1)b+1z s2 Q(�)Q00(�)p1� z=� ;Mn � [zn℄eU(�)�1z s2 Q(�)Q00(�)p1� z=� : �5 Returns to zeroTheorem 5.1 (Exursions). The number of returns to zero of an exursion withunbounded jumps is asymptotially the sum of two independent geometri laws.The average is 2E(�)� 1 + O � 1n� returns to zero, with a variane 2E(�)(E(�) �1) +O � 1n�.Proof : An exursion is a sequene of arhes, so E(z) = 11�A(z) andA(z) = 1� 1E(z) for E(z) and A(z) generating funtions of exursions and arhesrespetively. We note F (z; u; t) the generating funtions with respet to theirlength, �nal altitude, number of returns to zero. Thus, one hasF (z; 0; t) =Xn;j fnj(0)tjzn = 11� tA = 11� t�1� 1E � ;where fnj(0) stands for the number of exursions of length n with j returns to0. Then, all the moments an be made expliit as the m-th derivatives in t ofF (z; 0; t) are omputable (�mt F (z; 0; t) = m! (1�E�1)m(1�t(1�E�1))m+1 ) and simplify whent = 1 : �mt F (z; 0; 1) = m!E(z)(E(z)� 1)m.Thus, the average number of returns to zero is�n = [zn℄�tF (z; 0; 1)[zn℄F (z; 0; 1) = [zn℄E(z)2[zn℄E(z) � 1 = 2e0 � 1 +O� 1n�as E(z) = e0 � e1p�� z + � � � and the variane is given by�2n = f 00n (1)fn(1) + �n � �2n = [zn℄2E(z)� 4E(z)2 + 2E(z)3[zn℄E(z) + �n � �2n= 6e20 � 8e0 + 2 + �n � �2n = 2e0(e0 � 1) +O� 1n� :



Walks with unbounded jumps 15The number of exursions of length n with j returns to zero is given byfnj(0) = [zn℄�1� 1E(z)�j = [zn℄(1� 1e0 )j � e1j(1� e�10 )j�1pr � ze20 +O(r � z) :Consequently, the probability to get asymptotially j returns to zero is �j =fnj(0)=fn ! j(1�e�10 )j�1e20 for n ! +1, and Pj�0 �j = 1 for any e0. The proba-bility generating funtion is x ( 1e0 11�x(1�e�10 ) )2 and one has so a disrete limit lawwhih is asymptotially the sum of two independent geometri laws of parameters1� 1=e0. �Perhaps it an seem strange than a walk with a in�nite negative drift hassuh a small average number of returns to zero4, the explanation of this �paradox�is that most of the walks have muh more returns, but their probabilities are verylow, dereasing exponentially (so, like for Zeno's paradox, the sum is �nite).Theorem 5.2 (Meanders). The average number of returns to zero of a meanderwith unbounded jumps follows a disrete limit law of a geometrial type.Proof : Equation (8) gives F (z; u), the bivariate generating funtion formeanders (length, �nal altitude). Taking into aount the number of returns tozero (via another variable t) leads toF (z; u; t) = Xn;j�0 fnj(u)tjzn = 11� t(1� 1=E(z)) F (z; u)E(z) :This re�ets the fat that a meander is a sequene of arhes, followed by a pre�x(i.e. a left part) of an arh, so M(z) = 11�A(z)M+(z) and that a pre�x of arh(note M+(z; u) their generating funtion) times an exursion gives a meander, soM+(z; u) = F (z; u)=E(z). The number fnj(1) of meanders of length n with jreturns to zero is then given byfnj(1) = [zn℄(1� 1=E(z))jM(z)E(z) :Notie that(1� 1=E(z))jE(z) � (1� 1e0 )je0 +�� je0 + (1� 1e0 )��1� 1e0�j�1 e1e20p�� z + : : :Multiplying by the behaviour of M(z) = F (z; 1) = m0 +m1p�� z around z = �givesfnj(1) �  m1 (1� 1e0 )je0 +m0�� je0 + (1� 1e0 )��1� 1e0�j�1 e1e20! [zn℄p�� z:So fnj(1)=fn(1)! ( 1e0 +m0m1 e1e20 )(1� 1e0 )j�m0e1jm1e30 �1� 1e0�j�1 for n! +1. Asymp-totis of moments is also easily omputable from�tF (z; u; 1) = F (z; u)(E(z)� 1) and �2t F (z; u; 1) = 2(E(z)� 1)2F (z; u) :Average and variane are O(1). �4One referee pointed out that a similar result was known in a speial ase of bridge, f.Proposition 2.2 page 101 of [8℄.



