
cSpringer (Original version in the Proceedings of FPSAC'00)A Generalized Cover Timefor Random Walks on GraphsCyril Banderier1 and Robert P. Dobrow21 Algorithms Project. INRIA (Rocquencourt), France.Cyril.Banderier at inria.fr,http://algo.inria.fr/banderier/2 Clarkson University (Potsdam, NY), USA.dobrowb@clarkson.edu,http://www.clarkson.edu/~dobrowb/Abstract. Given a random walk on a graph, the cover time is the �rsttime (number of steps) that every vertex has been hit (covered) by thewalk. De�ne the marking time for the walk as follows. When the walkreaches vertex vi, a coin is ipped and with probability pi the vertexis marked (or colored). We study the time that every vertex is marked.(When all the pi's are equal to 1, this gives the usual cover time problem.)General formulas are given for the marking time of a graph. Connectionsare made with the generalized coupon collector's problem. Asymptoticsfor small pi's are given. Techniques used include combinatorics of randomwalks, theory of determinants, analysis and probabilistic considerations.1 IntroductionThe following problem was submitted during a supper at the meeting Analysisof Algorithms in June 1999, at Barcelona:Conjecture 1 (Supper Conjecture) Imagine m guests around a table, some-one has the water carafe and decides to pour some water in his glass with prob-ability p. Then he gives the water carafe randomly to his right or left neighbor.This one does the same, and so on. Call T (p) the number of carafe moves beforeeveryone has got some water. What can one say about the average time E(T (p))?In particular, is it true that pE(T (p)) ! mHm when p ! 0? (Hm is the m-thharmonic number).One will show that this conjecture is indeed true!In fact, we will tackle the problem for a slightly more general problem: thinkabout a dinner where some people are more or less not in speaking terms withsome others and so they give the carafe preferentially to their friends!The problem we consider was motivated by the game Trivial Pursuit. Playersmove pieces around a game board answering questions on various topics (e.g.,history, sports, etc.). On certain positions in the game board, if a player answersa question correctly he gets a colored piece. And in our simpli�ed version of thegame, when a player gets all the colored pieces he wins. Assume that for eachtopic there is some probability of answering a question correctly. How long willa typical Trivial Pursuit game take to play?



The reader should be able to see the connection with the following model.Consider the usual (discrete) random walk on a connected directed graph Gwith vertex set V = fv1; : : : ; vmg. When the random walk reaches vertex vi,that vertex is marked with probability pi, i = 1; : : : ;m. We are interested inthe marking time T (fp1; : : : ; pmg), the �rst time that all the vertices have beenmarked.When all the pi's are equal to 1, this is the usual cover time problem. Whenthe graph is the complete graph and the random walk moves to any vertexuniformly at random, the problem reduces to the classical coupon collector'sproblem. (E.g., How many packs of Pokemon cards1 should you buy in order tocollect the full set of Pokemon characters?) It is well know that the expectedtime to cover a graph with m vertices is mHm; where Hk :=Pki=1 i�1 is the kthHarmonic number. The generalized coupon collector's problem asks for the timeto cover the complete graph when the transition probabilities (weights) for theunderlying random walk are not constant (see the survey [2] for a lot of appli-cations). There are classical results established either by combinatorics (inclu-sion/exclusion principles [9], shu�e product [5]) or probability (martingales [8],tails estimates [7]). We also give some references for the coupon collector problemfor arbitrary graphs [4]; some articles deal with asymptotic considerations [3].Our problem (which involves two levels of randomness!) seems quite new andof course allows us to rederive/improve previous results (in the peculiar casep=1). When all the pi's are equal (say, to p), a nice but �nally predictable result isthat pE(T (p)) is a rational number (as usual for Markovian process with rationaltransition probabilities). Of course, in principle all the questions concerning therandom walk can be addressed by solving appropriate linear equations usingthe transition matrix for the random walk Markov chain but such an approachquickly becomes infeasible for even small values of m. On the complete graph, inthe case of equal marking probabilities (pi = p for all i), and of probabilities �ifor the coupons, a natural conjecture is that E[T (p)] � (m=p)Hm when p ! 0.The reason is because for small p, one would expect the time to mark a particularvertex to be Geometric with parameter p (and thus mean 1=p). A quick (buterroneous) probabilistic reasoning consists in seeing the marking probability p asa change of time-scale and thus one gets (for any graph) E(T (p)) = E(T (1))=p.This is false (even asymptocally)! However, we will show this intuition to betrue for regular graphs and prove a stronger result: For an arbitrary graph G,one has pE(T (p)) ! K as p ! 0, where K is the expected cover time for thegeneralized coupon collector's problem where the set of weights is the stationarydistribution for the random walk. This result will be proven in Section 4.Notation 1 (Graph) Through all the paper, G is a directed connected graphwith vertices v1; : : : ; vm and with a transition matrix A (that is, aij is the prob-ability of a transition from vi to vj). The stationary distribution of this graph isnoted �1; : : : ; �m. The probability to mark the vertex vi whenever it is visited is1 In the USA, kids have a great craze for these cards. They trade them and stare atthem a lot... :-)



Cyrclic graph (m=8)

Linear graph with reflexion at buttoms (m=8)

Linear graph with loops at buttoms (m=8)

Complete graph (m=4)Fig. 1. Some of the oriented connected graphs considered in our examples.noted pi (i = 1; : : : ;m), and one sets qi := 1� pi. When all the pi's are equal,one simply notes p the probability of marking a vertex. eG is a complete graphwith transition matrix eA (related in some sense to A, as explained later).Notation 2 (Random variables) T (resp. eT ) is the \waiting time" randomvariable that represents the �rst time when all the vertices of the graph G (resp.eG) have been marked. The random variable Xi (resp. eXi) gives the �rst time thei-th vertex of the graph G (resp. eG) is marked.Notation 3 (Operators) One notes [zn]S the coe�cient of zn in a given se-ries S. For any subset � of f1; : : : ;mg, j�j stands for the number of elements in� and one notes�� the substitution ui  0 for i 2 � and ui stays unchanged for i 62 �,�� the substitution ui  qi for i 2 � and ui  1 for i 62 �.The same notation will be used with respect to any other set of formal vari-ables (for example with t1; : : : ; tm instead of u1; : : : ; um). We will also denotethe identity matrix as Id and U as the diagonal matrix with diagonal elementsu1; : : : ; um.Examples. To illustrate the above notations: [z2] (1+4z2+ z3) = 4. For m = 4and � = f1; 2; 4g, one has �� (3u1 + u1u2 + u33 + u4) = u33 and �� (3u1 + u1u2 +u33 + u4) = 3q1 + q1q2 + 1 + q4.In the sequel, all the graphs considered have m vertices (m > 1) and aredirected and irreducible: there is a sequence of connected edges linking any pairof vertices. First, we establish a combinatorial formula for the marking time insection 2. One will explain in section 3 a probabilistic intuition which allows usto simplify the problem and thus to prove the Supper Conjecture in Section 4,another proof is given in Section 5. The last sections deal with peculiar cases.2 Marking Time on any GraphWe �rst give a generating function-based formula (based on �nite di�erences) forE(T (p)), the expected marking time. For the cover time on the complete graph,another approach can be found in [5]. We refer the reader to Figure 4 for anexample of our approach on two graphs of size 3.