16 Cyril BanderierTheorem 5.3 (Bridges). The number of returns to zero of a bridge with un-bounded jumps is asymptotially the sum of two independent geometri laws. Theaverage is 2B(�)� 1 +O � 1n� returns to zero, with a variane 2B(�)(B(�) � 1) +O � 1n�.Proof : We an play the same game as above:Wk(z; t) = 11� t �1� 1B(z)�Wk(z)B(z) ;The number of walks wnj of length n ending at altitude k with j returns tozero is then given by wnj(1) = [zn℄(1� 1=B(z))jWk(z)B(z) : �6 Final altitude of a meander.The �nal altitude of a path is the absissa of its end point. The random variableassoiated to �nite altitude when taken over the set of all meanders of length n isdenoted by Xn, and it satis�esPr(Xn = k) = [znuk℄F (z; u)[zn℄F (z; 1) :We state:Theorem 6.1 (Meanders). The �nal altitude of a random meander of size nadmits a disrete limit distribution haraterized in terms of the large branhes:limn!1Pr(Xn = k) = [uk℄$(u); where $(u) = (1� �)2(u� �)2 Ỳ�2 1� v`(�)u� v`(�) :The limiting distribution admits an expliit form[uk℄$(u) = ��k(0 + 1k) + X̀�2 `v`(�)�k;for a set of onstants j that an be made expliit by a partial fration expansionof $(u).Proof : Similarly to [4℄, one diretly shows that the probability generatingfuntion of Xn at u onverges pointwise to a limit that preisely equals $(u),the onvergene holding for u 2 (0; 1). By the fundamental ontinuity theoremfor probability generating funtions, this entails onvergene in law of the orre-sponding disrete distributions.



Walks with unbounded jumps 17We now �x a value of u taken arbitrarily in (0; 1) and treated as a parameter.The probability generating funtion of Xn is[zn℄F (z; u)[zn℄F (z; 1) ;where F (z; u) is given by Theorem 3.3. We know from the proof of Theorem 4.2that � = v1(�) satis�es � > 1 while the radius of onvergene of F (z; 1) oinideswith the strutural radius �. Then, the quantityeV (z; u) = aỲ�2 1u� v`(z)is analyti in the losed disk jzj � �: being a symmetri funtion of the nonprini-pal large branhes, it has no algebrai singularity there; given the already knowndomination relations between the large branhes (Lemma 4.1), the denominatorsannot vanish.It then su�es to analyse the fator ontaining the prinipal large branh v1.This fator has a branh point at �, where1u� v1(z) � 1u� � + 1(u� �)2s2 Q(�)Q00(�)p1� z=�;as follows diretly from (15) and the fat that v1 is onjugate to u0 at z = �.Singularity analysis then gives instantly the fat that, for some nonzero onstant C,[zn℄F (z; u) � C��nn�3=2
(u); where 
(u) = 1(u� �)2 eV (�; u);and the result follows after normalization by [zn℄F (z; 1). �7 Variations...All the above theorems hold with a slightly more general model of walks, forwhih all the bakward unbounded jumps are oloured (say, there is m olors).The only modi�ation is that the roots are then the roots of the kernel K(z; u) =(1 � u)ub � z(ub(1 � u)P (u) �mub). The analysis for the F 0ks and W 0ks is moredeliate as it involves a better �individual� knowledge of the small and large roots.Some more general models of walks were onsidered in [5℄, there is still somealgebrai generating funtions but their asymptoti properties remain to be estab-lished, this seems quite di�ult as there is no lear simple losed form formula (interms of the roots of the kernel) in the general ase.Aknowledgements. This work was partially supported by the Future and EmergingTehnologies programme of the EU under ontrat number IST-1999-14186 (ALCOM-FT), by the INRIA postdotoral programme and by the Max-Plank Institut.
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