Theorem 1 (General formula for average marking time) The averagetime for marking all the vertices of an arbitrary graph G is given byE(T (fp1; : : : ; pmg)) =X� 6=;(�1)j�j+1�� mXi=1 u1(Id�AU)�11i ;where A, U , the pi's, � and the ��'s are de�ned as in Notation 1 and 3.Proof. For the transition matrix A, the entry Ani;j of An, gives the probabil-ity of moving from vertex vi to vj in n steps. With the matrix U de�ned asin Notation 3, the coe�cient of the monomial uk11 � � �ukmm in (AU)ni;j gives theprobability that the random walk moves from vi to vj in n steps such that vertexvt is visited kt times, t = 1; : : : ;m. Thus the probability generating function forthe walks on the graph (beginning in v1), where z encodes the length of the walkand the ui's encode the number of times the walk visits vi isF (z; u1; : : : ; um) = u1 mXi=1 1Xk=0 zk(AU)k1;i = u1 mXi=1(Id� zAU)�11;i :Recall that pi (respectively, qi := 1� pi) is the probability to mark (respec-tively, not to mark) the vertex vi.Taking into account the fact that the walk has visited all the vertices mark-ing them at least once leads to the substitution uni  1 � qni . This justi-�es the introduction of the di�erence operator �if(ui) := f(1) � f(qi): SoF+ := �1�2 : : : �mF gives the probability generating function of the walksthat marked all the vertices and one has in factF+(z) = X��f1;:::;mg(�1)j�j��F (z; u1; : : : ; um);i.e., F+ is the sum of F evaluated the set �� (de�ned in Notation 3). There-fore the probability generating function for T (fp1; : : : ; pmg) is (1 � z)F+(z),so E(T (fp1; : : : ; pmg)) = @@z jz=1(1� z)F+(z):A change of variable 1� z = t and a local development in t = 0 gives@@z jz=1�� � (1� z)u1Id� zAU�ij = ��� (Id�AU)�1ijNote that Id � A is never invertible (whereas Id � zA is always invertible),so one has to deal apart with the substitution �;. utNote that setting the pi's to 1 gives a formula for the coupon collector problem.3 The Probabilistic IntuitionWe restrict here the discussion to the case when all the pi's are small (equiva-lently, you can think p small with p := max pi). One argues that the random walkbehaves, for small values of p, like a walk on the complete graph (with loops). Weobtain a new Markov chain that is \equivalent" to the original Markov Chain,in the sense that they both have the same (limiting) stationary distributions.



Let f�igmi=1 be the stationary distribution for the random walk on G. Notethat �i gives the probability that the walk is in vertex vi in stationarity (i.e.,after a \long time"). When p is small, the time to mark the graph is high. Andthe proportion of time n that the walk is in vertex vi will be �in + O(pn) forlarge n, with probability close to 1. (This can be shown, for instance, by a centrallimit theorem for Markov chains, or from results on large deviations.)Thus, for \long enough" walks over G (when p is small, all walks are \longenough"), the average length of time to mark all the vertices should be verynearly the average length of time to mark the vertices of the complete graph (withloops), but with transition probabilities corresponding to the stationary distrib-ution for the original graph. Let eG denote the complete graph on m vertices withloops. De�ne its transition matrix eA with the transition probabilities eai;j := �j(for i; j = 1; : : : ;m). Consider a random walk process for the general markingproblem that begins in the vertex vi with probability �i. For such a process de-�ne eXk to be the �rst time that vertex evk is marked. Then the eXk are geometricrandom variables with parameter �kpk and P ( eXk = n) = �kpk(1 � �kpk)n�1,but there are not independent (as ~Xi 6= ~Xj for i 6= j).Observe that T = max(X1; : : : ; Xm) and eT = max( eX1; : : : ; eXm). Considernow a new process on the graph. Instead of one \random walker," consider mparticles at each of the vertices all moving simultaneously to neighboring verticesaccording to the same transition mechanism, but independently of each other.If we let Yi (and eYi) denote the �rst time that vertex vi is marked then observethat the Yi has the same distribution as Xi but the Yi's are independent andthe Xi's are not. De�ne now Z = max(Y1; : : : ; Ym) and eZ = max(eY1; : : : ; eYm).Our intuition is as follows: As the eY 0i s and the Yi's will behave similarly forsmall p, one should have that E( eZ) � E(Z): As simultaneous markings (forthe Y process) occur with probability O(p2), one has that E(Z) � E(T ). AlsoE( eZ) � E( eT ) and thus E(T ) � E( eT ). Thus the study of the expected markingtime on the graph eG should answer our question as to the expected markingtime on the graph G. We make the above rigorous in the next section.4 Algebraic and Combinatorial ProofTheorem 2 (Closed form formula with stationary distribution) Let eGbe a graph with transition probabilities eai;j := �j . The expected time E( eT ) formarking the whole graph eG is 1=p times the time needed for visiting all thevertices E( eT ) = 1pE(coupon collector on eG);and an inclusion-exclusion formula holdsE( eT ) = 1pX� 6=; (�1)m�j�j���(�1 + �2 + : : :+ �m) ;where the ��'s are de�ned as in Notation 3.



Proof. Consider the �0is, the qi's, and the pi's as formal variables, thenProb( eT � n) = fp>01 g : : : fp>0m g(�1p1 + �1q1 + : : :+ �mpm + �mqm)n;where fp>01 Sg (with S 2 IR[[p1; : : : ; pm; q1; : : : ; qm]]) stands for the sum of mono-mials in p1 of positive exponent in S. Thus, we haveProb( eT � n) = X��f1;:::;mg(�1)j�j(��(�1p1 + �1q1 + : : :+ �mpm + �mqm))n;where the substitutions �� are de�ned as in Notation 3. Multiplying by zn andsumming for n � 0, when all the pi's are equal to p, with the substitutions ��now taken to act on the �i's, leads toXProb( eT � n)zn = X��f1;:::;mg (�1)j�j1� z(q + p��(�1 + �2 + : : :+ �m)) :Multiplying by 1� z and di�erentiating in z = 1 gives the expected timeE( eT ) =X� 6=;(�1)j�j 1p(�1 + ��(�1 + �2 + : : :+ �m)) : utgraph G graph eGtransition matrix A =  1/2 1/2 01/3 1/3 1/31/4 1/4 1/2! eA =  3/8 3/8 1/43/8 3/8 1/43/8 3/8 1/4!stationary distribution (3/8, 3/8, 1/4) (3/8, 3/8, 1/4)U =  u1 0 00 u2 00 0 u3! U =  u1 0 00 u2 00 0 u3!generating matrix of the walks (Id� zAU)�1 (Id� z eAU)�1expected covering time 95=12 ' 7:91 29=5 ' 5:80expected marking time(closed form) 435 + 494p+ 187p2 + 24p375p+ 60p2 + 9p3 29=5p�1expected marking time(asymptotics) E(T (p)) = 29=5p�1 +O(1) E(eT (p)) = 29=5p�1Fig. 2. Example of our approach on a graph of size 3. Most of the results in theliterature are about the (expected) covering time of the eG-column (and other highermoments). In our situation (the G-column), the lack of independence is the maindi�culty. Our paper shows that in order to get the last entries in the G-column, onecan proceed as follow: Consider the �rst 2 entries of the G-column, then deal witheG-column whose last entries gives the wanted result (for G).



Proposition 1 The marking time T can be approximated by eT :E( eT )�E(T ) = O(1); (p! 0):Proof. In order to prove thatX� 6=;(�1)j�j+1�� mXi=1 u1(Id� eAU)�11i �X� 6=;(�1)j�j+1�� mXi=1 u1(Id�AU)�11i = O(1)where the substitutions are de�ned in Notation 3, it is su�cient to check that[p�1]�� �Id� eAU��1ij � [p�1]�� (Id�AU)�1ij = O(1): (1)In fact, one has (1 � zA)�1 = eA1�z + O(1): This is established by writingA = P + R, which decomposes A as an eigenprojection on the eigensubspacerelated to its eigenvector �, plus the projection R on the supplementary subspace(as it is well known Pn = P = eA and PR = RP = 0), thus P zn(P + R)n =eA1�z +(Id�zR)�1 where (Id�zR)�1 is actually regular in z = 1 (as, by Perron{Frobenius theory, 1 is an eigenvalue of multiplicity 1), so (1� zR)�1 = O(1).So this sets the case of the equality (1) when � = f1; : : : ;mg (simply considerz = 1 � p). Theq other cases appear as a perturbation of two noninvertiblematrices (namely Id�A and Id� eA), which gives(Id�A+ �B)�1 = eA���0(0) +O(1) = (Id� eA+ � eB)�1where B is A with its i-th column set to 0 whenever i 2 � (so A� �B = ��AU),and where �(�) is the perturbation of the eigenvalue 1, so �0(0) = Pi2� �i.See [6] for the analicity of the perturbations of projections, eigenvalues, etc. utFor people with probabilistic a�nities, we give below another approach whichalso proves that E(T ) = E( eT ) +O(1) as p! 0.5 Analytical and Probabilistic ProofThe following proposition (identical to Proposition 1) is the key pointProposition 2 (Equivalence of expected times) The marking time forthe graph G and eG have the same �rst order asymptotics, namelyE(T ) = E( eT ) +O(1):Proof. The main idea is the followingT � (T without its tails) � ( eT without its tails ) � eT ;where � means here that the expectations have the same �rst order asymptoticsas p! 0. Note that P (T � n) = X�=(n1;:::;nm) p�c�;



where the sum is over all nonnegative m-tuples � = (n1; : : : ; nm) such thatPk nk = n, p� is the probability that the walk takes n steps and visits eachvertex vk nk times, k = 1; : : : ;m, and c� is the probability that all vertices havebeen marked by such a tour, that is c� =Qmj=1(1�(1�p)nj ). De�ne the \centralinterval" I as I := � 1pj ln pj ; j ln pjp � :Further de�ne the \multidimensional box" B asB := mYi=1[n�i �pn lnn; n�i +pn lnn]:For small p and for large n, by a classic result in large deviation theory, one hasn�j �pn lnn < nj < n�j +pn lnn(that is, � 2 B) with probability 1 � exp(�c ln2 n) (with c > 0, see [1]). AsProb(T = n) is the probability that a success occurs exactly at the n-th step,one has E(T ) =Xn�0(1� Prob(T � n)):This sum can be split as follows (with a lot of abusive but natural notations!)E(T ) =Xn<I+ Xn2I;�2B+ Xn2I;� 62B+ Xn>I;�2B+ Xn>I;� 62B (2)where, for example, n < I means for n before the \central interval" I . The �rstsum is bounded by the length of the interval of summation, which is o(1=p) asp! 0, the sums for � 62 B are bounded by exp(�c ln2 n) and so is the remainingsum for n > I .One now focuses on the sum over I and B. By a limit theorem on MarkovChains [1], p� follows a multidimensional Gaussian law g(�), thusE(T ) =Xn2I 1�X�2B g(�)c�!+ o(p�1): (3)The same scheme can be applied to eG, with the same central interval Iand box B since the two random walks have the same stationary distribution.Thus E(T ) = E( eT ) + o(p�1) = E( eT ) +O(1), since E( eT ) and E(T ) are rationalfractions in p (see Theorem 1 and 2). utThe Theorem below is the main result of the paper and answers precisely tothe Supper Conjecture. The following \integral formula" is well known (cf. [5],where it is established for the complete graph by means of shu�e products andLaplace transform), but we give an alternate derivation here, valid for any graph.



Theorem 3 (First order asymptotics. Integral form) For any graph Gwith a stationary distribution (�1; : : : ; �m), the expected marking time isE(T ) = Kp +O(1); where K = Z 10 (1� mYj=1(1� exp(��jx))) dx:Proof. With the same notations as above, the starting point isc� = c(n1;:::;nm) = mYj=1(1� (1� p)nj ) = mYj=1(1� e�p0nj );where p0 := � ln(1� p). ThusE(T ) =Xn2I0@1�X�2B g(�) mYj=1 1� exp(�p0nj�j)1A+O(1):In the box B, nj = n�j + �jpn lnn (where j�j j < 1), soc� = mYj=1(1� exp(�p0n�j � p0�jpn lnn)); and thusE(T ) =Xn2I0@1�X�2B g(�) mYj=1(1� exp(�p0n�j � p0�jpn lnn))1A+O(1):Now, majoringP g(�) by 1� exp(�c ln2 n) yieldsE(T ) =Xn2I0@1� mYj=1 1� exp(�p0n�j � p0�jpn lnn)1A+O(1) + o(p�1):The sums being for p�1j ln pj � n � p�1j ln pj, this leads toX exp(�p0(O(n))(1� exp(�p0o(n))) �X(1� exp(�p0o(n))�X p0o(n) � p0p�1j lnpjo(p�1j ln pj) = o(p�1);and completing the tails givesE(T ) =Xn2I0@1� mYj=1 1� exp(�p0n�j)1A+O(1) + o(p�1):=Xn�0(1� mYj=1(1� exp(�p0n�j))) +O(1) + o(p�1): (4)Indeed the �rst introduced part is � p�1=j lnpj = o(p�1) and the last introducedpart is �Pn>p�1j ln pj 2m exp(�p0mmin(�i))n = o(p�1).Set f(x) := 1�Qmj=1(1� exp(�p0x�j). As f 0(x) has a fast enough decay to0 near 1, the Euler-Maclaurin formula gives:



1Xn=0 f(n)� Z 10 f(x)dx = f(0) + f(1)2 + Z 10 (x� bxc � 1=2)f 0(x)dx = O(1):Applying this to the formula (4) leads toE(T ) = 1p0 Z 10 (1� mYj=1(1� exp(��jx))) dx +O(1) when p0 ! 0:Since p0 = p+ o(p), one has E(T ) = K=p+O(1). utThe \integral formula" allows us to compute E(T ) to any precision in lineartime (as all the integrated functions have a nice behavior), whereas the formulaeof Theorem 1 and 2 are impracticable because they comprise 2m summands.6 What about Balanced or Regular Graphs?The most common model for random walk on a graph (the unweighted case) is tosuppose that at a particular vertex the walk moves with probability proportionalto the degree of that vertex. It is well known that the stationary distributionfor such a walk is related to the degree of the vertices. Call a graph \balanced"if the outdegree of each vertex is equal to its indegree and if each outgoingedge is equally likely. For balanced graphs, there is a simple relation betweenthe stationary distribution (the left eigenvector associated to eigenvalue 1 of thetransition matrix of the graph) and the degrees of edges:Proposition 3 (Stationary distribution for balanced graphs) For balancedgraphs, one has �i = NiPm1 Ni (Ni is the number of incoming edges of vertex vi).Proof. Let Nij be the number of edges from vi to vj , and note N�j the numberof incoming edges to vj and Ni� the number of outgoing edges from vi. The lefteigenvector (for eigenvalue 1) satis�es(�1; �2; : : : ; �m)0B@ N11=N1� : : : N1m=N1�... ... ...Nm1=Nm� : : : Nmm=Nm�1CA = (�1; �2; : : : ; �m);hence Pi �i NijNi� = �j . This equation is indeed satis�ed by �i := N�iPm1 N�i whenNi� = N�i. utTheorem 2 rewrites in these cases:Corollary 1 (Balanced graphs) For balanced graphs with N :=PNi edges,one has E(T ) = Np X� 6=; (�1)m�j�j���(N1 +N2 + : : :+Nm) +O(1);where the substitutions �� operate on the fNjg.Proof. Direct consequence of Theorem 2 and Proposition 3. ut



There are several classes of graphs for which the formula can be simpli�ed.The more interesting one, the class of regular graphs (graphs whose all verticeshave the same number of incoming and outgoing edges), is the object of thefollowing corollary.Corollary 2 (Regular graphs) When all the �i's are equal (in particular ifG is a regular graph and outgoing edges are chosen uniformly at random), onehas E(T ) = mHmp +O(1).Proof.E( eT ) = mXi=1(�1)i�mi � 1p(�1 + m�im ) = mp mXi=1(�1)i+1�mi �1i = mHmp :The last equality follows as iteration of forward �nite di�erence operators andEuler's transform. Equivalently, one could use Theorem 3. Here the integral be-comes R10 (1 � Qmj=1(1 � exp(�x=m))) dx, which simpli�es to mHm. A thirdproof of this formula is probabilistic and considers the maximum of i.i.d. geo-metric random variables. Thus when �i = 1=m (for i = 1; : : : ;m), one hasProb( eZ = n) =Xi Prob( eXi = n)Yj 6=iProb( eXj < n)= m �p=m(1� p=m)n�1� (1� (1� p=m)n�1)m�1:Since E( eT ) =Pn�1 nProb( eT = n), one is interested by the coe�cient of thelowest term in the Laurent development at p = 0 ofXn�1nz(1� zm)n�1(1�(1� zm)n�1)m�1 = m�1Xk=0 (�1)k� km� 1� z(1� (1� z=m)k+1)2 :As (1� (1� z=m)k+1)2 = O(z2) as z ! 0, the valuation of the developmentin Laurent series of z �1� (1� z=m)k+1��2 is �1. Thus the coe�cient of thelowest term of Fm(z) is the sum of the residues of the rational fractions, thenRes(z = 0) = mm�1Xk=0 (�1)k� km� 1� m(k + 1)2 = mHm:7 ExamplesThe formula for the expected time in the coupon collector problem reduces tom2�m+22 for the cyclic graph Cm, to m2 � 2m + 2 for the line graph Lm (withreection) and to (m� 1)Hm�1 + 1 for the complete graph without loops Km.For Lm, there is an equivalence between the coupon collector problem andthe random walks (with jumps +1;�1) from 0 to m of height � m, the last onesbeing linked to continued fraction theory and hence to a quotient of Chebyshevpolynomials.We apply below the formula of Theorem 1 for all nonisomorphic unorientedconnected graphs without multiplicity having at most 4 vertices. We give foreach graph, the stationary distribution, the average time for the classical coupon
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